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To Álvaro, Alberto and Samu, who needed between 5 to 7 minutes to find and down-
load those non-standard volatilities I had previously been searching for too many days.
You are stars.

To my friends, for su↵ering my bad mood when things just would not work. Wherever
I am, you are always with me. Alba, Tamara, Fran, Miguel, Rober, Rubén, Carlos, Joan,
Ferran: I deserve none of you, so thank you all.

To Eli, for an unforgettable journey full of laughter and companionship. Late-night
discussions about quantile regression, friends, Archimedean copulae, life, martingale rep-
resentation theorem and less important topics made my day. Everyday.

To Dani, for assuming the role of being the best friend one could only imagine. You
played it nicely, as every time you are on the stage. I beg you to keep playing it, just a
little bit more. Your courage inspires me and everyone who is beside you.
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Abstract

This MSc Thesis reviews, challenges and compares those models which have been most
commonly used by the industry in pricing fixed income derivatives under the current neg-
ative rates environment. Our main aim is to analyse their relative behaviour under this
new and defying context. Shifted SABR model is taken as a benchmark, since it has been
the industry preferred approach among the range of suitable candidates.

Additionally, a new full-calibration method based on arbitrage-free assumptions is
proposed for completing the volatility cube when negative rates are allowed. Accurate
calibrations of the cube of implied volatilities for every maturity, tenor and strike out-
standing are of capital importance among industry firms, since it is one of their main
tools in the process of pricing any kind of interest rate derivative. Empirical behaviour
of our completion methodology is tested through the Thesis by the inclusion of several
illustrative examples.

Keywords: SABR, negative rates, implied volatility, volatility cube, smile/skew, Bache-
lier, (shifted) Black, fixed income derivatives, interpolation methods, numerical optimiza-
tion, in/out-of-sample analysis, arbitrage-free condition.
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Introduction

Logic will get you from A to B. Imagination will take you everywhere.
Albert Einstein (1879-1955)

Negative interest rates have spread progressive and systematically all over the globe.
This phenomenon, which was strongly considered to be impossible not so long ago, have
elevated its category from a “curious, punctual and irrelevant fact” to a really worrying
concern among every interest rates desk in the industry. The assumption that interest
rates could not overstep the zero-barrier was so embedded into our knowledge that ev-
ery model that admitted below-zero rates was considered to exhibit a serious drawback
against alternative competitors which forced the rate above the zero-limit, by (usually)
imposing lognormal specifications. Nowadays this tendency has changed its sign, and
most firms are abandoning lognormal-models looking for more flexible options.

Our main contribution lies on the (ambitious) idea of developing a full-comprehensive
survey comparing numerous industry-based fixed income derivatives pricing models. The
research is conducted on several approaches driven by theoretical, econometric and nu-
merical methods. As far as we know, even though some excellent papers have devoted
their research to the current negative interest rates context1, none of them have particu-
larly coped with this issue until today.

As a by-product of the models comparison, a second essential question arises: the need
for an accurate easily-comprehensive method for a full completion of the object known as
the volatility cube: industry’s fundamental tool when interest rates derivatives pricing is
under concern. A new fast approach fully based on arbitrage-free relationships is thor-
oughly developed through the Thesis, and the results attained are summarized within
several examples.

This MSc Thesis is splitted in two main parts. Part one (Theory) provides a fully
self-contained discussion on the main theoretical topics covered through the Thesis, revis-
iting and updating most of them to the current negative rates environment. Chapter one
contextualizes the appearance of negative rates in modern economies and justifies it from
a credit risk perspective. Chapter two aims to provide the theoretical background that is
strictly necessary to understand subsequent arguments and developments. Chapter three
follows the evolution of interest rates derivatives pricing models among industry firms,

1See, for example, [1], [2] or [3]
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focusing on the SABR approach. Chapter four revisits the models capable of dealing
with the current negative rates environment. Chapter five thoroughly explains the new
fast-approach proposal for the completion of the volatility cube.

Part two of the Thesis (Practice) analyses the topics exposed in Part one from an
empirical perspective. Chapter six characterizes the datasets under analysis. Chapter
seven provides an step-by-step methodological guide that intends to make the conducted
analysis fully understandable. Chapter eight explains the results attained. Conclusion
and further research suggestions are displayed at the end of the document, followed by
several illustrative appendices.

2
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Chapter 1

Context of negative rates

1.1 Chronicle

Hardly 20 years have elapsed since one of Black’s most famous (and unlucky) comments
was stated [4]: ”the nominal short rate cannot be negative”. Twenty years later this as-
sumption looks questionable: one quarter of world GDP now comes from countries with
negative central bank policy rates.

Fisher Black, a visionary whose innovative work in options [5] was considered to deserve
the attainment of a Nobel Prize, was wrong. The process of assimilating and incorpo-
rating this new situation has forced practitioners to update their models accordingly, in
many cases introducing greater complexity.

Until recently it was assumed that interest could not go below the ”zero bound”, since
depositors could withdraw cash when rates became negative, averting the implied loss of
money when negative rates are permitted2. In this argument, however, it has been omit-
ted that cash needs to be stored and insured, which costs money. A bank account could
be more convenient in use, and therefore there could be willingness to pay for having a
bank account, which is equivalent to being charged negative interest rates. The question
is how low interest rates can go before cash becomes more attractive.

Negative nominal interest rates are not new phenomena. As early as the 19th century,
economists discussed imposing taxes on money (e.g. Gesell’s tax [6]), and in the 1970s
the Swiss National Bank experimented with negative rates in a bid to prevent the Swiss
Franc appreciating3. In recent years, an unprecedented number of central banks have
adopted negative policy rates. An extensive but not exhaustive list of these banks can be
chronologically enumerated4 as:

2As an example, for continuously-compounded risk-free investments at a (simplified) constant rate
r(t) = r 8t, it can be easily seen that, when r < 0, B(t) = B(0) exp(rt) < B(0), since exp(rt) < 1.
Therefore, the invested amount B(0) is a guaranteed money-loser.

3
https://snbchf.com/snb/2013-snb/reflections-on-negative-interest-rates-in-switzerland/.

4See http://www.bankofgreece.gr/Pages/en/Bank/News/Speeches/DispItem.aspx?Item_ID=

347&List_ID=b2e9402e-db05-4166-9f09-e1b26a1c6f1b for further discussion about the type of
measures adopted by European policymakers during recent years.

4
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1. Context of negative rates

1. Riksbank: Sweden’s central bank was pioneer in the use of negative interest rates,
by fixing the rate paid on commercial bank deposits to -0.25% in 2009. In February
2016, after not having met its 2% inflation goal for four years, this interest rate
achieved a negative record of -0.5%.

2. Danmarks Nationalbank (DNB): Denmark’s central bank followed the steps of
its Swedish homologue, by imposing a below zero deposit rate of -0.20% in July
2012. In early 2015, a below zero rate of -0.75% was fixed for the deposits.

3. Swiss National Bank (SNB): By December 2014, the Swiss central bank adhered
to the trend initiated by its Nordic equivalents, announcing that a -0.25% return
would apply to sight deposit account balances. Just one month later, by January
2015, a new drop of the rate to a negative record level of -0.75% was announced.

4. European Central Bank (ECB): By 2014, the European policymaker introduced
the below-zero return rate on the deposits by fixing a deposit facility rate of -0.20%.
This rate kept on decreasing during the following years, by attaining values of -0.30%
and -0.40% in 2015 and 2016 respectively.

5. Bank of Japan (BoJ): European central banks do not monopolize the adventure
into the negative rates territory. In January 2016, Japan’s central bank decided to
lower the rate on new deposits to -0.1%, introducing this new paradigm in the Asian
continent.

Following the trend towards negative rates among several (mainly European) regions,
a significant growth in the use of financial derivatives has arisen. As stated in the BIS5,
FX, equity and interest-rate derivatives accounted for $72 trillion in 1998 in terms of
notional amount. By 2015, this quantity rose sharply to $522.9 trillion. About 80% of
this notional amount is covered by interest rate derivatives, which had been priced as if
no negative rates were permitted until recent years. In our criteria, this fact is enough to
justify industry’s deep concern about models’ performance on this new scenario.

1.2 Explaining negative rates

The recent financial crisis that emerged in August 2008 weakened the trustfulness among
counterparties of financial transactions, jeopardizing the stability of the whole financial
system. Giants of the sector collapsed, while the interconnectedness between institutions
led to a quick contagion of the default risk.

Despite of not being considered until the crisis, the credit quality of the counterparty
suddenly became a key aspect of the market risk. For (mostly) small institutions, trading
became either too risky or too expensive to be a↵orded under the price of the credit risk.
A halt into the economy was starting to be feared by monetary authorities, and the low
(and even negative) interest rates policies appeared as a response to that issue.

5
http://www.bis.org/statistics/about_derivatives_stats.htm
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These exceptional measures were headed by the ECB, that progressively lowered inter-
est rates from 2008 to 2011 to make borrowing cash cheaper. This policy should encourage
investors to borrow money and invest into the economy, which would therefore find the
funds and grow.

By June 2014, ECB’s policies appeared insu�cient to boost the economy, and more
drastic measures were understood as necessary. ECB fixed a key interest rate to �0.20%,
overstepping (for the first time) the (theoretically) unattainable zero-barrier. This is a
(fairly) aggressive move, which aims to inspire investors further to bring in new money
into the economy to help activity surge. The use of negative rates is an unconventional
but not unprecedented tool of economic policy. As mentioned in the previous section, in
recent times some central banks have also taken the decision to move some of their key
interest rates into the negative territory.

By definition, a negative rate forces leaving money at rest in a bank to be a guaranteed
money-loser activity. ECB would, in fact, punish investors and banks for holding their
cash in their respective deposits. In this paradigm, banks would strongly prefer to lend
money to each other, provided that EURIBOR/LIBOR6 remains less negative than ECB’s
punishment for securing their money. In any case, financial institutions still prefer to be
penalized by ECB taxes rather than lending money to the investors. Expected credit risk
losses largely exceed those caused by ECB negative rates on the deposits, and therefore
negative rates remain in the economy, as a natural consequence of the credit risk deep
fear of the financial sector towards individuals.

Negative deposit rates are presented by monetary authorities as a tax imposed by the
central bank on commercial banks to encourage them to increase lending to companies
and consumers. The disjunctive is therefore assumed by commercial banks’ managers,
who can decide whether to transfer it (or not) to their clients. By reducing their lending
rates and charging negative rates for deposits, the tax is immediately transferred to the
customer. Depositors are punished, but banks’ benefits do not su↵er the tax. Choosing
not to pass the tax to their customers might not be a better option, at least in global
terms. If this decision is taken, the result is an incentive to stop lending money to the
real economy, since banks are then forced to endure the punishment on their own benefits.

In fact, some iconic commercial banks have already followed the path initiated by the
central Banks and are charging taxes on their depositors. The process started in August
20167, when the Royal Bank of Scotland (RBS) decided that all those corporative clients
of their investment banking division that were operating with derivative products were
to be charged a negative interest rate on their margin accounts. German bank Postbank,
100% subsidiary of the Deutsche Bank, adhered to the trend and announced that a 3.90e
commission would apply on all those clients whose monthly earnings were not higher than
3000e per month.

6The precise definition of LIBOR rate, if needed, would be provided in chapter 2 of the Thesis. From
now on, and in the spirit of continuity of the text, it is enough to understand that EURIBOR/LIBOR
are averaged-rates at which banks among Europe/UK are willing to lend money to each other.

7
http://www.telegraph.co.uk/business/2016/08/19/rbs-biggest-customers-face-negative-rates/
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1. Context of negative rates

Spanish financial sector has not escaped from this awkward situation. By June 2016,
BBVA was the first Spanish commercial bank to admit that they were charging these
taxes on their clients, although they stated that this practice was being negotiated case
by case8. Several main Spanish commercial banks are progressively following this trend,
and admit that they are either starting to apply these taxes on particular customers or
considering to do so in the years to come.

There are several reasons why a low (even negative) interest rates policy improves
economic growth and is therefore implanted by central banks all over the globe. Firstly,
it enlarges credit to the real economy, contributing to an increase in asset prices and
forcing investors towards riskier instead of safer assets. In addition, the exchange rate is
depreciated indirectly. Individuals would change currency to invest in Government bonds
of countries where these kind of policies have not been applied, and therefore account for
a higher yield. Since the exchange rate is depreciated, net exports are boosted.

There are, however, several drawbacks that might arise with the implementation of
this kind of exceptional policies9. Some of them can be enumerated according to the
following list:

• Banks’ benefits are cut back: Banks’ margins shrink, jeopardizing the prof-
itability of the banking business.

• Excessive risk-taking: Although this feature might boost economic growth (as
explained previously), an uncontrolled flow of funds towards risky assets in the spirit
of obtaining higher yields can be considerably dangerous, especially for individuals.

• Disincentive for Government debt reduction: A sustained negative interest
rates environment can contribute to the emergence of perverse incentives for gov-
ernments, which might choose not to reduce their debt since there is no pressure for
them in terms of interest payments. In fact, they are actually encouraged to borrow
even more money.

• Operational risks: Since most trading systems (and industry firms) are not ready
(yet) for derivatives pricing under a negative interest rates context, their inability
to get adapted to this new paradigm may lead to serious concerns. This Thesis is
devoted to the development of a full-comprehensive survey about the kind of models
that might be useful in this context, and aims to be helpful within this new and
defying environment.

8
http://www.elperiodico.com/es/noticias/economia/banca-espanola-cobrar-depositos-grandes-clientes-5341519

9See http://www.bankofgreece.gr/Pages/en/Bank/News/Speeches/DispItem.aspx?Item_ID=

347&List_ID=b2e9402e-db05-4166-9f09-e1b26a1c6f1b for further discussion on this topic.
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Chapter 2

Theoretical background

2.1 Interest rates framework

Some preliminary interest rate topics are covered trough this section, since they are strictly
necessary for subsequent developments. We suggest the experienced reader to omit this
section (and possibly the next one) if it seems too straightforward for them. Along the
exposure, we will mainly follow the standard treatment of [7]. We will also use definitions
provided in [3].

• LIBOR (London Interbank O↵ered Rate): It is the rate of interest that a selection
of major banks charge each other for short-term loans. It is an indication of the
average rate at which contributor banks can borrow money in the London interbank
market for a particular period and currency.

• OIS: OIS rates stand for Overnight indexed swaps, which are interest rate swaps in
which a fixed rate of interest is exchanged for a floating rate that is the geometric
mean of a daily overnight rate. The payment on the floating side replicates the
aggregate interest that would be earned from rolling over a sequence of daily loans
at the overnight rate. The overnight rates for the EUR, USD and GBP markets are
the Euro Overnight Index Average (EONIA), the e↵ective Federal Funds Rate and
the Sterling Overnight Index Average (SONIA) respectively.

The suitability of several market rates (LIBOR-OIS) as inputs for the risk-free rate
and discounting curve is currently under discussion, as the market practice has pro-
gressively changed its tendency since the financial crisis of 2008. As it is carefully
explained in [8], the credit crunch shocked industry’s conception about the optimal
candidate for the risk-free discounting curve. While the standard choice among in-
terest rate traders used to be LIBOR and LIBOR-swap rates before 2008, they have
been considered a poor proxy for the risk-free rate under stressed market conditions
during recent years, and therefore have been progressively replaced by the OIS rate,
especially when collateralized portfolios are under concern10.

10In fact, using a unique discounting curve is a simplification of today’s standard market practice,
where multiple curves are combined, decoupling the process of implying forward rates (in market’s lingo,
forwarding) from the process of computing discounting factors. We address the interested reader to [9],
where this market practice is thoroughly analysed.

8



2. Theoretical background

Following the claim of [8], the OIS curve is used as proxy for the risk-free discount
curve. This choice provides a benchmark which is not intended to be discussed
through the Thesis.

• Maturity and day count convention: The time to maturity ⌧ := T � t is
understood as the amount of time (in years) remaining among dates t and T . Since
there are several market conventions about how to measure the amount of time
within discrete time intervals (whether to include holidays or not, for example), the
time to maturity does depend on the day count convention chosen. This feature
cannot be avoided; it is implicit in daily operative and traders should quote the
type of convention that has been chosen in every pricing in order to replicate the
valuations given. Further discussion about the problematics when dealing with
di↵erent day count conventions is beyond the scope of this Thesis, and we reference
the interested reader to [10] for a complete discussion on this topic.

• Tenor: We define the tenor of an interest rates derivative as the time to maturity
for the underlying fixed income product. In this sense, and in a slight abuse of
notation, ”maturity time” is usually understood as maturity time for the derivative,
and “tenor” is therefore reserved for the time to maturity of the underlying fixed
income product. This convention is followed here, unless otherwise stated.

• Instantaneous and compounded rates. FRA contract. The forward rate:
Interest rates can be divided among compounded and instantaneous rates. Con-
tinuously, simply and annual compounding are particular cases of the compounded
rates category, and they are fully discussed in [7]. They are quoted for investments
on finite discrete time intervals, and di↵er among them in the kind of reinvestment
guaranteed for the interest earned periodically.

Instantaneous rates cover investments over infinitesimal time intervals, and therefore
are hardly conciliated with real world rates. They do not exist in the markets.
Despite of that, the literature has usually taken this approach, extracting analytical
formulae for discrete time to maturity plain vanilla derivatives (such as caplets,
floorlets and swaptions) from the behaviour deducted for the instantaneous rate.

Concretely, our main concern is the instantaneous forward rate, since floorlets and
caplets under consideration have the forward rate for a given tenor as their under-
lying instrument. Basically, forward rates are characterized by three time instants,
namely 0 (today’s date), t (investment’s start date) and T (investment’s end date).
In fact, a forward rate can be defined from a prototypical forward rate agreement
(FRA), which basically locks in today the forward rate to be applied for a future
investment horizon [t, T ] on a pre-specified notional amount N .

The process of fixing a forward rate for a future investment accounts for the fixed leg
of the contract. The floating leg is therefore indexed to the behaviour of a reference
index, which is specified at the beginning of the contract. It is assumed that the
standard reader is used to specific details about the behaviour of a FRA contract
(such as methods of payment, simply-compounding rates’ specification and so on),
and therefore we omit them in our development. Further details, if needed, can be
found, for example, in [11].

9
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The previous approach to the FRA contract is motivated by the concept known as
the fair value of a contract, which leads to the first definition of a (compounded) for-
ward rate. We say that a FRA contract has a fair value at settlement if V (0, t, T ) = 0
at time 0. The simply-compounded interest forward rate (since reference rates on
FRA’s should be quoted in simply-compounding form) is then defined by the strike
that guarantees a fair value of the FRA at settlement. From now on, today’s date is
fixed at 0 unless otherwise stated, and is omitted in the sake of shorthand notation.
Therefore, the (simply-compounded) forward rate interest rate prevailing at today’s
date 0 for the future investment period [t, T ], F (t, T ), is defined by

F (t, T ) :=
1

�(t, T )

✓
P (0, t)

P (0, T )
� 1

◆
, (2.1)

where �(t, T ) accounts for the year fraction (amount of time in years) between dates
t and T

11, and P (0, S) is today’s price of a zero-coupon bond, which pays a monetary
unit at date S.

The instantaneous forward rate, F (t), is then defined as the simply-compounded
forward rate (2.1) when the future investment period becomes infinitesimal. Only
a future date is therefore needed to characterize the future investment period, and
the notation becomes even shorter:

F (t) : = lim
t!T

�
F (t, T ) = � lim

t!T

�

1

P (0, T )

P (0, T )� P (0, t)

T � t

=

= � 1

P (0, t)

@P (0, t)

@t

= �@ lnP (0, t)

@t

.

(2.2)

(2.2) explicitly states that there exists a relationship between zero-coupon bond
prices and instantaneous forward rates. This relationship is often used to extract
the implied (market) forward rates from zero-coupon bond prices.12

• Interest rate swaps (IRS) and forward swap rates: A (forward start) interest
rate swap (IRS) is an agreement between two parties that accord to exchange several
cash flows indexed to the behaviour of two reference forward rates (floating and fixed
leg) during a period of time specified by the tenor of the swap, starting from a future
time instant.

Given the set of n pre-specified payment dates T1, T2, ..., Tn

, on every instant of
the set T

i

, the fixed leg party pays the amount N�

i

K, while the floating leg pays

11Consequently, �(t, T ) does depend on the day count convention.
12To be precise, coupon bond prices are not used as input when models are calibrated to market data,

since zero-coupon bond prices are not quoted in the markets. It is a common market practice to extract a
risk-free discounting curve from hypothetical risk-free coupon bonds prices, and then use the bootstrapped
risk-free curve as an input from where implied instantaneous (and continuously-compounded) forward
rates as well as discounting factors are computed. This practice is followed through the Thesis.
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N�

i

L(T
i�1, Ti

)13. N accounts for the total notional outstanding the contract, �
i

is
the year count fraction between dates T

i�1 and T

i

, K is the strike rate designed by
the contract and L(T

i�1, Ti

) corresponds to the floating reference rate resetting at
the previous instant T

i�1 for the maturity given by the current instant T
i

.

