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Abstract 

The purpose of this paper is to illustrate three aspects of the sociocultural practice of proving. They 

acquire relevance when a group of students and its teacher are considered as the unit of analysis, 

particularly while they engage in the collective building of a portion of an axiomatic system for 

Euclidean plane geometry. These three aspects are: (i) students’ legitimate peripheral participation; (ii) 

teacher’s role, and (iii) role of the dynamic geometry software. We use data collected in a course of 

Euclidean plane geometry in the second semester of secondary school mathematics teachers training at 

the Universidad Pedagógica Nacional (Bogotá, Colombia). The analysis leads us to state that Lave and 

Wenger’s (1991) sociocultural theory offers a fruitful theoretical framework to understand important 

aspects of the process of learning to prove. 

 

Introduction 

The concern about teaching and learning to prove, in all educational levels, is an important 

issue in mathematics education research today. In the last two decades, many papers and 

research reports published on this topic reveal its importance. Several theories and 

epistemological, cognitive and sociocultural trends have been used to create both theoretical 

frameworks and methodological tools to approach this question. Studies on beliefs and 

difficulties (Bell, 1976; de Villiers, 1992; Dreyfus, 1999), argumentative processes (Duval, 

1991; Garuti, Boero and Lemut, 1998), types and levels of proofs (Balacheff, 1988; Harel and 

Sowder, 1998; Fiallo and Gutiérrez, 2007) and the role of DGS in teaching and learning to 

prove (Jones, 2000; Healy and Hoyles, 2001) are combined with sociocultural approaches 

which claim the need of taking advantage of social interactions in teaching and learning to 

prove (Alibert and Thomas, 1991; Mariotti, 2000; Marrades and Gutiérrez, 2000; Sackur, 

Drouhard and Laurel, 2000; Blanton and Stylianou, 2003). 

In recent years, Lave and Wenger’s social practice theory (Lave and Wenger, 1991; Wenger, 

1998) has emerged as a new and useful conceptual framework for describing and 

understanding several cultural issues involved in the complex task of getting students to make 

sense of proving. The combination of Lave and Wenger’s sociocultural perspective with 

mathematics education theories about teaching and learning to prove offers a fruitful 

framework to give light on important aspects of these processes. 

The purpose of this paper is to illustrate three aspects of the sociocultural practice of proving: 

Proving as a joint enterprise, including a shared repertoire of routines, and a mutual 

engagement of students and teacher. Those aspects acquire relevance when we observe a 

group of students and their teacher while they are engaged into the collective building of a 

portion of an axiomatic system for Euclidean plane geometry. First, we briefly give account 

of the theoretical framework of our study. Secondly, we describe the relevant components of 

the methodology. Thirdly, we present excerpts from an episode to be analyzed. And, finally, 

we analyze the episode under the light of the three above mentioned aspects of their practice 

of proving.  
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Theoretical framework 

Several researchers have pointed out (Hanna, 2000; Mariotti, 2006) that proving is a central 

activity of mathematicians. By proving theorems they organize the contents of a particular 

mathematical domain into a formal deductive discourse aimed to validate them within a 

theoretical system accepted by the mathematical community. But the principles and proof 

rules used to produce such a discourse are established by a specific human group, so we can 

claim that the activity of proving has a sociocultural character, conditioned by the context 

where it takes place and by the specific mathematical domain where its authors are acting 

(Alibert and Thomas, 1991; Radford, 1994; Hoyles, 1997; Godino and Recio, 2001; Mariotti, 

2006). Additionally, we claim that the activity of proving makes sense if it is linked to other 

mathematical activities such as experimentation, argumentation and axiomatization. 

