2025-03-05
age_at_diagnosis
y tissue_or_organ_of_origin
. Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
11391 20604 24896 24146 28204 32872 4
Ascending colon Cecum Colon, NOS
72 70 59
Descending colon Hepatic flexure of colon Rectosigmoid junction
15 12 3
Sigmoid colon Splenic flexure of colon Transverse colon
76 6 13
DGEList
sin indicar ninguna variable group
ni ninguna matriz de modelo y eliminamos genes con conteos bajos.design0 = model.matrix(~ 0 +
colData(tcga_coad)$"tissue_or_organ_of_origin"[to_keep]
+ colData(tcga_coad)$"age_at_diagnosis"[to_keep])
y = levels(colData(tcga_coad)$"tissue_or_organ_of_origin")
y = sapply(y,function(x) gsub(" ","_",x)) ## Eliminamos espacios
y = sapply(y,function(x) gsub(",","_",x)) ## Eliminamos las comas
colnames(design0) = c(y,"age_at_diagnosis")
Si solo queremos una de las tres opciones podemos usar las funciones estimateGLMCommonDisp()
, estimateGLMTagwiseDisp()
y estimateGLMTrendedDisp()
.
age_at_diagnosis
.design0
corresponde con la columna 10 de la matriz de modelo.lrt1 = glmLRT(fit,coef="age_at_diagnosis")
lrt1 = glmLRT(fit,coef=10) ## Equivalente a la línea anterior
topTags(lrt1)
Coefficient: age_at_diagnosis
logFC logCPM LR PValue FDR
UGT2B10 -0.0002335397 0.07018047 68.64932 1.176251e-16 1.753945e-12
KCNH3 -0.0001438677 -0.73269543 67.44089 2.170993e-16 1.753945e-12
CPS1 -0.0002306034 4.32352487 60.85641 6.139324e-15 3.306640e-11
SULT1E1 -0.0002374397 0.83203192 57.37333 3.604616e-14 1.456085e-10
GPR64 -0.0001654538 0.52261384 55.61329 8.822524e-14 2.851087e-10
UPK1A -0.0002044708 -0.94768507 53.99073 2.014376e-13 5.424715e-10
KRT81 -0.0001417146 -0.31911518 50.55783 1.157049e-12 2.670799e-09
DLX5 -0.0001507914 -0.47209136 45.87384 1.261190e-11 2.547288e-08
EPHX3 -0.0001195753 -0.07584401 45.21348 1.766851e-11 2.897626e-08
CACNA1I -0.0001300370 -0.65221580 45.18437 1.793308e-11 2.897626e-08
tissue_or_organ_of_origin
.Coefficient: Ascending_colon Cecum Colon__NOS Descending_colon Hepatic_flexure_of_colon Rectosigmoid_junction Sigmoid_colon Splenic_flexure_of_colon Transverse_colon
logFC.Ascending_colon logFC.Cecum logFC.Colon__NOS
RBM44 -23.03403 -22.79346 -23.20739
LPAL2 -22.83425 -22.63042 -22.87998
C6orf52 -22.69677 -22.74012 -22.53655
SLC5A10 -22.59678 -22.67309 -22.35748
APOBEC3H -22.53489 -22.57474 -22.19753
LINC00574 -22.53141 -22.30988 -21.93773
ATOH7 -22.50255 -22.51006 -22.89692
GRAPL -22.47544 -21.90377 -21.80912
C6orf201 -22.45426 -22.61184 -22.56993
RPL23AP64 -22.43706 -22.48745 -22.71604
logFC.Descending_colon logFC.Hepatic_flexure_of_colon
RBM44 -22.81666 -22.98087
LPAL2 -22.60164 -22.63563
C6orf52 -23.72080 -22.34341
SLC5A10 -22.81269 -22.55916
APOBEC3H -22.89885 -22.24700
LINC00574 -22.53327 -21.59098
ATOH7 -22.36426 -21.88149
GRAPL -22.20629 -22.98721
C6orf201 -22.39796 -22.18401
RPL23AP64 -22.31727 -22.72084
logFC.Rectosigmoid_junction logFC.Sigmoid_colon
RBM44 -23.39152 -22.83901
LPAL2 -23.04283 -22.15825
C6orf52 -22.72652 -22.77770
SLC5A10 -22.73793 -22.61990
APOBEC3H -23.32153 -22.97932
LINC00574 -22.95598 -22.59596
ATOH7 -22.15867 -21.84132
GRAPL -23.39572 -22.33813
C6orf201 -23.12831 -22.58081
RPL23AP64 -22.02019 -22.25008
logFC.Splenic_flexure_of_colon logFC.Transverse_colon logCPM
RBM44 -23.79191 -19.16905 -1.002324
LPAL2 -21.86348 -22.40498 -1.565987
C6orf52 -23.11693 -22.67335 -1.343997
SLC5A10 -22.40977 -22.32619 -1.460341
APOBEC3H -23.29649 -22.81347 -1.370931
LINC00574 -22.88247 -22.21847 -1.774904
ATOH7 -23.02326 -22.96452 -1.657356
GRAPL -22.30881 -21.52397 -1.620106
C6orf201 -22.25201 -21.85007 -1.707904
RPL23AP64 -22.98331 -21.64723 -1.707398
LR PValue FDR
RBM44 3115.908 0 0
LPAL2 1931.307 0 0
C6orf52 1762.968 0 0
SLC5A10 4317.670 0 0
APOBEC3H 1790.031 0 0
LINC00574 1759.550 0 0
ATOH7 2369.495 0 0
GRAPL 1708.911 0 0
C6orf201 2875.556 0 0
RPL23AP64 2940.747 0 0
AD = makeContrasts(contrast1 = Ascending_colon - Descending_colon,
levels=design0)
lrt3 = glmLRT(fit,contrast = AD)
topTags(lrt3)
Coefficient: 1*Ascending_colon -1*Descending_colon
logFC logCPM LR PValue FDR
ACTL8 -3.626585 1.9449815 41.05906 1.476981e-10 1.765755e-06
DBH -2.980882 -0.6717054 40.29327 2.185611e-10 1.765755e-06
IGFN1 -3.772058 0.1735114 38.82410 4.637663e-10 2.497845e-06
PCCA -1.854167 6.0403726 37.84606 7.655289e-10 3.092354e-06
INHA -3.544573 -1.2757898 34.69282 3.860522e-09 1.247566e-05
FLT3 -2.515272 -0.6541790 34.27551 4.783649e-09 1.288237e-05
MUM1L1 -2.947467 -0.5294079 29.86079 4.642074e-08 1.071523e-04
MYO3B -2.250829 -1.0459367 28.57745 9.002435e-08 1.818267e-04
KRT14 8.581216 2.8419848 26.64655 2.442861e-07 4.385750e-04
PPP4R4 -2.363616 -1.4762586 24.69543 6.714311e-07 1.084898e-03