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Abstract 

In this work we implement two approaches of modelling PMs for both the Sharpe Ratio and Quantile Ratio 

families to select equities. A parametric (P) approach based on an asymmetric GARCH and a 

semiparametric (SP) approach based on the CAViaR are used to model the higher moments quantiles of 

the asset returns. Considering daily returns of 12 equities of the S&P500 a rank of them is made to form 

portfolios, obtaining a clear outperform by the assets selected with the SP quantile ratios, especially those 

that do not go far from the center of the distribution.  

Keywords: CAViaR, Asymmetric GARCH, Higher moments, Sharpe Ratios, Quantile Ratios.  

 

1. Introduction 

This work studies how different the Performance measures (PMs) sort assets and the behaviour of the 

portfolios constructed using this criteria. Using the PMs as a screening rule we can choose the assets to 

be invested in. 

In this environment the Sharpe Ratio (SR) (Sharpe 1996) is the benchmark strategy, which requires the 

returns to follow a Gaussian distribution1 or quadratic preferences. It has been well documented that this 

assumption is far from reality, as the assets deviate from normality, causing an underestimation of the risk. 

Following León et al (2015), the debate about the significance in investment applications of PMs regarding 

the SR is still open.  

In this work we show a class of PMs that can account for higher moments and two ways to measure them. 

Using a parametric (P) approach based in an asymmetric GARCH style, and a semiparametric (SP) 

approach based on the CAViaR proposed by Engle and Manganelli (2004) the higher moments and some 

selected quantiles of the returns distributions are modelled. 

A set of six PMs that pertain to two different groups are used, the SR and its extension, the Adjusted 

Sharpe Ratio with skewness and kurtosis, and a group of PMs based on quantiles, two Value at Risk 

(VaR) and two Expected Shortfall (ES) ratios, what makes 12 different portfolios. These PMs are 

computed and ranked for daily returns of a subset of 12 stocks pertaining to the S&P 500, and the four 

stocks with the best performance are selected for the next day to form an equally-weighted portfolio. This 

analysis is made for both the in sample (IS) and the out of sample period (OOS). The resulting cumulative 

returns for each portfolio and the differences in composition made by every PM are studied. 

For both sample periods differences in ranks are found for the different groups of PMs, and for the 

different ways to measure them. The group of ratios based on quantiles, and especially the SP-VaR ratios 

outperform every other measure during the in sample period. According to these results we pay more 

attention to the SP PMs during the OOS, and we estimate again the models every year of the period. 

The outline of this work is as follows. In section 2 the PMs used are presented and section 3 shows the 

way in which higher moments and quantiles are modelled in every framework. Section 4 shows the data 

used and comment the results obtained, while section 5 discuses the portfolios from the previous 

                                                           
1
 Owen et al.1983 
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estimations. Sections 6 and 7 show the conclusions and discusses figures and tables that contain the 

results. 

2. Performance Measures 

Two main groups have been used here, based on the moments of the returns distribution (Sharpe Ratio 

and the Adjusted Sharpe Ratio), and based on the quantiles (Value at Risk Ratio and Expected Shortfall 

Ratio). 

The standard PM is the Sharpe Ratio (SR) (Sharpe, 1966 and 1994), which is defined as  

      
   

 
 , 

where   and   are the expected return and volatility of return distributions respectively.   is the threshold, 

usually the risk free rate. To account for higher moments of the returns distribution an extension of SR is 

used, the Amplified Sharpe Ratio (ASR), suggested by Pézier and White (2008) 

               
  

 
      

    

  
         

Where    and    are the skewness and kurtosis of returns distributions respectively. 

The other group of measures are based on quantiles, so first are introduced the downside risk measures 

used.  

The VaR at the   confidence level of a distribution      is the  -quantile of      is: 

                       

The other measure is the Expected Shortfall or Conditional VaR, which measures the expected value of 

the returns given that the VaR level has been exceeded. 

                       

VaR Ratio, introduced in Caporin and Lisi (2011) uses symmetric quantiles of the returns distributions: 

         
         

        
   

where |·| is the absolute value function. The confidence levels used are 80 and 20 (VaRR8020) and 90 10 

(VaRR9010). Following this scheme we have the Expected Shortfall Ratio (ESR), at the same levels than 

VaRR. 

