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Abstract. One of the main mathematical activities is proving. We present a teaching experiment 
aimed to improve mathematically gifted students’ abilities of proving. It is based on the solution 
in a dynamic geometry environment of construction problems, in which equidistance plays a 
central role. The problems ask for transitions between 2-dimensional and 3-dimensional 
geometries, where the elaboration of analogies between properties in plane and space supports 
the construction of meanings in 3-dimensional geometry and provides students with elements 
to elaborate deductive proofs. As an example of mathematically gifted students’ outcomes, we 
present the solution to a problem by a student. 
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INTRODUCTION 

Mathematically gifted students (MGS hereafter) have a mathematical ability higher 
than average students with the same age, grade or learning experiences. Despite this, 
many teachers do not recognize that MGS require special attention, since MGS do not 
face the same learning difficulties as their peers (Jaime & Gutiérrez, 2017). Research 
has shown that mathematical giftedness, like any other skill, must be fostered through 
challenging experiences and appropriate teaching. This leads to investigate MGS’s 
mathematical thinking processes and how these students process and assimilate new 
mathematical ideas (Dimitriadis, 2010). The non-exhaustive review of specialized 
literature on MGS carried out by Jaime and Gutiérrez (2017) showed a progress in 
some research areas, like problem solving, identification, characterization, and 
analysis of learning processes, but there is a lack of research in the topic of MGS’s 
learning to prove. 

The learning of proof in geometry has been greatly favored by the arising of dynamic 
geometry environments (DGE hereafter). It has been shown that DGEs positively 
influence aspects of proving like exploration, conjecture, and justification (Sinclair & 
Robutti, 2013). Experiments in this direction have been made mostly in contexts of 
2D geometry (Sinclair & Robutti, 2013), but the development of research in contexts 
of 3D geometry is not similar (Gutiérrez & Jaime, 2015). We argue that 3D DGEs offer 
a new context for teaching and learning proof, having differential characteristics that 
need to be explored. Research on 3D DGEs is just starting; particularly, the analysis of 
3D DGEs focusing on the learning of proof requires specific attention, since research 
on this topic is scarce. 
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We present an exploratory research based on an experiment aimed to promote the 
learning of proof by lower secondary MGS. It is centered on 3D geometry and based 
on a DGE. The research objectives of this paper are i) to analyze the role of analogy in 
solving 3D geometrical construction problems and producing the corresponding 
proofs by MGS in a DGE and ii) to show the role of the DGE in students’ solutions and 
proofs. 

THEORETICAL BACKGROUND 

Construction problems and learning to prove within a DGE 

Mariotti (2012) argue that DGEs support the learning of proof. In our study, we placed 
emphasis on the learning of proof in the context of construction problems. Solutions 
to construction problems consist of (i) creating in the DGE a figure having some 
properties that remain constant under dragging and (ii) explaining the procedure 
used to construct the figure and validating it (Mariotti, 2019). We consider a proof as 
a mathematical argument, both empirical and deductive, aiming to convince of the 
validity of a mathematical statement. In our case, students produced proofs to 
convince of the validity of a construction they had made in the DGE. The tools used by 
students to construct geometric objects on the screen provoke informal meanings by 
suggesting dependency relationships, that students may confirm by dragging objects. 
Furthermore, the tools are related to theoretical elements of Euclidean geometry that 
could help students to create proofs of the validity of their constructions (Mariotti, 
2012). Since DGEs embody systems of theoretical relationships, solving construction 
problems leads students to use the possibilities that the software offers them and the 
underlying logical system. Therefore, geometric constructions also have a purely 
theoretical nature, so the solutions may involve proving a theorem to validate them, 
so solving construction problems in a DGE can make students evoke the theoretical 
meaning of the constructions embodied in the tools (Mariotti, 2019). 

Mathematically gifted students: characterizing their behavior 

Research on MGS, besides informing about attention to these students, as we showed 
in the introduction, has also provided elements to identify their behavioral traits, 
mainly through the observation of their activity when solving problems, since there 
is an established connection between problem solving and mathematical creativity. 
Among these traits, researchers emphasize mathematical creativity and its 
components fluency, flexibility, and originality (Leikin & Lev, 2013). Fluency is 
observed through the generation of different mathematical ideas that lead to the 
exploration of a situation, the formulation of approaches, and multiple answers to a 
mathematical problem. Flexibility is present in the generation of new approaches 
when solving a problem. Originality refers to the smaller frequency of an answer 
given to a problem, compared to that of other answers given by different individuals 
to the same problem (Leikin, Koichu & Berman, 2009). 