A full description of the behaviour of IRS contracts might be consulted, again, in
[7]. In a clear analogy with the FRA contract, requiring a fair value of the IRS at
time t = 014 leads to a particular value of the strike K faced by the fixed leg of
the contract, known as the forward swap rate. Consequently, the forward swap rate
S(t, T

start

, T

mat

) observed at time t for the n sets of times specified in the interval
[T

start

, T

mat

] and year fractions �
i

can easily be obtained as:

S(t, T
start

, T

mat

) :=
P (t, T

start

)� P (t, T
mat

)
P

Tmat

i=Tstart+1 �iP (t, T
i

)
, (2.3)

where the denominator is usually called the forward level function. As it is proved
in [7], it is straightforward to rewrite expression (2.3) in terms of forward rates,
which shows the equivalence between forward rates and forward swap rates.

• Caplets, floorlets, caps and floors: Caps and floors are usually understood as
the ”positive parts” of a payer/receiver IRS respectively, since their payo↵s can be
computed as the sum of those exchange payments which are above zero for every
date of the set [T

start

, T

mat

]. Therefore, a cap/floor consists on a basket of n options,
each one of them referred to the behaviour of the reference floating rate of an IRS
for each one of the dates among the set [T

start

, T

mat

]. Following previous notation,
it is easily deduced that the cap discounted payo↵ at time t is given by

TmatX

i=Tstart+1

D(t, T
i

)N�

i

(L(T
i�1, Ti

)�K)+, (2.4)

where D(t, T
i

) accounts for the discount factor to be applied for the time interval
[t, T

i

]. Similarly, the floor discounted payo↵ reads

TmatX

i=Tstart+1

D(t, T
i

)N�

i

(K � L(T
i�1, Ti

))+. (2.5)

Each one of the terms in both sums is called caplet/floorlet respectively. These
options account for the most basic plain vanilla fixed income derivatives under con-
sideration in the Thesis, since their prices are directly computed by the models
outstanding.

13A subtle simplification has been done here, in the spirit of a simpler notation. In general, IRS
payment dates do not have to be identical for both parties. Indeed, a prototypical American IRS has a
fixed leg with annual payments and a floating leg with quarterly or semiannual payments.

14I.e., imposing that the contract has zero value for both parties at settlement time.
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2.2 Mathematical framework

This section provides some mathematical insights which might be well-known by the ex-
perienced reader and can be immediately skipped if that was the case. We will mainly
follow [12]. In any case, the standard reader is supposed to be familiarized with basic
stochastic calculus concepts such as Wiener processes, filtrations and martingales, and is
strongly recommended to resort to [12] if a refreshment was needed.

• Money market account: The value at time t of a money market account, B(t),
represents a zero-risk investment, continuously compounded at the r(t) rate. Since
the money held in the money market account continuously evolves at a rate r(t)
for every instant t, the money market account obeys to the following di↵erential
equation15:

dB(t) = r(t)B(t)dt. (2.6)

Solving (2.6) by ordinary di↵erential calculus gives

B(t) = B(0) exp

✓Z
t

0

r(u) du

◆
, (2.7)

where B(0) is the amount invested at time t = 0.

• Zero-coupon bond price: A T-maturity zero-coupon bond is a contract that
guarantees the holder the payment of one unit of currency at time T , with no in-
termediate payments. P (t, T ) represents the value of the contract at time t < T .
Obviously, P (T, T ) = 1 8T .

• No-arbitrage pricing. Change of numeraire: A milestone in the development
of financial derivatives pricing is found in [13]. The authors prove that the existence
of an equivalent martingale measure, Q,16 is equivalent to the absence of arbitrage
opportunities in a contingent-claims market17. If Q belongs to the set of equivalent
martingales measures, the (fair and unique) price of any contingent claim V (t) can
be found as the (conditional) expected value under the measure Q of the product of
the (in general, stochastic) discounting factor by the value of the claim at maturity,
V (T ):

15Every process under study adapts to the natural filtration {z}tt=0 considered through the text. This
fact solves any possible uncertainty among these processes at time t (and previous instants) when time t
comes. More details on this technical issue can be found in [12].

16Again, some technicalities are omitted for the sake of brevity. An equivalent martingale measure
is a probability measure defined on the measure space which accomplishes for certain properties, such
as equivalency with the pre-defined probability measure of the probability space, Q0, existence of the
Radon-Nikodym derivative and some others. The whole set of technical requirements can be found, for
example, in [7] or [12].

17This is not their only contribution. They also prove that a financial market is arbitrage-free and
complete if and only if there exists a unique equivalent martingale measure.
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V (t) = E

Q

✓
D(t, T )V (T )|z(t)

◆
. (2.8)

Not every contingent claim V (t) can be priced by the expectation under the equiv-
alent martingale measure Q (due, fundamentally, to the presence of the stochastic
discount factor inside of the conditional expectation), and it may be convenient to
change the original equivalent martingale measure to another one which eases the
valuation. This process is known as the change of numeraire technique.

A numeraire U(t) normalizes the value of any asset in the market S(t) by referring it
to the numeraire units, i.e., S(t)/U(t). The only necessary conditions to be imposed
to the numeraire is to be positive and to pay no dividends.

Not every numeraire choice is useful in terms of easing the pricing process. In fact,
only two particular numeraires (defined in the previous section) are considered in
this Thesis: the money market account and the zero-coupon bond price.

As stated in [7], equation (2.8) can be generalized to any particular choice of nu-
meraire. Assume that there exists a particular numeraire U and a probability mea-
sure QU equivalent to the initial Q0 such that the value of any asset X in numeraire
units (X(t)/U(t)) is a martingale under QU :

X(t)

U(t)
= E

U

⇢
X(T )

U(T )
|z(t)

�
, 0  t  T. (2.9)

Then, the change of numeraire technique states that, for any other numeraire W,
there exists a probability measure Q

W , equivalent to Q

0, such that the value of any
asset X in the new numeraire units is a martingale under QW :

X(t)

W (t)
= E

W

⇢
X(T )

W (T )
|z(t)

�
, 0  t  T. (2.10)

• Risk-neutral measure and T-forward measure. Change of numeraire in
practice: Choosing the money market account as a numeraire leads to the probabil-
ity measure known as the risk neutral measure, which has been deeply discussed over
several classic derivatives pricing texts, such as [11]. According to (2.10), this choice
guarantees that the discounted value of any asset, exp(�

R
t

0 r(u)du)X(t), follows a
driftless process, and is therefore extensively used in pricing equity derivatives.

The most interesting choice of numeraire for the objectives of the Thesis is the zero-
coupon bond price, P (t, T ), which defines the so-called T-forward measure.18 This
probability measure is particularly interesting in the interest-rates world since there
are several important results associated to it:

18It should be noted that this choice depends explicitly on the maturity T of the selected bond. This
is the reason why the name is quoted as T-forward measure.
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1. Under the T-forward measure, any simply-compounded forward rate
accounting for a future investment period which ends at T is a mar-
tingale. This statement is proved in [7], and the interested reader is referred
there for further details. Therefore, we have that:

E

T{F (t, S, T )|z(u)} = F (u, S, T ) (2.11)

for every 0  u  t  S  T .

2. The instantaneous forward rate F (t, T ) equals the expected value of
the future instantaneous spot rate r(T ) under the T-forward measure.
Indeed:

E

T{r(T )|z(t)} = F (t, T ). (2.12)

3. Under the T-forward measure, the volatility of the instantaneous
forward rate, �(t), is driftless. This feature is explicitly mentioned in
[14], and makes the T-forward measure a really convenient tool when dealing
with stochastic volatility models, which permit the volatility to follow its own
stochastic process.

The process of changing the numeraire between these particular choices (risk-neutral
and T-forward measure) via Radon-Nikodym derivative is fully reviewed in [15]. The
interested reader is redirected there for further details.

• Fundamental Theorems of Derivatives Pricing:

From (2.10), and within the particular choices of numeraires already stated, it is
straightforward to obtain the two fundamental theorems of derivatives pricing under
consideration through this Thesis for the price of any kind of fixed income plain
vanilla derivative V (t) under study. Under the risk-neutral measure Q, we have:

V (t) = E

Q

⇢
exp

✓
�

Z
T

t

r(u) du

◆
V (T )|z(t)

�
. (2.13)

Equivalently, under the T-forward measure Q

T :

V (t) = P (t, T )EQ

T {V (T )|z(t)}. (2.14)

Further details about the particular pricing process of several fixed income deriva-
tives using (2.14), such as caplets or floorlets, can be found, for instance, in [7].
(2.14) is the pricing formula that will be mainly used through the development of
the Thesis.
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Chapter 3

From Black to SABR. Models
history in the industry

Several interest rates models have been traditionally used by the industry during non-
negative rates recent decades. This section follows their performance and states their
main characteristics, aiming to provide a common reference framework for subsequent
comparisons. Through this chapter, we mainly follow [16].

3.1 Black (1976)

The standard way of quoting prices of caps/floors19 is in terms of Black’s model [17], which
is a version of the Black-Scholes (1973) model adapted to deal with forward underlying
assets. We assume that any instantaneous forward rate F (t)20 follows a driftless lognormal
process reminiscent of the basic Black-Scholes model under the T-forward measure:

dF (t) = � · F (t) · dW (t), (3.1)

where W (t) is a Wiener process and � is the parameter accounting for the instanta-
neous forward rate (constant) volatility under lognormal specification. The solution to
this stochastic di↵erential equation (3.1) reads

F (t) = F (0) e�W (t)� 1
2�

2
t

. (3.2)

Therefore, as it can be seen in [16], the value at time t of a caplet/floorlet on any forward
rate over the future investment period T = [T

start

, T

mat

]21 , F (t, T
start

, T

mat

), with strike

19It is extended market practice to actually quote these prices in terms of implied volatilities, due to
the one-to-one correspondence between both quantities. While the price of any financial product shall
be unique when quoting in the market, there are di↵erent volatility specifications (Black and Bachelier)
and, therefore, when quoting volatilities traders should also quote which one of these two models has
been selected for the quotation.

20Such as a LIBOR forward or a forward swap rate, for instance.
21The following comment is made in the sake of clarifying notation. When caps(floors) and

caplets(floorlets) were introduced in section 2.1, T = [Tstart, Tmat] denoted the set of n payment dates
embedded into the cap(floor) structure. Since a caplet(floorlet) can be understood as a unique-payment
cap(floor), [Tstart, Tmat] does not account for a set of dates now, but for the length of the (future)
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(rate) price K, today’s value of F (t, T
start

, T

mat

) equal to F (t, 0), total notional amount
N and constant volatility of the forward rate � is22

Caplet(t, T,N,K) = N�P (t, T
mat

)B
call

(T
start

, K, F (t, 0), �), (3.3a)

Floorlet(t, T,N,K) = N�P (t, T
mat

)B
put

(T
start

, K, F (t, 0), �), (3.3b)

where

B

call

(T
start

, K, F (t, 0), �) = F (t, 0)�(d+)�K�(d�),

B

put

(T
start

, K, F (t, 0), �) = �F (t, 0)�(�d+) +K�(�d�),

d± =
log(F (t,0)

K

)± 1
2�

2
T

start

�

p
T

start

.

(3.4)

� is the day count fraction from time T

start

to T

mat

and P (t, T
mat

) is the price today
of a zero-coupon bond which pays a monetary unit at time T

mat

. Immediately, since a
cap/floor can be understood as a finite sum of caplets/floorlets, we have from (3.3):

Cap(t, T,N,K) = N

TmatX

i=Tstart+1

�

i

B

call

(T
i�1, K, F (t, i), �

i

)P (t, T
i

), (3.5a)

Floor(t, T,N,K) = N

TmatX

i=Tstart+1

�

i

B

put

(T
i�1, K, F (t, i), �

i

)P (t, T
i

), (3.5b)

where �

i

is the day count fraction applying to the period starting at T
i�1 and ending at

T

i

, and F (t, i) is today’s underlying forward rate for that period.

Although Black’s model permits to price plain-vanilla interest rates derivatives ana-
lytically, its many flaws make it unacceptable for the industry. Firstly, the lognormal
solution does not allow the underlying rate to go below zero. As we will see later, this
problem can be solved by adding a shift to the rate behaviour, so analytical solutions can
be maintained within the so-called shifted Black framework.

An unsolvable problem within Black’s model is that one of its founding hypothesis
strongly violates the empirical behaviour of interest rates. The basic premise of Black’s
model, that � is independent of K and F (t, 0), is clearly rejected by the markets. In par-
ticular, for a given maturity, options implied volatilities exhibit a pronounced dependence
on their strikes. This phenomenon is called the skew or the volatility smile. In order
to accurately value and risk manage options portfolios, refinements to Black’s model are
necessary.

investment period (i.e., the tenor of the derivative) the forward refers to.
22The fundamental theorem of derivatives pricing under the T-forward measure (2.14) has been applied.
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Figure 3.1: Market usual smile/skew. � depends on the srike K being considered, for both
maturity (T = 9Y ) and tenor (6 months) given.

3.2 Local volatility (1994)

The first widely-embraced industry’s proposal to deal with smiles and skews within the
interest rates markets came by the so-called local volatility models, firstly introduced by
Dupire, Derman and Kani (see [18], [19] and [20]).

This celebrated approach meant an improvement over Black’s model by using the mar-
ket prices of options to find an e↵ective (“local”) specification of the underlying process,
so that the theoretical implied volatilities match the market implied volatilities. The
stochastic di↵erential equation that describes the dynamics of the forward rate under the
local volatility model in the T-forward measure is given by

dF (t) = C(F (t), t) · dW (t), (3.6)

where C(F (t), t)23 is a certain (deterministic) volatility coe�cient. Although local volatil-

23Any mathematical-advanced reader might have realized previously that the instantaneous forward
rate F (t) has to obey equation (3.6) necessarily, due to the Martingale representation theorem. This
theorem states that any martingale under the probability measure in which W (t) is a Wiener process
can be written as the Ito process shown in (3.6), where C(F (t), t) denotes an (unknown) adapted process.
Local volatility formulation, therefore, accounts for a particular case of the Martingale representation
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ity models have been widely used over the industry, since the smile calibration is remark-
able for any given maturity, they lead to unstable (and incorrect) hedges, since they
predict a dynamic evolution for the smile that opposes the one observed within the mar-
kets, and therefore have been discarded by the firms during recent years. This problem
is brilliantly explained in the original paper of Hagan et al. [21] and in the introduction
of the reference book by Rebonato et al. [14].

The idea is as follows. When the price of the underlying increases, one expects that
the smile shifts to higher levels as well. In contrast, the local volatility model predicts
that the smile will shift to lower prices after an increase of the underlying. The oppo-
site counterintuitive movement can be seen for a decrease of the underlying. Due to this
contradiction, delta and vega risk metrics under the local volatility model may perform
worse than the risk metrics of naive’s Black.

The original paper of Hagan [21] is a highly-recommended reference at this point,
since they clearly exemplify this fact. Their argument is replicated in Appendix A for
interested readers. In conclusion, the local volatility model is suited for pricing purposes,
but not for proper risk management.

In this context, Hagan et al. (2002) define the SABR24 [21], a stochastic-volatility
model that will be explained next. As it is mentioned in the introduction of [14], the SABR
model is not as accurate for fitting today’s observed smile (even though it is precise enough
to do it reasonably well) as local volatility models do but, instead, predicts a dynamic
evolution of the smile which is completely consistent with the one observed in the markets.

This characteristic produces stable hedges that, combined with the availability of a
closed-formula for implied volatilities under lognormal or normal specifications (Black’s
or Bachelier’s), have made the SABR industry’s preferred candidate to work with interest
rates derivatives, despite of some remarkable drawbacks. In any case, it is important to
note that the preference for the SABR model against local volatility competitors comes
from an empirical perspective (see [14] for further discussion on this topic).

theorem, where this process is restricted to be a deterministic function of time, to be calibrated with
market data. Models to come, such as SABR, permit C(F (t), t) to evolve according to its own stochastic
process.

24The name stands for ”Stochastic alpha beta rho model”.
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3.3 SABR (2002)

3.3.1 The model

The SABR model describes a single forward, such as a LIBOR forward rate, a forward
swap rate or a forward stock price25. The volatility of the forward F (t) is usually described
by a parameter �. SABR is a two-factor dynamic model in which both F (t) and �(t) are
represented by stochastic state variables whose time evolution is given by the following
system of stochastic di↵erential equations:26

dF (t) = �(t) · F (t)� · dW (t), (3.7a)

d�(t) = ↵ · �(t) · dZ(t), (3.7b)

with the prescribed time zero (currently observed) value F (t, 0) := f for the forward rate.
In this representation, we have explicitly chosen the probability measure that makes the
forward and its volatility driftless (known as the T-forward measure), and therefore the
Brownian motions are referred to that measure which, obviously, depends on the maturity
of each forward (this aspect is explicitly stated in [14], where a superscript T is included
in both formulae). To avoid notational tediousness we do not adhere to that notation, but
it should be noted that (3.7) is a di↵erent model for each maturity under consideration.
W (t) and Z(t) are two correlated Wiener processes with correlation coe�cient ⇢:

E

Q

T
(dW (t) · dZ(t)) = ⇢ dt. (3.8)

It should be satisfied that ↵ � 0, 0  �  1 and �1 < ⇢ < 1. The above dynamics
(3.7) is a stochastic version of the CEV model with the skewness parameter �. In fact, it
reduces to the CEV model if ↵ = 0.27

As each forward rate is described in its own T-forward measure, the forwards that
comprehend the yield curve have no tools to interact with each other. SABR model is
not suitable, then, to provide insights about the dynamics of a yield curve, but it fits
the implied volatility curves given by the markets for any single exercise date reasonably
well. This is one of the reasons why so many traders choose the SABR model to price and
hedge their fixed income plain-vanilla (single exercise date) derivatives, such as caplets,
floorlets and swaptions. In order to price path-dependent derivatives, a proper calibration
of the volatility cube becomes a must.

25Again, it is important to note that in any case we are considering a single maturity, and therefore
each calibration procedure is limited to that maturity. Several options for including inter-maturities
dependencies during the calibration process for the SABR model have been investigated in previous
literature (see, for instance, [14] or [22]), but they lie beyond the scope of this Thesis.

26Discussion of the previous section can be recalled here, just to guarantee that the Martingale represen-
tation still applies. As both �(t) and F (t) are adapted processes, the product given by �(t)F (t)� satisfies
this condition, and the Martingale representation theorem is respected under the SABR formulation.

27Since the CEV model is not suitable for coping with negative rates (unless � = 0, in which case we
recover Bachelier’s model (4.1), to be explained in the next chapter), it has not been explained during the
text. We address the interested reader to Appendix B, where the model’s main features are highlighted.
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3.3.2 The parameters. Sensitivity analysis

Since f is currently observed in the markets, the set of parameters constituting the SABR
model for any fixed maturity is given by {�(0)↵, �, ⇢}28. Each parameter implies di↵erent
e↵ects over the smile/skew for a given maturity:

• �: It stands for the power parameter. Due to parameters’ degeneracy when fitting
a smile for any maturity (especially, the degeneracy among ⇢ and � was firstly
acknowledged by the original authors in [21]), calibrating the whole set of parameters
is usually equivalent to ”fitting the noise”29, and therefore it is common market
practice to fix the value of � according to aesthetic considerations. Mainly, it is
fixed in the values of 0, 0.5 or 1, resulting in the stochastic normal, stochastic-CIR
or stochastic-lognormal models respectively30. The option � = 0.5 seems to have
gained strength among industry firms.

• �(0): It basically influences the level of the smile/skew.

• ↵ (volatility of the volatility): Its e↵ects are mainly acknowledged in the curvature
of the smile/skew. In a second order of approximation, it also a↵ects the level of
the smile/skew. It does not a↵ect the slope.

• ⇢: It basically accounts for the slope of the smile/skew, expanding its influence over
the curvature as well. It does not a↵ect the level of the smile/skew.

Figure (3.2) below plots one of the fitted market smiles (T = 8Y ) in the empirical
results chapter via shifted SABR (see chapter 4), modifying ceteris paribus each one of
the involved parameters {�(0)↵, ⇢} to several values close to the calibrated’s. From left to
right, �(0), ⇢ and ↵ are respectively modified, resulting in the previously exposed e↵ects
in the smile/skew.

28Notice that today’s forward volatility, �(0), is not observed in the markets and therefore should be
calibrated within the other parameters of the model.

29Certain analogy can be established within SABR calibration procedure for a given maturity and the
statistical technique known as PCA, widely-used in the process of identifying those factors which mainly
drive the term structure of interest rates (TSIR). Existent previous literature fix in three the number
of necessary factors to explain among 95-99% of the variability of the TSIR for every maturity under
consideration, respectively acknowledging for the level, the slope and the curvature of the TSIR. In this
case, the three parameters that play this role and calibrate the smiles/skews without overparameterization
are �(0), ⇢ and ↵ respectively.

30This classification was originally proposed in [21], and we follow their convention here.
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Figure 3.2: Shifted SABR parametric sensitivity.

