®

Cite as: Gutiérrez, A. (2014): Geometry. In P. Andrews, & T. Rowland (Eds.), MasterClass in mathematics education.
International perspectives on teaching and learning (pp. 151-164). London: Bloomsbury. ISBN: 978-1-4411-7975-3.

Geometry

Angel Gutiérrez

Core readings
The Core readings addressed in this chapter are:

Gutiérrez, A., 1996. Visualization in 3-dimensional geometry: in search of a framework. In L. Puig
and A. Gutiérrez, eds, Proceedings of the 20th Conference of the International Group for the
Psychology of Mathematics Education, Vol. 1. Valencia, Spain: PME, 3—19. Available at www.uv.es/
angel.gutierrez/archivos1/textospdf/Gut96c.pdf [accessed on 18 May 2013].

Gutiérrez, A. and Jaime, A., 1998. On the assessment of the van Hiele levels of reasoning. Focus
on Learning Problems in Mathematics, 20 (2/3), 27-46. Available at www.uv.es/angel.gutierrez/
archivos1/textospdf/Gut]ai98.pdf [accessed on 16 May 2013].

Presmeg, N. C., 1986. Visualization in high school mathematics. For the Learning of Mathematics,
6 (3), 42-6.

Vinner, S., 1991. The role of definitions in the teaching and learning of mathematics. In D. Tall, ed.,
Advanced mathematical thinking. Dordrecht, Netherlands: Kluwer, 65-81.

Introduction

Traditionally, geometry has been a ‘poor relation’ in school mathematics curricula, and
textbooks and teachers have tended to reduce the content taught to some basic definitions,
properties and formulae. In recent years, research and teaching experience has shown that
some difficulties encountered by students when learning other areas of mathematics could
be overcome if students had deeper knowledge of geometry and geometric reasoning. As a
consequence, teachers are becoming aware of the importance of geometry in school cur-
ricula, and researchers are working on providing teachers with knowledge and tools that
could help them improve their practice. This makes research in geometry education an

9781441172358_Ch13_Rev_ixt_prf.indd 151 @ 6/27/2013 5:33:32 PM


angelgutierrez
Texto escrito a máquina
Cite as: Gutiérrez, A. (2014): Geometry. In P. Andrews, & T. Rowland (Eds.), MasterClass in mathematics education. International perspectives on teaching and learning (pp. 151-164). London: Bloomsbury. ISBN: 978-1-4411-7975-3.


®

152 MasterClass in Mathematics Education

important field of research with many interesting directions. Gutiérrez and Boero (2006)
and Battista (2007) provide overviews of the current state-of-the-art, and propose questions
for further research.

In such a context, this chapter introduces readers to some essential elements of research
in geometry education, and prepares the ground for them to undertake research in this
field. The chapter is divided into three sections, devoted to three theoretical frameworks
which are relevant for research on different aspects of geometry teaching and learning at
any educational level.

Teachers should be aware of the visual abilities and skills that students use when draw-
ing or seeing pictures, drawings or diagrams; this is particularly critical when learning
three-dimensional geometry. Therefore, the first section of the chapter introduces readers
to the main characteristics of a useful theoretical framework that identifies and analyses
the elements of visualization used by students when solving geometric problems.

The second section describes the constructs defined by Shlomo Vinner to explain the
processes of learning mathematical concepts in geometrically rich contexts. Vinner’s model
describes students’ conceptions of mathematical concepts, and helps teachers and research-
ers to better understand students’ learning processes, outcomes and errors, as well as to
design effective teaching materials.

The third section presents the van Hiele model of geometrical reasoning. This influential
model has proved to be very useful for describing and analysing students’ mathematical
reasoning when they are studying geometric content, and it is widely used in mathematics
education. In fact, it is the framework most often used to organize the teaching of geometry,
from national curricula (for instance, the NCTM Principles and Standards in the United
States, and the Singapore National Curriculum) to the design of classroom activities. The
van Hiele model is also very useful for providing teachers and researchers with accurate
data for the assessment of students’ geometrical reasoning.

Spatial visualization in geometry

Visual thinking is necessary in any area of mathematics, at all levels, and especially in geo-
metric contexts, and it is very important for students to develop their visualization skills.
Therefore, a relevant research question involves characterizing students’ mental visual
activity at different school grades. The development of dynamic geometry environments,
and other software able to graphically represent mathematical concepts taught at any school
level, has opened a new research field (see the chapter by Ruthven, this volume).

