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USING DYNAMIC GEOMETRY SOFTWARE TO SIMULATE
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ABSTRACT. In this paper we analyse to what extent the computational model of the
geometry implemented in a dynamic geometry environment provides models for physical
motion, focusing on the continuity issues related to motion. In particular, we go over the
utility of dynamic geometry environments to simulate the motion of mechanical linkages,
as this activity allows us to compare, by means of dynamic drawings, the computable
representation of geometric properties with the real motion of a mechanism. Analysing a
simple example, we provide theoretical foundations for particular behaviours observed in
the motion of a picture on the screen, which require a subtle interpretation to be understood
in a purely physical context. In this way, we reflect on some requirements imposed by the
computable representation of knowledge. We consider this work to be a necessary step to
determine didactic consequences related to students’ perceptions of the moving displays; in
particular those concerning the uses of the dragging mode as a tool not only for automatic
drawing of many instances of a construction, but also to produce continuous motion.
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“motions is a subject of mechanics rather than of geometry”
Freudenthal (1983, p. 342)

INTRODUCTION

In compulsory education, geometry is presented as a model to organize
the physical environment. This approach also includes consideration of
the motion of objects in space, conceptualized in geometry by means of
geometric transformations. But, as Freudenthal (1983, p. 342) points out:

Motion is first of all something that occurs to an object, within space (or plane), within
time. In order to view motions the way mathematicians are now used to, three steps must
be taken: from the limited object to the total space (plane), from ‘within’ space (plane) to
‘on’ space (plane), from ‘within time’ to ‘at one blow’.

In this way, Freudenthal establishes how geometric transformations model
the ‘initial state/ final state’ relation in the motion of a physical object in
space and time.
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Another way in which we relate geometric theory and the physical
world is through pictures, which are representations both of geometrical
concepts and of physical objects, and can be considered essential medi-
ating tools for the acquisition of geometric knowledge. Classically, pencil
and paper have mostly been used to form these representations, even
though the pictures obviously cannot move. The development of dynamic
geometry overcomes such limitations, allowing pictures to move on the
screen in a way that keeps some geometrical relationships invariant.
This feature adds new attributes to the pictures, which can be used to
promote students’ acquisition of geometrical knowledge from exploration
and conjecture activities (Laborde, 1998; Laborde and Straesser, 1990).

But we have to take into account new epistemological and didactic
questions derived from the computable representation of the knowledge
(Balacheff, 1994). In dynamic geometry environments, the motion of
pictures on the screen corresponds to a particular computational modelling
of the geometry, which has consequences on the behaviour of the users and
their reasoning style (Hölzl, 1996).

In this paper we analyse to what extent the computational model of
the geometry implemented in a dynamic geometry environment provides
models for physical motion. We focus our interest on the continuity issues
related to motion; in particular, we go over the possibilities of Cabri-
Géomètre to simulate the motion of mechanical linkages. By comparing
the behaviour of the dynamic drawing of a mechanical linkage with its
real motion, we can make an in-depth study of some theoretical questions
that arise in this context:

− modelling aspects: the relationships between the perceptual level
of the continuity of physical motion and the theoretical concept of
continuity in a scientific theory (continuity of the functional depend-
ence of different variables: position of a point with respect to another
point, orientation, etc); the validity of dynamic geometrical models
to perform continuity questions; the differences existing between the
model and the knowledge to be modelled.

− algorithmic aspects: the consideration of diverse algorithmic
constructions to highlight different aspects of the same mechanism.

Thus we present, in Section 1, the concept of continuity that, from physics
and mathematics, is used to organize the attributes of physical motion,
observing that the motion that is produced on the graphical screen of a
dynamic geometry software has, a priori, a different referent, which is the
euclidean geometry theory. In Section 2, we establish the distinct phases
that have to be considered when using a dynamic geometry environment
to simulate the motion of a mechanical linkage, sketching the particular
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relationships existing between the different domains that come into play
(physical, mathematical and computational). We progress to a particular
behaviour of the moving drawings, detailing this feature in Section 3,
where we propose different algorithms to construct a basic mechanism
in Cabri-Géomètre, and interpret the corresponding results. Section 4
focuses on some theoretical foundations that support the kind of proper-
ties fulfilled by the computational modelling. We consider that only when
this analysis has been carried out can didactical consequences be deduced,
mainly in order to design activities for the students to gain new geometrical
knowledge from their perceptions on the moving drawings. Therefore, in
Section 5 we present some reflections on this educational perspective, a
detailed analysis of which is still to be carried out.