        
        

       
   

where the numerator is the expected gain (the right tail) and the denominator is the expected loss (the left 

tail).  
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3. Modelling time-varying skewness and kurtosis 

In this section we show the quantiles and the higher moments to construct the PMs. 

In previous literature two main approaches have been used to modelling higher moments. The direct 

approach, where the evolution of skewness and kurtosis are defined in an explicit equation. This approach 

was proposed by Harvey & Siddique (1999), Brooks et al. (2005) and León et al. (2005). Regarding the 

last model, which captures the dynamics in both skewness and kurtosis and extend the other ones, shows 

a modification of the Gram-Charlier density for standardized returns. This model is the one used by White 

et al. (2010) to compare with their multi-quantile CAViaR. 

As addressed by Anatolyev & Petukhov (2016), this approach would be very attractive but it shows some 

drawbacks. There are a few distributions that have skewness and kurtosis as parameters, and there exists 

a theoretical bound in which all possible values for skewness-kurtosis must lie (see Jondeau & Rockinger, 

2003), while the dynamics they propose is not restricted to this bound. In León et al. (2005) to overcome 

the boundedness problem, they modify the density to be defined by any pair of skewness-kurtosis, but 

those parameters are no longer the skewness and kurtosis desired with respect to the modified density. 

The indirect approach to modelling conditional higher moments consists of implementing some distribution 

with parameters that reflect asymmetry and heavy tailedness. Jondeau & Rockinger (2003) is one of the 

first to study the effect of conditional higher moments, and they selected the Hansen (1994) Skewed-t 

distribution (ST), which has two parameters that drive skewness and kurtosis. This approach has also 

been used by Fenou et al. (2014), which models conditional skewness with the Binormal distribution, ST, 

the Skewed Generalized Error Distribution (SGED) of Theodossiou (2000), Lalancette and Simonato 

(2017) which used the Johnson Su distribution to model conditional skewness and kurtosis of the VIX 

index, and finally, Bali et al. (2007) who implemented used the Skewed Generalized t distribution (SGT) of 

Theodossiou (1998) to estimate the conditional value at risk (VaR). 

In this work two kind of approaches have been used, a semiparametric approach based on the quantiles 

of the returns distribution estimated via CAViaR (Engle and Manganelli, 2004), and a parametric approach 

based on the modellization of the conditional moments of the Skewed t of Hansen (Jondeau & Rockinger, 

2003). 

 

3.1. Parametric measures of conditional skewness and kurtosis 

3.1.1. The Hansen skewed t distribution 

The next model builds on an asymmetric GARCH model, with errors following the skewed t distribution of 

Hansen (1994) with time varying moments. 

This density function, introduced by Hansen (1994) permits the residuals to have asymmetries and fat 

tails: 
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where  

     
   

   
                            

          

             
  

This distribution is defined for        and       , and includes other known distributions 

such as the Student’s t as   goes to 0, and the Normal distribution when   tends to infinity. This 

distribution, like the traditional Student-t distribution with   degrees of freedom, allows the existence of the 

moments up to the  th. Then, it exists if    , but the kurtosis does exists for the restriction of     is 

imposed. 

The theoretical formulae for skewness and kurtosis are extracted from Jondeau and Rockinger (2003), 

given the notations 

          

             
      

          
         

    
      

     
                      

Both skewness and kurtosis are defined as  

                      

                           

For more details, see Jondeau and Rockinger (2003). 

 

3.1.2 GARCH model  

Let       denote the daily log-return of asset i at time t, then.  

                 

                         
       

                 
       

              

                

                                

 

where      is the expected return and variance conditioned on        the information set, and      is the 

corresponding residual. 

Asymmetric GARCH, (the GJR-GARCH (Glosten et al. 1993)) is employed for the dynamic of the 

conditional variance. This specification accounts for volatility clustering and leverage effects. Innovations 
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     are driven by a skewed Student’s t distribution, which capture heavy tails and skewness through the 

degrees of freedom    and the asymmetry parameter     (Hansen 1994). 