Visual thinking is also useful in many other disciplines (e.g. in medicine, in order to use
Computed Axial Tomography and other three-dimensional-image techniques; in geog-
raphy, for map reading; in chemistry, for modelling complex molecules; in architecture
and engineering; etc.) and in everyday activities (to anticipate trajectories when driving;
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to estimate object sizes, etc.). This wide range of applications has resulted in a lack of
coordination or agreement among researchers from different specialities, so it is easy to
find discrepancies in the use of terms or their meanings in the literature (see the core
reading Gutiérrez 1996 for a deeper discussion on this issue). As an illustration, cognitive
psychologists tend to define ‘mental image’ as a quasi-picture created in the mind from
memory, whereas mathematics educators give a wider meaning to this same term, as we
will see later.

Several approaches for analysing visualization in school mathematics can be found in the
mathematics education literature. I shall present here an approach, from the core reading
by Presmeg. This approach was first proposed in the 1980s, and is still useful to research-
ers and teachers. In any geometric activity, we can differentiate between external actions
and internal, mental actions. External actions obtain information from outside, produce
outcomes and communicate with others. By contrast, mental actions consist of processing
external information to transform it into internal data, analysing internal data to generate
new internal information, and converting internal information and results into external
outcomes.

When the mental actions are based on the visualization of geometric objects, researchers
have differentiated three components integrating those actions:

1. The mental objects handled. Presmeg (1986) called these objects mental images. She observed teach-
ers and students, and identified several types of mental images: concrete pictorial images, pattern
images, memory images of formulae, kinaesthetic images and dynamic images.

2. The mental processes that transform external or mental information into mental images, and vice versa.
The process of creation of mental images occurs when students look at pictures in the textbook, on the
blackboard, computer screen, and so on, when they read or hear a text and represent the information
graphically in their mind, and also when students transform other mental images. Bishop (1983) called
this process visual processing (VP) of information.

After having created mental images, students may analyse them, retrieving information needed
to solve the problem they are working on, and exteriorize the information by using appropriate
language and graphical representations. Bishop (1983) called this process interpretation of figural
information (IFl).

3. Students need to have learned some visualization abilities in order to perform the above-mentioned
mental visual processes while solving a problem, in the same way as a person should have learned some
manual abilities to use a screwdriver or a hammer in order to join two pieces of wood. Del Grande
(1990) compiled a list of mental visualization abilities necessary to solve geometric problems. Abilities
like figure-ground perception, perceptual constancy, mental rotation, perception of spatial positions or
spatial relationships, visual discrimination, visual memory, and others are necessary to solve geometry
problems, especially in three-dimensional geometry. See Del Grande (1990) for details.

From the point of view of research and teaching, the most important of the components
mentioned above are the mental images. Presmeg (1986) introduced the different types
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of mental images she identified in her research experiments and included a description
of each image, with characteristic examples of students using them to solve mathematics
problems. The scope of Presmeg’s article extends beyond geometry within school math-
ematics, and certain types of images are more often used in some areas of mathematics
than in others.

In each of the core readings summarized in the previous paragraphs, the authors
introduce one element that is relevant to understanding how individuals use visualiza-
tion, but an integration of the three components was necessary. Gutiérrez (1996) pre-
sented the integration of visualization processes, images and abilities into a theoretical
framework, with examples of students’ outcomes to complete the description of the
framework and facilitate its understanding. The diagram (Figure 13.1), adapted from
Gutiérrez (1996), summarizes the elements of mathematical visualization used to solve
a problem of geometry.

We can exemplify and apply this diagram practically. What comes to your mind after
reading the word ‘pyramid’? Most probably this external input has prompted you to create
the mental image of a square-based pyramid lying on its (horizontal) base (IFI to a concrete
pictorial image). Now, make your mental pyramid rotate to lie on one of its triangular faces.
This is a different mental image, generated from the previous one (IFI + VP to a dynamic
image). Finally, draw the pyramid you have in your mind (VP to an external representa-
tion). Different readers may have used different visualization abilities for the same process
in this task, but most likely perceptual constancy, mental rotation, perception of spatial
positions or visual memory have been used by some readers.

Interpr. of
figural inform.
+ Abilities

<ASK

External
repres.

External
repres.