1. CONTINUITY IN MOTION MODELLING

Modelling of physical motion is a recurrent theme in scientific / philo-
sophical theories. It involves diverse features: space and time concep-
tions, geometrical relationships (relative position, orientation), dynamical
aspects (force, speed), characteristics of the material devices (elasticity),
etc. Zeno’s paradoxes constitute a paradigmatic example, reflecting the
difficulty of reconciling our perceptions with the foundations of those
theories.

One of the possible ways to model the perceptive continuity of physical
motion is to focus on the system of concepts developed in mathematics
or physics around the continuum and the continuity of functions. In clas-
sical kinematics, the motion of a ‘material point’ is characterised by a
continuous relation between four (space/time) coordinates. The consid-
eration of ‘material objects’ (instead of points) implies new variables to
be managed; for example, those related to orientation. This causes us to
consider a more complex framework where continuity is not an absolute
concept, but dependent on the particular set of parameters we are relating.

In a computational context of dynamic geometry, the foundations of
modelled knowledge is euclidean geometry theory, where there are not, a
priori, direct connections with the functional continuity. In fact, the initial
proposal of the motion of a drawing built within a dynamic geometry
environment is to perform the invariant geometric properties shared by any
exemplification of the corresponding geometric construction. Therefore,
the dragging mode can be identified with the facility given to the user to
make many examples of the same construction, rapidly and effortlessly.

But, when using dynamic geometry software to simulate the behaviour
of a mechanism (a pulley, a bicycle, a crank, etc.) we are trying to relate the
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computational representation of geometrical concepts with the perception
of physical motion, and we expect the dragging of the picture to reflect
the continuity that we perceive on the real mechanism. We analyse in the
following sections the extent to which our expectations could be fulfilled.

2. SIMULATING THE PERFORMANCE OF MECHANICAL
LINKAGES IN DYNAMIC GEOMETRY SOFTWARE

In order to simulate the performance of a mechanism in a dynamic
geometry environment we have to consider three different phases:

− Geometrical Phase: we examine the geometrical properties that make
the mechanism work. This activity involves not only a pure geometry
description, but also a functional description relating to the real mech-
anism. For example, if we are going to construct a bicycle, we remark
that the chain is tangent to the gear, we determine its connection with
the pedal, we identify the pedal as the part of the mechanism that
brings the others into operation, etc.

− Algorithmic Phase: we make the geometric construction of the mech-
anism using an ordered sequence of system commands. In the case
of the bicycle, we identify the geometric objects required (points,
circles, segments, etc.) and their dependencies, in order to deduce
the sequence to be implemented in the system. There can be several
algorithmic descriptions producing the same geometric construction.
We can also use different sequences to focus on particular behaviours
of the same mechanism.

− Testing Phase: we use the dragging mode of the system to produce
the motion of the drawing on the screen, in order to visualize the
performance of the built ‘ideal model of the mechanism’. The system
keeps the geometric features of the construction invariant.

In this third phase we can check the fidelity of the construction by com-
paring the behaviour of the moving drawings with the real mechanism’s
performance. In a simulation, the motion of the drawings on the screen
would ideally be the same as a video recording of the physical device.
However, the geometrical laws supporting the motion of the pictures have
no direct link with the physical motion laws nor the continuity of an
analytic model. And there are still computational laws playing their role,
as Hölzl (1996, p. 171) comments:

“implementing a drag-mode demands decisions about the behaviour of geometrical objects
when they are moved; and some of those characteristics may not all lie in the realm of
geometry.”
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The situation we want to reflect is summarised in the scheme shown in
Figure 1:

Figure 1. Relations between the physical, theoretical and computational contexts in a
simulation activity.

