Infrared Finite Effective Charge of QCD

Joannis Papavassiliou

Departament of Theoretical Physics and IFIC, University of Valencia – CSIC, Spain

Light Cone 2008, Mulhouse, France 7-11th July 2008

* 3 * 4 3

Outline of the talk

- Effective charge of QED (prototype)
- QCD effective charge in perturbation theory Field theoretic framework: Pinch Technique
- Beyond perturbation theory: Schwinger-Dyson equations and lattice
- Dynamical mass generation
- IR finite gluon propagator and effective charge
- The role of the quarks
- Conclusions

Effective charge of QED (prototype)

Textbook construction: $\bar{\alpha}(q^2)$ is defined from the vacuum polarization $\Pi(q)$.

$$\Delta_{\mu\nu}(q) = -i \mathcal{P}_{\mu\nu}(q) \Delta(q^2) \qquad \qquad \mathcal{P}_{\mu\nu}(q) = g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}$$
$$\Delta(q^2) = \frac{1}{q^2[1 + \Pi(q^2)]}$$

 $e = Z_e^{-1} e_0$ and $1 + \Pi(q^2) = Z_A [1 + \Pi_0(q^2)]$ From QED Ward identity follows $Z_1 = Z_2$ and $Z_e = Z_A^{-1/2}$ RG-invariant combination

Properties

- Gauge-independent (to all orders)
- Renormalization group invariant,
- Universal (process-independent)
- Non-trivial dependence on the masses m_i of the particles in the loop. Reconstruction from physical amplitudes, using optical theorem and dispersion relations.

• For $q^2 \gg m_i^2$, the effectice charge coincides with the running coupling (solution of RG equation).

$$\overline{lpha}(q^2)
ightarrow rac{e^2/4\pi}{1-e^2b\log(q^2/m_f^2)}$$

where $b = \frac{1}{6\pi^2} n_f [n_f = \text{number of fermion flavors}]$.

QCD effective charge in perturbation theory

- Ward identities replaced by Slavnov-Taylor identities involving ghost Green's functions. $(Z_1 \neq Z_2 \text{ in general})$
- Π_{µν}(q) depends on the gauge-fixing parameter already at one-loop

• Optical theorem does not hold for individual Green's functions

Pinch Technique

Diagrammatic rearrangement of perturbative expansion (to all orders) gives rise to effective Green's functions with special properties .

- J. M. Cornwall , Phys. Rev. D 26, 1453 (1982) J. M. Cornwall and J.P. , Phys. Rev. D 40, 3474 (1989)
- D. Binosi and J.P., Phys. Rev. D 66, 111901 (2002).

In covariant gauges:

$$i\Delta_{\mu\nu}^{(0)}(k) = \left[g_{\mu\nu} - (1-\xi)\frac{k_{\mu}k_{\nu}}{k^2}\right]\frac{1}{k^2}$$

In light cone gauges: $\longrightarrow i\Delta$

$${}^{(0)}_{\mu
u}(k) = \left[g_{\mu
u} - rac{n_{\mu}k_{
u} + n_{
u}k_{\mu}}{nk}
ight]rac{1}{k^2}$$

$$k_{
u}\gamma^{
u} = (k + p - m) - (p - m)$$

= $S_0^{-1}(k + p) - S_0^{-1}(p)$,

Joannis Papavassiliou Light Cone 2008

Pinch Technique rearrangement

7/27

Э

Gauge-independent self-energy

$$\widehat{\Delta}(q^2) = rac{1}{q^2 \left[1 + bg^2 \ln\left(rac{q^2}{\mu^2}
ight)
ight]}$$

 $b = 11C_A/48\pi^2$ first coefficient of the QCD β -function $(\beta = -bg^3)$ in the absence of quark loops.

8/27

A B > A B >

< D > < A >

• Simple, QED-like Ward Identities , instead of Slavnov-Taylor Identities, to all orders

$$q^{\mu} \widetilde{\Gamma}_{\mu}(p_{1}, p_{2}) = g \left[S^{-1}(p_{2}) - S^{-1}(p_{1}) \right]$$
$$q_{1}^{\mu} \widetilde{\Gamma}_{\mu\alpha\beta}^{abc}(q_{1}, q_{2}, q_{3}) = g f^{abc} \left[\Delta_{\alpha\beta}^{-1}(q_{2}) - \Delta_{\alpha\beta}^{-1}(q_{3}) \right]$$

• Profound connection with

Background Field Method \implies easy to calculate

D. Binosi and J.P., Phys. Rev. D 77, 061702 (2008); arXiv:0805.3994 [hep-ph]

Restoration of:

