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1 Introduction

It is an elementary fact that for every group G any subgroup contained in
the center or containing G′ is normal in G. What can be said about a group
if these are its only normal subgroups? Of course, all abelian and all simple
groups enjoy this property, so we have groups of this kind at both ends of
the spectrum. We have studied in [1] the finite nilpotent groups satisfying
this condition, that we call the strong condition on normal subgroups. It is
easy to reduce this study to the case of finite p-groups, and then we proved
that the nilpotency class is at most 3 and, furthermore, that when the class
of G is 3 then |G : Z(G)| ≤ p3 and |G| ≤ p5. This has been established
independently by G. Silberberg in [6]. On the other hand, there are no
bounds even for the index of the center when the class is 2, as extraspecial
p-groups show. In [1] we also dealt with finite p-groups satisfying a slightly
weaker hypothesis, namely that for any normal subgroup N of G, either
G′ ≤ N or |NZ(G) : Z(G)| ≤ p. In this case the nilpotency class is at
most 4, but the order of G cannot be bounded if the class is greater than 2.
However, it is still possible to bound the index of the center, more precisely
we get that |G : Z(G)| ≤ p6. I.M. Isaacs [3] has generalized our results
in the following way. Suppose G is a finite p-group and that G′ ≤ N or
|NZ(G) : Z(G)| < pa holds for any normal subgroup N of G, where a is
a fixed positive integer. Then the class of G is at most a + 2, and Isaacs
has proved that if the class exceeds 2 then |G : Z(G)| ≤ p3a, and that this
bound is sharp for odd p.

In this paper we extend this kind of results to the realm of infinite groups.
Let n be a positive integer or ∞. We say that a group G satisfies condition
Cn, or that G is a Cn-group, if either G′ ≤ N or |NZ(G) : Z(G)| < n for any
normal subgroup N of G. Our purpose is to obtain information about the
index |G : Z(G)| from this finiteness condition on normal subgroups. Again
we focus our attention on nilpotent groups.

We first consider the case when n is a positive integer. In this setting, the
natural generalization of Isaacs’ result seems to be to prove that the index
of the center is n-bounded for the nilpotent Cn-groups of class greater than
2. (We will say that a certain invariant associated to a family of groups is
n-bounded if it can be uniformly bounded by a function of n for all groups
in the family. We may speak similarly of boundedness in terms of more
than one parameter.) However, this fails to hold as stated. For instance,
any p-group of maximal class of order p4 satisfies the strong condition, so it
is a C2-group. Nevertheless, there is no absolute bound for |G : Z(G)| = p3

as p ranges over all primes. This example suggests that we first prove that
|G : Z(G)| is finite and then somehow introduce in our bound for |G : Z(G)|
one or more “relevant” primes, perhaps the primes dividing that index. In
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fact, we have obtained the following result.

Theorem A. Let n be a positive integer and G a nilpotent Cn-group of class
c > 2. Then G is central-by-finite. Furthermore, if p is the smallest prime
dividing |G : Zc−1(G)| then |G : Z(G)| is (p, n)-bounded.

It is possible to give actual bounds in Theorem A, but we have not tried
to obtain accurate bounds as Isaacs does in the case of finite p-groups.

Next we consider condition C∞. It is clear that central-by-finite groups
are C∞-groups and, in view of all the previous results, it seems reasonable
to ask whether any nilpotent C∞-group of class greater than 2 is conversely
central-by-finite. This question turns out to be well targeted, but the answer
brings a small surprise with it: this is true, but we need that the class is
greater than 3. Thus we get the following theorem.

Theorem B. Let G be a nilpotent group of class greater than 3. Then G is
a C∞-group if and only if it is central-by-finite.

Observe that infinite extraspecial p-groups have class 2 and satisfy the
strong condition, so a fortiori they are C∞-groups. However, they are not
central-by-finite. On the other hand, we can construct a nilpotent C∞-group
of class 3 with infinite central index as follows. Let C = 〈x〉 be an infinite
cyclic group and let D be the direct product of three copies of Prüfer’s
Cp∞ group. Then C acts on D by means of (a, b, c)x = (a, ab, bc) and the
corresponding semidirect product satisfies all the desired conditions.