These conditions are those responsible for particular behaviours of the
moving drawings observed in the testing phase of a simulation. For
example, while dragging one free object of a geometric construction, other
elements can suddenly change their position on the screen, ‘jumping’ from
one position to other and breaking the expected perceptive continuity. In
the following section we detail an example, analysing the possibilities
offered by the system to implement various algorithmic processes of a
construction and interpreting the corresponding results.

3. A MEANINGFUL EXAMPLE

Let us consider a mechanical linkage as simple as a planar linkage
composed by two rigid equal links with a common endpoint (Figure 2).
The extreme O is fixed to a table and we move the mechanism on a
surface by dragging P. Let us construct this mechanism in Cabri-Géomètre,
following the phases outlined in the previous section:

Geometrical Phase: the two mechanism links are segments of equal length
(r) in which the finishing point of one segment is identified with the point
of origin of the other (point Q). Whatever the position of the mechanism,
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Figure 2. 2-links planar mechanical linkage.

Q is the same distance (r) from the extremes O and P. O is a fixed point
and P is a free point whose motion pulls the rest of the mechanism.

Algorithmic Phase: Different sequences can be implemented to perform
the requirements of the previous phase. We show three different possibil-
ities:

− Algorithm 1: O and P are free points. Q is determined by the inter-
section of two circumferences: C1 (centered in O and radius r) and
C2 (centered in P and radius r). We choose one of the two intersec-
tion points to define Q. Finally, we draw the segments OQ and QP
(Figure 3(a)).

− Algorithm 2: O and P are free points. C is a circle centered in O and
radius r. We draw a perpendicular to line OP through O and a parallel
l to this line through the midpoint of the segment OP. We select Q to
be one of the two intersecting points between C and l, and draw the
segments OQ and QP (Figure 3(b)).

− Algorithm 3: O is a free point. We draw a line l passing through O. P
is a point on l. Then we follow the same steps in Algorithm 2 (from P
and O) (Figure 3(b)).

Figure 3. Two geometric implementations of the 2-linkage in Cabri Geométrè.
(a) From two equal circumferences.
(b) From a circumference and a line.
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In Algorithm 1 we directly preserve the distance (r) from Q to P and O by
means of two circumferences. Algorithm 2 combines one circumference
and the perpendicular bisector of OP. Algorithm 2 could be made simpler
(by drawing the perpendicular bisector of OP directly, without using the
perpendicular to OP through O), but we have chosen that description to
compare Algorithms 2 and 3.

Testing Phase: When dragging P on the screen we observe the following
facts (which we compare with the performance of the real mechanism in
order to explain the ‘simulation of mechanisms’ arrow in Figure 1):

a) When moving P away from O in the three algorithms the mechanism
drawing disappears (circumference-circumference or circumference-
line do not intersect). In the limit cases the two segments lie end to
end on the same line (circumference-circumference or circumference-
line are tangent). This behaviour has a direct reflection in the real
mechanism, where P cannot be more than 2r from O. However, we can
avoid these limit positions, as Cabri-Géomètre allows us to implement
‘conditional geometrical constructions’.

b) In Algorithms 1 and 2, when P comes close to O the two segments
tend to be the same. If we drag P exactly through O then Q ‘jumps’
suddenly. This behaviour can be seen more easily if we redefine P as
‘point on’ a line through O: the dragging of P from one side to the
other of this line produces a jumping of Q from one of the half-planes
determined by the line to the other (Figure 4(a)). However, dragging
P over O in Algorithm 3 produces no jump of Q (Figure 4(b)). This
motion through O is possible in a physical context if we consider our
example as the planar model of a real mechanism where the two links
move in distinct parallel planes.

Figure 4. Behaviour of the construction when P is dragged through O
(a) in Algorithms 1 and 2; (b) in algorithm 3.
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4. THEORETICAL CONSIDERATIONS

There is no behaviour in the real mechanism equivalent to this jumping
of Q in Algorithms 1 and 2. Otherwise, Algorithm 2 has a very similar
description to Algorithm 3, but a different performance when passing
through O. We can find the coherence of these facts in the computational
modelling of the euclidean geometry implemented in Cabri-Géomètre. In
this section we describe some characteristics of this theoretical framework.