3.3.3 Implied volatilities within SABR context

By means of an asymptotic expansion valid for short-enough maturities, the authors of
[21] obtain an approximated analytical solution for the implied volatility that should be
introduced in Black’s formula (3.4) in order to price a caplet/floorlet for the future in-
vestment period T = [T

start

, T

mat

], strike rate K, notional amount N = 1 and currently
observed forward rate f , usually called Hagan’s formula:31

�(T
start

, K, f) = �(0)


(Kf)

1��
2

✓
1 +

(1� �)2

24
log2

f

K

+
(1� �)4

1920
log4

f

K

+ · · ·
◆��1

· c

g(c)
·

·
⇢
1 +

✓
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(3.9)

with:

31To be precise, what we understand today as Hagan’s formula is not actually Hagan’s original deriva-
tion. Hagan et al. committed a small mistake when deriving their formula, corrected by Oblój in [23].
From now on, Hagan’s formula is presented by incorporating Oblój’s correction.
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where the dots stand for higher-order negligible terms. For at-the-money options
(f = K), Hagan’s formula reduces to
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As f changes during the day, the curve traced by the implied ATM volatility �ATM(T
start

, f, f)
for a given maturity T

start

is known as the backbone (see [24]), while the smile/skew is
referred to the dependence of the implied volatility �(T

start

, K, f) as a function of K for
both given f and T

start

.

As shown in [24], an alternative to the aesthetic consideration of fixing � = 0.5 lies
on using (3.11) to estimate � from an auxiliary regression over a time series of both
at-the-money volatilities and forward rates for a given maturity:

log(�ATM(T
start

, f, f)) ⇡ log(�(0))� (1� �) log(f). (3.12)

Hagan’s formula (3.9) is frequently used among traders to calibrate an implied Black
volatility smile. Similarly, there exists a formula for Bachelier model (to be explained in
the next chapter) to calibrate an implied Bachelier volatility smile. As shown in [21], the
implied volatility that should be introduced in Bachelier’s formula (4.4) in order to price a
caplet/floorlet for the future investment period T = [T

start

, T

mat

], strike rate K, notional
amount N = 1 and currently observed forward rate f reads:
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with:
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where the dots stand for higher-order negligible terms.

3.3.4 Calibrating the SABR

Once � has been fitted (either using equation (3.12) with historical data or fixing it to a
predetermined value attending to aesthetical reasons), {�(0), ⇢,↵} should be calibrated
for every given maturity. Two parameterizations have been explored in previous literature
(see, for instance, [24]):

• First parameterization. Estimating ↵, ⇢ and �(0) directly: Given a set of
implied volatilities (either Black’s or Bachelier’s) for some caplets with the same
maturity and di↵erent strikes, they are compared with theoretical (Black/Bachelier)
implied volatilities provided by an arbitrary choice of the parameters {�(0), ⇢,↵} in
formulae (3.9) or (3.13) respectively. The parameters for that maturity are chosen
with any standard non-linear optimizer so that the sum of the quadratic errors is
minimized:
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Obviously, di↵erent weights !
i

can be allocated to the set of market implied volatil-
ities according to the analyst criteria (if there was a special interest in fitting some
volatilities better than others, for example).

• Second parameterization. Two-steps calibration: This method was firstly
proposed in [25], and focuses on decreasing the number of parameters to be cali-
brated. If market data for ATM implied volatilities is available, we can use equa-
tion (3.11) (or its Bachelier equivalent) to obtain �(0) by inverting the formula.
Re-writing it in a suitable form, we find that a cubic polynomial equation must be
numerically solved:32

32As noted in [25], this equation may have more than a single real root. In this case, it is claimed that
the smallest positive root shall be selected. We adhere to this claim through the Thesis.
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Therefore, the optimization algorithm consists in two sequential iterative steps.
Firstly, �(0) is found from the previously-step calibrated pair {⇢,↵} using equation
(3.16). Then, the calibration is performed among the two free parameters remaining:
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Since a root-finding algorithm must be used in every-step to obtain �(0) from equa-
tion (3.16), it has been claimed33 that this estimation procedure might need more
time to converge.

3.3.5 Further considerations

Through the Thesis, we have made an explicit di↵erentiation between implied Black
volatilities and implied Bachelier volatilities. Despite the fact that the industry has tradi-
tionally chosen the lognormal specification of implied volatilities, and therefore they have
been quoted directly by using Black’s formula (3.9), in a negative rates context this speci-
fication might be reformulated, as it is done in [26] or [27]. If the lognormal specification is
to be maintained, both the implied volatility and the shift that has been used within the
shifted Black formula (see next chapter) shall be quoted, since the caplet/floorlet/swap-
tion price does depend on both unobservable parameters. If Bachelier’s specification is
used for quoting volatilities, normal volatility can be quoted directly.

Several drawbacks within SABR’s using have been indicated by both practitioners and
academics. A nice summary of them can be found in [3].

In its standard formulation (3.7), the SABR model does not admit negative rates.
Another obvious drawback is that its implied volatility expression (both in Black and
Bachelier form) is based on an approximated asymptotic expansion, which tends to fail
when time to maturity becomes long enough. Not only that, but the dependence of its
probability density function on the forward rate at maturity F (T

start

, T

start

, T

mat

) := F (T )
(which, basically, plays the same role that S(T ) in Black-Scholes model) can be hugely
problematic. The probability density function is zero for rates less or equal to zero (and
even negative!), and therefore negatives rates are not permitted without the undesirable
introduction of arbitrage opportunities (see [3] for further discussion on this topic). To
extend the SABR beyond the negative rates frontier, some theoretical derivations (shifted
SABR, free-boundary SABR) have been developed. Their structure and calibration pro-
cedure will be explained next.

33See, for instance, [24].

24



Chapter 4

Derivatives pricing under negative
rates

The appearance of negative rates involved a full review of pre-existing pricing method-
ologies to cope with this new environment:

• Lognormal models: Shifted models arose as a natural response to this situa-
tion. They basically add a shift to the underlying forward rate to displace its
zero-boundary into the negative domain. Since rates cannot become (theoretically)
arbitrarily negative34, this sounds as a rather good solution. Adding a shift to
Black’s model (see (3.1)) generates the shifted Black model, while doing it with the
SABR (see (3.7)) results in the shifted SABR model. As original’s SABR was the
most usual approach until negative rates appeared, it seemed sound to adjust the
pricing methodology to the shifted SABR model, where former SABR analytical
solutions still apply (indeed, this is what most industry firms have already done).

• Normal models: Another possible solution is changing our focus of interest into
normal models, which had been completely neglected until then due to their “main
disadvantage”: they allowed negative interest rates from the beginning. In fact, their
domain comprehends the whole real line, and therefore no constraints are imposed
to the values that the forward rate might take. This solution, rather simple and
allowing for analytical formulation, seems a little unrealistic, since forward rates are
not supposed to go far below the zero-barrier.

A list of suited candidates to cope with negative interest rates environment is stated
next, and their basic properties are thoroughly analysed.

4.1 Bachelier (1900)

The normal model, introduced in 1900 by L. Bachelier [28], is the simplest approach to
model negative interest rates. In the normal model, under the T-forward measure the
instantaneous forward rate F (t) follows the process

dF (t) = �

n · dW (t), (4.1)

34See discussion on Chapter 1 of the Thesis.
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where �n is the parameter accounting for the instantaneous forward rate (constant) volatil-
ity under normal (Bachelier) specification. The solution to (4.1) reads

F (t) = F (0) + �

n

W (t), (4.2)

which means that the instantaneous forward rate follows a Gaussian distribution, with
mean F (0) and variance �

2
n

t. Negative rates are therefore modelled in a natural way.
Unfortunately, the solution (4.2) exhibits one of the main drawbacks of the normal model:
with non-zero probability, F (t) may become arbitrarily negative in finite time. Under
typical circumstances this is, however, a relatively unlikely event.
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Figure 4.1: Di↵erent floorlets valuations (formula (4.3b)) under Bachelier model. The
prices are strictly possitive, even for strike rates below the zero-barrier.

Under Bachelier model (4.1), closed-formulae for pricing caplets and floorlets can be
immediately obtained by applying the fundamental theorem of derivatives pricing under
the T-forward measure (2.14) (see [16]). The value at time t of a caplet/floorlet on any
forward rate over the future investment period T = [T

start

, T

mat

], F (t, T
start
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mat
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strike (rate) price K, today’s value of F (t, T
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mat

) equal to F (t, 0), total notional
amount N and constant (normal) volatility of the forward rate �

n is
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call

(T
start

, K, F (t, 0), �n), (4.3a)

Floorlet(t, T,N,K) = N�P (t, T
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)Bn

put

(T
start

, K, F (t, 0), �n), (4.3b)
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� is the day count fraction from time T
start

to T

mat

, �0(x) refers to the pdf of the standard
normal distribution evaluated at point x and P (t, T
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) is the price today of a zero-coupon
bond which pays a monetary unit at time T

mat

.

Aggregating the caplets/floorlets underlying any given cap/floor results in:
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The normal model is (in addition to the lognormal model) an important benchmark
in terms of which implied volatilities are quoted (remember equation (3.13)). In fact,
many traders are in the habit of thinking in terms of normal implied volatilities. The nor-
mal model allows valuation of options with negative strikes and negative current forward
rates, in contrast to the lognormal model. Figure (4.1) (above) shows the value of several
floorlets with di↵erent underlying forward rates (bootstrapped from OIS EONIA curve at
valuation date 24th May, 2017.) As shown in the figure, the value of a floorlet with any
strike under the normal model is strictly positive, since any (positive or negative) forward
rate has a non-zero probability of being attained.

However, in the lognormal model a floorlet with strike zero has zero value by defi-
nition. Since floorlet market prices are not zero even for small strikes, a large (Black)
implied volatility is needed to provide a positive price. In fact, letting the strike go to
zero while maintaining a positive value for the floorlet (as it actually happens within the
markets) results in an unbounded growth of Black’s implied volatility (3.9), which goes to
infinity even for strictly non-zero strikes (see figure (4.2) below). This idea is thoroughly
discussed in [3], where the existence of a vertical asymptote at a given strike K is proved.
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Figure 4.2: Black’s implied volatility divergence when pricing floorlets by SABR model.
T = 4Y , tenor=3 months and F (t, 0) = 2.10%.

4.2 Normal SABR (2002)

Fixing � = 0 in the original SABR model (see (3.7)) restricts it to the so-called normal
SABR model. This is the only version of the SABR that can model negative forward
rates directly, without adding any shift or free boundary condition.

Normal SABR model can be understood as a direct generalization of Bachelier’s model,
since it basically maintains the same evolution for the forward rate while postulating a
lognormal di↵usion-process for the forward’s rate instantaneous normal volatility for any
given maturity:

dF (t) = �(t) · dW (t), (4.6a)

d�(t) = ↵ · �(t) · dZ(t), (4.6b)

E

Q

T
(dW (t) · dZ(t)) = ⇢ dt. (4.6c)

Given a set of market Bachelier’s implied volatilities35 for any given maturity, the
parameters are usually calibrated by using equations (3.15) or (3.17).

35Note that the normal SABR model permits the instantaneous forward rate to be arbitrarily nega-
tive and, therefore, it cannot follow a lognormal distribution. Consequently, the calibration process is
exclusively conducted via Bachelier implied volatilities.
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4.3 Shifted Black (2012)

Shifted Black model accepts negative forward rates while maintaining a lognormal specifi-
cation, since it postulates that the instantaneous forward rate obeys the following process:

dF (t) = � · (F (t) + s) · dW (t), (4.7)

where s is a constant displacement parameter, which should be chosen a priori by the
analyst, being high enough to avoid the magnitudes F (t) + s,K + s going below zero for
any given time.

In fact, this is the main criticism to the shifted model (see, for instance, [27]): the
analyst is supposed to know which is the most negative value the forward rate may attain.
In practice, s is chosen so every observed value of the underlying forward rate can be
modelled in this context, and should be redefined if the forward rate escapes from this
given constraint. It should be noted that the process of fixing s should be done careful and
precisely, since choosing an extremely high value leads to the problems already explained
in Bachelier’s model (arbitrarily low values for the forward rate may be attained).

As it can be seen (for example) in [3], shifted Black formulation is completely equivalent
to Black’s (formulas (3.1) to (3.5)), by changing K ! K + s, F (t, 0) ! F (t, 0) + s and
F (t, i) ! F (t, i) + s respectively. Analytical formulae and calibration procedure are,
therefore, obtained and performed in a similar way.

4.4 Shifted SABR (2014)

Since shifted Black model (4.7) inherits unrealistic constant-volatility hypothesis from
Black formulation (3.1), shifting the SABR model (3.7) seems a good choice for both
calibrating observed smile precisely enough and including negative forward rates into our
framework.

Additionally, closed-approximated formula for implied Bachelier and Black volatilities
would still be available36 and our problem of choosing an appropriate shift parameter
would (unfortunately) reappear37. Displaced SABR model was originally proposed in
[29]. It postulates that both instantaneous forward rate and its instantaneous volatility
should obey the following system of equations:

dF (t) = �(t) · (F (t) + s)� · dW (t), (4.8a)

d�(t) = ↵ · �(t) · dZ(t), (4.8b)

E

Q

T
(dW (t) · dZ(t)) = ⇢ dt. (4.8c)

36Although they should include the shift parameter s, and therefore calibrating the shifted SABR
model requires its own process. It cannot be recovered from a previous SABR calibration, since the shift
parameter explicitly appears in implied volatilities’ formulae.

37In fact, it could be of high interest to perform an empirical study on the influence of the shift
parameter s in the process of calibrating, pricing and hedging within a shifted SABR context. This
analysis is left for further research.
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The whole development and formulae deducted in section 3.3 of the Thesis (analysis
of the SABR model) applies for the shifted SABR model, and therefore formulas (3.7)
to (3.17) can be used within a shifted SABR context with the pertinent modifications
f ! f + s,K ! K + s. Analytical specification for the price of plain-vanilla derivatives
is therefore maintained under this scheme, and calibration becomes straightforward from
formulas (3.15), (3.17) (by previously adding the shift s).

4.5 Free boundary SABR (2015)

Free boundary SABR is an extension of the classic SABR model (3.7) firstly introduced in
[30], which tries to both avoid choosing a shift parameter s a priori and deal with negative
rates in a natural way. In this sense, it eliminates SABR’s zero-boundary by assuming
the form

dF (t) = �(t) · |F (t)|� · dW (t), (4.9a)

d�(t) = ↵ · �(t) · dZ(t), (4.9b)

E

Q

T
(dW (t) · dZ(t)) = ⇢ dt. (4.9c)

As stated in [3], the condition 0  � <

1
2 guarantees stable solutions.

The main problem of this model is not the lack of an analytical solution (except in
some particular but not interesting cases). In fact, Bachelier’s implied volatility38 can be
computed as shown in [3]:
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with:
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(4.11)

38Again, since the free boundary SABR permits the forward rate to lie among the whole real line, a
lognormal specification (even a shifted’s lognormal) is not appropriate (values below the fixed boundary
are not permitted), and this model can only be calibrated within Bachelier’s implied volatility.
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As claimed in [3], free boundary SABR’s main drawback is that there exist implied
probability densities which are negative for huge areas around zero (which, in fact, is the
area we are interested in) for a given set of parameters. Therefore, it can fail precisely
in the most inappropriate area for us, and has been generally discarded among industry
firms, which have shown preference for the shifted SABR model as the natural candidate
to replace the original SABR model when negative rates are considered.

4.6 Vasicek (1977) and Hull-White (1990). Short
rate models

Short rate models di↵er in essence to the ones previously exposed and should therefore
be treated in a di↵erent way.39 Vasicek model, firstly introduced in [31], inherits its
formulation from an Ornstein-Uhlenbeck process with constant coe�cients under the risk-
neutral measure:

dr(t) = k(✓ � r(t))dt+ �dW (t). (4.12)

The first huge di↵erence should be appreciated. While former models usually stated their
initial formulation in terms of the T-forward measure, short rate models tend to propose
a SDE under the risk-neutral (and sometimes even under the objective!) measure.

The Ornstein-Uhlenbeck process is mean-reverting, in the sense that the instantaneous
short rate r(t) tends to return to the long-term value ✓ on a rate specified by the mean
reversion speed k. � accounts for the instantaneous short rate volatility.

Hull-White stated in [32] that the instantaneous short-rate evolves according to the
following SDE:

dr(t) = k(t)(✓(t)� r(t))dt+ �(t)dW (t). (4.13)

(4.13) extends Vasicek’s model (4.12) by permitting its parameters to depend (determin-
istically) on the calendar time, and therefore is sometimes called the exogenous version
of the endogenous Vasicek model (or extended Vasicek model). As it has been frequently
done in previous literature (see, for instance, [7]), we analyse a restricted version of Hull-
White’s model which imposes the constraints k(t) = k, �(t) = �. Under this specification,
✓(t) is chosen to guarantee that the currently observed market term structure of interest
rates (from now on, TSIR) is fitted perfectly40. As it is shown in [7], under Vasicek spec-

39Models from sections 4.1 to 4.5 are devoted to deal with commonly-traded instruments of the market,
instead of providing a full integrated scheme for the evolution of the instantaneous short rate from where
prices for these instruments are consequently deduced. These second kind of models are usually called
short rate models, and this section is devoted to them. Analytical formulation, if possible, usually becomes
far more complicated under this new scheme, since these models are not focused in pricing the kind of
derivatives we are interested in. In spite of this, they have been included in the survey for completeness.

40See [7] for an explicit expression of the calibration formula of ✓(t) in terms of market instantaneous
forward rates Fm(0, t) and market discount factors Pm(0, t).
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ification the price of a cap/floor at time t with notional value N , strike rate K and set of
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] can be computed as:
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Regarding Hull-White model, formulae can be similarly deduced by incorporating the
currently observed TSIR in the form of both market instantaneous forward rates F

m(0, t)
and market discount factors P

m(0, t). As proved in [7], once Hull-White model has been
calibrated to market data, pricing formulae read as:41
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41Note that, within this formulation, Hull-White model actually presents less parameters (�, k) than
Vasicek’s (�, k, ✓). One could, in principle, let ✓(t) be a free time-dependent parameter included to
calibrate cap market prices perfectly via trinomial trees (see, for instance, [1]), and therefore Vasicek’s
would be a nested specification of Hull-White’s. However, we understand that by doing so we are making
an unfair comparison between the models of Chapter 4 in two di↵erent ways:

1. We understand that the original aim of exogenous models is betrayed then, since they are designed
to fit today’s TSIR perfectly. ✓(t) covers this role. If we force it to participate in the cap calibration
procedure, there is no guarantee that market observed TSIR is fitted within the model (indeed, it
would not be fitted at all).

2. Every model presented in Chapter 4 of the Thesis accounts for time-independent parameters. From
a mathematical point of view, introducing time-dependent parameters in the caps’ calibration
is equivalent to introduce an independent-time model with infinite parameters. The model is
therefore guaranteed to fit caps’ prices perfectly, and the comparison lacks of sense. In terms of
comparability, every model under contrast should have a finite number of parameters. This is why
we only deal with analytical models through the survey.
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Parameters underlying both Vasicek and market-calibrated Hull-White models (� and
k) can be calibrated by a straightforward non-linear least-squares comparison between
theoretical cap/floor prices given by equations (4.14), (4.16) and market cap/floor prices
obtained by introducing the (flat) cap/floor volatility in Bachelier/Black pricing formulae.

To end up with this section, a last pertinent comment shall be made. There exist
many other short-rate models42 which might (and should) be included in the analysis in
the spirit of greater depth, and their incorporation into the survey in a consistent manner
with the previous exposition is currently under research. Among the set of candidates,
Hull-White model (and its nested specification: Vasicek’s model) has been selected due
to both pragmatic and theoretical reasons:

• According to several conversations with practitioners, Hull-White model is widely
used among the industry, owing to the existence of analytical formulae (4.16), easy-
calibration procedure and suitability for coping with a negative interest rates con-
text.

• Hull-White model is markovian, which reduces the amount of time spent in numer-
ical simulations, in case they were necessary (non-analytical version of Hull-White
model).43

42In an extensive but not exhaustive list, we can enumerate the Ho-Lee, Cox or Heath-Jarrow-Morton
models, among many others (in fact, HJM is not strictly considered a short-rate model, since it models
the instantaneous forward rate.)

43Non-markovian processes need non-recombining lattices to be simulated. This feature hugely in-
creases computational time (since the number of nodes in the tree will grow exponentially with the
number of steps) and is particularly relevant when working in a HJM framework, since only some par-
ticular choices of the volatility structure are both consistent with the absence of arbitrage opportunities
and the markovianity of the process (see the original paper from HJM, [33], for further details on this
issue). A thorough discussion about HJM general framework is given in [7], who devote a full chapter of
their book to this model. Its analysis, however, lies beyond the scope of this Thesis.
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Chapter 5

The volatility cube

This chapter is fully devoted to characterize the object known as the volatility cube, which
stands as a key input in every interest rates derivatives pricing software among industry
firms. Our main innovative contribution is the development of a new fast completion
method, based on the previous work by [2] and especially [34].

5.1 The third dimension

As explained in previous chapters, the constant-implied volatility hypothesis underlying
(shifted) Black and Bachelier models ((4.7), (4.1)) is not supported by the markets. Until
now, two di↵erent functional dependences44 have been acknowledged in the Thesis:

1. Strike (smiles/skews): It stands as the most relevant dimension to be calibrated
in terms of accuracy. Smile calibration has been lately performed with stochastic
interpolation methods, with special interest on SABR and its extensions to deal
with negative rates.

2. Maturity: The maturity of the caplet under consideration is the second variable of
interest for accurate pricing. It is unreliable to assume that the underlying forward
rate of a caplet that matures in twenty years is as volatile as the forward of a one-year
maturing caplet, and this dependence should be modelled somehow. As explained
later45, we adhere to the simplest functional form explored in previous literature (see
[35]) for interpolating implied volatilities between maturities: a piecewise constant
approach.