The specification of the innovation’s distributions allows for time-varying higher moments as follows: 

                           
       

      
       

   

                           
       

      
       

   

                                          

Where     
              ,      

              ,               
   

         
 denotes the logistic 

map in order to keep the transformed variable y in the domain       for all    . This kind of 

specification        and       may depend on their lagged values and react differently to positive and 

negative shocks. For more details, see Jondeau and Rockinger (2003). 

This model is solved using maximum likelihood estimation (MLE), but the optimality conditions make us 

wonder if the optimum is reached. The steps followed in the final estimation of the model consist of 

estimating the model firstly accounting only for the dynamic of the volatility. Then model both volatility and 

degree of freedom parameter with the asymmetry constant, and finally the whole model, taking into 

account the previous estimations. For the finally results, the MLE parameters are used as initial values for 

the Bayesian estimation. As explained below we use Markov Chain Monte Carlo (MCMC) with the 

Metropolis-Hastings algorithm to overcome the parameter uncertainty. See appendix for more details. 

Once the return distribution is modelled it is straightforward to obtain the different quantiles that would 

describe the VaR and ES 

                            

      

where         is the desired quantile at the   confidence level, for the asset i and the moment t,        is 

the estimated volatility of the previous day for that asset        , and                

      is the inverse of 

the Hansen t distribution given the estimated parameters and for the confidence level. 

 

3.2 Semiparametric measures of conditional skewness and kurtosis. 

Kim and White (2004) estimate by using more robust measures both the third and fourth moments of 

standardized random variables. For instance, is Bowley’s (1920) coefficient of skewness is given by 

    
  

    
     

 

  
    

 , 

where   
              

             
             where               is the 

unconditional cumulative density function (CDF) of    . The kurtosis coefficients of Crow & Siddiqui’s 

(1967) is given by  
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where   
               

              The choice of these measures can be seen in White, et 

al. (2010)., and Kim and White (2004). 

These measures are based on unconditional quantiles, so they can’t incorporate the dynamic evolution of 

quantiles over time. To avoid these limitations White et al. (2010), aim to build conditional skewness and 

kurtosis measures by using conditional quantiles     
   instead of the unconditional ones,   

 . These 

conditional measures are given by  

     
    

      
       

 

    
      

  

     
    

      
 

    
      

        

For more details, see White et al. (2010). 

Finally the methodology by Taylor (2005) is used to estimate volatility based on symmetric quantiles 

    
    

      
 

    
 

Note that the denominator is based on the central distances between the quantiles under the Pearson 

curves (see Pearson and Tukey 1965).  

 

3.2.1 CAViaR model 

Let       denote the daily log-return of an asset i at time t.  

Let   be a vector of unknown parameters, then a generic CAViaR specification (Engle and Manganelli 

2004) for a symmetric absolute value2 on the news impact curve might be: 

                            

The parameters of CAViaR models are estimated by quantile regression, introduced by Koenker and 

Basset (1978), Engle and Manganelli (2004).  

The     regression quantile is defined as: 

   
 

 

 
                          

 

   

 

where      is the indicator function.  

The previous CAViaR model is used to estimate the five quantiles needed for the conditional skewness 

and kurtosis:                               and the ones used in VaR and ES measures:    

                                         what makes a total of 45 quantiles. 

                                                           
2
 Kuester et al. (2006) shows the good performance of the Symmetric Absolute Value in relation to more 

sophisticated CAViaR specifications. 
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Trying to estimate this model as a VAR is difficult from the computational point of view as estimated in 

White et al. (2010) as they had to estimate 35 parameters for their model of 5 quantiles. In this case, the 

model is much more simple, with a different equation for every quantile and without interaction across 

them, so the problems gets simplified to estimate only 3 parameters for each quantile3.  

This conditional quantiles           
             

   are then used to estimate CSK2 and CSK4, the quantiles 

        
          

          
          

  are used to get the VaR measures, and to compute the ES an arithmetic 

mean of the quantiles beyond the given VaR are used (for the ES10 for example the mean of 

         
           

            
          

  is computed). 