4.1. Orientation of Geometrical Objects

The existence of two intersection points between circumference / circum-
ference or circumference / line (in Algorithms 1 and 2) reflects the fact
that for one given position of P there are two possible configurations of the
mechanism (Figure 5). We arbitrarily choose one, as both of them have, a
priori, the same physical and geometrical status for any fixed configuration
(i.e. in a static geometrical view). But this choice is not innocuous from the
dynamic point of view.

Figure 5. Two distinct configurations reach the same point P.

The dynamic perspective involves the need to distinguish the intersec-
tion points of two objects in a geometric construction (see, for example,
Laborde, 1997) for the reflection of a segment with respect to a line, or the
construction of a rhombus). For this purpose most of the dynamic geometry
environments use an internal orientation of the geometrical objects. For
example, a line through two points A and B is oriented ‘from A to B’;
the orientation of a perpendicular to a line is obtained by turning π /2 the
orientation of the line counter-clock-wise (CCW); two parallels have the
same orientation.

The dragging tool preserves these orientation laws, thus keeping a
‘continuous’ behaviour of the orientation variable. Therefore, passing P
through O in Algorithm 2 keeps the line OP oriented from O to P, this
fact being directly responsible for the jumping of Q (Figure 6(a)). Instead,
in Algorithm 3 we start with a line through O, oriented in a certain way,
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then we choose P on this line. But the dragging of a ‘point on’ an object
does not change its orientation. This slight modification of Algorithm 2
makes the perpendicular lines’ orientation independent of the position of
P (Figure 6(b)).

Figure 6. Orientation behaviour of the geometric elements when P is dragged through O.
(a) In Algorithms 1 and 2.
(b) In Algorithm 3.

Thus, we note that a continuous behaviour of the objects’ orientation
can correspond to a visual discontinuity in the position of Q. Therefore,
depending on the feature we want to focus on, a subtle interpretation of
continuity is required.

4.2. Position Continuity and Orientation Continuity

We present in this section the handling proposed in the realm of kinematics
for the 2-linkage mechanism. This approach allows us to relate the two
position/orientation perspectives in a common context.

We consider a system of coordinates (O,X,Y), where we are going to
relate P and Q coordinates in terms of the following angles: let θ1 be
the (oriented) angle from the positive X-axis to the first link and θ2 the
(oriented) angle from the extension of the first link to the second one,
both measured in a CCW direction (Figure 7). In order to simplify the
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expressions, we consider the lengths of the two links to be equal to 1 (r =
1). Thus, we have:

Figure 7. Angles measurement in the kinematics model.

Q = (cos(θ1), sin(θ1)); P = (cos(θ1)+cos(θ1+θ2), sin(θ1)+sin(θ1+θ2))

A continuous function F gives us the position of P corresponding to a pair
of angles:

F(θ1, θ2) = (cos(θ1) + cos(θ1 + θ2), sin(θ1) + sin(θ1 + θ2))

In this way we consider two different spaces:

a) ‘joint space’, to denote the set of angles (θ1, θ2) representing the
configurations of the whole mechanism, and

b) ‘operational space’, to denote the plane in which P = (a,b) moves.

By analysing the relations between both spaces we can identify the so-
called ‘singular points’ of the mechanism, which in this case correspond,
without describing technical details, to completely stretched (dist(P,O) =
2r) or completely folded (P = O) configurations. In geometrical terms,
these singular points are characterised by two equal or tangent circum-
ferences, or by a change in the objects’ orientation.

The kinematic model distinguishes trajectories f(t) = (a(t),b(t)) of P
in the operational space, from the whole mechanism trajectories g(t) =
(θ1(t),θ2(t)) in the joint space. Both types are related by means of F (when
Fog = f), and a central problem in kinematics is that of determining
functions g for a given f. This is not a simple question, as F is not a one-
to-one mapping: there are positions (a,b) of P reached with two angles
(Figure 8(a)) or infinite pairs of angles (Figure 8(b)), associated with two
or infinite positions of Q.