External

Visual proces. repres.

of information
+ Abilities

Figure 13.1 Elements of mathematical visualization used to solve a problem of geometry
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The learning of basic geometric concepts

The experience of both researchers and teachers shows that most students feel more
confident when they learn new mathematical concepts represented in specific examples
than when students are just presented with a definition, often in their textbook (Watson
and Mason 2005). An interesting research activity is to analyse students’ learning and
understanding of mathematical concepts when they are taught using examples and non-
examples.

A student is asked for the definition of a regular polygon. He replies: A regular poly-
gon is a polygon having all its sides equal and all its angles equal - that is, the standard
definition. Now the student is given some geometric figures and he is asked to select the
regular polygons. One of the figures that he selects is a rectangle. When the researcher
asks the student why this rectangle is a regular polygon, he replies: Because it has four
equal angles.

Another student is asked for the definition of a square. She replies: A square is a quadri-
lateral having four equal sides and four right angles — that is, again, the standard definition.
Now the student is given some drawings of quadrilaterals and she is asked to mark the
squares. One of the polygons she does not mark is represented in Figure 13.2. When the
researcher asks the student why this quadrilateral is not a square, she replies: Because it is
not in the correct position.

Both answers, which many teachers will recognize, appear similar because both stu-
dents can repeat the definition: however, they differ in the following respect. The first stu-
dent understands the meaning of having all the sides equal, and he is able to discriminate
between polygons having, or not having, this property; he can also correctly manage the
property of having all the angles equal. But he does not understand that both properties
have to be true at the same time for a polygon to be regular.

The second student can identify squares only when they are in the standard position,
that is, resting on a horizontal base. She does not understand the definition of square and,
in fact, she does not use it to classify the quadrilaterals but uses the prototypical image of
square that she has seen in textbooks and the blackboard as the target against which to
match the drawings in the exercise.

Figure 13.2 Is it a square?
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A powerful framework that explains these two students’ behaviours was proposed by
Vinner (1991), as follows. The information that students receive in their mathematics classes
and outside school is of two types:

e Graphical: this includes pictures, drawings, physical objects, and so on that students see in text-
books, blackboards, and elsewhere. It works like a collection of photos.

e Verbal: this includes definitions, theorems, formulas, and so on that students read in textbooks or
hear from teachers or other persons. It works like a collection of newspaper cut-outs.

Neuropsychologists tell us that the human brain stores verbal and graphical information in
different places. Vinner represented those places in the memory as two boxes: the graphi-
cal box is called concept image and the verbal box is called concept definition (Figure 13.3).

Conceptdefinition|H| Concept image |

Figure 13.3 Concept image and concept definition as two connected boxes

Teachers should aim to enable students to connect the two boxes.

Typically, when students are introduced to a geometric concept, they populate their con-
cept definition and concept image ‘boxes’ with the contents learned, but students are not
always taught how to establish relationships between them. As a consequence, when students
feel that the question formulated by the teacher asks for a definition, property, formula, and
so on, they access their concept definition and, when students feel that the question asks
them to identify or reproduce a shape they resort to their concept image.

In the example of identification of squares, the student did not establish a relationship
between her definition and her concept image of a square. Furthermore, her concept image
was limited to prototypical images — squares with a horizontal base — so she decided to
reject the ‘diamond’ shape because it was not similar to any other held in her concept image
of a square.

Vinner’s model of acquisition of mathematical concepts offers a resolution to such learn-
ing difficulties. Vinner (1991) is an extended compilation of previous publications by this
researcher and other colleagues in which he presents the different components of the model
in detail and provides many examples. The chapter by Vinner also discusses different pat-
terns of students’ behaviours depending on their concept definitions, concept images and
the relationships between them that students are able to manage.

Vinner suggests starting teaching a new concept with a carefully organized set of exam-
ples and non-examples, to help students learn the concept in the same way as everyday
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concepts are learned, that is, by comparing examples and non-examples, and identifying
discriminating properties as follows:

e the comparison of examples and non-examples should highlight the properties of the examples
which are not present in the non-examples, that is, the necessary properties of the concept;

e comparison of two different examples should indicate a property of one example which is not
present in the other example, that is, a non-necessary property of the concept;

e the necessary properties identified should enable students to formulate a definition of the concept,
and to generate links between this definition and their concept images.