Mariotti (1997, 2005) points out that developing a deductive organization of Euclidean 

geometry without any experimental and intuitive support, based on experiences related to 

space and shape, may produce an activity without meaning. We believe that producing a proof 

is meaningful when it responds to meaningful questions in the dynamics of mathematical 

activities. We also believe that it is necessary to consider the relationship among 

argumentation and proof, in spite of the differences in their nature, objectives, discourse styles 

and truth values, since argumentation and proof are more o less related depending on the 

social group engaged in the activity of proving. In an educational context, we agree with 

Mariotti (2005, 2006) that the argumentative activity may constitute the key opening the 

access to the proving activity, since students are familiar with argumentation. Nevertheless, it 

is necessary to prepare specific didactic interventions to help students pass from 

argumentation to proof. Furthermore, Mariotti (2000) asserts that proofs cannot be considered 

outside a mathematical theory regulating the production of deductive chains built to prove a 

statement. Accordingly, we state that the exercise of constructing a deductive organization of 

theorems through the establishment of relationships of logical dependence between 

propositions may be didactically relevant. 

According to our above mentioned perspective about proof, we conceive its learning as a 

sociocultural process where apprentices assume and learn to use the epistemic values and 

communicative conventions used by mathematicians when they develop activities related to 

proofs and proving (Goos, 2004). We see a mathematics classroom as a community of 

practice (Wenger, 1998) where students have the opportunity to learn to prove when they 

share a repertoire of practices characteristic of the proving activity. Whereas students 

participate in these practices they achieve competence on them, they develop an idea of what 

does prove mean and they learn how they can be legitimate participants of the community. 

Then, learning is a process of negotiating meanings inside a community of practice Wenger 

(1998). The negotiation emerges form the interaction of two processes: participation and 

reification. Participation is the process in which we establish relationships with other people, 

we define our way to belong to the community, we take part in social enterprises, and we 

develop our identity through the participation. Reification is the process of giving form to our 

experience by producing material objects that capture this practice. When we do this, we 

create focus points around which we can carry out the negotiation of meanings. Reification is 

essential in all practices and it includes different processes that produce symbols, descriptions, 

representations, terms, concepts that capture de practice of the community.  

According to Wenger (1998), there are three dimension that distinguish a community of 

practice: (i) the evidence of a joint enterprise built collectively as the members assume 

responsibilities, discuss about what they value, what things to show, what is the product of the 

community; (ii) the identification of a shared repertoire of actions that are transformed into 
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routines, procedures, own practices and particular styles of acting; and (iii) the existence of a 

mutual engagement with actions whose meaning is negotiated by means of the relationships 

established in the practice. 

Methodology 

The teaching experiment reported here was carried out with 21 pupils (17-20 year old), 6 

women and 15 men, studying a course on Euclidean plane geometry scheduled in the second 

semester of the secondary mathematics teachers training career at the Universidad Pedagógica 

Nacional (Bogotá, Colombia). The objective of the course was to teach the students interpret 

and write proofs by using postulates, definitions and previous theorems, to organize all them 

in a deductive network. The mathematical content of the course was a set of relationships 

among points, straight lines, planes, angles, triangles and quadrilaterals. The course lasted for 

16 weeks, with 5 hours per week. 

Contrary to the traditional style of teaching mathematics at the university, where the teacher 

exposes the contents using a text as a guide, in this teaching experiment the teacher tried to 

develop the topics collectively through small group activities, guided conversations and whole 

class discussions. Students solved mathematical tasks that gave them the opportunity to be 

involved in social practices related to proof, organized according to the theoretical framework 

presented in the previous section. In a climate of social interaction, teacher and students 

communicated their ideas in the form of mathematical statements or arguments, criticized the 

others’ ones, argued about their certainty, and produced proofs based on elements of an 

axiomatic system that grew step by step as each new statement was proved. 

Dynamic geometry software (DGS) was used as a mediating tool during the processes of 

teaching and learning to prove. By solving problems that provide the students with 

opportunities to produce conjectures and useful ideas for proving them, the community 

established a link between the experimental activity of constructing geometrical figures with 

the DGS and the deductive activity of proving those conjectures. As an objective of this 

course was to build a portion of an axiomatic system for Euclidean geometry, the didactical 

contract in the class specified that ‘all Cabri constructions have to be made by using only 

Cabri tools that had their match (axiom, definition, theorem, …) in the part of the axiomatic 

system already built’ and that ‘each step of a Cabri construction has to be justified with 

statements included in the part of the axiomatic system already built’. 