Our next two theorems show that, even if nilpotent C∞-groups of class
2 or 3 need not be central-by-finite, it is possible to characterize in several
different ways which of these groups are central-by-finite. We call a group
G Prüfer-free if there are no normal subgroups N ≤ K of G such that
K/N ∼= Cp∞ .

Theorem C. Let G be a nilpotent C∞-group of class 2. Then the following
conditions are equivalent:

(i) G is central-by-finite.

(ii) G/Z(G) is finitely generated.

Theorem D. Let G be a nilpotent C∞-group of class 3. Then the following
conditions are equivalent:

(i) G is central-by-finite.

(ii) G′ is finite.
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(iii) G/Z2(G) is finitely generated.

(iv) G/Z2(G) is a torsion group.

(v) G/Z2(G) is a Prüfer-free group.

For a C∞-group G of class 2, however, we cannot conclude that G is
central-by-finite if G′ is finite or if G/Z(G) is a torsion group or a Prüfer-
free group. This is shown again by infinite extraspecial p-groups.

The proof of all the theorems above relies on the following result about
capable groups which, we think, has some interest by itself. Recall that a
group P is capable if there exists a group G such that P ∼= G/Z(G).

Theorem E. Let P be a nilpotent capable group such that |P ′| = n < ∞.
Then |P : Z(P )| is n-bounded.

Isaacs [2] has proved this same result for arbitrary finite capable groups.
By a famous theorem of Schur, if G is central-by-finite then G′ is finite. It
is also well-known that the converse is not true, even for nilpotent groups,
consider for example an infinite extraspecial p-group. Thus Theorem E
proves that we can obtain a partial converse to Schur’s Theorem with the
additional hypothesis of G being nilpotent and capable. It would be nice to
remove the nilpotency hypothesis, as Isaacs does in the finite case. We have
not attempted to do this, however.

We close this introduction by mentioning another related problem we
have considered, which is the study of C∞-groups in the category of profi-
nite groups. In this case, condition C∞ is only required for closed normal
subgroups and then it is very easy to prove the following.

Theorem F. Let G be a profinite group. Then G is a C∞-group if and only
if it is central-by-finite.

2 Nilpotent capable groups

In this section we prove Theorem E, which is a cornerstone for our results
about Cn-groups. Before proceeding, let us mention some facts that we
will use freely throughout the paper. If G is a group and H ≤ Z2(G)
then [Hn, G] = [H,G]n = [H,Gn] for all n ∈ N and, as a consequence,
exp[H,G] = exp HZ(G)/Z(G). In particular, the order modulo Z(G) of
any element x ∈ Z2(G) coincides with the exponent of the commutator
subgroup [x,G].

The key to the proof of Theorem E is the following preparatory lemma.
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Lemma 2.1. Let P be a capable group such that |P ′| = n < ∞. Then
there exists another capable group, Q = H/Z(H), satisfying the following
conditions:

(i) |Q′| = |P ′| and |Q : Z(Q)| = |P : Z(P )|.

(ii) For any h ∈ H such that its image in Q has prime order and lies in
Q′ ∩ Z(Q), the size of the conjugacy class of h in H is n-bounded.

Furthermore, if P is nilpotent then Q can be taken to be nilpotent.

Proof. Since P is capable, we may assume that there exists a group G such
that P = G/Z(G). Write Z = Z(G).

Let p be any prime dividing |P ′ ∩ Z(P )|. Let T/Z be the subgroup
generated by the elements of order p in P ′∩Z(P ), and write T1/Z, . . . , Tk/Z
to denote the different subgroups of order p of T/Z. It is clear that k < n.

Let U = [T,G] and Ui = [Ti, G] for 1 ≤ i ≤ k. Since T ≤ Z2(G), all
these subgroups are central in G and

expU = exp[T,G] = exp T/Z = p.

Hence we can view U as a vector space over the field with p elements. Note
that all the Ui are non-trivial, so we can find for every i a maximal subspace
Mi of U such that Ui 6≤ Mi. In particular |U : Mi| = p. Put M = ∩k

i=1Mi.
Then |U : M | ≤ pk < nn and Ui 6≤ M for every i. In the rest of the proof we
write T(p), U(p) and M(p) instead of T , U and M to remark their dependence
on the prime p.