Figure 13.4 presents the way a Spanish textbook introduces the concept of polyhedron in
Grade 2 (student age 13-14) of the secondary school (Colera et al. 1997). This is a quite
simple but effective illustration of the use of examples and non-examples in typical geom-
etry teaching. An application of Vinner’s model is the following procedure of designing a
sequence of examples and non-examples to teach a certain geometric concept, based on the
following steps (Hershkowitz 1990):

e Decide on the definition of the concept to be taught.

e Select the necessary properties of the concept that students should discover.

e Select the non-necessary properties that students often select erroneously in the identification of a
shape as an example or a non-example. Non-necessary attributes such as shape, position, number
of sides or faces, and so on are often accepted as necessary properties by students.

e For each necessary property, draw an example and a non-example differing in this property.

e For each non-necessary property, draw two examples differing in this property.

Figure 13.5 shows the result of applying these steps to the concept of a right prism.
Vinner’s model may also be used as a research framework to evaluate teachers’ and stu-

dents’ understanding. Hershkowitz et al. (1987) and Gutiérrez and Jaime (1999) present

findings of research based on this model. Watson and Mason (2005) elaborated on Vinner’s

OBJECTS IN SPACE: POLYHEDRA

Among the solids above, A, B, C, D, and E are polyhedra.
A geometric solid is called a polyhedron when its faces are polygons.

Figure 13.4 Introducing the concept of polyhedron (Colera et al. 1997)

9781441172358_Ch13_Rev_txt_prf.indd 157 @ 6/27/2013 5:33:34 PM



®

1 58 MasterClass in Mathematics Education

17 %%

l
®

S I

S mmmm—— | -

/_____________
’

Figure 13.5 Introducing the concept ‘right prism’ following Hershkowitz (1990)
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concept image to define students’ example spaces as ‘small pool[s] of ideas that simply appear
in response to particular tasks in particular situations’ from which examples produced by
students arise. Vinner’s model is still widely used by other researchers, for example, Gilboa
et al. (2011), and several articles in the Educational Studies in Mathematics special issue 69
(2) (2008).

The van Hiele model of students'
geometrical reasoning

People studying mathematics, from kindergarten children to professional mathemati-
cians, exhibit different modes of mathematical reasoning. The van Hiele model of geometri-
cal reasoning characterizes those modes (or levels) of reasoning in geometrical contexts.
Furthermore, the van Hiele model provides guidelines for teachers to plan their lessons and
to help their pupils develop their reasoning. The guidelines to teachers are known as the
phases of learning. Due to space limitation, I will focus on the use of the levels as a frame-
work to evaluate students’ geometrical thinking. A more comprehensive study of the van
Hiele model from a research perspective should begin with Clements and Battista (1992)
and Battista (2007).

The main characteristics of the van Hiele levels follow. The core reading Gutiérrez and
Jaime (1998) gives a more detailed account.

Level I: Students recognize geometric concepts by their physical appearance, and in a glo-
bal way, without explicitly distinguishing their mathematical components or properties.

Level 2: Students recognize the mathematical components and properties of geometric
concepts. Theyare able to verify conjectures through empirical reasoning and generalization.
Students can only manage basic logical relationships between mathematical properties.

Level 3: Students can manage any logical relationship. They are able to prove conjectures
using informal deductive reasoning. Students can understand simple formal proofs, but
they cannot construct them themselves.

Level 4: Students understand the need for rigorous reasoning and they can write formal
deductive proofs. They understand the function of axioms, hypotheses, definitions, and
$O on.

Level 5: Students are able to manage different axiomatic systems, and they can ana-
lyse and compare properties of geometric objects in two axiomatic systems (for instance,
Euclidean geometry and spherical geometry).

The first researchers using the van Hiele model considered - in keeping with the van
Hieles’ early writings — that a given student always performed at the same level; consequently,
the assessment procedures tried to elucidate which level of reasoning students had attained
(Burger and Shaughnessy 1986; Fuys et al. 1988; Usiskin 1982). However, these authors were
unable to assign a level of reasoning to a significant number of subjects in their experiments
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due to contradictory results because some students ‘failed’ the questions focusing on one
level and ‘succeeded’ in the questions focusing on a higher level, and other students gave
answers that showed a mixture of levels of reasoning.

For instance, a Spanish student in Grade 3 of the secondary school (student age 14-15)
was given a sheet with drawings of several quadrilaterals, and was asked to mark squares
(C), rectangles (E) and rhombuses (O); after having marked the shapes (Figure 13.6), the
student was asked to explain what he had paid attention to when making his classification
of the quadrilaterals. Some of his answers were:

For squares: [I paid attention] to its equal and parallel sides, and the angle of 90° (a level 2
answer).