The present report is based on the transcription of audio and video recordings of all class 

sessions, supplemented with field notes that a member of the research team took while she 

was in class as a non participant observer. We intend to design a methodological tool that let 

us use Lave and Wenger’s (1991) sociocultural theory in the analysis of the transcriptions. To 

do it, we have developed a coding scheme to interpret and analyze, from the sociocultural 

theory, those episodes during the classes having relevance by their connection to the teaching 

and learning of mathematical proof. In this paper we shall refer to three aspects of the class 

culture decisive to evaluate if the class can be considered a community of practice whose 

enterprise is learning to prove: (i) legitimate peripheral students’ participation, (ii) teacher’s 

role, and (iii) role of DGS. The analysis presented here is referred to some events happened 

during the classes corresponding to an episode that we denominated ‘Three non collinear 

points determine two segments that bisect each other’. 

The above mentioned coding scheme has been designed after the identification of the 

following categories of analysis, based on the theoretical framework: 

Joint Enterprise: Collective organization of contents in a hypothetical deductive discourse in 

order to validate them within a theoretical system (Hanna, 2000; Mariotti, 2006). As the 
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enterprise is clarified, students identify organizational and discursive practices associated with 

the task of proving and, as the same time, they acquire a meaning for it. 

Shared repertoire: Set of routines of experimentation, argumentation or axiomatization 

(Mariotti, 1997; 2000; 2005; 2006) which are useful to explore and give meaning to 

statements of Euclidean plane geometry. The community use them to argue about the 

certainty of those statements and discuss how they could be justified inside the axiomatic 

system, with the aim of producing proofs agreeing with a set of established social and 

sociomathematical norms (Yackel y Cobb, 1996). 

Mutual Engagement: Signs of giving by the teacher the responsibility of validation back to 

the students, through a didactical contract that the teacher settles down (Marrades y Gutiérrez, 

2000), aiming that students assume the task of validation inside their community of practice. 

In a first step to organize the data, we divided the transcriptions of the class sessions into 

episodes corresponding to the topics dealt with, like study of a statement, matters related to a 

shared routine (e.g., using figures, or organizing some statements in a relational network), 

checking the answers to a task, or development of a Cabri workshop. From those episodes, we 

identified 114 primary documents that were analyzed to create the coding scheme. For each 

code, we identified groups of excerpts that we considered useful to do a complete analysis of 

the cultural practice of proving in this class. As we advanced in the analysis of the episodes, 

the codes were object of a cyclic debugging process in which we revised their meaning, 

deleted useless codes, and identified new codes. Each change in the coding scheme made us 

review again all the already analyzed episodes. The final result of this process was a set of 66 

codes; each of them associated to one o more categories of analysis. Table 1 includes a 

description of the codes used to analyze the episode in next sections. 

 

Code Name Code Description 

Joint Enterprise  

 FormalGrade Excerpts showing evidences of the grade of formalism demanded to 

write proofs. 

 RelationProcedureTheory Excerpts where members of the community establish a relationship 

between a procedure and the underlying theory. 

Shared Repertoire  

 DeductiveArgumentToProof Arguments made aiming to build a deductive chain for validating a 

statement. 

 WithWhichWeCount Summary of the information available to the community that could be 

used in a proof. 

 UnlockProveProcess Suggestions, usually made by the teacher, to unlock a proving process 

in course when students don’t know how to carry it on. 

 StrategyCabriConstruction Interventions letting us identify the strategy used by a group of 

students to make a construction with Cabri. 

 FormulateTask Interventions, usually made by the teacher, to begin a mathematical 

activity, either implicitly or explicitly. 