 

4. Data 

In this study 12 stock return series from different sectors of the S&P500 have been chosen to ensure 

different statistic types, obtained from Datastream. The next symbols are used for the equities: APPL, JNJ, 

BRK.A, DIS, GE, KO, XOM, SO, SPG, DOW, T, JPM respectively Apple, Johnson & Johnson, Berkshire 

Hathaway, Walt Disney, General Electric, Coca Cola, Exxon Mobil, Southern, Simon Property Group, Dow 

Jones, AT&T and JP Morgan. It covers 16 years of daily data, from March 18, 1997 to May 29, 2013, what 

makes 4217 return observations used for the in sample, and 1000 observations to March 28, 2017 for out 

of sample purposes. 

Table 1 displays the summary statistics for the in sample market data. It shows the annualized average 

mean that ranges between 0.85% and 27,24% , and annualized volatility from 21,45% to 49,77%.  

Skewness and Kurtosis are different from 0 (ranged between -2,81 to 0,25) and higher than 3 in every 

stock (from 7,96 to 77,49) along with the Jarque-Bera  (JB) test that rejects the normality assumption in 

the data.  

Finally, there is no evidence for serial correlation across all returns series, in contrast with the case of 

squared returns that are all strongly correlated but for the case of Apple. 

 [INSERT TABLE 1 AROUND HERE] 

 

4.1 Model estimation 

4.1.1 Parametric approach 

Table 2 and Table 3 exhibit Bayesian parameter estimates of the GARCH and Skew-t dynamics are 

reported. In every case except for T, we can see how bad news have a greater effect in the volatility, what 

                                                           
3 The reason to do this is to simplify calculations, and as showed in their paper of MQ-CAViaR the estimations do not vary much 

from those in the univariate problem. 
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suggests asymmetric returns. The volatility persistence (      
    

    ) is high in very case, close 

to 1 in the case of XOM and the lowest 0.954 of T. 

[INSERT TABLE 2 AROUND HERE] 

[INSERT TABLE 3 AROUND HERE] 

Table 3 exhibit the parameters for the higher-moment dynamics. Regarding the degree of freedom 

parameter we can see that the autoregressive parameter is far from 1 in every case, what might suggest 

that there is not a high persistence in this parameter. It is not easy to decide if either positive or negative 

returns have a greater effect on this parameter as in every equation have different sign and magnitude, 

but all the constant terms seem to be negative under this dynamic specification.  

Regarding the asymmetry parameter there are similar results, but in this case the constant term seem to 

be lower and close to 0 in every case. There is no evidence of strong persistence in this parameter, except 

BRK.A and DOW seem to be higher, and hence a less erratic shape of the dynamics.  

 

4.1.2 Semiparametric approach 

Only the estimates for the 5 quantiles driving the skewness and kurtosis are exhibited, instead of all the 

quantile estimation, what would make 1620 parameters.  

Regarding the autoregressive parameters is high in every case and with low deviation except for the case 

of the median that we will comment below. The parameters that drive the impact news       get higher as 

we try to estimate the quantiles in the extremes of the distribution, what makes sense as there are more 

pikes in this part of the distribution. The case with the median (q2) is quite different. Since these series 

tend to be around 0 they become difficult to estimate the parameters underlying this equation, as shown in 

higher standard deviation of these parameters. 

 

4.2 Dynamics of the higher moments 

4.2.1 Parametric approach 

In figures 1 to 5 the dynamics of the moments are displayed as well as Both the asymmetry and degree of 

freedom parameters that drive skewness and kurtosis for four selected equities: APPL, KO, GE and JPM, 

what let us have an idea of the rest of time-series.   

[INSERT FIGURE 1 AROUND  HERE] 

[INSERT FIGURE 2 AROUND HERE] 

[INSERT FIGURE 3 AROUND HERE] 

[INSERT FIGURE 4 AROUND HERE] 

[INSERT FIGURE 5 AROUND HERE] 

In general a low degree of freedom leads a higher kurtosis and vice versa, and an asymmetry parameter 

close to 0 leads to a lower skewness. An example of this can be seen with the dynamics of the degrees of 

freedom estimated for KO, around 29, and a kurtosis close to 3.  
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In figure 2 we can see the high volatility in APPL in 2001, corresponding to the dot-com bubble, as well as 

with JPM in year 2009 with the financial crisis, in this case also with spikes of higher kurtosis. 