Now, let N denote the product of all the M(p) as p runs over the prime
divisors of |P ′ ∩ Z(P )|. Put H = G/N and Q = H/Z(H). Our aim is to
prove that Q and H satisfy the conditions in the statement of the lemma.
Observe that we can identify Q with a quotient of P . More precisely, if
Z(H) = X/N and we define R = X/Z then Q ∼= P/R. Since N ≤ Z, it
follows that X ≤ Z2(G) and consequently R ≤ Z(P ).

Let us see that P ′ ∩R = 1. Otherwise, there is an element a ∈ P ′ ∩R of
prime order p. In particular, p is a divisor of |P ′∩Z(P )|. Since a ∈ R = X/Z,
we can write a = xZ with x ∈ X and then [x,G] ≤ N . But [x,G] has
exponent p, so necessarily [x,G] ≤ M(p). This is a contradiction with the
choice of M(p), since a ∈ P ′∩Z(P ). Now the condition P ′∩R = 1 has several
consequences. In the first place, we deduce that the canonical epimorphism
from P onto P/R induces an isomorphism between P ′ and (P/R)′. Thus
P ′ and Q′ are isomorphic and in particular |Q′| = |P ′|. Secondly, two
elements of P commute modulo R if and only if they commute in P . Hence
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Z(P/R) = Z(P )/R and we derive that |Q : Z(Q)| = |P : Z(P )|. This proves
(i).

Now, let h ∈ H be such that its image in Q has prime order p and lies
in Q′ ∩ Z(Q). If h = gN with g ∈ G, it follows from the previous remarks
that its image in P , gZ, lies in P ′ ∩ Z(P ) and has order p. Consequently
g ∈ T(p) and [g,G] ≤ U(p). Then

[h, H] ≤ U(p)N/N ∼= U(p)/U(p) ∩N = U(p)/M(p),

which has order at most nn. Therefore the number of conjugates of h is
n-bounded.

After this lemma, we can prove Theorem E following some of the ideas
of Isaacs in [2].

Theorem 2.2. Let P be a nilpotent capable group such that |P ′| = n < ∞.
Then |P : Z(P )| is n-bounded.

Proof. We argue by induction on n. The case n = 1 is clear, so suppose
n > 1. Let us write P = G/Z(G) and Z = Z(G). According to the previous
lemma, we may assume that the size of the conjugacy class of g ∈ G is
n-bounded whenever its image in P has prime order and lies in P ′ ∩ Z(P ).
Since P is nilpotent and non-abelian, we have that P ′ ∩ Z(P ) 6= 1 and
consequently there is at least one element g as above. Let C = CG(g),
which is a subgroup of G of n-bounded index, X = Z(C) and Q = C/X.
Note that Q is nilpotent and capable. Since g ∈ G′Z \ Z belongs to X,
we have that |Q′| < |P ′| and by the induction hypothesis |Q : Z(Q)| is
n-bounded.

Let Z(Q) = V/X, so that V has n-bounded index in G. We can find
elements g1, . . . , gr ∈ G such that G = 〈g1, . . . , gr, C〉, where r is n-bounded.
Put S/X = V/X ∩ (∩r

i=1CQ(giX)). Since |Q : CQ(giX)| ≤ |Q′| < n for all
i, it follows that |G : S| is n-bounded. On the other hand, it is clear that
S/X is central in G/X. Hence

[G, S, S] ≤ [X, S] ≤ [X, C] = 1

and, by Hall’s three subgroup lemma, [S′, G] = 1. Thus S′ ≤ Z and A = S/Z
is an abelian subgroup of P of n-bounded index. If P = 〈b1, . . . , bs, A〉 then
A∩ (∩s

i=1CP (bi)) is a central subgroup of P whose index is n-bounded. This
proves the theorem.

The following lemma is well-known, but we include its short proof here
for the convenience of the reader.
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Lemma 2.3. Any capable divisible abelian group is torsion-free. As a conse-
quence, if a quotient of a group G by a central subgroup is a torsion divisible
abelian group then G is abelian.