Market implied volatility surfaces, however, present a third relevant dependence which
has not been stated yet. The phenomenon known as tenor splitting accounts for the change

44Attending to the classification of [35], interpolation procedures can be classified in functional forms
of interpolation and stochastic interpolation methods. The former need an a priori selected functional
form of calibration, while stochastic interpolation methods deduce the functional form for the implied
volatility from an stochastic theoretical specification. This stochastic formulation might be performed
over the forward rate exclusively (as it happens in the CEV model, for example) or over a more complex
structure of correlated stochastic variables (as it happens in the SABR model and its extensions). From
now on, we follow the classification of interpolation methods stated in [35].

45See Chapter 7.

34



5. The volatility cube

in the observed implied volatility when the tenor of the underlying caplet is modified ce-
teris paribus. The intuition behind this empirical feature is obvious: the market should
not assign the same volatility to two underlying forwards with similar characteristics but
with di↵erent length of the investment period they are referred to.

The resulting implied volatility structure, therefore, depends on three underlying vari-
ables: strike, maturity and tenor of the underlying caplet46. This three-dimensional
dependence is often known as the volatility cube structure.47 Completing the cube is
the process of filling the gaps along the three calibration directions by any appropriate
procedure. Once the cube is fully calibrated, it can be used as an input by industry firms
software for pricing any kind of interest rates derivative.

Given the two interpolation methods proposed for strike and maturity, it seems straight-
forward to think that extending any interpolation procedure to the tenor dimension is the
natural way to complete the volatility cube. Unfortunately, the interpolation does not
work empirically along this direction due to the scarcity of data. While several strikes
and maturities are usually quoted in the markets, volatilities are standardized to a scarce
range of tenors. This is the reason why the problem of completing the cube has aroused
so much interest in previous literature48. Several authors have complained about the
problem of scarce data and looked for alternative ways of interpolating the cube over its
third edge without the explicit use of any interpolation method.49

Hopefully, the completion of the cube should attend to three main features:

1. Precision in the recovery of market data once the calibration has been performed
(in-sample test).

2. Accuracy when pricing interest rates derivatives which have not been used during
the calibration (out-of-sample test).

3. Continuity of the global four-dimensional structure, guaranteeing that pricing evolves
smoothly in any given direction.

46Indeed, a four dimensional structure is really under consideration:
�(n) = �(n)(Strike,Maturity, Tenor).

47Due to broker’s (i.e., ICAP) standard quoting convention (see chapter 6), when practitioners talk
about the volatility cube, they usually refer to the dependence of swaptions’ implied volatilities with
(Strike,Maturity, Tenor). The term volatility surface is often used for caplets’ implied volatilities de-
pendence on (Strike,Maturity), ignoring the tenor splitting e↵ect for these instruments. The extension
of the survey using swaptions is currently under research and, once completed, the term volatility cube
would have its usual meaning. However, since tenor splitting is a fact for caplet quoting volatilities as
well (it would be illustrated in chapter 8 of the Thesis), we prefer not to adhere to practitioners’ standard
nomenclature and use the expression volatility cube indistinctly, since we believe it expresses more accu-
rately the whole dependency structure for both instruments. We presume that the essential no-arbitrage
hypothesis underlying this approach can be extrapolated to deal with swaptions’ volatility cubes, and we
are currently working in the development of this idea.

48The treatment of [36] is especially recommended, as well as the analysis of [35] and [16].
49We encourage the interested reader to the standard treatments of [37] and [38] for explicit inter- and

extrapolation methods in the process of attaining volatilities for arbitrary tenors. Their approach is fully
di↵erent to the one shown here, and therefore their analysis lies beyond the scope of this Thesis.
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Due to time constraints, only the second point is fully covered through this text. We
leave the remaining issues for future research.

Figure 5.1: The volatility cube. The implied volatility function f : R3 ! R assigns a
unique value f(x, y, z) to each point (x, y, z) of the cube.

5.2 No-Arbitrage condition. Completing the cube

Previous work by [34] was pioneer in introducing the idea of using a no-arbitrage condition
to derive volatilities for non-quoting tenors from the ones quoting within the markets. [2]
extended this scheme to a negative rates environment. Both of them, however, limit its
applicability to collapsing market data into a unique benchmark tenor or going the other
way round (using a standard tenor to derive volatilities of non-standard tenors).

We claim, however, that this method is not limited to collapsing market non-standard
data into unified-tenor data or going the other way round in the spirit of stripping appro-
priate data50 for calibration purposes, but can be extended to face the calibration of
the volatility cube itself. To the best of our knowledge, this possibility has not been
explored in previous literature.51

50i.e., avoiding tenor splitting issue by collapsing the whole set of data into a unique tenor.
51Indeed, [34] seems to draw an equivalent scheme for transferring the whole smile structure for non-

standard tenors (instead of transferring each volatility point by point), and call it Transferring the smile.
The explanation of this alternative and the arguments to discard it are given in appendix C of the Thesis.
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If we admit that the usual absence of arbitrage hypothesis between forward rates
applies (at least, to a high order of approximation), volatilities of di↵erent tenors are
necessarily related via this arbitrage-free relationship. Moreover; while the strike and ma-
turity interpolation procedures are not reliable when extrapolating52, this arbitrage-free
condition can be exploited for extrapolating volatilities of several non-standard tenors
from a unique implied volatility surface calibration as far as it is needed to, as long as the
no-arbitrage condition still applies.53

During this section, we follow the reviewed approach for negative rates given by [2].
This methodology depends on the combination of maturity and tenor that is to be ex-
trapolated54, and would therefore be explained for a particular illustrative example. Any
other volatility for a di↵erent (maturity, tenor) pair can be obtained in a similar trend.
Likewise, the procedure depends on whether extrapolating a longer tenor volatility from
its shorter tenor homologues or going the other way round. Both cases are covered, to
provide a fully-integrated calibration scheme of the volatility cube, independently of the
benchmark tenor which quotes in the markets. Finally, the extrapolation depends on the
nature of the quoting volatilities (shifted Black’s or Bachelier’s). We provide formulae for
both situations.

5.2.1 Extrapolating longer tenor volatilities

We firstly examine the case given by figure (5.2) below. Let X
i,j

be today’s shifted for-
ward rate F

i,j

+ s

55 for the future investment period [T
i

, T

j

]. Its shifted (implied) Black
volatility is denoted by �

i,j

, and its normal equivalent is �

n

i,j

. Let ⌧

i,j

= T

j

� T

i

be the
year fraction length of that future investment period.

Consider that, for a maturity time T3 of one year (T3 = 1) and a benchmark tenor of 3
months (⌧2,3 = 0.25), we have a quoting shifted Black (Bachelier) volatility �2,3 (�n

2,3), and
the objective is to attain a longer tenor shifted Black (Bachelier) volatility for that given
maturity (for example, a 6 month-tenor volatility for the 1 year maturity is requested;
i.e., if ⌧1,3 = 0.5, �1,3 (�n

1,3) is to be attained.

52When necessary, at most a constant extrapolation is usual market practice. Obviously, this is not
desirable and leads to huge mistakes when extrapolating far away from the quoting data.

53To be precise, under this scheme not every implied volatility for any arbitrary tenor can be reached.
We only aim to provide a method for implying volatilities for tenors which are multiples of the benchmark
tenor. Some further considerations for the underlying forward rates are needed to extend this framework
to any arbitrary tenor.

54The whole methodology is developed for any given strike K.
55Under Bachelier specification, s = 0.
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Figure 5.2: Arbitrage-free condition. Relationship between the forward rates being consid-
ered.

By piecewise constant hypothesis in maturity56, �1,2(�n

1,2) = �2,3(�n

2,3). If the standard
arbitrage-free relationship between forward rates for the investment periods applies today,
and denoting F

i,j

= X

i,j

� s, it should be satisfied that:57

1 + ⌧1,3(X1,3 � s) = [1 + ⌧1,2(X1,2 � s)][1 + ⌧2,3(X2,3 � s)]. (5.1)

Rearranging terms from (5.1) results in:

X1,3 =
⌧1,2X1,2 + ⌧2,3X2,3 + ⌧1,2⌧2,3X1,2X2,3

⌧1,3
+ s


1� ⌧1,2 + ⌧2,3 + ⌧1,2⌧2,3(X1,2 +X2,3 � s)

⌧1,3

�
.

(5.2)

Under the T-forward measure, the following relationships must hold:

dX

i,j

= �

i,j

X

i,j

dW

i,j

dX

i,j

= �

n

i,j

dW

i,j

(5.3)

for shifted Black’s and Bachelier’s quoting procedures respectively. Particularizing (5.3)
to the 6 month tenor (shifted) forward rate gives:

dX1,3 = �1,3X1,3dW1,3 (5.4)

or

56This assumption applies in maturity of the caps being considered and, therefore, forces caplets’
implied volatilities to be constant from T0 = 0 to T3 = 1Y . See chapter 6 for further information on the
nature of quoting data and chapter 7 to further explanation on the piecewise constant hypothesis.

57Remember that a LIBOR forward rate is being considered, which a↵ects the compounding for the
investment period it refers to.
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dX1,3 = �

n

1,3dW1,3 (5.5)

respectively. Applying Ito’s lemma to equation (5.2) provides an alternative expression
for dX1,3. Comparing this expression with formulae (5.4) or (5.5), we should be able to

derive a relationship between quoting (�(n)
2,3 = �

(n)
1,2 ) and sought (�(n)

1,3 ) volatilities. Firstly,
the application of standard Ito’s formula to expression (5.2) results in:

dX1,3 =
⌧1,2[1 + ⌧2,3F2,3]

⌧1,3
dX1,2 +

⌧2,3[1 + ⌧1,2F1,2]

⌧1,3
dX2,3 +

⌧1,2⌧2,3

⌧1,3
d[X1,2, X2,3], (5.6)

where:

d[X1,2, X2,3] = d[F1,2, F2,3] = �1,2�2,3X1,2X2,3d[W1,2,W2,3] = �1,2�2,3X1,2X2,3⇢dt,

d[X1,2, X2,3] = d[F1,2, F2,3] = �
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1,2�
n

2,3d[W1,2,W2,3] = �

n

1,2�
n

2,3⇢dt
(5.7)

for shifted Black’s and Bachelier’s quoting procedures respectively, and ⇢ accounts for
the correlation between the two Wiener processes of F1,2, F2,3. For implied shifted Black
volatilities, taking quadratic variation in expressions (5.3) and (5.6) gives58
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(5.8)

where:59

a :=
⌧1,2[1 + ⌧2,3F2,3]

⌧1,3
, b :=

⌧2,3[1 + ⌧1,2F1,2]

⌧1,3
. (5.9)

Regarding implied Bachelier’s volatilities, applying quadratic variations to (5.3) and
(5.6) results in:

�

2
1,3(n) = a

2
�

2
1,2(n) + b

2
�

2
2,3(n) + 2ab�1,2(n)�2,3(n)⇢. (5.10)

Making �

(n)
1,2 = �

(n)
2,3 in equations (5.8), (5.10) gives the final expression for �

(n)
1,3 in

terms of today’s forward rates, the volatility currently quoting in the markets �

(n)
2,3 and

the correlation between the Wiener processes of the forward rates F1,2, F2,3:

58Notice that the last term in equation (5.6) vanishes when quadratic variation is taken.
59An standard freezing the drift argument has been used in this step. More information regarding this

technique can be found in [2], [7] or [34].

39



Negative rates in derivatives pricing. Theory and Practice

�

2
1,3 =

�

2
2,3

X

2
1,3


a

2
X

2
1,2 + b

2
X

2
2,3 + 2abX1,2X2,3⇢

�
(5.11)

�

2
1,3(n) = �

2
2,3(n)


a

2 + b

2 + 2ab⇢

�
(5.12)

(5.11) replicates the formula previously obtained in [2]. To the best of our knowledge,
equation (5.12) has not been found in existing literature, and therefore provides a new
scheme for comparative purposes.60

5.2.2 Extrapolating shorter tenor volatilities

Now, consider the situation in which the 3 month tenor volatility (�2,3) is to be attained
from the 6 month tenor quoting volatility (�1,3). Again, by piecewise constant assump-
tion, �1,2 = �2,3, although both are unknown. Rearranging terms from (5.11) or (5.12)
provides the answer:
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2 + b

2 + 2ab⇢
. (5.14)

At this point, it should be stated that both [2] and [34] do not adhere to the piecewise
constant hypothesis, resulting in an ill determined system (both �1,2 and �2,3 are unknown)
which is solved by minimizing the squared di↵erences between market volatilities and
those provided by a pre-specified parsimonious functional form (usually called Rebonato
like function). However, we believe that this method presents internal inconsistency
within the calibration procedure, since it uses this parsimonious functional form (which
is far from being piecewise constant) for collapsing caplet volatilities into a unique tenor
and then a piecewise constant functional form is assumed for stripping volatilities (see
chapter 7 of the Thesis). The interested reader is redirected to the original references [2]
or [34] for further discussion on this topic.

60We have disregarded the discussion about the appropriate choice of the only free parameter remaining
both equations: ⇢. Chapter 7 of the Thesis further analyses this aspect.
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Chapter 6

Data

Through this chapter, we aim to describe briefly the di↵erent datasets included in the
survey61 . In a nutshell, these inputs are:

• OIS zero-coupon curves: They have been downloaded from ICAP’s 24th May
quoting data, via Thomson Reuters Eikon terminal. Both EUR (EONIA) and USD
(Fed Funds Rate) curves (figure (D.1)) are used when discounting or forwarding.
Continuously-compounding method is used for both of them, and the daily basis
convention used for day-counting is Actual/Actual. Although both curves behave
similarly (almost monotonically growing with the tenor underlying), they are shifted
so that the lowest tenor rates are negative in EONIA but remain strictly positive
for the Fed Funds Rate.62

• Standard flat implied (shifted) Black volatilities63: ICAP quotes the so-called
flat implied volatility, defined as the unique volatility that should be introduced in
the (shifted) Black formula (3.5) for every constituent caplet in order to recover the
price of the cap that incorporates that whole set of caplets. Tables (D.1) and (D.2)
respectively show what we call standard tenor EUR/USD cap flat (shifted, s = 3%)
Black volatilities for maturities on the range [1, 20] years and closest-to-moneyness
strikes (from K = �0.75% to K = 10% for EUR and K = 0.50% to K = 4%
for USD data respectively). By the word standard, we mean that these volatilities
respond to the ones implied by the most liquid traded instruments for every strike
and maturity outstanding. Indeed, they have been provided by the standard broker
(i.e., ICAP) via Thomson Reuters Eikon terminal. The quoting convention of these
volatilities depends on the market (EUR/USD) being considered:

61For the sake of continuity of the text, tables and figures are displayed in appendix D of the Thesis.
62In fact, this is the reason why data from both EUR and USD quoting caps have been included in the

survey: comparing economies with/without negative rates.
63Since there exists an strict one-to-one correspondence between prices and implied volatilities for the

models used in market quotations, one could fairly wonder about the reasons why so many traders prefer
quoting instruments market prices indirectly via their implied volatilities (and an associate model) instead
of actually providing these market prices. An insightful discussion is given in ([14]). To summarize, implied
volatilities work better as a communication tool due to the fact that they tend to be much more stable

than equivalent prices, which fluctuate sharply (non-stationary nature of prices). Implied volatilities filter
the e↵ect of many other variables that a↵ect the option price better than market prices do.
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– EUR quoting process: EUR caps from table (D.1) are classified attending
to the tenor of the constituent caplets. While caps that expire before the
T = 3Y maturity (T = 1, 1.5 and 2Y ) quote with a 3-month tenor for the
caplets underlying, caps with expiries equal or above T = 3Y depend on 6-
month tenor caplets. This split in the quotation process a↵ects to the standard
methodology designed to strip caplet volatilities from their cap’s homologues,
known as caplet stripping (see chapter 7 of the Thesis). Moreover, the first
caplet of every cap is excluded from the quotation process, to guarantee that
any currently-quoting cap accounts for random payo↵s even for the first caplet
underlying. In market’s lingo, this is usually known as a spot starting cap,
although there is not option until a period of time equal to the tenor being
considered (3/6 months respectively) has elapsed. Figures (6.1), (6.2) below
illustrate ICAP’s EUR caps quoting processes.

Figure 6.1: EUR caps quoting procedure for maturities up to T = 2Y .

Figure 6.2: EUR caps quoting procedure for maturities above T = 2Y .
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– USD quoting process: Quotation of USD caps from table (D.2) does not
depend on the tenor of the caplets underlying. Therefore, they quote in a
more consistent way for modelling purposes. The standard benchmark tenor is
3 months for any maturity outstanding, and again spot starting caps are being
used. This quoting procedure is summarized in figure (6.3) below.

Figure 6.3: USD caps quoting procedure.

A last pertinent comment should be made about two additional standard inputs
included in the empirical research. In order to study the dependence of the results
within the nature of the quoting (implied) volatility, Bachelier’s have been also
included in the survey. Hopefully, one should download tables for Bachelier implied
volatilities equivalents to table (D.1) for shifted Black’s. However, several quoting
ine�ciencies were detected for these volatilities. The two most concerning are:

1. Gaps for some specific cells: Not every combination of (T,K) among the
ranges [1Y, 20Y ], [�0.75%, 10%] quotes a normal volatility, hindering subse-
quent comparisons.64

2. Arbitrage is allowed: It has been checked that introducing (shifted) Black-
/Bachelier quoting volatilities for any given cell of the array (T,K) in their
standard pricing formulae ((3.5), (4.5) respectively) does not result in the re-
covery of identical prices for the caps outstanding. Therefore, arbitrage is
introduced if both datasets ((shifted) Black’s from table (D.1) and Bachelier’s)
are jointly used.

64A thorough research has been conducted to ascertain the reasons for these gaps. They are mostly
focused on the high strike/short maturity area, that coincides with the lowest caplet prices (see table
(8.1) in chapter 8 of the Thesis). Implied Bachelier volatilities are more di�cult to attain within this
area, since the one-dimensional root-finders algorithms struggle to converge for these lowest prices. We
believe, then, that this problem might have been noted by the standard broker as well, and this may be
the reason why these volatilities are not usually quoted within the markets.
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We cannot allow these quoting ine�ciencies to a↵ect our study, and therefore filter
their influence by avoiding using actual normal data, but implying it from shifted
Blacks’ via unique-price hypothesis. That is to say that, for every possible
combination of (T ,K), we impose that the recovered prices via Black pricing formula
(3.5) equals the ones attained via Bachelier’s implied volatilities (formula (4.5)).
Arbitrage is therefore forbidden, and no gaps quote in our (transformed) data. To
imply a matrix of Bachelier caps volatilities similar to table (D.1) for shifted Black’s,
the following algorithm has been applied:

1. Imply cap prices for every cell of the matrix (D.1) from these shifted Black
volatilities by the use of formula (3.5).

2. Use any one-dimensional root finder (Newton-Raphson has been chosen) to
convert these market prices into Bachelier’s implied flat volatilities by inverting
Bachelier’s cap pricing formula (4.5).

• Non-standard flat implied shifted Black volatilities: Two final inputs have
been included into the survey to test the adequacy of our fast-approach calibration
of the volatility cube. Tables (D.3) and (D.4) display the values of several EUR flat
implied shifted Black volatilities for caps whose caplets quote with non-standard
tenors of 3/12 months respectively. Available maturities equal the ones shown in
tables (D.1), (D.2), and the range of strikes varies from K = �1% to K = 9%.
These data have been implied from Totem IHS Markit report. Several OTC cap
market prices for a huge range of strikes, maturities and tenors quote on it. They
are not as liquid as standard 3-6 month-tenor volatilities from table (D.1), but still
liquid enough (attending to IHS markit claim) to be fully reliable. The algorithm
used for the institution that has kindly provided these data to convert cap market
prices from Totem report into non-standard flat implied shifted Black volatilities is
summarized within the following steps:

1. Convert cap market prices (for a less than desirable number of strikes) into
implied shifted Black volatilities inverting cap Black pricing formula (3.5).

2. Strip caplet volatilities from caps’ by the stripping algorithm described in chap-
ter 7 of the Thesis.

3. Calibrate (in strike) a shifted SABR model for every possible combination of
maturity and tenor.

4. Interpolate caplet volatilities for any required strike by the use of formula (3.9).

5. Recover cap prices for those strikes via Black pricing formula (3.5) (every caplet
enters with its own interpolated volatility from previous step).

6. Invert expression (3.5) to recover non-standard (3 or 12 months tenor) flat
implied shifted Black volatilities (a unique value for each cap’s maturity) from
the prices outstanding for any given combination of strike, maturity and tenor.
These are shown in tables (D.3), (D.4) for non-standard tenors of 3,12 months
respectively.

Again, non-standard flat implied shifted Black volatilities from tables (D.3), (D.4)
have been converted into Bachelier’s (when necessary) via unique-price hypothesis.
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Chapter 7

Methodology

The empirical research65 conducted during the survey is structured into two main pillars.