For rectangles: its long shape with 4 parallel sides making 4 angles of 90° (an answer mainly at
level 2 but with aspects of level 1).

For rhombuses: its four sides, 2 slanted parallel sides and 2 right parallel sides (a level 1 answer; the
intended meaning of the terms ‘slanted’ and ‘right’ is unclear).

Is shape 1 a square? Yes. Because of its 4 parallel sides, and its width and short shape (answer
mainly at level 1, but partly at level 2).

Is shape 5 a rectangle? No, because its sides do not form 90° angles (a level 2 answer).

The van Hiele levels have some core characteristics that ought to be taken into account
when using them to assess students’ geometrical reasoning, or to design teaching materials,
as follows:

e The levels are sequential: levels are ordered, so that progression from one level is always to the
next level.

e The levels are local: showing a level of reasoning in a certain topic of geometry does not necessarily
imply showing the same level in a different topic. Geometrical reasoning is highly dependent on
knowledge of mathematical content, so students and teachers may be reasoning at a high level in
one geometrical topic but at a low level in another geometrical topic that they are just beginning
to study. Several researchers have administered similar questionnaires based on different geomet-
ric topics to sample groups of students or teachers, and all of them have reported that the levels
of reasoning in most participants depended on the topics (Clements and Battista 1992, p. 429).

EHIEI@

7 &

Figure 13.6 A student'’s classification of some quadrilateral drawings
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For instance, Gutiérrez and Jaime (1988, cited in Clements and Battista 1992) administered two
tests to a group of 232 pre-service primary school teachers, one test based on plane shapes and
the other on solids. They found that only 10 per cent of the students showed the same level of
reasoning in both tests; 80 per cent of the students showed levels 2 or 3 in plane geometry, and
9 per cent of the participants showed levels 2 or 3 in solid geometry.

e Each level has a characteristic language: students at different levels may give different meanings to
the same term, for instance to ‘proof’. For example, suppose that a secondary school teacher asks
his pupils to deduce the formula for the sum of the interior angles of an n-sided polygon. Students
calculate the sums of several polygons (triangle, quadrilateral, pentagon, . . .) and they induce the
formula Sum of angles = 180(n-2). To prove that their formula is correct, the students show that it
works for some polygons (n = 3, 4, 5, . . .). The teacher rejects the students’ argument, and asks
them for a ‘general’ proof, but the students do not understand why a deductive proof is necessary
when (they reason) the examples clearly prove that the formula works. The reason for this didacti-
cal obstacle is that students are reasoning at level 2, so ‘to prove’ the formula means, for them, to
check it in specific cases, while the teacher expects a level 3 proof, so for him “to prove’ the formula
means to make a deductive abstract argument. As Pierre van Hiele (1959/1984, p. 246) wrote, ‘two
people who reason at two different levels cannot understand each other.’

Clements and Battista (1992) give a more detailed description of the core characteristics of
the van Hiele levels, and present an analytic review of the relevant research literature.

Gutiérrez and Jaime (1998) and Gutiérrez et al. (1991) presented a comprehensive meth-
odology for the assessment of individuals’ levels of geometrical reasoning, based on an
original approach to the structure of the levels. Their approach has proved to be useful for
researchers (Battista 2007, p. 848) and overcomes earlier difficulties in applying the van
Hiele theory. Gutiérrez and Jaime (1998) described and exemplified a technique for the
design of questionnaires for the assessment of van Hiele levels, using multilevel questions
and multiprocess super-items (these ideas are explained later): this approach optimizes the
questionnaire efficiency, in terms of number of items and administration time. The work
by Gutiérrez et al. (1991) presented a new conception for the assessment of the levels of
reasoning based on the continuity of the levels and the possibility to measure the transition
between levels.