Proof. Let D = G/Z(G) be a divisible abelian group and suppose D has an
element xZ(G) of finite order n > 1. Obviously, G is nilpotent of class 2 and
hence the exponent of the commutator subgroup [x,G] is also n. Since [x,G]
is abelian and its elements are all commutators of the form [x, y], there exists
y ∈ G such that [x, y] has order n. Let p be any prime divisor of n. Since
D is divisible, we can find an element g ∈ G such that (gZ(G))p = yZ(G).
Then [x, g]p = [x, gp] = [x, y] and [x, g] has order pn, contrary to the fact
that exp[x,G] = n.

3 Nilpotent Cn-groups

In this section we prove the rest of the theorems stated in the introduction.
For this purpose, we need a series of lemmas. The first one shows that the
classes of groups that we are handling are closed for quotients.

Lemma 3.1. Let G be a Cn-group and N a normal subgroup of G. Then
G/N is also a Cn-group.

Proof. Let K/N be a normal subgroup of G/N and assume that (G/N)′ 6≤
K/N . Then G′ 6≤ K, so |KZ(G) : Z(G)| < n. Write Z(G/N) = X/N .
Since Z(G) ≤ X we obtain that

|K/N · Z(G/N) : Z(G/N)| = |KX : X| ≤ |KZ(G) : Z(G)| < n

and G/N is a Cn-group.

However, the class of Cn-groups is not closed for direct products. It
suffices to observe that an infinite extraspecial p-group E satisfies the strong
condition but E × E does not even satisfy condition C∞.

Lemma 3.2. Let G be an abelian p-group and suppose that G has finitely
many elements of order p. Then G is isomorphic to a direct product of
finitely many Prüfer groups and a finite abelian p-group.

Proof. For every i ≥ 1, let Gi denote the subgroup formed by the elements
of G of order at most pi. Suppose some subgroup Gi is infinite. By Prüfer’s
First Theorem (see Theorem 10.1.5 in [4]), Gi is a direct product of infinitely
many cyclic groups of p-power order. But then we can find infinitely many
elements of order p in G, contrary to our assumption. It follows that G has
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finitely many elements of each possible order and, by Exercise 4.3.5 in [5], G
satisfies the minimal condition. Now Kuroš’ characterization of the abelian
groups with the minimal condition (Theorem 4.2.11 in [5]) shows that G has
the specified structure.

The following two lemmas will play a fundamental role in obtaining
Theorems A, B and D, as will become evident in their proof.

Lemma 3.3. Let G be a nilpotent C∞-group of class 2. If G′ ∼= Cp∞ then
G/Z(G) is not finitely generated, not a torsion group and not a Prüfer-free
group.

Proof. Let us write Z = Z(G). First of all, if G/Z = 〈x1Z, . . . , xrZ〉 is
finitely generated then G′ = 〈[xi, xj ] | i, j = 1, . . . , r〉 is also finitely gener-
ated and cannot be isomorphic to Cp∞ .

Let us assume now, by way of contradiction, that G/Z is a torsion group.
Since G has class 2, the exponent of any commutator subgroup [x, G] co-
incides with the order of x modulo Z, so it is finite. In fact, since [x,G]
is contained in G′ ∼= Cp∞ , this subgroup is cyclic of p-power order. In
particular, any element of G/Z has p-power order and G/Z is a p-group.

Suppose that G/Z has finitely many elements of order p. By Lemma 3.2,
we can decompose G/Z as the direct product of a divisible group K/Z and
a finite group L/Z. Then G = KL and G′ = K ′[L,G]. Since G′ is a Prüfer
group and exp[L,G] = expL/Z < ∞, we necessarily have that G′ = K ′.
But, on the other hand, if we apply Lemma 2.3 to the torsion divisible
abelian group K/Z it follows that K is abelian. Therefore G′ = K ′ = 1,
which is a contradiction, since G has class 2.

Hence G/Z has infinitely many elements of order p. Let T/Z be the
subgroup of G/Z generated by the elements of order p. For any x ∈ T ,
the subgroup [x,G] has exponent p and, since it is contained in a Prüfer
group, it has order p. It follows that the conjugacy class of x in G has p
elements, i.e., that |G : CG(x)| = p. With this property in mind, we are
going to construct an abelian subgroup A of T such that A/Z is infinite.
Let A1 = 〈x1, Z〉, where x1 is any element of T \Z. In general, suppose that
we have already built Ai = 〈x1, . . . , xi, Z〉. Now

CG(Ai) =
i⋂

j=1

CG(xj)

is a subgroup of finite index of G, so T ∩ CG(Ai) has also finite index in T .
Since T/Z is infinite and Ai/Z is finite, we can choose an element xi+1 ∈
(T ∩ CG(Ai)) \ Ai. Define then Ai+1 = 〈xi+1, Ai〉. Observe that Ai+1 is
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abelian and |Ai/Z| < |Ai+1/Z|. Then A = ∪i≥1Ai is an abelian group
contained in T and A/Z is infinite.