Analogy: a way to extend mathematical ideas 

Two objects or systems are analogue if, based on partial similarity, the respective 
entities are similar in other respects as well (Fischbein, 2002). According to Richland 
and Simms (2015), analogical reasoning is a thinking “process of representing 
information and objects … as systems of relationships and drawing connections 
across these systems” (p. 179). When two systems are analogous, it is possible to 
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establish a relational statement or structure in one of them and apply it to the other. 
In this context, the analogical reasoning leads to the organization of available 
information in sets of relationships and the recognition of communal aspects between 
different systems. Then, establishing analogies is a way of learning. In our case, the 
students developed meanings in a 2D geometry (source system) and they extended 
those meanings to 3D geometry (target system). Furthermore, students identified 
similarities/differences and created new 3D objects or relationships. 

METHOD 

3D geometry is not frequently taught in the school levels due to the complexity of 
geometric relationships or graphic representations in the 3D configuration 
(Mammana et al., 2012). According to those authors, some proposals to address this 
problem have used analogy and DGE to establish links between 2D and 3D 
geometries. In our experiments, we have used analogy between 2D and 3D 
geometries relying particularly on the equidistance relationship. The study of 
equidistance through construction problems provides an opportunity to exhibit 
solution strategies guided by perceptual and theoretical aspects, as well as the 
possibility of recognizing similarities and differences between the 2D and 3D 
configurations handled and the geometric relationships behind them. 

We have designed a research experiment where several MGS solved a sequence of 18 
problems in a DGE based on GeoGebra. The first author acted as teacher. Due to the 
pandemic restrictions, the experiment consisted of several virtual individual clinical 
interviews with each student. The interviews were video recorded. We consider the 
students participating in our experiments as MGS because they had participated for 
several years in workshops to support mathematical giftedness (AVAST and 
ESTALMAT). 

In the problems we posed, students had to base their constructions and the posterior 
proofs on properties related to equidistance. Most objects and properties involved 
(circumference, sphere, perpendicular bisector, bisector plane, parallelism, 
perpendicularity, and congruent triangles) have to do with equidistance. 

When students finished the solution of a problem, the teacher made questions to 
know their solution strategies, their reasons for considering that the construction 
made solved the problem, to clarify ideas expressed by them, and to provide help if it 
was necessary. For the analysis of the data, we selected those episodes in which 
students’ activity showed evidence of creativity, relying on analogical reasoning and 
facilities from the DGE. 

The first problems we posed were aimed to let students have a first contact with 
geometric objects in 2D or 3D, or remind them. In the 2D configuration, students 
dragged some geometric objects and discovered some properties or other geometric 
objects. Subsequently, a related 3D problem was posed, aimed to bring students 
closer to the corresponding 3D geometric objects and properties. In the 3D 
constructions, students had also to drag points to satisfy some equidistance 
relationship. 

After those problems, we posed construction problems. They required the 
construction of objects having specific properties in 2D or 3D, in which equidistance 
was present. These problems could ask for the same object to be constructed in both 
2D and 3D spaces (e.g., an equilateral or isosceles triangle) or the construction of a 
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particular geometric object in 2D (e.g., the center of a circle) and then its 
corresponding one in 3D (e.g., the center of a sphere). In this type of problems, it was 
necessary to use geometric objects as tools for the construction of other objects or 
certain configurations. This required knowing which properties of the objects would 
be useful in solving the problems. 

AN EXAMPLE: EQUIDISTANCE IN 2D AND 3D GEOMETRIES 

We present the analysis of a case study, drawn from the broader research experiment 
described, in which we trace the activity of a student named John (pseudonymous) to 
solve one of the construction problems. John was a 14-year-old student in grade 4 of 
secondary school (he had been advanced one grade due to his giftedness). He knew 
and used confidently the main construction tools of GeoGebra 2D, but his experience 
with GeoGebra 3D and the 3D geometrical objects involved in the problems was 
scarce. 

The construction problem that we present here was the eleventh problem in the 
sequence. The objects and geometric relationships necessary to solve the problem 
were known to John at this point. The statement of the problem is: 

• Open GeoGebra and activate the Graphics view. Construct three non-
collinear points, A, B, and C. Construct a line at the same distance from these 
points. 

• Open the 3D Graphics view and close the Graphics view. Construct a line, 
not contained in the gray plane, equidistant from the three points. 

