time time2 Pi replication
GSM618324.CEL.gz 0 Short Treatment 1
GSM618325.CEL.gz 0 Short Control 2
2024-05-03
Definimos la suma de cuadrados intra o del error como \[ SS(Within) = \sum_{i=1}^I \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i \cdot})^2, \] y la suma de cuadrados entre como \[ SS(Between) = \sum_{i=1}^I n_i (\bar{y}_{i \cdot} - \bar{y}_{\cdot \cdot})^2. \] - El estadístico para contrastar esta hipótesis nula es \[ F = \frac{SS(Between) / (I-1)}{SS(Within)/(n-I)}. \]
Source | SS | df | MS | F | p |
---|---|---|---|---|---|
Between | SS(B) | I-1 | \(\frac{SS(B)}{I-1}\) | \(\frac{SS(B)/ (I-1)}{SS(W)/(n-I)}\) | \(P(> F)\) |
Within | SS(W) | n-I | \(\frac{SS(W)}{n - I}\) | ||
Total | SS(B) + SS(W) |
Analizamos los datos correspondientes a la sonda 261892_at
.
Consideramos las variables fenotípicas time2
y Pi
.
time time2 Pi replication
GSM618324.CEL.gz 0 Short Treatment 1
GSM618325.CEL.gz 0 Short Control 2
time2Pi = vector("list",ncol(gse25171))
for(i in seq_along(time2Pi))
time2Pi[[i]] = paste0(pData(gse25171)[,"time2"][i],
pData(gse25171)[,"Pi"][i])
time2Pi = factor(unlist(time2Pi))
levels(time2Pi)
[1] "MediumControl" "MediumTreatment" "ShortControl" "ShortTreatment"
data.frame
en el que consideramos la expresión de la sonda y la variable que acabamos de construir.sel0 = which("261892_at"==fData(gse25171)[,"PROBEID"])
df1 = data.frame(time2Pi,expression=exprs(gse25171)[sel0,])
summary(df1[,"time2Pi"])
MediumControl MediumTreatment ShortControl ShortTreatment
6 6 6 6
Df Sum Sq Mean Sq F value Pr(>F)
time2Pi 3 37.52 12.505 12.98 6.22e-05 ***
Residuals 20 19.26 0.963
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1