Firstly, a thorough comparison about models’ relative performance when pricing caplets66

is performed for every model presented in chapter 4 of the Thesis, both in terms of ac-
curacy of the calibration procedure (in-sample analysis) and capability of the models on
estimating prices of caplets which have not been used during the calibration (out-of-
sample analysis). Shifted SABR model (4.8) emerges as the best approach, supporting
the industry standard choice and justifying it by the use of several empirical approaches.

Secondly, the new proposal for completion of the volatility cube once any standard
tenor is calibrated by the use of a no-arbitrage argument among the implicated forward
rates is tested by out-of-sampling volatilities for non-standard tenors. These predictions
are compared with the values quoting in the markets. The test is satisfactory, validat-
ing the innovative methodology detailed in chapter 5 of the Thesis. Moreover, standard
Transferring the smile technique is challenged by these same datasets, which clearly do
not support its most fundamental hypothesis: smiles’ shapes are not conserved with
respect to moneyness when the tenor is modified ceteris paribus.

7.1 Models comparison

7.1.1 Caplet stripping

The standard calibration procedure proposed in formulae (3.15), (3.17) requires caplets
(and not caps) implied volatilities. Due to its quoting nature, a previous treatment of
the data is then needed. For every combination of tenor, maturity and strike, brokers
quote the so-called flat implied volatility, defined as the single volatility that should be
introduced in (shifted) Black/Bachelier formulae for every constituent caplet in order to
recover the price of the cap that incorporates that whole set of caplets((3.5), (4.5)). It is,
therefore, an averaged implied volatility concept that hardly can be extrapolated to every

65Empirical research has been fully accomplished using software MATLAB, version R2017a.
66An extension of the empirical part of the survey by using european swaptions is currently under

research.
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caplet constituting the cap. If the flat implied volatility was selected for the whole set of
caplets of the cap, we would fall into excess of simplicity.67

The standard methodology designed to extract caplet implied volatilities from their
cap homologues is known as caplet stripping.68 Since any cap consists on more than one
caplet, the bootstrapping technique is based on an assumption on the functional depen-
dence of the caplet implied volatilities, for both strike and tenor given, with the time to
maturity of the caplet/cap. In this sense, several hypothesis about this behaviour can be
formulated, as long as they are collectively consistent.69 For the sake of simplicity, we
assume a piecewise constant functional form for the caplet implied volatility between
every cap maturity under consideration, for any strike and tenor given.

Therefore, our methodology replicates the one of [2], and can be structured within the
following steps:

1. Using formulae (3.3), (4.3) (whether quoting flat implied volatilities were (shifted)
Black’s or Bachelier’s), every constituent caplet of the cap is priced with the same
flat implied volatility, for every cap under study. The cap price is then obtained by
aggregating individual caplet prices (see formulas (3.5), (4.5)).

2. For a given strikeK, the n cap prices Cap(t, T1, N,K), Cap(t, T2, N,K), ..., Cap(t, T
n

, N,K)
are sorted by ascending order of maturity (i.e., T

n,mat

> T

n�1,mat

> ... > T1,mat

).

3. The series of price di↵erences for consecutive caps is computed for the strike K:

Cap(t, T
j

, N,K)� Cap(t, T
j�1, N,K), j = 1, ..., n, (7.1)

where Cap(t, T0, N,K) := 0.

4. Every price di↵erence of the series is mapped to the corresponding number of caplets
on that region.70

5. For a given strike K, every price di↵erence would therefore be mapped with a given
number of caplets on specific start and maturity dates that lie in the considered

67For instance, think about the longest time to maturity caps of USD data (20 years). If the flat
implied volatility was selected as the implied volatility corresponding to every caplet of the set, we would
be assuming that every one of the 79 caplets that constitutes the cap has the same implied volatility. This
idea is unsound, and the piecewise constant alternative (to be proposed) looks much more reasonable.

68This process is thoroughly summarized, for example, in [27], [35] and [2]. The treatment of [2] is
particularly interesting, since several alternatives for the stripping procedure (attending to the authors
classification: Bootstrapping, Rebonato and Global Sabr) are discussed in depth. Through this Thesis,
and following their claim, we restrict ourselves to the first class of methods.

69For example, a linear assumption on time to maturity of the cap from year 5 to 6 is not simultaneously
consistent with a piecewise constant hypothesis during the time interval [5,7] for the maturity of the caps.
A thorough study about the influence of the selected functional form of the caplet implied volatility in
the stripping procedure over subsequent calibrations remains an issue of obvious interest.

70For instance, the fourth term of USD series (corresponding to the di↵erence between caps that mature
in years 3 and 4) is mapped to the four underlying caplets for that period; from year 3 to year 4, within
a tenor of 3 months.
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region. Since a piecewise constant hypothesis of caplets’ implied volatilities is as-
sumed, the implied caplet volatility �(K, j) for every region between two consecutive
cap maturities is constant (i.e., the same for every caplet of the region), and can be
computed by applying a one-dimensional root finder to the equation71

Cap(t, T
j

, N,K)� Cap(t, T
j�1, N,K) =

njX

i=j1

Caplet(t, T
i

, N,K, �(K, j)), (7.2)

where n

j

accounts for the number of caplets for that particular region.72

While the stripping procedure can be directly performed with USD cap volatilities,
the process for EUR volatilities requires to carry out separately the stripping for short
maturities (up to 2 years) from the long maturities procedure, since the tenor of the un-
derlying forward rate changes from 3 months to 6 months in this case.

As it is mentioned in [27], extracting caplet ATM volatilities is trickier, since the
location of the strike (i.e., the underlying forward rate) depends on every maturity.
The previous algorithm is not valid anymore, since the di↵erence Cap(t, T

j

, N,K

ATM

)�
Cap(t, T

j�1, N,K

ATM

), j = 1, ..., n does not provide the ATM caplets on the sought
region. The only calculation that can be identically repeated is step 1 of the algorithm,
since ATM cap prices can be recovered for every maturity if both ATM strike K

ATM

and
ATM flat implied volatility �

ATM

are quoted for that maturity. The stripping algorithm
with ATM caps is fully developed (with an illustrative example) in appendix E.

Several implied caplet volatility term structures (USD and EUR, both for shifted Black
and Bachelier quoting conventions) are plotted once constructed via stripping, in order
to compare their evolution with the maturity of the caps under research, for every strike
included in the survey.

7.1.2 Discounting and forwarding. Further considerations

The OIS relevant curve for each market (EONIA and Fed Funds Rate for EUR and
USD respectively) is used at the valuation date 24th May, 2017 for both computing
discounting factors and implying forward rates when necessary. See equation (2.2) for
the process of stripping implied instantaneous forward rates from market zero-coupon

71Standard Newton-Raphson algorithm has been used for every price di↵erence (see, for instance, [39]
for quick refresh on one-dimensional root finding methods). No convergence problems (such as seed-
dependence, low computational speed or any other) have been acknowledged.

72Returning to the previous example: in the fourth element of USD series of price di↵erences, four
caplets lie in the region between year 3 and 4. We have to find the quantity �(K, 4) that solves:

Cap(t, [Tstart, 4], N,K)� Cap(t, [Tstart, 3], N,K) = Caplet(t, [3, 3.25], N,K,�(K, 4))+

Caplet(t, [3.25, 3.50], N,K,�(K, 4)) + Caplet(t, [3.50, 3.75], N,K,�(K, 4)) + Caplet(t, [3.75, 4.00], N,K,�(K, 4))
(7.3)

.
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prices, which are respectively extracted from the discounting curve via P

market(t, T ) =
exp(�R(t, T ) ⇤ �(t, T )), where R(t, T ) stands for the OIS rate at date t, maturity T .

Additionally, as shown in formulae (4.15) and (4.17), Vasicek and Hull-White cal-
ibration procedures ask for a proxy of the instantaneous short rate at valuation date,
r(t). Attending to our own heuristic criterium, we have selected the corresponding OIS
1 week rate r(t, 1 week) as the optimal trade-o↵ between avoiding excess of market noise
(with notable influence over the shorter rates) and representativeness of the instantaneous
short rate (worse as the time to maturity of the rate increases). Obviously, this ansatz
can be discussed. Indeed, it has been thoroughly done among previous literature, and no
consensus seems to have been reached yet73.

7.1.3 Models calibration

• (Shifted) SABR: According to previous literature (see [24]) and our own expe-
rience during the calibration procedure, formula (3.15) o↵ers more robust results
than (3.17) for both SABR and shifted SABR calibration for every maturity under
consideration and needs less time to converge. Consequently, the definitive results
are computed via expression (3.15). To simplify the calibration process, � has been
fixed at 0.5 for every maturity following the claim of several authors (such as [14]).

MATLAB standard optimization with restrictions routine fmincon have been used,
forcing ↵ and �(0) to be positive and �1  ⇢  1. No convergence problems have
been detected during the process. Several plots illustrating the term structure for
the calibrated parameters and the implied calibrated volatility surfaces/smiles for
both EUR and USD data are shown next, for comparative purposes.74

• Shifted Black/Bachelier: Several shifted Black (4.7) or Bachelier (4.1) models
have been calibrated for every maturity outstanding. Expression (3.15) is applied
for both models to calibrate the unique parameter �(0)(n) for any given maturity.
The term structure of both parameters is plotted afterwards, as well as the resulting
smiles for every given maturity. No convergence problems have been acknowledged
within standard application of fmincon (the only restriction is 0  �(0)(n)).

• Normal/Free boundary SABR: As explained before, both models are calibrated
with normal implied volatilities. Equation (3.15) is used together with formula
(3.13) for the normal SABR model (fixing � = 0) or expression (4.10) for the free
boundary SABR model (for the sake of comparability with the calibration of the
shifted SABR model, � has been likewise fixed to an (arbitrary) close value to
0.5: � = 0.49999.75) No convergence problems have been detected within standard
use of fmincon (the restrictions are similar to the ones imposed in shifted SABR’s
calibration). Parameters term structures are plotted afterwards.

73See, for instance, [40], which reaches to a conclusion that fully faces our choice.
74This is the only model where USD data is used, in order to compare implied volatility surfaces from

EUR and USD data. Since no negative rates have been yet observed in USD quoting instruments, and
our main aim is to contrast several models’ pricing behaviour when negative rates are permitted, from
now on only EUR data are to be considered in the analysis.

75Recall that 0  � < 1
2 is necessary within a free boundary SABR framework.
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• Vasicek/Hull-White: The calibration of both models can be accomplished with
either caplet or cap prices, since the former account for a particular case of caps
with a single payment date:

– If caps are selected, the calibration procedure is straightforward. Once cap
market prices have been recovered from quoting flat implied shifted Black
volatilities for any maturity-strike combination (T,K) given,76 minimizing the
sum of squared di↵erences for every strike and a given maturity with respect
to equations (4.14) or (4.16) gives the calibrated parameters for both models:

(�, k, (✓)) = argmin
�,k,(✓)

X

i

✓
Cap(t, T,N,K

i

)market � Cap(t, T,N,K

i

)

◆2

. (7.4)

– Calibrating with caplets requires to proceed as follows:

⇤ Strip piecewise constant caplet volatilities from flat cap market volatilities
as explained in subsection 7.1.1.

⇤ Recover caplet market prices from implied shifted Black caplet volatilities
by using a standard shifted Black pricer (3.3).

⇤ Proceed as in the previous algorithm, minimizing the sum of squared errors
for caplet pricing formulas (4.14), (4.16):

(�, k, (✓)) = argmin
�,k,(✓)

X

i

✓
Caplet(t, T,N,K

i

)market�Caplet(t, T,N,K

i

)

◆2

.

(7.5)

In spite of needing further data transformation, the second procedure is preferable
in terms of consistency within the previously-calibrated models. Since the former
have been calibrated by minimizing caplets’ pricing error, it is a more symmetric
methodology. Not only that, but the error introduced in the stripping procedure
should also be considered. Every one of the previous models needed from this
pre-calibration technique for their calibration algorithms. Since the stripping re-
sults depend on the interpolation method being considered, this dependency might
corrupt future calibration. In the spirit of mutual compensation, this e↵ect shall
be filtered by introducing the stripping bias in every calibration to come.
Therefore, if Vasicek/Hull-White calibration is performed without prior stripping
(formula (7.4)), there exists a competitive advantage for these models which is not
exclusively due to the nature of the models itself, but to the way the data is quoting
in the markets. Those are the arguments to opt for the second calibration algorithm
(caplets’ pricing, formula (7.5)) instead of an straightforward caps’ comparison.

76By the unique-price hypothesis explained in Chapter 6, these prices should be equivalent to the
prices obtained via flat implied Bachelier volatilities, and therefore it is completely equivalent to calibrate
Vasicek/Hull-White with either one of both datasets.
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The algorithm that uses (7.5) in combination with (4.14) or (4.16) for calibrating
Vasicek/Hull-White models respectively struggles to converge for several seeds’ com-
binations (�0, k0, (✓0)). It often gets stuck in a particular region of the parametric
space, or reaches to an arbitrary large number of iterations without finding a solu-
tion that satisfies the constraints given. A thorough analysis about the convergence
problems of both algorithms is provided in appendix F.

7.1.4 Caplets pricing comparison

The test among the full set of models is accomplished by comparing their caplets pricing
accuracy, which is analysed attending to both in-sample and out-of-sample criteria:

• In-sample: Once every model is calibrated, the matrix of caplet prices is recovered
via each model pricing formula.77 These arrays are compared with the matrix of
caplet market prices (obtained whether by shifted Black/Bachelier market implied
volatilities, since they are equivalent by unique-price hypothesis). Several plots of
caplet prices term structures for some representative strikes as well as absolute and
relative pricing errors are then plotted, so their main di↵erences can be analysed.

• Out-of-sample: The out-of-sample research has been conducted both in strike and
in maturity dimensions:78

– Strike: An arbitrary column79 is removed from the matrix of stripped caplet
volatilities.80 Each model is recalibrated without these data, and the price
of a caplet for each maturity and the omitted strike is estimated with each
model’s standard pricing formula.81 Several plots of the attained price and
absolute/relative errors with respect to the market quoting prices are shown
for some representative strikes, for comparative purposes.

– Maturity: A full arbitrary row is wiped out from the stripped caplet volatili-
ties matrix, and every model is recalibrated without these data. The price of
a caplet for every strike and the selected maturity is then forecasted with each
model’s pricing formula.82 Several plots of the attained price and absolute/rel-
ative errors with respect to the market quoting prices are shown afterwards.

77A standard notional of N = 100 has been considered in every pricing algorithm.
78Out of sampling in the tenor dimension is not considered at this point, since it is to be studied in

the section to come (Completing the cube).
79This column shall not be neither the first nor the last one of the matrix, to avoid the acknowledged

problem of extrapolating in strike.
80Note that the matrix of caplet volatilities accounts for maturities in its rows and strikes in its columns.
81In SABR alike models (shifted Black, Bachelier, shifted SABR, free boundary SABR and normal

SABR), the implied volatility for the given strike is interpolated via smile (horizontal line for both
shifted Black’s and Bachelier’s), and the price is recovered by standard shifted Black/Bachelier pricers
((3.3), (4.3)). Regarding short-rate models, the price is directly computed via pricing formulae (4.14) or
(4.16) respectively. This distinction applies to maturity out-of-sampling as well.

82Previous distinction applies in maturity out-of-sampling. In this case, by piecewise constant hypothe-
sis the relevant implied volatility for SABR-alike models is the one of the previous maturity for any strike
being considered, and the smile interpolation is therefore substituted by a constant interpolation, which
predictably accounts for bigger mistakes. However, note that, when applying shifted Black/Bachelier
pricers ((3.3), (4.3)), the maturity of the caplet shall be the actual maturity of the caplet being priced, not
the former one (i.e., the piecewise constant hypothesis applies in implied volatilities, not in prices!)
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7.2 Completing the cube

We challenge the robustness of our proposal for the full completion of the volatility cube
in the tenor dimension by recovering the price of caplets with a non-benchmark tenor (3
and 12 months, see tables (D.3), (D.4)) from implied volatilities of our standard calibra-
tion tenor (table (D.1)). We use several OTC caps to test the adequacy of this approach.

When the scheme for extrapolating implied volatilities was deduced83, the analysis
of the only free remaining parameter in formulae (5.11), (5.12), (5.13), (5.14), ⇢, was
disregarded. Appendix G of the Thesis focuses on this crucial aspect of our calibration
proposal. An insightful study about the impact of ⇢ over volatility’s extrapolation can be
found in [2], and the interested reader is readdressed there for further information.

In a nutshell, to obtain any arbitrary implied volatility (shifted Black’s or Bachelier’s)
for a caplet with maturity T

market

, strikeK
market

and tenor ⌧
market

, we proceed as follows:84

1. Map the maturity T

market

to the preceding maturity T of the calibrating data.
By piecewise constant hypothesis85 , the sought volatility remains constant in the
interval [T, T

market

], and can be therefore computed as if T was the actual maturity
of the caplet.86

2. Use the previously calibrated shifted SABR parameters for maturity T to fit the
smile and recover shifted Black’s / Bachelier implied volatility forK

market

, �(n)(K
market

, T, ⌧).

3. Extrapolate �(n)(K
market

, T, ⌧) to �(n)(K
market

, T, ⌧

market

) via formulae (5.11), (5.12),
(5.13) or (5.14).

Once caplet stripping algorithm has been applied to flat cap implied volatilities from
tables (D.3), (D.4), non-standard tenor (3, 12 months) term structures are plotted for
comparative purposes. Thereafter they are converted to (market) prices, and compared
with non-standard tenor prices attained by our arbitrage-free formulation via absolute/rel-
ative pricing errors87. The section ends with an empirical research on the robustness of an
alternative competitor when transforming standard-tenor volatilities into non-standard’s:
tranferring the smile technique (see appendix C).

83See chapter 5 of the Thesis.
84When creating the cube, we focus on shifted SABR model for smile fits, since chapter 8 of the Thesis

illustrates that it systematically outperforms alternative competitors.
85Assuming piecewise constant hypothesis for pricing new derivatives guarantees internal consistency

of the pricing scheme within the calibration procedure. If any other assumption was done at this point,
both approaches would not be simultaneously compatible.

86Note that this hypothesis only applies to the implied volatility of the caplet to be priced. When
applying standard pricing formulae ((3.3) or (4.3)), the maturity that appears as Tmat is Tmarket, not T .

87To filter the influence of maturity out-of-sampling errors (see chapter 8), volatilities with identical time
to maturity than the ones quoting for the standard 6-month tenor have been used. In addition, maturities
below T = 3Y have been excluded from the comparison owing to typical market quoting conventions.
Since the first caplet is excluded from the quoting process for EUR data, stripping volatilities from 12-
month caps’ results in identical caplet volatilities for maturities T = 1, 1.5, 2Y (the first caplet of the
quoting process expiries at T = 2Y ). We overcome this ine�ciency by excluding these short-maturity
data from our analysis (for consistency in the comparisons, we have excluded them from the 3-month
extrapolation as well). Consequently, a 6-month benchmark tenor is the only one included in the study.
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Chapter 8

Empirical results

The main results of the empirical research are summarized within the next sections.

8.1 Volatility term structures

We devote this section to a descriptive analysis of market caplet stripped volatilities.

Figure (8.1) below shows the piecewise constant caplet volatility term structures re-
sulting of stripping cap volatilities from tables (D.1)88 and (D.2). From left to right, Black
USD, shifted Black EUR and Bachelier EUR volatility term structures are plotted.

While EUR caplet volatilities exhibit a certain mean-reverting behaviour to a given
long-term value as time to maturity of the underlying caplet increases (especially pro-
nounced for shifted Black’s), USD volatilities diverge with time to maturity, suggesting
higher variance in the uncertainty for the underlying forward rate for a longer time to
maturity. Therefore, a first pattern might be identified when comparing an economy with
strictly positive rates (USD) with a market that permits both positive and negative rates
(EUR).

The convergence to the long term value, however, is not accomplished in a similar man-
ner for shifted Black and Bachelier quoting volatilities. The dynamic evolution of the for-
mer results in a rearrangement of the volatilities (lower strikes quote with greater volatility
for the longest maturities), while Bachelier EUR’s dynamic evolution is monotonous with
time to maturity (di↵erent strike curves never cross each other).

Studying the figures the other way round gives insight about the behaviour of market
caplet volatilities as the options get closer to maturity. For short maturities EUR volatili-
ties increase with the strike89, and USD volatilities manifest the opposite behaviour. This

88Remember that this table mixes the 3-month and 6-month tenors, and therefore is not valid for
performing tenor-dependence analysis. This research is disregarded until Testing the cube section.

89In terms of caplet pricing, a trade-o↵ between several magnitudes appears at this point. While
increasing the strike results in a pricing drop (to guarantee that the term structure is arbitrage-free),
higher implied volatilities increase the price of the caplet. Therefore, EUR volatilities term structure
suggests a trade-o↵ between higher strikes (lower prices) and higher volatilities (higher prices).
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phenomenon applies for increasing time to maturity in USD and Bachelier EUR term
structures (since di↵erent strike curves never cross each other), but the tendency is re-
verted for Shifted Black EUR volatilities.

Figure (8.2) splits in strike EUR term structures from figure (8.1) to illustrate the de-
pendence of the dynamic evolution of the term structure with the strike being considered.
Two di↵erent patterns are mainly observed:

• In the low strike area (negative, ATM and lowest positive strikes), implied volatil-
ities tend to increase with time to maturity.

• For the positive greater strikes, the tendency is reverted and the volatilities fall
with time to maturity.