According to Gutiérrez and Jaime (1998, p. 29), mathematics is a complex activity, inte-
grated by five mathematical processes — recognition and description, use of definitions,
formulation of definitions, classification and proof (see the chapter by Stylianides, this vol-
ume). Thus mathematical reasoning is a multiple activity that, in practice, depends on the
mathematical processes required to solve a problem (see the chapter by Verschaffel et al.,
this volume). The acquisition of a van Hiele level implies the mastery of all the five processes
of reasoning associated with the mathematical processes, so that the determination of a
person’s level of geometrical reasoning has to take into consideration the acquisition of each
process of reasoning. Table 13.1, adapted from Gutiérrez and Jaime (1998, p. 32), summa-
rizes the characteristics of each process of reasoning as practised in each van Hiele level.
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Table 13.1 Distinctive attributes of the processes of reasoning in the van Hiele levels

Level 1 Level 2 Level 3 Level 4
Recognition and  Physical attributes Mathematical properties - -
description
Use of definitions - Only definitions with Any definition Accept several equivalent
simple structure definitions
Formulation of List of physical List of mathematical Set of necessary and Can prove the equivalence
definitions properties properties sufficient properties of definitions
Classification Exclusive, based on Either exclusive or inclusive, Move among inclusive -
physical attributes based on mathematical and exclusive when
attributes definitions are changed
Proof - Empirical verification in Informal deductive Formal mathematical
examples proofs proofs

Most primary and secondary school mathematics curricula pay more attention to some
mathematical processes than to others; for instance, in the 1970s and 1980s, the curricula in
those countries adopting the ‘new mathematics’ approach (for instance, United States and
Spain, among many others) restricted experimental tasks (levels 1-2) in favour of extensive
use of deductive proofs of properties (levels 3-4), while in the 1990s, deductive proofs were
removed from their curricula and more emphasis was placed on the empirical verification
of properties (level 2). Consequently, it should not be surprising to find that students are
mastering some processes of reasoning at a certain level while they are still using other
processes of reasoning at a lower level.

When designing a reliable test to evaluate students’ levels of reasoning, it is necessary to
ensure that each van Hiele level and each process of reasoning are evaluated - that is, each
cell in Table 13.1 is evaluated. However, the use of multilevel questions and multiprocess
super-items can help researchers to design short but still reliable tests, as follows. On the one
hand, students’ reasoning is not indicated by the fact of correctly having solved some prob-
lems, but by the way they have solved them. Different students may solve the same problem
using different levels of reasoning; for instance, a proof problem may be solved by empiri-
cally checking the conjecture in one example, or a few examples (level 2), or by formulating
a deductive argument in an informal (level 3) or formal (level 4) way. Similarly, a description
of a geometric object may be physical (level 1) or mathematical (level 2). In the same way,
the solution of a multilevel problem item may require the use of several mathematical proc-
esses. So, it is not necessary to include a different problem in the test in order to assess each
level and process. On the other hand, a set of related questions and/or problems is more effi-
cient than a set of independent questions and/or problems since related questions make it
easier to graduate different difficulties or complexities. Then, as suggested by Gutiérrez and
Jaime (1998), we can use super-items — sets of related questions having a common core - to
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discriminate the use of different van Hiele levels depending on the questions in the super-
item answered by each student. In the core reading, Gutiérrez and Jaime (1998) give exam-
ples of eight super-items. Finally, since the levels of reasoning expected vary at different
grades, it is more efficient to design different tests for students in different school grades.

These techniques allow the development of tests that reliably assess students’ degrees of
acquisition of the van Hiele levels and can be administered in a reasonable amount of time,
typically 1 hour in class. Gutiérrez and Jaime (1998) presented a longitudinal study where a
set of eight super-items was used to design three related tests to evaluate a sample of Spanish
students from Grade 6 (student age 11-12, primary school) to Grade 12 (student age 17-18,
end of secondary school).

Conclusion

In this chapter, I have introduced three theoretical frameworks that form part of the essen-
tial underpinning for research in geometry education. This chapter has set out the main
features of each framework, as a starting point for more detailed reading of the core read-
ings and the references indicated below.

It is worth mentioning that the three theories introduced here are compatible and com-
plementary to each other. The information about a student’s behaviour (with regard to rea-
soning, learning or representation) gained from one of the theoretical frameworks can be
expected to warrant and reinforce information about their behaviour with respect to the
other frameworks. For instance, knowing the kind of visual images and abilities students
use can give clues about the type of concept image they are able to create, and their level of
reasoning.

The frameworks introduced here are among the most important elements of research in
geometry education, but they are not the only ones. Other important topics include research
on the teaching and learning of proof, on the use of dynamic geometry software in primary
and secondary school classrooms, on the view of geometry classrooms as communities
of practice, and research on the teaching and learning of specific geometry topics. These
research areas are addressed in other chapters of this book, and also in edited handbooks
such as Gutiérrez and Boero (2006) and Lester (2007).
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