For a given trajectory f of P, the two possibilities for Q (Figure 8(a))
describe two different ‘branches’, each one of them corresponding to a
function g. If P passes through O there is an undefinition at the point where
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Figure 8. Configurations associated to a given position of P.
(a) Two different paris (θ1,θ2) reach the point P.
(b) If P = O there are infinite possibilities: any pair (θ1,θ2), θ1 in (0,2π).

both branches should connect (P = O, with infinite possibilities for Q).
The definition of g at this point can be chosen in response to two different
criteria:

a) Orientation continuity: extending to O the behaviour of the mechanism
in a neighbourhood of O (Figure 9). Algorithms 1 or 2 should represent
this extension.

Figure 9. The motion of the mechanism when P passes through O can be considered an
extension of its motion near O.

b) Position continuity: considering the continuous dependency of the y-
coordinate of Q with respect to the x-coordinate of P. Algorithm 3
constitutes an exemplification of this choice.

The computational model of the geometry implemented in Cabri-
Géomètre has allowed us to represent both choices, giving us the possib-
ility of representing, in geometrical terms, the two continuity criteria stated
in the kinematics model.
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4.3. Proximity and Domain of Validity

J.M. Laborde (1999, p. 13) defines dynamic geometry as:

“. . . the situation in which one can construct a figure following one of its possible proce-
dural descriptions, progressing with base points [. . . ] in such a way that the result of the
construction meets the specifications and meets them also for points close to the base
points”.1

But in the same paper Laborde establishes that ‘being close’ in a dynamic
geometry environment is not the same as in the realm of the topology of
the plane. In this last case, a circular neighbourhood of A contains its close
points; while in a dynamic geometry environment, a neighbourhood of
A is an angle sector with vertex in A. Thus, every geometric construc-
tion in a dynamic geometry system has a ‘domain of validity’ that limits
the motion of the free points to certain regions (of points close to them
for the system), outside of which the implemented construction can lose
its sense. In the 2-linkage mechanism, point O is outside the domain of
validity of P in Algorithms 1 and 2, as dragging P through O modifies
the sense of the construction producing a visual discontinuity that requires
a particular interpretation in terms of orientation. This can be considered
a computational constraint, as the orientation of a geometrical object is
a concept internally controlled by the system, but not a priori required
from the user’s point of view. Once the orientation laws have been estab-
lished, we acquire a new perspective on the tools provided by the system,
which allows us to handle them in a more subtle way: we can combine the
geometrical and computational requirements to improve the authenticity
of the model (as in Algorithm 3).

4.4. The Conservative Law

We have seen that dragging a point outside its validity domain modifies
the sense of the construction. But, we can see that when the dragged point
returns to its starting position the construction recovers again its original
configuration. This property, called conservative, can be stated as follows
(Laborde, 1999, p. 14):

For any succession of positions of any base point P on a closed loop P1, P2, . . . , Pn = P1,
final state F(Pn) is equal to the initial state F(P1).

The computational model for the geometry implemented in the dynamic
geometry software as Cabri-Géomètre guarantees that all the construc-
tions we make verify the conservative property, which need not necessarily
occur in other kinds of modelling. For example, in the field of dynamic
geometry environments, the Cinderella system has recently been proposed



USING DYNAMIC GEOMETRY SOFTWARE 139

(Richter-Gebert, Kortenkamp, 1999). Its implementation is supported
by different background theories (for example, complex analysis). This
provides a different behaviour of the dragging mode: for example, Cinder-
ella preserves the continuity of point Q with respect to P in Algorithms 1,
2 and 3, although it does not preserve the orientation nor verify the
conservative property previously stated.

4.5. Theoretical Constraints

As we have seen, there are different algorithmic descriptions leading to the
same geometric construction, each of them providing different domains of
validity to the free objects. Thus, the authenticity of the simulation depends
partly on the process followed by the user in the Algorithmic Phase. But
there may be theoretical constraints that restrict our expectations in a simu-
lation process. We will refer again to the comparison with the kinematic
model to analyse this question in the rest of this section.