This behaviour is shared by both shifted Black and Bachelier quoting volatilities.
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Figure 8.1: USD and EUR market volatility term structures. These have been stripped
from flat cap Black, shifted Black and Bachelier volatilities respectively.

54



8. Empirical results

0 5 10 15 20

Maturity (years)

5

10

15

20

V
o
la

til
ity

 (
%

)

EUR Caplet (Shifted Black) Volatility TS

ATM

0 5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

V
o
la

til
ity

 (
%

)

EUR Caplet (Bachelier) Volatility TS

0 5 10 15 20

Maturity (years)

0

5

10

15

20

V
o
la

til
ity

 (
%

)

K=-0.75%

K=-0.5%

K=-0.25%

K=-0.13%

0 5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

V
o
la

til
ity

 (
%

)
0 5 10 15 20

Maturity (years)

5

10

15

20

V
o
la

til
ity

 (
%

)

K=0%

K=0.25%

K=0.5%

0 5 10 15 20

Maturity (years)

0.1

0.2

0.3

0.4

0.5

V
o
la

til
ity

 (
%

)

0 5 10 15 20

Maturity (years)

0

20

40

60

V
o
la

til
ity

 (
%

) K=1%

K=1.5%

K=2%

K=3%

K=5%

K=10%
0 5 10 15 20

Maturity (years)

0

0.5

1

1.5

V
o
la

til
ity

 (
%

)

Figure 8.2: Strike dependence of the dynamic evolution of EUR volatility term structures.

8.2 Models calibration

Figure (8.3) below displays several parameters term structures obtained by fitting each
model to the term structure shown in figure (8.1), for every maturity outstanding. In a
nutshell, the models under study can be classified in stable and unstable categories:

• Stable models: For every parameter of the model, its term structure evolves
smoothly. This characteristic is desirable in the sake of continuity, since it is more
likely that these models were correctly specified (overparameterization is avoided).
SABR, shifted SABR, shifted Black, Bachelier, normal SABR and free boundary
SABR seem to fulfil these characteristics.

• Unstable models: At least one of the parameters term structure evolves wildly,
with huge peaks and appearance of discontinuity. These models are more unreli-
able, since misspecification of the parameters might appear during the calibration
procedure (several di↵erent combinations of parameters result in similar values of
the objective function, and the algorithm struggles to optimize it in the parametric
space). Attending to figure (8.3), Vasicek and Hull-White pertain to this class of
models. Further discussion about numerical troubles involving Vasicek/Hull-White
calibration procedures can be found in appendix F of the Thesis.
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Figure 8.3: Parameters term structures for the models included in the survey.

SABR model and its negative-rates extensions share an almost zero value for today’s
forward rate volatility, �(0), irrespective of the maturity being considered. As illustrated
in figure (3.2), small changes in this parameter cause remarkable shifts in the smiles.
While the volatility of the volatility parameter, ↵, tends to decrease smoothly when time
to maturity increases for every SABR extension under study90, the dynamic evolution of
the correlation for the Wiener processes of F (t) and �(t), ⇢, depends on the model being
considered. It is (almost) monotonically decreasing for shifted SABR (with independence
of the quoting volatility used in the calibration) and free boundary SABR, from close-
to-one values at the shortest maturities to almost zero correlation for the longest being
considered. It follows the opposite trend in the normal SABR model, and it is negative
(and relatively steady) for USD SABR calibration.

Regarding Vasicek/Hull-White calibration, the parameter accounting for the instanta-
neous volatility of the short rate, �, fluctuates wildly for the shortest maturities, stabiliz-
ing when time to maturity grows. The mean reversion speed of the short rate towards its
long term value, k is lesser and much more stable in Hull-White than in Vasicek, where
it evolves in discontinuous peaks. Finally, the long term value of the short rate, ✓, is
always small and negative for any maturity outstanding, in consonance with the current
economic situation.

90In consonance with figure (8.1), which shows that volatilities tend to converge to a long term value,
and therefore account for lesser variance with increasing time to maturity. Note that USD term structure
diverges with T , in consonance with top-left subfigure in figure (8.3) (where ↵ does not decrease even for
the longest maturities being considered).
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8.3 Volatility smiles and surfaces

This section aims to contrast 1-D (smiles) and 2-D (surfaces) fitted volatility structures,
by the use of SABR/shifted SABR, against market actual data. This comparison is ac-
complished for both Black/Bachelier quoting volatilities.

Figure (8.4) below displays the shape of several market caplet volatility smiles for
every maturity outstanding. It includes shifted SABR smile calibration via shifted Black
volatilities (formula (3.9), using the calibrated parameters of figure (8.3)) and shifted
Black calibrated volatility for every maturity of the survey. The existence of smiles in
the markets is hardly arguable for any given maturity with figure (8.4) in mind. Also, it
is manifested that shifted SABR is flexible enough to accommodate many di↵erent smile
shapes in a really accurate fashion. Constant volatility hypothesis implied by shifted
Black (and Bachelier) models is fully rejected.
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Figure 8.4: Market, shifted Black and shifted SABR volatilities. The existence of smiles
is clearly supported by the markets, irrespective of the maturity being considered.

Figure (8.5) compares (shifted) SABR volatility surfaces91 for USD (strictly positive)
and EUR (positive and negative) interest rates data.

91The implied volatility surface is computed by interpolating (shifted) Black/Bachelier volatilities for
every maturity and strike outstanding via formulas (3.9), (3.13) and plotting these volatilities against
both variables. Again, the tenor dependence of the volatility cube is momentarily ignored.
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Recalling the discussion of section 4.1, we claimed that a floorlet implied volatility
within a Black context shall rise sharply when K ! 0% to guarantee that a non-zero
price is attained. As shown in the left subfigure of figure (8.5), this behaviour is not only
manifested by floorlets, but by caplets volatilities. Their increase when K ! 0% to values
up to 80% implies a double e↵ect for increasing prices (the rise in the implied volatility
when the strike descends and the drop in the strike itself), and therefore match market
quoting instruments. USD implied SABR volatility surface is then splitted between a
steady area (strikes above K = 1.5%) and a high volatility zone, below K = 1.5%.

As regards EUR shifted SABR volatility surface, their values stand far below from
the volatilities attained by their USD’s homologues. In this case, the splitting occurs in
maturity. The stable area is located above 5-6 years to maturity, while shorter maturities
account for further variance in strike. The lowest volatilities (over 5%) are attained for
the lowest strikes, shifting up to values near 45% for the highest strikes (K = 10%). This
behaviour is in consonance with the one shown in figure (8.4).

In figure (8.6), shifted SABR implied volatility surface via shifted Black volatilities
(right subfigure in figure (8.5)) is compared with its Bachelier homologue (formula (3.13)).
In broad terms, the surface shape is robust to the nature of the quoting volatility, since
increasing volatilities when the strike rises are again observed for the shortest maturi-
ties. However, a permanent slope appears in the former stable area, shifting the whole
volatility surface upwards when the strike ascends, irrespective of the maturity being con-
sidered. Moreover, the tenor splitting feature is much more evident for Bachelier quoting
volatilities than it used to be with shifted Black’s. Right subfigure exhibits a sharp drop
in Bachelier’s shifted SABR volatilities for the three shortest maturities, which account
for the shortest tenor under study (3 months).92

Inquiring deeper on this aspect, figure (8.7) splits both volatility surfaces between the
two underlying tenors. Left subfigures are consistent with the shape of right’s, support-
ing the argument of robustness of the volatility surfaces with respect to the nature of
the quoting volatility. However, an obvious shape di↵erence is noticed between top and
bottom subfigures. While 3-month tenor volatility surfaces grow monotonically with the
strike for every maturity, 6-month’s manifest the behaviour observed in figure (8.6). The
tenor splitting feature for caplets implied volatilities is therefore plainly illustrated, and
modelling it via volatility cube’s completion becomes a must.

92This fall is not observed so clearly for shifted Black’s volatility surface, and therefore makes us believe
that modelling the tenor splitting via arbitrage-free cube’s calibration might provide better results for
Bachelier quoting volatilities than for shifted Black’s. This conjecture is tested next (see section 8.7,
Testing the cube).
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Figure 8.5: SABR/Shifted SABR implied volatility surfaces. EUR structure mixes a tenor
of 3 months for maturities up to two years with a 6 month-tenor onwards.
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Figure 8.6: Shifted Black/Bachelier shifted SABR implied volatility surfaces.
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Figure 8.7: Tenor splitting in figure (8.6).

8.4 In-sample analysis

Models’ accuracy when recovering the price of every caplet of the calibration process is
tested through this section for every model under research. Therefore, this part should
be understood as a thorough in-sample comparison among these models.

Figure (8.8) below is divided into two relevant sets of subfigures. Top rows compare
caplet market prices term structure with caplet prices term structures implied by every
calibrated model. Bottom row shows in conjunction caplets prices term structures for
every model for comparison purposes within the market benchmark curve for some rep-
resentative strikes of the survey.

Roughly speaking, top rows illustrate that every model fits the market benchmark
term structure shape reasonably well, at least in qualitative terms. At a first sight, only
Vasicek model tends to fail systematically when fitting the maturity T = 6Y . Both mar-
ket prices term structure as well as every model term structure are arbitrage-free, since
caplet prices are sorted in descending order in strike for any given maturity, never crossing
each other’s curve. For any given strike, caplet price tends to rise for longer maturities,
although it stabilizes (and even drops) for the last maturity (T = 20Y ). Tenor splitting
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phenomenon is plainly observed again (especially for the lowest strikes), since caplet prices
increase sharply from almost negligible values at maturities T = 1, 1.5, 2Y to appreciable
values above T = 2Y . Bottom subfigures manifest that pricing accuracy of the models is
mainly challenged for the highest strikes (lower prices). While negative and low-positive
strikes prices curves closely resemble each other, K = 5% prices term structures di↵er
significantly. In fact, only shifted SABR and free boundary SABR pricing curves
follow market’s caplets behaviour.
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Figure 8.8: In-sample caplets pricing analysis. First and second rows show caplets prices
term structures implied by every previously calibrated model (see figure (8.3)), as well as
caplet market prices term structure. Last row compares every model’s pricing accuracy
within the market benchmark for some representative strikes.

Figure (8.9) inquires further on the (absolute) pricing accuracy of every model for the
strikes chosen in bottom subfigures of figure (8.8). In consonance with the two top rows
of figure (8.8), no model commits a high absolute pricing error for any maturity under
consideration (it reaches 0.12% as maximum, for a standard notional of N = 100). The
absolute pricing error tends to drop within the strike (which is reasonable to support that
every model fits market prices reasonably well, since prices decrease within the strike).
Shifted SABR and free boundary SABR arise again as the best models irrespective of
the maturity or strike being considered, with slight preference for the former. Vasicek
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and Bachelier are generally the worst models in terms of absolute pricing accuracy. Hull-
White, normal SABR and shifted Black work reasonably well for the negative/low-positive
strike area, but tend to fail for higher strikes.

Figure (8.10) converts absolute pricing errors from figure (8.9) into relative’s. Since
caplet market prices are notably small (especially for the shortest maturities or the highest
strikes; see figure (8.8) above), relative pricing errors might grow (almost) unboundedly.
To provide some insight about the implied di�culty in fitting almost negligible caplet mar-
ket prices, table (8.1) below displays their values (that, as illustrated, can reach to 10�7).
Except for shifted SABR and free boundary SABR models, every model outstanding fails
for the shortest maturities (T = 1, 1.5, 2Y ) under study93. Therefore, only these two
models could be acceptable in the shortest-maturity (lower prices) region. Figure (8.11)
compares shifted SABR and free boundary SABR within this close-to-maturity area, ev-
idencing that shifted SABR’s relative errors are considerably smaller (hardly reaching
10%94) than free boundary SABR’s, that could reach to values near 30%. Shifted SABR
is generally95 preferred for the shortest maturities under consideration.

Finally, figure (8.12) aims to compare the best models96 for the chosen representative
strikes and the longest maturities area (from T = 3Y above). Again, shifted SABR and
free boundary SABR (in this order) clearly outperform alternative competitors. Shifted
SABR is remarkably accurate, with relative errors within the range [0, 5]% even for the
K = 5% strike (where free boundary SABR starts to fail, given that caplet market prices
drop sharply). As regards the rest of the models, Hull-White, Vasicek and normal SABR
are possibly the best candidates for the low strike area,97 although they fail for the high
strike area. Shifted Black arises as a reasonable candidate just for the K = 1% strike.
Bachelier model is hardly recommended.

93We understand that a failure occurs when a relative error of 25% is exceed.
94Recall that, even being a high relative error, it is fitting almost negligible caplets (prices over 10�7)

and, therefore, it is inappreciable in absolute terms.
95With the possible exception of K = 1%.
96Only models with lesser than 25% relative errors are included in the plots.
97We define the low strike area as the one which accounts for either negative or low-positive strikes, while

high strike area stands for strikes above K = 5%. Low strike area is much more concerning nowadays,
given the current negative rates context. High strike area caps are usually traded in the markets with
maturities much longer that the ones considered in the survey (30 years or more).
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Figure 8.9: In-sample caplets absolute pricing errors for every model and several repre-
sentative strikes.
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Figure 8.10: In-sample caplets relative pricing errors for every model and several repre-
sentative strikes.
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Figure 8.11: In-sample comparison of shifted SABR and free boundary SABR models in
terms of caplets relative pricing errors for the shortest maturities.
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Figure 8.12: In-sample caplets relative pricing errors for the best models of the longest
maturities area for some representative strikes.
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T/K(%) -0.75 -0.50 -0.25 -0.13 0.00 0.25 0.50 1.00 1.50 2.00 3.00 5.00 10.00

1Y 0.1103 0.0488 0.0080 0.0039 0.0022 0.0009 0.0005 0.0002 0.0001 5e-05 2e-05 5e-06 5e-07

18M 0.1270 0.0668 0.0237 0.0149 0.0099 0.0054 0.0034 0.0017 0.0011 0.0007 0.0004 0.0002 4e-05

2Y 0.1524 0.0964 0.0503 0.0366 0.0269 0.0163 0.0108 0.0060 0.0038 0.0026 0.0015 0.0007 0.0002

3Y 0.4028 0.2861 0.1807 0.1444 0.1152 0.0768 0.0535 0.0302 0.0187 0.0127 0.0068 0.0028 0.0006

4Y 0.5390 0.4334 0.3312 0.2877 0.2471 0.1853 0.1422 0.0881 0.0598 0.0431 0.0257 0.0120 0.0036

5Y 0.6677 0.5633 0.4673 0.4210 0.3760 0.3059 0.2471 0.1673 0.1152 0.0845 0.0480 0.0207 0.0051

6Y 0.8127 0.7092 0.6094 0.5620 0.5201 0.4410 0.3720 0.2651 0.1917 0.1391 0.0790 0.0304 0.0056

7Y 0.9536 0.8448 0.7442 0.6990 0.6506 0.5633 0.4902 0.3646 0.2740 0.2066 0.1223 0.0517 0.0111

8Y 1.0722 0.9662 0.8665 0.8210 0.7698 0.6827 0.6037 0.4666 0.3579 0.2725 0.1671 0.0678 0.0134

9Y 1.1734 1.0693 0.9647 0.9189 0.8648 0.7736 0.6893 0.5490 0.4247 0.3410 0.2049 0.0829 0.0143

10Y 1.2384 1.1363 1.0323 0.9868 0.9402 0.8472 0.7711 0.6132 0.4876 0.3757 0.2374 0.0920 0.0143

12Y 1.3039 1.2055 1.1112 1.0619 1.0176 0.9300 0.8401 0.6852 0.5579 0.4405 0.2720 0.1010 0.0111

15Y 1.3091 1.2172 1.1293 1.0879 1.0405 0.9572 0.8771 0.7255 0.5892 0.4871 0.3141 0.1311 0.0200

20Y 1.1843 1.1052 1.0244 0.9884 0.9454 0.8715 0.7999 0.6713 0.5654 0.4545 0.3123 0.1426 0.0268

Table 8.1: Caplet market prices (top left subfigure of figure (8.8). N = 100.)

In conclusion, every model fits market prices accurately in absolute terms, adhering
to the absence of arbitrage opportunities implied by market prices. This feature changes
considerably when relative errors are under concern, due to the extremely small values of
the caplets to be fitted.98 Shifted SABR and free boundary SABR systematically
tend to outperform alternative competitors, with slight preference for the former. They
are the only admissible models for the shortest maturities under study, and arise as really
accurate models for the longest maturities as well. Far away from them in comparative
terms, Hull-White, Vasicek and normal SABR rank reasonably well in the low strike area,
although they fail when applied to higher strikes. One-parameter models (shifted Black
and Bachelier) are hardly recommended.99

98Obviously, these relative errors would have been reduced if the comparison had been done between cap

market prices (which are the instruments that actually quote within the markets) and cap theoretical

prices, attained by aggregating (per model) the set of individual caplet prices for each cap outstanding
(formulas (3.5), (4.5)). However, it should be noted that our main aim is not calibrating cap market
prices in the most accurate way, but contrasting how several models relatively perform when pricing
the instruments used in their respective calibration processes. It is sound to think that this qualitative
ranking is conserved when the cap pricing problem is under concern with a downward shift in the scale
of relative errors (since caps account for basket of caplets, and therefore permit mutual compensation of
errors when aggregating). This issue is actually under research, and results are expected soon.

99Further discussion about the main characteristics of the parametric space in every model is highly
interesting at this point of the survey. Although shifted SABR, free boundary SABR, normal SABR
and Vasicek models account for the same number of parameters (three per maturity) to accommodate
several smile shapes, they do not seem to do it in the same way. Shifted SABR and free boundary
SABR fit market smiles accurately, resulting in precise caplet prices calibrations. Normal SABR is
clearly outperformed by prior models, despite of accounting for the same number of parameters. In
spite of having one additional degree of freedom, Vasicek model does not outperform systematically
Hull-White’s, and therefore Vasicek’s might be overparameterizated, as suggested in appendix F of the
Thesis. Shifted Black and Bachelier models are clearly surpassed by every alternative candidate. Even
though fixing � = 0.5 does not allow us to conduct a standard F-test to show that both models are not
parameterizated enough (since they are not strictly nested specifications of shifted SABR’s when � is
fixed to 0.5), it seems obvious that more general structures (such as shifted or free boundary SABR’s)
are needed for further accuracy.
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8.5 Strike out-of-sampling

Through this section, several smile-fitting methodologies for strike out-of-sampling (in-
terpolating in strike) are compared.

Firstly, figure (8.13) displays the conjunction of several models caplet prices term
structures in comparison with benchmark market caplet curves when out-of-sampling
some representative strikes of the survey. Again, a clear di↵erence is observed between
low and high strike areas. In the former, and excluding few minor divergences, every
model resembles market curves consistently (in absolute terms). A higher variability is
manifested for the K = 5% curve. Moreover, figure (8.13) strongly reminds of figure
(8.8) bottom subfigures’ shape. Therefore, it is claimed that the models outstanding be-
have similarly (at least in absolute terms) either when in-sampling or out-of-sampling
in strike. Again, shifted and free boundary SABR are the only sound candidates for the
K = 5% curve (lower prices).
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Figure 8.13: Strike out-of-sample caplets pricing analysis. For some representative strikes,
every model’s pricing accuracy is tested against caplets market prices.
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In a similar trend, figures (8.14), (8.15), (8.16) and (8.17) below share their main
features within their in-sample homologues (figures (8.9), (8.10), (8.11) and (8.12)). As
shown in figure (8.14), again no huge (absolute) mistakes are committed. Shifted SABR
and free boundary clearly outperform alternative competitors for every maturity under
consideration in terms of accuracy (absolute pricing errors). In this case, only Hull-White
and shifted Black arise as sound candidates for strike out-of-sampling in the low strike
zone, failing when out-of-sampling the K = 5% strike. Normal SABR’s accuracy depends
on the pair (K,T ) being considered100, and Vasicek and Bachelier models are generally
not recommended.

Once again, figure (8.15) manifests that, with exception of shifted SABR and free
boundary SABR, every model fails for the shortest maturities for at least one of the
strikes (in this case, being out-of-sampled). Figure (8.16) focuses on a deeper comparison
of both models. It certifies the exceptional proficiency of shifted SABR’s for fitting market
smiles (even for the lowest prices, the relative error when out-of-sampling (interpolating)
in strike never exceeds 10%). Free boundary SABR struggles to predict market prices
accurately when extremely short maturities or high strikes are under consideration, being
clearly outperformed by shifted SABR.

Figure (8.17) zooms in the longest maturities area, displaying only the best models
when out-of-sampling some representative strikes. As in its in-sample homologue (8.12),
shifted SABR and free boundary SABR’s small relative errors rank them as the two best
candidates. Hull-White, shifted Black and Vasicek arise as reasonable models for the low
strike area, but their behaviour is not good enough for K = 5%. Bachelier is the worst
model among the ones being considered.

As shown through the section, the main features of in-sample’s comparison are mostly
maintained when out-of-sampling in strike. Shifted SABR and free boundary SABR
clearly fulfil their function of fitting market smiles accurately, being also the best models
for strike interpolations.