• Abelian Ward identities
$$\widehat{Z}_1 = \widehat{Z}_2, \ Z_g = \widehat{Z}_A^{-1/2}$$

 $\implies \text{RG invariant combination } \boxed{g_0^2 \widehat{\Delta}_0(q^2) = g^2 \widehat{\Delta}(q^2)}$ For large momenta q^2 , define the RG-invariant effective charge of QCD,

$$\overline{lpha}(q^2) = rac{g^2(\mu)/4\pi}{1+bg^2(\mu)\ln{(q^2/\mu^2)}} = rac{1}{4\pi b\ln{(q^2/\Lambda^2)}}$$

• Strong version of optical theorem

J.P., E. de Rafael and N.J.Watson, Nucl. Phys. B 503, 79 (1997)

A B > A B >

Beyond perturbation theory ...

Joannis Papavassiliou Light Cone 2008

11/27

Э

イロト イロト イヨト イヨト

Non-perturbative tools

- Lattice QCD (discretization of space-time)
- Schwinger-Dyson equations (continuous approach)

A.C. Aguilar, D. Binosi, J. P., arXiv:0802.1870 [hep-ph], Phys. Rev. D (in press)

Transversality enforced loop-wise in SD equations

Joannis Papavassiliou Light Cone 2008 Dynamical mass generation: Schwinger mechanism in 4-d

$$\Delta(q^2)=rac{1}{q^2[1+\Pi(q^2)]}$$

 If Π(q²) has a pole at q² = 0 the vector meson is massive, even though it is massless in the absence of interactions.

J. S. Schwinger, Phys. Rev. 125, 397 (1962); Phys. Rev. 128, 2425 (1962).

- Requires massless, longitudinally coupled , Goldstone-like poles $\sim 1/q^2$
- Such poles can occur dynamically, even in the absence of canonical scalar fields. Composite excitations in a strongly-coupled gauge theory.

R. Jackiw and K. Johnson, Phys. Rev. D 8, 2386 (1973)

J. M. Cornwall and R. E. Norton, Phys. Rev. D 8 (1973) 3338

E. Eichten and F. Feinberg, Phys. Rev. D 10, 3254 (1974)

A B > A B >

< D > < A >

Ansatz for the vertex

Gauge-technique Ansatz for the full vertex:

$$\widetilde{\Gamma}_{\mulphaeta} = \Gamma_{\mulphaeta} + i \, rac{q_{\mu}}{q^2} \left[\Pi_{lphaeta}(k+q) - \Pi_{lphaeta}(k)
ight],$$

• Satisfies the correct Ward identity

$$q_1^{\mu} \widetilde{\mathbf{\Gamma}}^{abc}_{\mulphaeta}(q_1, q_2, q_3) = g f^{abc} \left[\Delta^{-1}_{lphaeta}(q_2) - \Delta^{-1}_{lphaeta}(q_3)
ight]$$

• Contains longitudinally coupled massless bound-state poles $\sim 1/q^2$, instrumental for $\Delta^{-1}(0) \neq 0$

System of coupled SD equations

$$\begin{split} \Delta^{-1}(q^2) &= q^2 + c_1 \int_k \Delta(k) \Delta(k+q) f_1(q,k) + c_2 \int_k \Delta(k) f_2(q,k) \\ D^{-1}(p^2) &= p^2 + c_3 \int_k \left[p^2 - \frac{(p \cdot k)^2}{k^2} \right] \Delta(k) \, D(p+k) \,, \end{split}$$

- Renormalize
- Solve numerically

・日・ ・ ヨ・ ・ ヨ

Э

Gluon propagator (Landau gauge)

I. L. Bogolubsky, E. M. Ilgenfritz, M. Muller-Preussker and A. Sternbeck, PoS LATTICE, 290 (2007).

P. O. Bowman et al., Phys. Rev. D 76, 094505 (2007)

A. Cucchieri and T. Mendes, PoS LATTICE, 297 (2007).

Joannis Papavas<u>siliou</u>

Light Cone 2008

17/27

Ghost propagator

Joannis Papavassiliou Light Cone 2008

The physical picture

• Dynamical generation of an infrared cutoff.

J. M. Cornwall, Phys. Rev. D 26, 1453 (1982);
 A.C.Aguilar, A.A.Natale and P.S.R. da Silva, Phys. Rev. Lett. 90, 152001 (2003);
 A. C.Aguilar and J.P., JHEP 0612, 012 (2006);.
 A.C.Aguilar, D. Binosi, J.P., arXiv:0802.1870 [hep-ph], Phys. Rev. D (in press).

• Acts as an effective "mass" for the gluons.