 Institutionalize Interventions, usually made by the teacher, where she puts the 

community’s production in correspondence with the cultural 

mathematical practice. 

 Paraphrase Interventions, usually made by the teacher, where she paraphrases a 

student’s utterance aiming to improve the communication. 

 ProofProduction Interventions showing a proof, made either collectively or individually, 

to be evaluated by the class. 
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 ProposeWayProve Suggestions of ways to do a proof, even when they are not correct or 

pertinent. 

 SynthesizeProof Summary of a proof made after a student’s request or to compile the 

parts of a process than has been interrupted several times. 

Mutual Engagement  

 Asign/AsumeResponsibility Assignment of an explicit responsibility, to be voluntarily carried out 

outside of class, that is relevant for a good working of the community 

of practice. 

 ImportantContribution Student’s contributions that show his/her relevant role in the 

development of the course and that neither the teacher nor other 

student had considered. 

Table 1.Codes in each category used to analyze this episode. 

 

The episode ‘Three non-aligned points determine two segments that bisect each other’ 

In this section we summarize this episode that shall be analyzed in next section. The episode 

took place during three class sessions in the second month of the course. Up to that moment, 

six postulates and ten definitions had been stated, and eight theorems had been proved, 

establishing relationships among points and straight lines, the existence of the midpoint of a 

segment
1
, and the property that the distance from the midpoint to the ends of the segment is 

half the length of the segment. The first session of the episode was in the computer room, and 

students were asked to solve, in pairs, part a. of this problem: 

Problem: Given three non-aligned points A, B, C, construct [with Cabri] a point D such that 

segments  AB  and  CD  bisect each other. 

 a. Describe the procedure of construction and justify each step in it. 

 b. Write the theorem that can be stated after the solution to this problem, and prove it. 

Table 2 shows a summary of the process of construction students did
2
. The right column 

informs on the statements in the axiomatic system giving theoretical mathematical support to 

the tool used. 

 

Steps in the construction Cabri tools used Theoretical support 

1. Draw non-aligned points A, B, C. 1. Point. 1. Postulate P1: Planes are sets of points. 

2. Draw stright line AB
suur

. 2. Line. 2. Postulate P3: Given two different 

points, there is exactly one straight line 

containing them. 

3. Draw segment  AB . 3. Segment. 3. Definition D6: Segment  AB  is the set 

of points A, B, and all points [in line 

AB
suur

] between
3
 A and B. 

4. Draw point P as the midpoint of 

segment AB . 

4. Midpoint. 4. Theorem T7: Every segment has a 

midpoint. 

                                                

1
  Definition 10: The midpoint of a segment  AC  is a point B between A and C such that segments  AB  and  BC  

are congruent [i.e., they have the same length]. 
2  A file with this construction can be downloaded from http://www.uv.es/Angel.Gutierrez/archivos1/problem.fig 
3
  Definition D4, of ‘betweeness’: Point B is between points A and C when A, B and C are in a straight line and 

their distances verify AB + BC = AC. Notation: A-B-C. 
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5. Draw stright line CP
suur

. 5. Line. 5. Postulate P3. 

6. Calculate the distance CP. 6. Distance or length. 6. Postulate P5: The distance AB between 

two points A and B in a straight line is 

the absolute value of the difference 

among their coordinates. 

7. Draw ray CP
uuur

, or draw point J 

such that P is between C and J, 

and draw ray PJ
uuur

. 

7. Ray. 7. Definition D8: A ray AB
uuur

 is the set 

containing segment  AB  and every 

point C such that B is between A and C. 

Theorem T4: Given points A and B in a 

straight line, there is a point C such that 

B is between A and C. 

8. Transfer twice the distance CP in 

ray CP
uuur

, from C, or once in ray 

PJ
uuur

, from P. Label as D the 

endpoint of last transfer. 

8. Measurement 

transfer. 

8. Theorem T6: Given ray AB
uuur

 and a 

positive number x, there is exactly one 

point P in AB
uuur

 such that [distance] AP 

is x. 