100At this point of the survey, a pertinent comment comparing shifted SABR with normal SABR model
might be interesting. Fixing � = 0.5 in the overparameterizated general (shifted) SABR model does not

seem merely an aesthetic consideration, attending to the results shown in figures (8.9), (8.10), (8.12),
(8.14), (8.15), (8.17) or figures (8.19), (8.20) and (8.22) to come. In our scheme, normal SABR (which
basically accounts for a di↵erent (arbitrary) choice of the parameter �) struggles to fit market caplet
prices accurately, while shifted SABR does it precisely. Therefore, further research shall be conducted
about the implied e↵ects of choosing an arbitrary value for �. By the time on we follow the claim of [7],
where an argument about the reason why markets adhere to the choice � = 0.5 is given. In any case, the
results shown in figures (8.9), (8.10), (8.12), (8.14), (8.15), (8.17), (8.19), (8.20) and (8.22) support this
claim.
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Figure 8.14: Strike out-of-sample caplets absolute pricing errors of figure (8.13).
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Figure 8.15: Strike out-of-sample relative pricing errors of figure (8.13).
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Figure 8.16: Strike out-of-sample comparison of Shifted SABR and free boundary SABR
models.
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Figure 8.17: Strike out-of-sample relative pricing errors for the best models for the longest
maturities and some representative strikes.
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8.6 Maturity out-of-sampling

A thorough comparison between models’ behaviour when forecasting caplets’ prices for
maturities removed from the calibration processes has been attained as well. Its main
results are highlighted through this section.

Figure (8.18) below reproduces predicted caplet prices for some representative ma-
turities of the survey101, and compares them with caplet market prices data. Roughly
speaking, it seems that every model fits market data accurately, although this precision
worsens for closer-to-maturity caplets (prices drop). Again, both market prices curves
and models curves do not allow arbitrage, since every pricing curve falls monotonically
within the strike. Caplet prices tend to rise with time to maturity for any given strike, in
consonance with the results shown in figure (8.8).
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Figure 8.18: Maturity out-of-sample caplets pricing analysis. For some representative
maturities, every model’s pricing accuracy is tested against caplets market prices.

Figure (8.19) challenges every model of the survey by displaying absolute maturity
out-of-sample pricing errors for some representative expiries. While in-sample and strike
out-of-sample absolute pricing errors were close to each other’s and did not exceed 0.15%

101Note that these figures resemble classic Black-Scholes calls’ dependence on the strike.
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(see figures (8.9) and (8.14)), maturity out-of-sample’s might even attain 0.25% for Va-
sicek’s model. The first di↵erence, therefore, comes in terms of scale of the errors. By and
large, (absolute) errors tend to decrease with the strike on the high strike area for every
model outstanding (low strike area analysis is momentarily postponed). Although shifted
SABR and free boundary SABR account for lesser absolute errors in average, they are
outperformed for some particular combinations of (K,T ). While Bachelier and Vasicek
models are hardly recommended, Hull-White, normal SABR and shifted Black do not
look unsound, especially in the low strike area.

Figure (8.20) transforms absolute pricing errors of figure (8.19) into relative’s. Former
shifted SABR and free boundary SABR’s superiority over their competitors is somehow
challenged within this figure, especially for free boundary SABR’s (which is outperformed
by several competitors for the highest strikes under consideration). However, since the
highest strike area is not concerning nowadays (at least, not as much as the lowest strike’s),
this issue is not further analysed. Shifted SABR stands as the preferred approach in av-
erage. Except for shifted SABR and free boundary SABR, every model fails102 for some
representative maturity at a lower strike area (say, strikes below or equal to 5%).

Consequently, even though maturity out-of-sample relative pricing errors have signif-
icantly grown (especially for the K = 10% strike), we still consider that free boundary
and especially shifted SABR models exhibit further robustness to the arbitrary combi-
nation (K,T ), and therefore claim that they remain as our most accurate approaches
for maturity out-of-sampling purposes. Figure (8.21) focuses on comparing both models’
accuracy when interpolating caplet prices in maturity. It is plainly illustrated that free
boundary SABR (typically) behaves worse than shifted SABR. Although high relative
errors are committed in the high strike area, low strike area errors are acceptable when
dealing with shifted SABR. In any case, notice that relative pricing errors for maturity
out-of-sampling considerably surpass those attained either in-sampling (see figures (8.10),
(8.11)) or out-of-sampling in strike (figures (8.15), (8.16)).

Lastly, figure (8.22) further analyses best models’ behaviour (in terms of relative pric-
ing errors) for each representative maturity in the lowest strikes area, since it is the one we
care more about. For the shortest maturities (T = 1.5Y ), only shifted SABR remains as
an acceptable candidate. However, for longer expiries normal SABR, Hull-White, shifted
Black and free boundary SABR emerge as sound alternatives. All of them, in conjunction
with shifted SABR, typically account for relative errors lesser than 5%, which results
in accurate predicted prices within this low strike area, irrespective of the model being
considered.103

102Say that a failure occurs when relative error exceeds 30%.
103As usual, except for Vasicek and Bachelier models, which systematically account for higher relative

pricing errors.
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Figure 8.19: Maturity out-of-sample absolute pricing errors for every model outstanding
and some chosen maturities.
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Figure 8.20: Maturity out-of-sample relative pricing errors of figure (8.18).
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Figure 8.21: Maturity out-of-sample comparison of Shifted SABR and free boundary SABR
models.
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Figure 8.22: Low strike area maturity out-of-sample relative pricing errors for the best
models for each maturity under consideration.
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In conclusion, out-of-sampling in maturity mostly reproduces the results attained
by either in-sampling or out-of-sampling in strike, with a noticeable shift in the magnitude
of the errors being committed. We believe that this issue is due to the nature of the
models under research.104 Arbitrage opportunities do not arise, and the ranking of models
depends on the strike area being considered. While maturity out-of-sampling in high
strike areas results in high relative errors for every model outstanding (and shifted
SABR arises as the more sound approach), low strike area accounts for lesser relative
errors (below 5%) for any model outstanding (except for Vasicek and Bachelier models).

8.7 Testing the cube

This section analyses two clarifying examples105 illustrating the accuracy of our proposed
transfer algorithm for fast calibration of the volatility cube via no-arbitrage considera-
tions. The hypothesis of [34] on Transferring the smile technique (see appendix C) is
subsequently tested.
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Figure 8.23: Arbitrage-free relationship percentage violation.

Firstly, to guarantee that arbitrage-free conditions indeed apply within our market

104Notice that these are basically designed for further accuracy in smile-fitting procedure. Interpola-
tion in maturity has been conducted via piecewise constant hypothesis, which obviously attends for less
precision. Moreover, if a maturity is removed for out-of-sampling purposes, a full model is being elimi-
nated from the calibration (since we calibrate a di↵erent model for each maturity), and we are making
the assumption that previous-maturity implied volatility applies for the maturity under concern. This
assumption looks strong, and the results attained for maturity out-of-sampling support this asseveration.
105In our study, we consider both extrapolating from a shorter to a longer tenor as going the other way

round. Both shifted Black (formulas (5.11), (5.13)) and Bachelier ((5.12), (5.14)) volatilities are included
in the research (as usual, the last ones are attained via unique-price hypothesis.)
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data, relative error of formula (5.1)106 has been computed for every maturity outstanding
(as forward rates depend on the maturity being considered). Figure (8.23) above mani-
fests that the arbitrage-free condition applies within our data, since relative errors do not
exceed 0.012% for any maturity under consideration.

Figure (8.24) is splitted into two relevant sets of subfigures. Top row displays sev-
eral market caplet volatility term structures107 for both Bachelier/shifted Black quoting
volatilities and both non-standard tenors (3/12 months) to be extrapolated from our al-
ready calibrated (standard tenor) market term structures (see figure (8.1)). Bottom row
converts these volatilities into prices term structures by the use of standard (shifted) Black
(3.3)/ Bachelier (4.3) pricers. Tenor splitting phenomenon is clearly observed, both in
volatilities and in prices. These are shifted upwards when a higher tenor is considered,
going from 0.7% to levels above 3% when the tenor rises from 3 to 12 months. Except for
some minor di↵erences108, volatility term structures mostly follow the behaviour described
in figure (8.1). Market implied prices are arbitrage-free, and basically adhere to the same
trend followed by their 6-month tenor homologues in top-left subfigure of figure (8.8).

Figure 8.24: Top row shows the stripped 3/12 month market volatility term structures.
Bottom row converts these implied volatilities into caplet prices via formulae (3.3) or
(4.3) .

106I.e., abs(LHS �RHS)/RHS(%).
107As usual, these have been extracted from implied flat cap volatilities via caplet stripping algorithm.
108For instance, volatilities corresponding to negative strikes are not strictly inversely sorted for the

shortest maturities and 12-month tenor shifted Black volatilities do not exhibit a mean-reverting be-
haviour for the longest expiries.
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Figures (8.25) and (8.26) respectively compare the extrapolated 12-month/3-month
caplet prices term structures with actual market data, both for shifted Black (top rows)
and Bachelier (bottom rows) quoting volatilities. From left to right, we show: market
prices term structure, extrapolated (arbitrage-free) prices term structure, absolute and
relative error of the extrapolation.

As shown in the figures, the prices have been considerably shifted upwards/downwards
from the 6-month prices within our benchmark tenor (top-left subfigure of figure (8.8)),
accommodating smooth and precisely the shape of market prices actual data (irrespective
of the nature of the quoting volatility being considered). In consonance with the nature
of the method, no arbitrage has been introduced in the pricing scheme (di↵erent strike
curves do not cross each other, with prices sorted in descending strike). Although tenor
splitting seems to be consistently modelled, it is likely that some kind of bias exists within
our approach, since we recover prices that systematically lie slightly below market data
for the longer tenor (6 months to 12 months) extrapolation. This issue does not appear
so explicitly for the shorter tenor extrapolation, where no dependence on the strike being
extrapolated is detected and the errors appear to exhibit a white noise structure. This
systematic bias is likely to be considerably reduced when the forward correlation issue is
treated in a more consistent way.

As regards absolute pricing errors, these are significantly lower for the shorter extrap-
olation methodology (where they hardly reach a value of 0.02% for a standard notional
of N = 100, and appear to manifest a white noise structure with no dependence on strike
or maturity) than for the longer tenor’s, which accounts for systematic errors of 0.35%.
Moreover, these are somehow sorted in descending strike, and seem robust to the nature
of the quoting volatility (which supports the idea of existence of a slight bias in the es-
timation). However, last column on both figures gives grounds for optimism (recalling,
again, that market caplet prices lie in the ranges provided by table (8.1), and therefore
low relative errors are hardly attainable).

Roughly speaking, Bachelier errors tend to be lesser than shifted Black’s, for both
extrapolation processes. In the longer tenor extrapolation, only the combination of high
strikes and short maturities (which is irrelevant for standard quoting instruments nowa-
days) results in unacceptable relative errors. As soon as the strike drops into the low strike
area and the maturity is above T = 5Y , the relative pricing errors do not exceed 10%,
including some particular well-fitted strike curves. These errors are relatively comparable
with the ones obtained both in-sampling and out-of-sampling in strike, and fairly better
than the ones recovered from out-of-sampling in maturity.

As regards 3-month tenor extrapolation, the situation becomes even better. Relative
pricing errors do not exceed 20% for any maturity or strike under study, and typically
fluctuate randomly below the 10% barrier. The ideal situation is attained when the
longest maturities and the lowest strikes are considered, since errors range from 0% to
5% irrespective of the nature of the quoting volatility. Moreover, the negative strike area
(K = �1%) is being fitted with lesser than 2% relative error for any maturity outstanding.
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Figure 8.25: Longer tenor (12 month) extrapolation from the 6 month implied volatility
surface for both shifted Black (top row) and Bachelier (bottom row) quoting volatilities.
Absolute and relative errors analysis.
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Figure 8.26: Shorter tenor (3 month) extrapolation from the 6 month implied volatility
surface for both shifted Black (top row) and Bachelier (bottom row) quoting volatilities.
Absolute and relative errors analysis.
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The rest of the section is devoted to test the main hypothesis of one of market’s stan-
dard methodologies when the conversion of volatilities among tenors is under concern:
transferring the smile technique of [34] (see appendix C). Figure (8.27) displays the shape
of several fitted smiles (either using 6-month tenor standard data (volatilities from figure
(8.1)) or 3/12-month non-standard data (figure (8.24)) via shifted SABR for every ma-
turity outstanding. Comparing by rows, it is clear that markets do not support this
hypothesis, since although smiles shapes respect to moneyness are somehow maintained
among 3-6 month tenors, there exists a break in these shapes for every maturity out-
standing when the 12-month tenor structure arises. Figure (8.28) inquires further on this
aspect, by testing one of the main conclusions implied by the smile-shape conservation
assumption: parameters ↵, ⇢ are conserved when the tenor is modified ceteris paribus.
Parameters term structures are plotted for every tenor under concern, and the rejection
of this assumption by market data is evident, especially when the 12-month tenor is
under consideration. We believe that market data do not support the technique given in
[34], and therefore claim that an alternative methodology (such as our full no-arbitrage
proposal) shall be applied.
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Figure 8.27: Non-robustness of transferring the smile technique (see appendix C).
Smile shape changes when the tenor is modified either to longer or shorter investment
periods, for any maturity under consideration.
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Figure 8.28: Shifted SABR parameters term structures dynamic dependence on the cali-
brated tenor.

To sum up, during this section it has been manifested that standard transferring the
smile technique struggles to reproduce market’s behaviour consistently due to its strong
smile-shape conservation assumption. Given that arbitrage-free condition applies within
our data, we have exploited it to propose a new full arbitrage-free scheme for calibrating
the volatility cube based on previous work by [2] and especially [34], with some outstanding
results (if a choice was possible, and basing on our empirical research, we recommend to
extrapolate from longer to shorter tenor via Bachelier quoting volatilities). We consider
that this method is quite promising, since it still has strong room for improvement within
the correlating the forward rates issue (see appendix G). Moreover, some other (possible)
sources of uncertainty have been identified within the calibration process.109

109For instance:

• Data transformation. The datasets provided as non-standard market data have su↵ered previous
transformations from original caps’ prices from IHS Markit Totem report.

• Di↵erent brokers have been used for models’ calibration (ICAP’s quoting data) and cube’s extrap-
olation (IHS Markit Totem report). Also, the liquidity of OTC caps has not been checked.

• No data of the tenor to be extrapolated has been used, to replicate market’s worst possible situation.
Therefore, fixing ⇢ = 0.9 seems too arbitrary. As explained in appendix G, using market data
when extrapolating may help to fit prices more accurately, interpreting ⇢ as a free parameter of
the extrapolation process. This issue is currently under research.
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Conclusion

This MSc Thesis aims to provide a common reference framework in which several inter-
est rates derivatives pricing methodologies are challenged and compared under the new
negative rates context. After a full revision of analytical pricing formulae implied by ev-
ery model outstanding, these have been compared in terms of accuracy and smoothness
of resulting caplet prices term structures. Every model is arbitrage-free and fits market
pricing curves reasonably well, but not all of them are acceptable when absolute/relative
errors are under concern. Shifted SABR and free boundary SABR clearly outperform al-
ternative competitors, with strict preference for the former. This result is in consonance
with the industry usual approach, supporting its choice. The model performs outstand-
ingly for both in-sample and strike out-of-sample analysis, but its accuracy worsens when
maturity out-of-sampling is considered.

The new fully arbitrage-free methodology for completion of the volatility cube has then
been tested with non-standard OTC volatilities, and compared with a well-established
technique such as transferring the smile. The results are quite promising (especially for
the currently observed low rates situation). We understand that there is still strong room
for improvement within the method.

We state, then, that both strike and tenor inter/extrapolations (via shifted SABR’s
smile fitting or arbitrage-free considerations) are promising methodologies when complet-
ing the volatility cube in a consistent way. Maturity interpolation standard approach
(piecewise constant hypothesis) should clearly grow in complexity, since it is not accurate
enough for industry’s standard requirements.

Further research

In an extensive but not exhaustive list, the following topics are either under current
research or left for future study:

1. Empirical research on the influence of the shift parameter s in the process of cali-
brating, pricing and hedging within a shifted SABR framework. ICAP’s standard
choice s = 3% is to be fully reviewed.

2. Some other important models (such as Ho-Lee, HJM, numerical version of Hull-
White and many others) should be introduced in the survey in a consistent way
with the previous exposition. These models are calibrated numerically by standard
tree approaches. We aim, then, to open the survey to non-analytical models.
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3. European swaptions should be included in the survey for the sake of completeness
and comparability within the cap/caplets framework.

4. Complete in-sample/out-of-sample analysis on the accuracy of the proposal method
for full completion of the volatility cube for both quoting volatilities outstanding.
This study should include insights about the smoothness and continuity of the
resulting output pricing four-dimensional structure.

5. Empirical research about the influence of the chosen functional form in maturity of
the caplet implied volatility in the stripping process over the results of the stripping,
subsequent calibrations and models’ performances. Piecewise constant hypothesis
does not seem accurate enough and a growth in complexity is required.

6. Empirical comparison of the three methods proposed in appendix G to compute
parameter ⇢ within our completing the cube framework. More parameters could be
included in the free-arbitrage extrapolation method (within ⇢), resulting in a more
complex methodology designed to gain further accuracy.

7. Conversion of the whole caplets pricing analysis into caps’. Relative errors are
expected to be reduced then (since caps account for basket of caplets, and are
therefore more expensive and permit mutual compensation of errors when aggregat-
ing). Moreover, caps are the instruments that actually quote within the markets (in
form of flat implied volatilities), so the analysis would be of higher interest for the
industry.

8. Empirical (further) research on the influence of the choice of parameter � within
subsequent results. By the moment, we cannot claim that this choice mainly attends
to aesthetical reasons, as stated previously by some authors (see [21], for instance).

9. Empirical contrast on the influence of the calibration method chosen for analytical
version of Hull-White/Vasicek models (either doing it directly via caps’ flat volatili-
ties or pre-attaining caplets’ volatilities via stripping algorithm and calibrating with
caplets). Hopefully, the choice of the calibration method should not overly a↵ect
calibration results.

10. Inclusion of market’s standard multicurve framework for decoupling forwarding and
discounting in the sake of further accuracy.

11. Time-dependent extensions of the SABR model (such as the SABR-LIBOR market
model of [14]) should be included in the survey, in the spirit of greater depth.
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Appendix A

Local volatility predicts the wrong
dynamics of the volatility smile

For simplicity, consider the special case where local volatility �

loc

only depends on the
current forward rate F (t)110:

dF = �

loc

(F )FdW (t), F (0) = f. (A.1)

The authors had previously shown (see [41]) by singular perturbation methods that Eu-
ropean call and put prices are given by Black’s model with the implied (Black) volatility:

�(K, f) = �

loc

✓
1

2
|f +K|

◆⇢
1 + ...

�
(A.2)

in this particular local volatility specification, where the dots account for negligible higher
approximation orders. Suppose that the forward price today was f0, with an (observed)
implied volatility-curve �

0(K, f0). The calibration of the model to these market data
forces the local volatility to be:

�

loc

(F ) = �

0(2F � f0, f0)

⇢
1 + ...

�
(A.3)

for every forward rate F under consideration. Once the model is calibrated to market
data, it is turn to examine its predictions. Assume that today’s forward rate changed
from f0 to some new value f . Using (A.2) and (A.3), model’s prediction for the new
implied (Black) volatility curve reads as

�(K, f) = �

0(K + f � f0, f0)

⇢
1 + ...

�
(A.4)

110i.e., its dependence on the calendar time is embedded into the forward rate dependence. There is no
explicit dependence on the time. F (t) := F for shorthand notation.
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for an option with strike K for a given current forward rate f . Concretely, if the
forward rate f0 increases to f , the implied volatility curve moves to the left. If f0 de-
creases to f , the curve moves to the right. Therefore, the prediction of local volatility
models is clear: the smile/skew moves in the opposite direction to the price of the under-
lying asset. Figure (A.1) below illustrates this phenomenon. A theoretical perfect smile
�

0(K, f0) = ↵ + �(K � f0)2 (black line: ↵ = 0.2, � = 100, f0 = �0.5%) is shifted to the
left when f0 grows to f = 0%, and to the right when it drops to f = �1%. Formula (A.4)
has been applied in both cases to compute the new implied (Black) volatility curve (red
and blue lines respectively). This hypothesis is invalidated by typical market behaviour,
in which smiles and skews move in the same direction as the underlying.
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Figure A.1: Smiles dynamic evolution when f0 ! f under local volatility specification.

Additionally, and without too much e↵ort, it can be shown that hedges calculated
within a local-volatility context are certainly wrong. As proved in [21], the �-risk can be
computed as:

�
loc

= �+ ⌫

@�(K, f)

@f

, (A.5)

where � and ⌫ denote naive Black’s delta and vega risks respectively. As it has been
proved before, @�(K,f)

@f

has the opposite sign in local-volatility models that the one experi-
enced in the markets. Therefore, and highly surprisingly, hedges calculated under naive’s
Black model are more accurate than the ones provided by local-volatility models. This
feature is, without any doubt, local volatility models’ main drawback, since they lead to
unstable (and highly incorrect) hedges, although their capability to fit current smiles and
skews is undeniably spectacular.
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Appendix B

CEV model (1975)

SABR model (3.7) is the stochastic-volatility version of the CEV (constant elasticity of
variance model). CEV was firstly introduced in [42], and postulates that the underlying
instantaneous forward rate follows the process

dF (t) = � · F (t)� · dW (t), (B.1)

where the constraint 0  �  1 is usually imposed for the power parameter �. CEV
model arises as the natural generalization of both Bachelier (4.1) and Black (3.1) mod-
els, since both of them are obtained as particular cases with � = 0, 1 respectively.111

Consequently, it shares their fundamental drawbacks:

• It cannot deal with negative rates112.