Since A is abelian and G′ ∼= Cp∞ is a subgroup of A, we deduce from
Baer’s Theorem (4.1.3 of [5]) that A = G′ × B for some subgroup B of
A. Let P be the unique subgroup of order p of G′ and N = BP . Since
[B,G] ≤ [T,G] has exponent p, it follows that [B,G] ≤ P and N is normal in
G. It is clear that G′ 6≤ N and, on the other hand, |NZ : Z| = |A : Z| = ∞.
This contradicts the assumption that G is a C∞-group.

Thus we have proved that G/Z is not a torsion group. Let x ∈ G be an
element of infinite order modulo Z. Then [x,G] has not finite exponent and
consequently [x,G] = G′. Now the map g 7→ [x, g] is a homomorphism from
G onto G′. It follows that G/CG(x) ∼= G′ ∼= Cp∞ and G/Z is not Prüfer-free.
This concludes the proof of the lemma.

Lemma 3.4. Let G be a nilpotent C∞-group of class 3 and P = G/Z(G).
If P ′ is finite then P is finite.

Proof. According to Theorem E, the finiteness of P ′ implies that P/Z(P )
is also finite, so we only need to show that Z(P ) is finite. Let us first
see that Z(P ) is a torsion group. Otherwise, let a ∈ Z(P ) be an element
of infinite order. If a = xZ(G) then N = 〈x,Z(G)〉 is normal in G and
|N : Z(G)| = ∞. Hence G′ ≤ N , that is, P ′ ≤ 〈a〉. This is a contradiction,
since P ′ is a non-trivial finite group.

Let π be the (finite) set of primes dividing the order of P ′. Since Z(P ) is
a torsion abelian group, we can write Z(P ) = A×B, where A is a π-group
and B is a π′-group. Then B ∩ P ′ = 1 and, using that G is a C∞-group,
we derive that B is finite. Now fix a prime p ∈ π and let Ap be a Sylow p-
subgroup of A. Suppose Ap has infinitely many elements of order p. Since P ′

is finite, we can use some of the elements of order p in Ap to build an infinite
subgroup C such that C ∩ P ′ = 1. This contradicts that G is a C∞-group.
Hence Ap has only finitely many elements of order p and, by Lemma 3.2,
Ap is a direct product of finitely many copies of Cp∞ and a finite abelian
p-group. Since this can be done for every prime p ∈ π, we deduce that
Z(P ) = D × E, where D is a torsion divisible abelian group and E is a
finite abelian group. Write D = N/Z(G). Then Lemma 2.3 assures that N
is abelian. On the other hand, |G : N | = |P : D| = |P : Z(P )||E| < ∞ and
there exists k ∈ N such that Gk ≤ N . Since N ≤ Z2(G), we have that

[Nk, G] = [N,Gk] ≤ [N,N ] = 1

and Nk ≤ Z(G). Then Dk = 1 and D is divisible, so D = 1 and Z(P ) = E
is finite, as desired.
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For ease of reference, we state apart the following result, which is Exercise
4.1.2 in [5].

Lemma 3.5. Let G be an abelian group all of whose proper subgroups are
finite. Then G is either finite or a Prüfer group.

After these preliminary lemmas, we proceed now to prove the rest of our
main theorems. We begin by proving Theorems B, C and D together. In
these three theorems we have to show that some conditions on a group G
are equivalent to G being central-by-finite. If G is central-by-finite then it
is clear that the rest of the conditions hold, so we only need to prove the
reverse implications.

Theorem 3.6. Let G be a nilpotent C∞-group and assume that one of the
following conditions holds:

(i) G has class 2 and G/Z(G) is finitely generated.

(ii) G has class 3 and G′ is finite.

(iii) G has class 3 and G/Z2(G) is either finitely generated, a torsion group
or a Prüfer-free group.