As we have said, a central question treated in the kinematic model
is that of determining algorithms to generate trajectories in the joint
space associated to a given trajectory of P in the operational space. The
algorithms of this kind that verify the conservative property are called
cyclic (Baker, 1990, p. 72). A particular conclusion of Baker’s work is that
there are no cyclic algorithms for the 2-linkage mechanism in a neighbour-
hood of point O. In other words, there is no global algorithmic solution
independent of the trajectory described by P, in the case of its going
through singular points. The reason is, briefly, that there are directions
which cannot be reached from O and that they vary depending on the
trajectory we have followed to arrive at this point.

As this is a physical restriction, we can expect that any other model
used to simulate physical motion respecting the conservative law will
have difficulties when passing through singular points; in particular, the
computational model implemented in Cabri-Géomètre. Therefore, inde-
pendently of the sequence followed in the algorithmic phase, passing
through O would have needed particular treatment. This has been reflected
in our process: Algorithms 1 and 2 constitute global approaches (for
any trajectory of P) where we have detected that trajectories through
O require a particular treatment; Algorithm 3 performs only rectilinear
motion through O.
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5. CONCLUSION AND DIDACTICAL CONSIDERATIONS

The characteristics of the motion of a picture constructed by using
geometric laws allow us to state the peculiarities encountered in order to
simulate physical motion in a dynamic geometry environment and reveal
features of the euclidean geometry model when it comes to implementing
continuity questions. The computational system allows us to perform
different behaviours in a simulation, although this requires a profound
knowledge of the internal implementation of the system commands. This
has allowed us to reflect on some characteristics of the computable repre-
sentation of knowledge, as a step towards determining their influence on
educational uses of dynamic geometry systems.

In the educational context, Goldenberg-Cuoco (1998) reflect on
new mathematical and pedagogical issues arising when using dynamic
geometry software:

“in designing curricula that make significant use of experimentation and investigation, we
must understand what students glean from their experiments, and that clearly depends on
what features of the experiment they notice.” (p. 352)
“Optimal curriculum design must be aware of places [. . . ] where reasoning may be
confounded by behaviours that are built into DG [Dynamic Geometry] tools but are not
part of the (conscious) postulate set of the students. Research must also clarify what
students do, in fact, notice, and how they do interpret what they see.” (p. 354)

It is clearly important to know how students perceive a graphical screen
on which pictures move, and how they manage to integrate these percep-
tions with their geometric knowledge in order to produce new knowledge.
From the analysis presented in this work we conclude that when dynamic
geometry software is used to model physical situations, some answers
produced by the system can be separated from the geometrical knowledge
of the student, as they are a consequence of the implemented computa-
tional modelling. Therefore, the list of properties to be perceived by the
student in a picture (and research is trying to clarify which of these are
seen as essential or inessential) must be enlarged with the characteristics
derived from the computational model.

Bearing in mind that activities proposed to students usually have
an exploratory and conjectural character, the fact that some unexpected
performances can occur on the screen can be understood as a situation
in which the student is faced with conflicts. This is a profitable approach
when the solution lies within the students’ reach, with or without guidance.

Similarly, we suggest that the design of geometric activities has to
consider as a main point the domain of validity of every construction,
outside of which the claimed geometrical properties require a particular
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interpretation associated with the computational model used. A prelim-
inary point we have verified with students is that they tend to avoid
the dragging that produces unexpected answers, when they consider that
the steps followed to make the construction are right. We can interpret
this behaviour as the students’ separating the geometrical aspects from
the features imposed by the computational implementation, identifying
(perhaps unconsciously) the domains of validity of every element of a
construction. But it may also be possible that the student is using the
dragging mode provided by the system merely as a tool that allows many
instances of the same construction to be drawn automatically, without
relating this feature to the continuity of motion. The interrelation between
both facets could be improved if dynamic geometry systems were to make
explicit the geometric properties arising when the dragging of the picture
reaches singular points, and should allow the user to choose between the
different possibilities offered.

The study of these questions is a subject of research into didactics of
geometry concerned with establishing students’ perceptions of a moving
drawing, and the knowledge they generate from their perceptions. This
paper has contributed to the research by determining some features of a
picture moving in a dynamic geometry computational environment.
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NOTE

1 Emphasis mine.
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