• Volatility is constrained to be constant for every strike and underlying
forward price: Therefore, it cannot reproduce smile e↵ects.

• Analytical complication: This feature, which is not shared by its nested (Black
and Bachelier) specifications, is due to its more general structure. The formulae
are expressed in terms of the cumulative function of the non-central �2 distribution
(see, for example, [16]).

111Equivalently, CEV model has sometimes been addressed as a particular case of local volatility models
by several authors (see [16], for instance).
112Unless it was shifted, in which case we would have a restricted version of the shifted SABR model

(4.8) with constant volatility.
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Appendix C

Transferring the smile

This method is fully detailed in [34], and this appendix should be understood as a quick
summary of its main characteristics.

Transferring the smile aims to extrapolate the smile structure for any given maturity
(and standard tenor) to the same maturity and any di↵erent tenor by displacing the smile
as a whole, instead of transferring each volatility point by point. (Shifted) SABR model
is taken as the guide of the process, which can be summarized within the following steps:

1. Calibrate standard (shifted) SABR parameters (�(0)
⌧(0),↵⌧(0), ⇢⌧(0)) for the bench-

mark tenor ⌧(0) by using usual calibration formulae ((3.15) or (3.17)) and market
data for that tenor.

2. Assuming that the smile shape respect to moneyness does not change when the tenor
does, ↵

⌧(1) and ⇢

⌧(1) are fixed to the previously calibrated values (↵
⌧(0), ⇢⌧(0)) when

the tenor changes from ⌧(0) to ⌧(1) without change in the maturity. Therefore, the
only free parameter to adjust the new smile structure is �(0)

⌧(1). Since we have
illustrated that this parameter accounts for the level of the smile mainly (see figure
(3.2)), the smile shape is guaranteed to be conserved under any change in the tenor.

3. The new value of the ATM volatility within the change ⌧(0) to ⌧(1), �ATM

⌧(1) , can be
computed by the standard methodology detailed in chapter 5 of the Thesis (changing
�

ATM

⌧(0) to �

ATM

⌧(1) by applying equation (5.11), (5.12), (5.13) or (5.14)). This is the
only volatility that is transferred by this procedure in the whole transforming the
smile process.

4. Once �ATM

⌧(1) is computed, its value is introduced in equation (3.16) (along with fixed
parameters ↵

⌧(1) and ⇢

⌧(1)) to recover the new value of �(0)
⌧(1) via root-finding algo-

rithms. The new (shifted) SABR for the non-standard tenor is already calibrated,
and therefore any implied volatility can be computed within this new tenor.

Although the method is quite simple113 and guarantees conserving smile shapes for
any tenor under consideration (which eases the continuity requirement for the cube), we

113In fact, it is much simpler than our methodological approach given in chapter 5, since our volatilities
shall be transferred point by point.
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do not adhere to this approach precisely due to the smile-shape conservation guarantee.
Empirically, we have observed (see figure (8.4)) that the smile shape respect to moneyness
is not conserved under maturity ceteris paribus changes. Then, we do not find reasons to
believe that this assumption does apply for ceteris paribus tenor changes (and, in fact, we
think that it is hardly admissible, given the wild shape changes observed within maturity
modifications). We prefer to avoid this strong assumption and adopt a fully free-arbitrage
approach instead of transferring the smile. In any case, we have tested this methodology
through empirical results chapter (see figures (8.27), (8.28)). For further discussion about
this topic, the interested reader is encouraged to the insightful (and brilliantly exposed)
original reference [34].
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Appendix D

The Data

T K(%) ATM -0.75 -0.50 -0.25 -0.13 0.00 0.25 0.50 1.00 1.50 2.00 3.00 5.00 10.00

1Y -0.20 5.57 2.70 4.30 5.80 7.40 9.00 11.60 13.80 17.40 20.40 22.90 26.90 32.60 41.00

18M -0.20 6.83 6.70 6.30 6.90 8.30 9.70 12.00 14.00 17.30 20.00 22.20 25.80 31.00 38.60

2Y -0.20 8.59 9.60 8.20 8.10 9.30 10.50 12.50 14.20 17.20 19.60 21.60 24.80 29.50 36.30

3Y 0.02 11.17 12.70 11.20 10.00 10.40 11.10 12.40 13.60 15.90 17.70 19.30 21.90 25.70 31.00

4Y 0.14 13.39 15.10 13.50 12.10 12.30 12.80 13.80 14.80 16.50 18.00 19.30 21.50 24.60 29.10

5Y 0.26 14.94 16.50 15.00 13.80 13.80 14.10 14.90 15.60 16.90 17.90 18.90 20.40 22.70 26.10

6Y 0.39 15.88 17.20 15.90 14.80 14.70 15.00 15.60 16.10 17.00 17.70 18.30 19.30 20.80 23.20

7Y 0.52 16.33 17.70 16.40 15.40 15.30 15.50 15.90 16.30 16.90 17.40 17.80 18.50 19.70 21.70

8Y 0.64 16.50 17.90 16.70 15.80 15.70 15.80 16.10 16.40 16.80 17.10 17.30 17.80 18.60 20.20

9Y 0.76 16.49 18.00 16.90 16.00 15.90 15.90 16.10 16.30 16.60 16.70 16.90 17.10 17.60 18.80

10Y 0.87 16.37 18.00 17.00 16.10 16.00 16.00 16.10 16.30 16.40 16.40 16.40 16.50 16.70 17.60

12Y 1.06 15.99 18.00 17.10 16.30 16.10 16.10 16.10 16.10 16.00 15.90 15.70 15.50 15.30 15.70

15Y 1.25 15.37 17.80 17.00 16.30 16.10 16.00 15.90 15.80 15.50 15.20 15.00 14.60 14.20 14.30

20Y 1.41 14.63 17.50 16.80 16.10 15.90 15.70 15.50 15.30 14.90 14.60 14.20 13.80 13.30 13.20

Table D.1: EUR cap flat standard implied shifted Black volatilities (%). Maturities up to
T = 2Y quote within a 3-month tenor. Above T = 2Y , a 6 month-tenor is used in the
quoting procedure.

T K(%) ATM 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00

1Y 1.40 25.00 71.50 44.20 29.70 22.80 20.50 20.50 20.70 21.10

2Y 1.58 27.86 62.10 46.70 36.30 28.30 27.00 26.60 26.40 33.50

3Y 1.70 31.78 64.50 51.40 42.40 33.10 30.60 28.90 27.80 31.40

4Y 1.81 34.05 67.00 54.70 46.30 36.50 33.00 30.90 29.30 29.60

5Y 1.90 35.40 69.80 57.30 48.90 38.80 34.70 32.20 30.40 29.50

6Y 1.98 35.94 71.50 58.80 50.40 40.30 35.80 32.90 31.00 29.40

7Y 2.05 35.87 71.70 59.10 50.90 40.90 36.20 33.10 31.00 29.00

8Y 2.11 35.62 71.50 59.00 51.00 41.20 36.40 33.10 31.00 28.70

9Y 2.16 35.19 71.20 58.90 51.00 41.30 36.30 33.00 30.80 28.30

10Y 2.21 34.69 71.10 58.70 50.80 41.20 36.20 32.80 30.50 27.90

12Y 2.29 33.81 71.90 58.80 50.80 41.20 36.00 32.40 30.00 27.00

15Y 2.36 32.74 73.40 59.20 50.90 41.00 35.50 31.80 29.20 26.10

20Y 2.43 31.11 75.30 59.20 50.30 40.20 34.50 30.60 27.90 24.60

Table D.2: USD cap flat standard implied Black volatilities (%). The quoting tenor is 3
months.
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Figure D.1: OIS zero-coupon curves. In our single-curve approach, these rates are used
for both discounting and forwarding.
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Appendix E

ATM Caplet Stripping

114Consider that ATM USD caplet implied volatilities are to be stripped from ATM USD
cap volatilities. For the first maturity (year 1), the stripping procedure is similar to the
one explained for any fixed strike K, since the implied stripped volatility is constant
during the first year (by hypothesis). The equation to be inverted is:

Cap(t, [T
start

, 1], N,K

ATM,1) = Caplet(t, [0.25, 0.50], N,K

ATM,1, �(KATM,1, 1)+

Caplet(t, [0.50, 0.75], N,K

ATM,1, �(KATM,1, 1) + Caplet(t, [0.75, 1], N,K

ATM,1, �(KATM,1, 1),
(E.1)

where K

ATM,1 stands for the strike (i.e., the underlying forward rate) at maturity
T = 1. Once the equation is inverted, �(K

ATM,1, 1) is computed. The di↵erence between
stripping from any fixed strike and doing it for ATM strikes comes next. Since the
underlying forward rate changes for every maturity, the ATM strike does, and therefore
K

ATM,1 6= K

ATM,2. Consequently:

Cap(t, [T
start

, 2], N,K

ATM,2)� Cap(t, [T
start

, 1], N,K

ATM,1) =

Caplet(t, [0.25, 0.50], N,K

ATM,2, �(KATM,2, 1) + Caplet(t, [0.50, 0.75], N,K

ATM,2, �(KATM,2, 1)+

Caplet(t, [0.75, 1], N,K

ATM,2, �(KATM,2, 1) + Caplet(t, [1, 1.25], N,K

ATM,2, �(KATM,2, 2)+

Caplet(t, [1.25, 1.50], N,K

ATM,2, �(KATM,2, 2) + Caplet(t, [1.50, 1.75], N,K

ATM,2, �(KATM,2, 2)+

Caplet(t, [1.75, 2], N,K

ATM,2, �(KATM,2, 2)� Caplet(t, [0.25, 0.50], N,K

ATM,1, �(KATM,1, 1)�
Caplet(t, [0.50, 0.75], N,K

ATM,1, �(KATM,1, 1)� Caplet(t, [0.75, 1], N,K

ATM,1, �(KATM,1, 1) 6=
Caplet(t, [1, 1.25], N,K

ATM,2, �(KATM,2, 2) + Caplet(t, [1.25, 1.50], N,K

ATM,2, �(KATM,2, 2)+

Caplet(t, [1.50, 1.75], N,K

ATM,2, �(KATM,2, 2) + Caplet(t, [1.75, 2], N,K

ATM,2, �(KATM,2, 2),
(E.2)

as it did happen with the fixed (arbitrary) strike K. The di↵erence lies in the fact
that caplets for both caps do not compensate each other during the overlapping period
(until one year), since each set is quoted with its own ATM strike. As �(K

ATM,2, 1) is an

114The algorithm proposed was firstly stated in [43].
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Appendix E

unknown quantity (the one we would like to find in previous equation is �(K
ATM,2, 2)),

knowing �(K
ATM,1, 1) do not help us with the next maturity since we have two variables

for a single equation.

Instead of the previous di↵erence, the algorithm of [43] proposes to compute the quan-
tity Cap(t, [T

start

, 2], N,K

ATM,2)� Cap

theoretical(t, [T
start

, 1], N,K

ATM,2), where
Cap

theoretical(t, [T
start

, 1], N,K

ATM,2) stands for the theoretical price of a cap with that
characteristics. Since Cap

theoretical(t, [T
start

, 1], N,K

ATM,2) =
Caplet(t, [0.25, 0.50], N,K

ATM,2, �(KATM,2, 1)+Caplet(t, [0.50, 0.75], N,K

ATM,2, �(KATM,2, 1)+
Caplet(t, [0.75, 1], N,K

ATM,2, �(KATM,2, 1),

(E.3)

we have:

Cap(t, [T
start

, 2], N,K

ATM,2)� Cap

theoretical(t, [T
start

, 1], N,K

ATM,2) =

Caplet(t, [1, 1.25], N,K

ATM,2, �(KATM,2, 2) + Caplet(t, [1.25, 1.50], N,K

ATM,2, �(KATM,2, 2)+

Caplet(t, [1.50, 1.75], N,K

ATM,2, �(KATM,2, 2) + Caplet(t, [1.75, 2], N,K

ATM,2, �(KATM,2, 2),
(E.4)

and the stripping procedure can be performed as usual. The only necessary condition,
then, is being able to find the quantity �(K

ATM,2, 1) to compute the theoretical price of
the cap for the first period given by (E.3). �(K

ATM,2, 1) accounts for the implied caplet
volatility during the first period at K

ATM,2, which is not quoted in the markets. However,
it can be easily computed by interpolating over quoting implied volatilities by the stan-
dard use of the (shifted) SABR. Once the model is calibrated as explained in chapter 7
of the Thesis, the implied caplet volatility for next maturity’s ATM strike is interpolated
and introduced in equation (E.3). The theoretical price of the cap is used in equation
(E.4) to obtain, via Newton-Raphson algorithm, the quantity �(K

ATM,2, 2)) for the sought
maturity. This bootstrapping procedure is performed in ascending order of maturity to
obtain the term structure of ATM implied volatilities for every caplet under consideration.

The stripping methodology for ATM caps can be then summarized within the following
scheme:

1. Using formulae (3.3), (4.3) (whether quoting flat implied volatilities were (shifted)
Black’s or Bachelier’s), every constituent ATM caplet of the ATM cap is priced, for
every ATM cap under study. The ATM cap price is then obtained by aggregating
individual ATM caplet prices (see formulas (3.5), (4.5)).

2. Fixed-strike caps are stripped as described in chapter 7 of the Thesis.

3. A strike-interpolating model (such as (shifted) SABR) should be calibrated for every
(cap) maturity.

4. Defining K

ATM,j

as the ATM strike for every maturity under consideration, a price
di↵erence series between the current cap market prices and the preceding cap the-
oretical prices for the current ATM strike is constructed, by the explicit use of
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the interpolated implied volatility from the previous maturity at the current ATM
strike:

Cap(t, T
j

, N,K

ATM,j

)� Cap

theoretical(t, T
j�1, N,K

ATM,j

), j = 1, ..., n, (E.5)

where Cap

theoretical(t, T0, N,K) := 0.

5. Steps 4 and 5 of the fixed-strikes algorithm are repeated (mapping the price di↵er-
ence to the appropriate caplets and extracting the implied ATM caplet volatility by
the explicit use of a one-dimensional root finder).

Within this formulation, the ATM caplet stripping procedure presents intermaturity
dependence, since every stripping (excluding the first one) depends on the interpolation
procedure of the previous maturity.
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Appendix F

Pricing caplets under
Vasicek/Hull-White. Numerical
issues

This appendix tries to clarify which kind of numerical di�culties can be found when
Vasicek/Hull-White models are calibrated via caplet pricing formulae (4.14), (4.16)115 .
In a nutshell, classical numerical routines troubles might be splitted between two di↵erent
categories:

• Getting stuck in a local critical point: Stochastic optimization techniques have
grown in importance during recent years due to their capability to deal with this
classical problem. Appendix H is fully devoted to the Simulated annealing technique
that has been implemented in our calibration process. No improvement has been
detected, and therefore we assume that this is not the main concern for us.

• Discontinuity of the pricing function: To set ideas, figure (F.1) below shows
the dependence on the parameter ✓ of Vasicek’s caplet pricing formula (4.14)116

for fixed k, �2 (to their respective calibrated values for T = 1Y ) and K = 0%,
as an illustrative example. It can be seen that the pricing function is remarkably
discontinuous, and therefore the calibration algorithm cannot fit properly any price
between two given points of the 1-D parametric space for ✓

117. We believe that
the arisen problems during the optimization procedure are due to the nature of the
caplets pricing functions, not to the optimization procedure itself.

115MATLAB’s internal procedure for calibrating Vasicek/Hull-White models based on caplets market
data, hwcalbycap, has been also used as a benchmark to contrast the results of our own calibration
algorithms based on formulae (4.14), (4.16). No better results have been attained.
116Since formulas (4.14), (4.16) present a similar structure, the pricing problems in (4.14) are reproduced

in (4.16) , and therefore any comment made for (4.14) during the appendix applies for (4.16) as well.
117For instance, say that the actual market price of the caplet priced in figure (F.1) is 0.02%. As shown

in the figure, every considered point of the parametric space for ✓ gives a di↵erent price respect to our
market benchmark. Therefore, the step-size tolerance is not enough to guarantee a proper fit for small
caplet prices, where the relative pricing error increases wildly as soon as the market price is not attained
with high accuracy.
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Figure F.1: Vasicek caplet pricing formulae (4.14) as a function of the long term value ✓.
k and �

2 have been fixed to 1.2147 and 1.4546e� 05 respectively. A standard notional of
N = 100 and T = 1Y have been chosen.
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Appendix G

Correlating the forward rates

There exist three di↵erent approaches to estimate parameter ⇢ from formulas (5.11),
(5.12), (5.13), (5.14):

1. Historical correlation of time series for both forward rates: This econo-
metric approach can be sophisticated to attend for time varying correlation, using
DCC-GARCH alike models to reproduce several characteristics of both variables
(leverage, assymetry, etc.)118. Even doing so, the classical problem of relying the
estimation of a by nature forward-looking measure such as the implied volatility
within a historical (realized) correlation appears. Abundant literature has been
written about this topic, and the most optimistic recommended treatment is the
one of [45]. The problem is obvious: we do not want to answer the question of
whether these forward rates have been highly correlated (or not) in the past with-
out an explicit use of any forward-looking model (which is the standard approach for
historical measures), but to forecast how this correlation would be in the future for
the given model (5.3). This is the main flaw of the historical econometric approach.

2. Let ⇢ being a free parameter to be calibrated within the extrapolation
method: In our research, we act as if we had no data for the non-standard tenors
to be extrapolated, to resemble the worst possible situation among the markets. If
we had a reasonable dataset for any non-standard tenor we could, in principle, infer
parameter ⇢ from a non-linear least squares comparison between formulas (5.11),
(5.12), (5.13), (5.14) and market volatilities. Then, we could estimate out-of-sample
volatilities in a more accurate fashion.

3. Adhere to previous literature: Following the claim of [7] (high correlation among
forward rates), [2] fixes the correlation between any pair of arbitrary forward rates
under study in ⇢ = 0.9. We follow this choice, and fix ⇢ = 0.9 for any pair of forward
rates under consideration.

Obviously, the three methods shall be contrasted in terms of accuracy of the resulting
calibration method. This issue is left for further research.

118For quick refresh on standard econometric analysis of financial time series with particular interest on
DCC-EWMA/GARCH correlation models, the brilliant treatment of [44] is always recommended.
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Appendix H

Stochastic optimization. Simulated
annealing

119 Stochastic optimization attempts to overcome the classical problem of ”traditional”
optimization tecniques: getting stuck in a local critical point.

While traditional optimization improves towards the better local solution (i.e., ex-
ploits), stochastic’s aims to wander on the full range provided for the parameters (i.e.,
explores). When traditional optimization gets close to a promising local optimal, the
step size is not big enough to escape from local minimum barriers, and the convergence is
finally attained over the local point, ignoring the possibility of further exploration of the
parametric space.

Inspired by Physics’ potential barriers, stochastic optimization techniques have a non-
zero probability of attaining any arbitrary point of the parametric space, although this
probability decreases in an a priori functional specified form with the number of iterations
(that is why this method is called ”simulated annealing”120). The applied version of sim-
ulated annealing for finding a local minimal of the function f(✓n): Rn ! R

1 is structured
in the following steps:

1. The full parametric space is collapsed into a R

n [0x1]n space.

2. An arbitrary seed ✓

n

0 is given. i is fixed to zero.

3. A new sample point of the parametric space ✓

n

i,alternative

is generated via standard
one-dimensional uniform distributions in every dimension.

4. If f(✓n
i,alternative

)  f(✓n
i

), we jump to the new sample point (i.e., ✓n
i+1=✓

n

i,alternative

).
Otherwise, there is still a non-zero probability of jumping, given by:

P (✓n
i

, ✓

n

i,alternative

, T ) = exp

✓
f(✓n

i

)� f(✓n
i,alternative

)

T

◆
(H.1)

119Special thanks to Carlos A. Catalán Garćıa. This version of the simulated annealing algorithm is
fully inspired in the slides he selflessly provided.
120Within this analogy, the temperature is an indirect measure of the probability of the jump.
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If P (✓n
i

, ✓

n

i,alternative

, T ) has been computed in this step, another sample from a stan-
dard uniform distribution x

i

is extracted and compared with P (✓n
i

, ✓

n

i,alternative

, T ). If
x

i

 P (✓n
i

, ✓

n

i,alternative

, T ), again ✓

n

i+1=✓

n

i,alternative

. Otherwise no jump has occurred,
and ✓

n

i+1=✓

n

i

In any case, i = i + 1 and the temperature variable T is reduced
smoothly.121

5. Steps 3 and 4 are iterated until T reaches a pre-specified low minimal.

For any fixed number of iterations, the process guarantees that a huge region of the
parametric space is explored, instead of finding a (possible) local minimum in an accu-
rate fashion. For further information about simulated annealing technique, [46] is highly
recommended.

121Notice that standard values of T cannot be pre-specified, since they depend on the optimization
procedure, in order to make the di↵erence f(✓ni )� f(✓ni,alternative) relatively comparable with T .
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