(iv) G has class greater than 3.

Then G is central-by-finite.

Proof. First of all, let us see that if (i) holds then G is central-by-finite.
Since G/Z(G) is finitely generated, it suffices to see, as is well-known, that
G′ is finite. Now G′ is a finitely generated abelian group in this case, so
it is a direct product of cyclic groups. Suppose one of these cyclic factors,
say 〈z〉, is infinite. Then there exist x, y ∈ G such that z = [x, y], and both
x and y have infinite order modulo Z(G). Now consider N = 〈x2〉[x2, G].
It is clear that N is normal in G and that |NZ(G) : Z(G)| = ∞. Since
G is a C∞-group, it follows that G′ ≤ N and, in particular, z ∈ N . Then
z ∈ N ∩ G′ = (〈x2〉 ∩ G′)[x2, G], by Dedekind’s Law. But x2 has infinite
order modulo G′, so 〈x2〉 ∩ G′ has infinite index in 〈x2〉. It follows that
〈x2〉 ∩ G′ = 1 and z ∈ [x2, G]. Hence z = [x2, g] = [x, g]2 for some g ∈ G
and z is a square in G′. This is a contradiction. We conclude that G′ has
no infinite cyclic factors and consequently G′ is finite, as desired.

Next we see that (ii) and (iii) imply central-by-finiteness. Let us suppose
that G has class 3, and write P = G/Z(G). We have to see that P is finite.
Since G′ ≤ Z2(G), any subgroup N such that Z(G) ≤ N < G′Z(G) is
normal in G. It follows from condition C∞ that |N : Z(G)| < ∞, and
therefore any proper subgroup of the abelian group P ′ is finite. By Lemma
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3.5, we deduce that P ′ is either finite or a Prüfer group. In the second
case G′ cannot be finite and, by applying Lemma 3.3 to P , we also get that
G/Z2(G) is not finitely generated, a Prüfer-free group or a torsion group.
So under any of the hypotheses in (ii) and (iii) we necessarily have that P ′

is finite. Now, Lemma 3.4 yields that P is finite.

Finally, assume that G has class c > 3. Since G′ 6≤ Zc−2(G), we have
that |Zc−2(G) : Z(G)| < ∞. Thus if we want to prove that G is central-by-
finite, it suffices to show that |G : Zc−2(G)| is finite or, equivalently, that
the quotient Q = G/Zc−3(G) is central-by-finite. By Lemma 3.1, Q is a
C∞-group of class 3, and we have to prove that P = Q/Z(Q) is finite. Now
we can argue as above to deduce that P ′ is finite or a Prüfer group. If P ′ is
a Prüfer group then

exp γ3(Q) = exp[Q′, Q] = exp Q′Z(Q)/Z(Q) = exp P ′ = ∞

and, in particular, γ3(Q) is infinite. But γ3(Q) = γ3(G)Z(G)/Z(G) and
G′ 6≤ γ3(G), so we reach a contradiction with G being a C∞-group. Hence
P ′ is finite and, by Lemma 3.4, P is also finite. This concludes the proof of
the theorem.

If G is a C∞-group of class greater than 3, by combining the previous
theorem with Schur’s Theorem we obtain that the derived subgroup of G
is finite. This is not true for groups of class 3, since the example in the
introduction has a Prüfer derived subgroup. However, we can prove the
following result.

Theorem 3.7. Let G be a C∞-group of class 3. Then G′ is a torsion group.

Proof. Let P = G/Z(G). As in the proof of the previous theorem, P ′ is
either finite or a Prüfer group. If P ′ is finite then, by Lemma 3.4, P is also
finite, and we deduce from Schur’s Theorem that G′ is finite.

Thus we may assume that P ′ is isomorphic to Cp∞ . Then G′/G′∩Z(G) ∼=
Cp∞ is a torsion group and consequently γ3(G) = [G′, G] is also a torsion
group. So we only need to prove that A = G′/γ3(G) is a torsion group.
Put B = (G′ ∩ Z(G))/γ3(G). In the rest of the proof, we will use several
times the following fact: if X ⊆ A generates A modulo B then X is actually
a generating set of A. To see this, we lift the set X to a subset S of G.
Then the subgroup N = 〈S〉γ3(G) is normal in G and |NZ(G) : Z(G)| =
|G′Z(G) : Z(G)| = ∞. Thus G′ = N and A = 〈X〉.