Table 2. Steps in the construction with Cabri of point D. 

 

Table 2 raises some restrictions students had when using the tools in Cabri. To draw segment 

AB, students could not do it just by using the tool Segment, because, in the part of the 

axiomatic system already built, a segment had been defined as a subset of a straight line, so 

students had to draw first line AB (step 2) and then segment AB (step 3). In the same way, to 

draw point D on line CP, students could not use the tools Circle nor Compass, because they 

did not have theoretical support. Instead they had to use the tool Measurement Transfer. 

Therefore, students had to draw the ray in line CP with endpoint P and not containing point C. 

To do it, they had to draw a point J such that P is between C and J. Some groups of students 

drew ray CP and transferred twice the distance CP from C; other groups drew ray PJ and 

transferred distance CP from P. 

In the second session of this episode, the teacher asked the students to answer part b. of the 

problem, i.e. to state and prove a theorem related to the construction. The teacher promoted a 

whole class discussion in which 12 students participated effectively. The teacher asked the 

students to propose the statements that would made the deductive sequence and to justify 

them. When necessary, the teacher made comments to students’ outcomes, she corrected their 

ways to express statements, and she wrote on the blackboard the statements and reasons of the 

proof (in a two columns style) when they had been correctly stated and accepted by the group 

(see Table 3). The group advanced in writing the proof by associating steps in the proof to 

steps in the construction made with Cabri (compare Tables 2 and 3). When two students 

proposed two ways to proceed in step 7 (draw rays CP or PJ), the group decided to accept the 

proposal to draw ray PJ. After the students proved the existence of point D, the teacher had to 

make them note that, though the construction in Cabri was finished, the proof was not 

complete because they had not proved that point P is the midpoint of segment CD. Some 

students proposed correct deductive arguments to prove the equidistance from P to C and D, 

but the arguments they proposed to probe that P is between C and D were not correct. The 

teacher asked the students, as homework, to think again about this step of the proof. The 

blackboard showed the part of the proof made during the class (statements 1 to 9 in Table 3). 
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Statements of the proof Reasons for the statements 

1. Let A, B, C be three non-aligned points. 1. Given. 

2. Straight line AB
suur

 can be obtained. 2. Postulate P3. 

3. Segment AB  can be obtained. 3. Definition D6, and statement 2. 

4. Let P be the midpoint of segment AB . 4. Theorem T7, and statement 3. 

5. Straight line CP
suur

 can be obtained. 5. Postulate P3, and statements 1 and 4. 

6. Let J be a point in line CP
suur

 such that C-P-J. 6. Theorem T4, and statement 5. 

7. Ray PJ
uuur

 can be obtained. 7. Definition D8, and statements 5 and 6. 

8. Let distance CP = r, with r > 0. 8. Postulate P5, and statements 1 and 4. 

9. There is a point D in PJ
uuur

 such that [distance] PD = r. 9. Theorem T6, and statements 7 and 8. 

10. [Distances] PD = PC. 10. Replace r in statement 9 by CP (statement 8). 

11. [Possible cases of betweeness:] C-D-P, D-C-P, or C-

P-D. 

From case C-D-P follows a contradiction [C = D]. 

From case D-C-P follows a contradiction [C = D]. 

[Therefore] C-P-D [is true]. 

11.  

 

Definition D4, and statements 1 and 10. 

Definition D4, and statements 1 and 10. 

[Previous parts of] statement 11. 

12. P is the midpoint of segment  CD . 12. [Definition 10 , and statements 10 and 11.] 

Table 3. Proof of the theorem. 

 

In the third session of this episode, the whole class discussion continued. Now 13 students 

participated effectively. Three students suggested new ideas to complete the proof: 

Juan proposed to draw ray CJ instead of ray PJ, but students didn’t know how to prove that P 

is between C and D. 