In the 2D configuration, John created the non-collinear points A, B and C. He 
constructed the line AB, the midpoint between B and C, named D, and the line parallel 
to line AB containing D (Figure 1a). He justified the correctness of the construction by 
stating that a line that is at the same distance from A and B must be parallel to line AB… 
otherwise, the distance from A to the line would be greater or lesser than the distance 
from B to the line… by the definition of parallel lines the distance is constant. John had 
in mind the infinity of parallel lines to line AB, as well as the need for the parallel line 
to be also equidistant from C. In this regard, John explained that what I have done has 
been to draw the midpoint between B and C, and the parallel line to AB containing that 
midpoint, which will be equidistant from B, C, and A. 

a)                                b)  
Figure 1. Construction of equidistant line from three non-collinear points in 2D 

configuration. 

John deductively proved that his construction solved the problem: To explain this, 
what I am going to do is draw… I mean, there is a simpler explanation, but I see it like 
this. I am going to draw two perpendicular lines from D and C to AB. Then two right 
triangles are formed, BDE and BCF. Next, he justified the similarity between triangles 
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CFB and DEB (Figure 1b). Therefore, the distance CG is equal to the distance GF, each 
corresponding to the distance from the line GD to points C, B and A. 

In the 3D view, all points and lines created in 2D were visible. John's first attempt 
involved the bisector planes between A and B, and B and C, and the line intersection 
of these planes (figure 2a). John proved his construction starting from the 
equidistance of each point of the bisector plane with respect to the two points 
determining it, to conclude that the intersection between the two planes must be 
equidistant from A, B, and C. In his explanation, he stated that the bisector plane 
between A and B is perpendicular to the gray plane and the bisector plane between B 
and C is also perpendicular... so the intersection [of the two bisector planes] is also 
perpendicular to the gray plane. Any point on the line [intersection between bisector 
planes] that is not the intersection [between gray plane and the line], the intersection, 
let's call it K, and a point of the blues [A, B or C] form 90° [a right angle]. He added that 
point K is equidistant from points A, B, and C, so the line is equidistant from these 
points. 

a)            b) 

           c) 

Figure 2. Construction of the line that is equidistant in the 3D configuration 

The teacher asked about the possible existence of other solutions. John answered 
affirmatively, anticipating their characteristics: the line that is the same distance from 
A, B and C... if I draw a parallel line to this line [the solution in 2D] through the plane 
perpendicular to the gray plane [which contains the solution in 2D], then any of these 
lines is equidistant from A, B and C. The teacher asked to construct these lines, so John 
created the configuration (Figure 2b). John explained the validity of his construction 
by making an auxiliary construction based on perpendicular to A, with respect to the 
two lines in the purple plane, which allowed him to obtain a triangle with vertex in A 
(Figure 2c). He explained that the same thing could be done with B and C, so he would 
obtain three triangles. In these triangles, there would be a right angle, because the 
perpendicularity between the planes, and two corresponding congruent sides, due to 
the equidistance between each parallel line and A, B, and C. Thanks to this and the 
congruence of triangles (SAS criterion), the line not contained in the gray plane is 
equidistant from A, B and C. Finally, John mentioned that this set of lines provided 
infinite solutions to the problem. 
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DISCUSSION AND CONCLUSION 

We have presented results from a research experiment aimed to induce MGS’s 
learning of 3D geometry and mathematical proof, in which the DGE and the analogy 
between 2D and 3D geometries are important components. An original contribution 
of our research is to demonstrate how the link between 2D and 3D geometries is 
established thanks to the central role of equidistance, construction problems, and the 
diversity of proofs that can emerge from students. However, further efforts in this 
direction have to be made. 

As our research is based on a case study, it does not allow the results obtained to be 
generalized. However, these results provide evidence about how analogy-based 
problems induce students to display traits of mathematical giftedness. The activity 
carried out during the problem-solving exhibited traits of creativity and the use of 
analogical reasoning, supported by DGE in some cases. 

Regarding creativity, as we have seen in this experiment, the diversity of strategies 
that students may offer to build the requested 3D object and the chain of theoretical 
properties with which each strategy was supported (including the 2D solution) is 
evidence of fluency and flexibility in those actions. Likewise, the reasoning employed 
to determinate the solution in the 2D configuration, combining geometrical 
properties, shows traits of originality in the solutions to the problem. 

The DGE was used to represent anticipated ideas at the beginning of the solution. The 
construction of the lines or the proof of the results are examples of how GeoGebra 
allowed to materialize initial ideas. Although there was not exploration or 
fundamental use of the DGE tools to discover geometric properties, the 2D-3D 
integration provided by GeoGebra allowed the objects built in 2D to be used in 3D, 
which favored the extension by analogy of the ideas and properties used in 2D to 
construct the solution in the 3D space.  
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