Now, for all i ≥ 1, choose elements xi ∈ A of order pi modulo B. Since
A/B ∼= Cp∞ , these elements generate A modulo B. It follows from the
previous remark that A = 〈xi | i ≥ 1〉. For any n ∈ N, the elements xn

i

also generate A modulo B, so A = 〈xn
i | i ≥ 1〉 = An. Thus A is a divisible
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abelian group. Let y1 ∈ A be an element of order p modulo B. We can find
recursively elements yi in A such that yp

i+1 = yi for all i ≥ 1. As before,
A = 〈yi | i ≥ 1〉. If y1 has finite order then A is a torsion group, as desired.
Suppose otherwise that the order of y1 is infinite. Take n coprime to p and
let y ∈ A be an n-th root of y1. Since A/〈yp

1〉 ∼= Cp∞ , it follows that y ∈ 〈y1〉,
which is impossible.

Consider the semidirect product (Q×Q) o Q, where the action is given
by (a, b)x = (a, b + ax). This is a torsion-free group that satisfies the strong
condition on normal subgroups. Thus the derived subgroup of a C∞-group
of class 2 need not even be a torsion group.

On the other hand, observe that there is no analog to Theorem 3.7 with
G/Z(G) in place of G′. Just take into account the example above for class
2 and the example in the introduction for class 3.

We provide now the proof of Theorem A.

Theorem 3.8. Let n be a positive integer and G a nilpotent Cn-group of
class c > 2. Then G is central-by-finite. Furthermore, if p is the smallest
prime dividing |G : Zc−1(G)| then |G : Z(G)| is (p, n)-bounded.

Proof. We can argue as in the last paragraph of the proof of Theorem 3.6
to reduce ourselves to the case that G has class 3. If P = G/Z(G) then
any proper subgroup of P ′ has order less than n. So, by Lemma 3.5, P ′ is
necessarily finite. Hence we may apply Lemma 3.4 to derive that P is finite,
that is, that G is central-by-finite.

Now, let p be the smallest prime dividing |P : Z(P )| and let us see that
the order of P is (p, n)-bounded. If a ∈ P has order p modulo Z(P ) then
exp[a, P ] = p and we derive that p also divides |P ′|. Since P ′ is a finite
abelian group, we can find a subgroup Q of P ′ such that |P ′ : Q| = p. Then
|P ′| = |P ′ : Q||Q| < pn is (p, n)-bounded. It follows from Theorem E that
k = |P : Z(P )| is also (p, n)-bounded, so it suffices to prove that |Z(P )| is
(p, n)-bounded.

Let us take R ≤ Z(P ) maximal with respect to P ′ ∩ R = Q. Since G
satisfies condition Cn, we get that |R| < n. By the choice of R, the quotient
Z(P )/R cannot have any other subgroup of prime order than P ′R/R. Hence
Z(P )/R is cyclic. In particular, Z(P ) can be generated by fewer than n
elements. Put R = N/Z(G). Then we have that

[Z2(G), G]kn = [Z2(G), Gk]n ≤ [Z2(G), Z2(G)]n = [Z2(G), N ]n

= [Z2(G), Nn] ≤ [Z2(G), Z(G)] = 1,

where in the second equality we have used that Z2(G)/N is cyclic. It follows
that expZ(P ) = expZ2(G)/Z(G) ≤ kn. Thus Z(P ) is an abelian group

11



whose number of generators and exponent are (p, n)-bounded, so its order
is also (p, n)-bounded. This proves the theorem.

Let us conclude with the easy proof of Theorem F.

Theorem 3.9. Let G be a profinite group. Then G is a C∞-group if and
only if it is central-by-finite.

Proof. Suppose G is a profinite C∞-group. If G′ 6≤ N for some normal open
subgroup N of G then |NZ(G) : Z(G)| < ∞. Since |G : N | < ∞, it follows
that |G : Z(G)| < ∞, as we wanted to prove. Otherwise G′ ≤ N and G/N
is abelian for all normal open subgroups N . Since G is the inverse limit of
these abelian quotients, we get that G is even abelian in this case.
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