Henry proposed not to draw any ray, but to use postulate P6
4
 in line CP to assign coordinate 0 

to C, and coordinate r to P, then to use postulate P2
5
 to find a point D in the line CP with 

coordinate 2r. As 0 < r < 2r, after theorem T2
6
, we can conclude that P is between C and D. 

Ana proposed to draw first ray PC and then the ray opposite to it, based on a new point D. In 

this way it could easily be proved that P is between C and D, but this suggestion was not 

adequate because there was not any element of the axiomatic system guaranteeing the 

existence of the ray opposite to a given ray. 

The group analyzed and discussed each proposal, but some time later the teacher asked them 

to complete the proof with Juan’s proposal. As students were not able to prove that P is 

between C and D, the teacher suggested them to consider all possible betweeness 

relationships among points C, P and D. This teacher’s guidance helped students to focus on 

each relationship and they proved that two of them were not possible, so the last implication 

in the theorem was obtained. The summary written on the blackboard were statements 10 to 

12 in Table 3. Finally the teacher institutionalized this statement as a new theorem because 

                                                
4
  Postulate P6: Given two points P and Q in a straight line, it is possible to define a coordinate system in the line 

such that the coordinate of P is 0 and the coordinate of Q is positive. 
5
  Postulate P2: There is a one-to-one correspondence between the points in a stright line and the real numbers 

(i.e., each element of either set is matched with exactly one element of the other set). 
6
  Theorem T2: Given three points A, B, C in a stright line, having respectively coordinates x, y, z, if x < y < z 

then B is between A and C. 
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she foresaw that it could be useful later (theorem T5: Given three points A, B, C in a straight 

line, one and only one of them is between the two other points). 

Analysis of the episode 

From the point of view of Lave and Wenger’s (1991) sociocultural theory, learning can be 

conceptualized as a process of change in the kind of participation of students in the 

community of practice of the classroom, from a peripheral participation when they are novice, 

to a full participation when they become expert. Such process, the legitimate peripheral 

participation, is one of the characteristics that allow identify a class as a community of 

practice. Students’ participation does not consist of a compromise just at certain moments or 

in some activities, but their continuous collaboration in the activity of configuring the 

community’s practice itself, and their participation in building an identity with the other 

members of the community (Wenger, 1998). Let’s analyze in this episode some aspects of 

students’ practice that we consider indicators of students’ legitimate participation, their 

participation being peripheral because the community of practice was constituted a short time 

ago, and students didn’t have any previous experience in deductive proofs. 

Due to the work students did when solving the problem with the DGS, some students had 

ideas to share and they could participate actively in the production and justification of 

statements to be integrated in the proof, by relating the procedure used to get point D to 

statements in the axiomatic system they were building. Students’ participation was monitored 

by the teacher, who guided them to progress in getting the proof, and showed them the formal 

style the proofs should have. The excerpt below shows the interactions in the whole group 

discussion, with the right column showing the codes associated to the interventions: 

 
136 Teacher 

(T): 

[…] Well, the idea in this exercise was that you do the 

construction in Cabri, to see … well, how do we prove the 

theorem? ... three non-aligned points determine two segments 

that bisect each other. How do we do it? That is the theorem. 

(FormulateTask) 

137 Student 1
7
: Let A, B, C be [paused by the teacher] (ProofProduction) 

138 T: So we begin statement–reason. You more or less began … 

because you tried to justify each action made in the graphic 

calculator
8
 with something from our theory. Then, how do we 

begin? Which is the first step?  

(RelationProcedureTheory) 

139 Student 2: A, B, C given.  (ProofProduction) 

140 T: Let A, B, C be three non-aligned points; Given [she wrote 

statement 1 (Table 3) on the blackboard]. 

This is what I have, nothing else; anything else [we need], we 

have to generate it. Right? Which is next step? 

(FormalGrade) 

 

(WithWhichWeCount) 

141 Ignacio: Draw straight line AB. (StrategyCabriConstruction) 

142 T: I don’t need this line in the calculator, because it allows me to 

draw the segment, but in our geometry … if I only have two 

points and I want to have the segment, segment was defined 

as a subset of a line, so I need the line. Therefore, the second 

step would be: The line AB can be drawn. Why? 