• Not hard but momentum dependent mass

$$m = m(q^2)$$

- Drops off "sufficiently fast" in the UV.
 A. C. Aguilar and J.P., Eur.Phys.J.A35:189-205 (2008).
- Does not induce to a term $m^2 A_{\mu}^2$ in \mathcal{L}_{QCD} .
- The local gauge symmetry remains exact .

The physical picture ...

- The "mass" is not directly measurable. Must be related to glueball masses, string tension, and condensates.
 J. M. Cornwall, Phys. Rev. D 26, 1453 (1982)
 M.Lavelle, Phys. Rev. D 44, 26 (1991).
- Potential energy of a pair of heavy, static sources in the adjoint (adjoint Wilson Loop).
 Flux tube formed ⇒ Finite threshold for popping dynamical gluons out of the vacuum.
 C. Bernard , Nucl. Phys. B 219:341,1983
- Bag Model : Gluon production requires a net energy cost because of confinement. Acts like a constituent quark mass

John F. Donoghue , Phys.Rev.D29:2559,1984

• Phenomenological studies $\implies m(0) = 500 \pm 200 \, {
m MeV}$

F.Halzen, G.I.Krein and A.A.Natale, Phys. Rev. D 47, 295 (1993).
 G.Parisi and R.Petronzio, Phys. Lett. B 94, 51 (1980).
 A.C.Aguilar, A.Mihara and A.A.Natale, Phys. Rev. D 65, 054011 (2002).

Effective charge

The RG invariant quantity, $\hat{d}(q^2) = g^2 \Delta(q^2)$, has the general form:

$$\widehat{d}(q^2)=rac{4\pi\overline{lpha}(q^2)}{q^2+m^2(q^2)}\,,$$

where the running charge is

$$\overline{lpha}(q^2) = rac{1}{4\pi b \ln \left(rac{q^2 +
ho m^2(q^2)}{\Lambda^2}
ight)}$$

- It displays asymptotic freedom in the UV.
- Freezes at a finite value in the low energy regime

 $\overline{\alpha}^{-1}(0) = 4\pi b \ln\left(\frac{\rho m^2(0)}{\Lambda^2}\right) \implies \text{Infrared Fixed Point for QCD.}$

Running of the gluon mass

$$egin{array}{rcl} m_1^2(x)&=&\lambda_1^2(\ln x)^{-1+\gamma_1}&\Longrightarrow\langle A_\mu^2
angle\ m_2^2(x)&=&rac{\lambda_2^4}{x}(\ln x)^{\gamma_2-1}&\Longrightarrow\langle G_{\mu
u}^2
angle \end{array}$$

- Consistency with the OPE
- $\langle A_{\mu}^2 \rangle$: condensate of d = 2 (not gauge-invariant but becomes gauge-invariant when minimized over all local gauge transformations.

F.V.Gubarev, L.Stodolsky and V.I.Zakharov, Phys. Rev. Lett. 86, 2220 (2001) P. Boucaud *et al.*, Phys. Rev. D 66, 034504 (2002)

• $\langle G_{\mu\nu}^2 \rangle$: gluon condensate, d = 4 (gauge-invariant); standard term, related to the vaccum energy of QCD $E_{vac} = \frac{\beta}{8g} \langle G_{\mu\nu}^2 \rangle$

R. J. Crewther, Phys. Rev. Lett. 28 (1972) 1421; M. S. Chanowitz and J. R. Ellis, Phys. Lett. B 40, 397 (1972).

Log case

Joannis Papavassiliou

Light Cone 2008

Power-law case

Joannis Papavassiliou

Light Cone 2008

Putting quarks into the game

• Quarks introduce only quantitative changes, once the chiral symmetry has been dynamically broken and the constituent quark mass has been generated.

Joannis Papavassiliou Light Cone 2008

Effective charge with quarks included

$$4\pi\overline{\alpha}(q^2) = \frac{1}{b\ln\left(\frac{q^2 + \rho m^2(q^2)}{\Lambda^2}\right) - b_f \ln\left(\frac{q^2 + \mathcal{M}_Q^2(q^2)}{\Lambda^2}\right)} \qquad b_f = 2n_f/48\pi^2$$
Joannis Papavassiliou Light Cone 2008 26/27

- Self-consistent description of the non-perturbative QCD dynamics in terms of an IR finite gluon propagator appears to be within our reach.
- Gauge invariant truncation of SD equations furnishes reliable non-perturbative information and strengthens the synergy with the lattice community.
- In the deep IR the QCD effective charge saturates at a finite value.
- Quarks do not interfere with the IR finiteness of the gluon propagator or of the effective charge.

∃ → (→ ∃ →)