(RelationProcedureTheory) 

143 Student 3: Postulate of the line [P3]. (ProofProduction) 

144 T: Postulate of the line, 

by using …? By using what? The last step? 

Something giving me the points, of course, I need the points 

(Paraphrase) 

(FormalGrade) 

(ProofProduction) 

                                                
7
  This label is used to refer to participations of unidentified students. 

8
  The students used some times computers and other times, like this one, graphic calculators TI-92. 
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to have the straight line. Ok [she wrote statement 2 (Table 3) 

on the blackboard]. And then? 

145 Ignacio: We drew segment AB. (StrategyCabriConstruction) 

146 T: You drew the segment right there, 

so segment AB can be drawn. And, what is the justification? 

(Paraphrase) 

(FormalGrade) 

147 Student 4: The definition of segment. (ProofProduction) 

148 T: The definition of segment, 

by using [step] 2 [she wrote statement 3 (Table 3) on the 

blackboard]. Of course, we need the segment to make next 

step. Which one is it? 

(Paraphrase) 

(ProofProduction) 

(WithWhichWeCount) 

149 Juan: There is point P, which is the midpoint [of AB]. (StrategyCabriConstruction) 

 

The students also collaborated by proposing deductive arguments that would be parts of the 

deductive chain of the proof. This kind of participation was not frequent in this episode, but 

we can show a case: 

 
208 T: We still have to prove that P is the midpoint of CD. Ok?  

209 Juan: By the definition of midpoint we can affirm that the length of 

CP plus the length of PD is equal to the length of [CD]. 

(DeductiveArgumentTo 

Proof) 

210 T: Is that the definition of midpoint? (RelationProcedureTheory) 

  […]  

216 Juan: That the length of CP is equal to length PD, and the length of 

CP is half the length of CD. 

 

 

Students also contributed ideas when the task was to select statements from the part of the 

axiomatic system already built that could be used to prove a conjecture. This kind of tasks 

favours abductive reasoning, since students have to decide which one among several available 

statements can be used as hypothesis to prove the truth of the given conjecture. The excerpt 

below is an example: 

 
240 T: Let’s think a bit. I want to show a relationship of betweeness. 

Which elements of my axiomatic system let me conclude: 

“ah … so, do we have a betweeness?” Which ones? I want to 

show this [she writes on the blackboard CP + PD = CD]. 

Which elements of my axiomatic system tell me “if such 

thing, then betweeness”? 

(WithWhichWeCount) 

  […]  

243 Efraín:  The first theorem of betweeness [theorem T2]. (WithWhichWeCount) 

244 T: The first theorem of betweeness says … theorem: If 

coordinate of C smaller than coordinate of P smaller than 

coordinate of D, then ... betweeness. So now it seems I should 

have to work with coordinates, because this is the only I have 

that can help me, because if I have alignment, … but, how do 

I prove this [the betweeness]? What do I need to prove this? 

(WithWhichWeCount) 

 

Eventually, students’ participation became even more legitimate, thanks to the compromise 

assumed by some students (code Asign/AsumeResponsibility) to solve the difficulty issued 

when they followed Juan’s suggestion of proof (see previous excerpts). Those students 

suggested new ways to do the proof (code ProposeWayProve), that were analyzed by the 
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group and, in some cases, produced new statements that were included into the axiomatic 

system. In this way, the content of the course was not the one previously planified by the 

teacher, but it was shaped by the group. This teaching methodology is unusual in the 

university courses of mathematics, where teachers propose the sequence of postulates, 

definitions and theorems organized to make available the necessary results before a new 

theorem is proved. Although our teaching methodology may be less rigurous than the 

traditional one, it has the advantage that students live an experience of creating mathematics 

nearer to the professional mathematicians. 

The excerpt below shows two students proposing different ways to try to get the proof that, 

furthermore, induced the discovery and proof of new theorems: 

 
269 Juan: I have another way. Something homologous. 

Drawing again [line] CP and ray CP, not [ray] 

PJ, but [ray] CP. 

(ImportantContribution. Thanks to 

this suggestion, a new theorem of 

betweeness, T5, was stated, proved 

and included into the axiomatic 

system) 

  […]  

283 Ana: And with opposite rays … could us work this 

way too? As we have ray PC, then we define … 

(ImportantContribution. This pro-

posal led to prove the existence of 

the ray opposite to a given one, 

and to include this new theorem 

into the axiomatic system) 

 

As students practiced more and more in writing proofs, the grade of formalism demanded by 

the teacher was negotiated (code FormalGrade), and students acquired a better feeling of the 

meaning of proving into their community of practice. The excerpts above show the 

compromise acquired by the students to participate in the class activity; this is a necessary 

condition for the existence of a community of practice. 

Role of the teacher 

In an educational context like a course at the university, one should not expect that all 

members of the community of practice (the group of class) shall act in the same way, since 

the teacher is the expert in charge of introducing the students in the new mathematical 

practices. But, according to Wenger’s (1998) theory, a classroom where the teacher is the only 

bearer of knowledge cannot be considered as a community of practice. Then, to constitute a 

community of practice in a university class, the teacher has to transfer responsibility of 

mathematical practices to the students and has to assume the role of illustrating how to 

legitimately participate in the community. 

The analysis of the episode described on the light of the codification we have designed gives 

us some signs of the instructional scaffolding (Bruner, 1984) designed by the teacher to 

delegate mathematical practices to the students and help them learn to do such practices. A 

significant aspect of this scaffolding was the formulation of tasks to generate a legitimate 

mathematical activity focused to the objective of learning to prove theorems although, at the 

same time, the teacher, as the only expert in the community, had to retain the responsibility of 

the functions of scaffolding that cannot be transferred to the students, like giving suggestions 

to unlock a stagnated proof (code UnlockProveProcess), synthesize the work made (code 

SynthesizeProof) or institutionalize it (code Institutionalize). An example is to formulate the 

task (code FormulateTask) to construct point D with the DGS, then to prove its existence 

based on links among the steps of its construction and the axiomatic system, to state the 
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theorem raised from the construction, and to look for ways to prove it. At the same time, the 

teacher retain the responsibility to control the communication in the group, by paraphrasing 

students’ sentences (code Paraphrase) and showing them how to express correctly a statement, 

how to use mathematical symbols and how to organize a proof (code FormalGrade). 

Role of the DGS 

The episode described is a good example of the characteristics of the interaction of students 

with the DGS. The ways they used Cabri have a very particular style, specific of this 

community of practice and mediated by its norms of use of the software. As we have shown, 

it is possible to identify in the conversations among students frequent references to theoretical 

justifications of their actions, dragging made and tools used (code StrategyCabriConstruction) 

as a way to verify the correctness of their constructions, which is a part of the didactical 

contract regulating the community of practice. 

The norms about the way of using DGS established in the community cause a limitation in the 

possibilities of use of Cabri, but this is necessary to make the DGS serve the objective of the 

community and to be a shared resource. Although we have not shown here any example, in 

the episode described students used dragging to verify that the construction was well made 

and its steps could be linked to statements of the axiomatic system. Those links helped to 

establish a strong relationship between experimentation, argumentation, and proof. 

Conclusion 

The analysis made in this paper is an example of the usefulness of Lave and Wenger’s (1998) 

theory when we adopt a sociocultural position to give light to important aspects of learning 

mathematical proof different from epistemological and cognitive ones. A global analysis of 

the teaching experiment, still to be made, should show the progress of students in learning to 

prove, parallel to an evolution in their practice of proving, a higher engagement within the 

community of practice, a wider shared repertoire of routines, actions and tools, and a deeper 

understanding of mathematical proof. 
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