 

4.2.2 Semiparametric approach 

Figures 6 to 9 show the evolution of the quantiles driving the volatility, skewness and kurtosis. This way of 

modelling the moments of the distribution is less sensitive to those based on moments as we can see with 

the corresponding rise in volatility of APPL modelled with a GARCH.  

[INSERT FIGURE 6 AROUND HERE] 

[INSERT FIGURE 7 AROUND HERE] 

[INSERT FIGURE 8 AROUND HERE] 

[INSERT FIGURE 9 AROUND HERE] 

 

4.3 Risk measures estimates 

Figures 10 to 13 show the returns, the estimates of VaR measures and ES at the 10% and 90% 

confidence level, under both the P and SP ways for the selected equities, and a selection of measures, as 

the results are similar for the 20% and 80% estimates. As expected, the ES measures are always over the 

VaR estimates.  

[INSERT FIGURE 10 AROUND HERE] 

[INSERT FIGURE 11 AROUND HERE] 

[INSERT FIGURE 12 AROUND HERE] 

[INSERT FIGURE 13 AROUND HERE] 

The SP approach by Engle and Manganelli (2004) catches the quantile really well in the for sample period. 

Meanwhile, that is based on P approach based on the Hansen’s t distribution predicts higher risk. Anyway 

both measures have almost similar number of violations.  

 

5. PM and portfolio analysis 

We study the differences in sorting stocks according to the different strategies, as well as a performance 

measure to compare the different portfolio strategies. 

5.1. In sample period 

In order to study the alternative compositions that produce the PMs, we analyze the rankings for stocks. 

The portfolios are constructed using an equally weighted portfolio of the four stocks that best perform, so 

those are the ones that are more relevant to us. Table 5 exhibits the equities that appear a higher number 

of times from each strategy, under either P or SP approaches. If a number is repeated it means that takes 

simultaneously those positions, so the portfolio has more weight in that equity. The first difference is that 
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according to the measures based on the CAViaR, the first asset (APPL), achieves the first position in the 

six selected measures. Regarding the P measures based on ES there are not many differences, against 

the results showed in the SP measures. Note that the P measure is a compound of the product of dynamic 

volatility and a given quantile of the distribution studied, while in the SP measures the quantiles are 

directly estimated for the return distribution. Under P, the volatility seems to have the biggest relative 

importance, so the quantile may not vary enough to produce different sorting. The equities that perform 

the best, as we will see below are the ones chosen with the SP VaR8020, which selects the stocks 1, 9 

and 8 (APPL, SPG and SO) as the best in this period. 

We analyze how different are the sorts made by these PMs, by using a measure based on the Euclidean 

norm. Thus, we divide the norm by the max of these values, and as a result we obtain a measure ranging 

between 0, (no difference), to 1, (completely different). Table 6 shows the matrix that produces these 

measures. As this measure is symmetric, the results are only displayed over the diagonal. There are two 

zeros in this matrix, corresponding to the ES9010 and the ES8020 with the parametric approach, and to 

the SR and ASR measured via CAViaR, which produce exactly the same results. The northeast matrix 

displays the differences between both approaches to obtain PMs. As expected, we find the biggest 

differences between both methods. The measures that sort completely different are those based in the 

ES8020 and ES9010 (which are the same), against the ES9010 based on the SP approach. Also these 

measures are the most different against the SP ones. 

[INSERT TABLE 6 AROUND HERE] 

Table 7 shows the number of days that the portfolio remain without rebalance. The measures that need 

less rebalance are the ones measured with ES and VaR ratios in the SP case, and the portfolio that best 

performs, based on the SP VaR8020, is also the one that needs less trades, and therefore has less 

transaction costs. 

[INSERT TABLE 7 AROUND HERE] 

 

5.1.1. Performance fee measure 

The selected tool to evaluate the economic value to accounting for higher moments is the performance fee 

measure proposed by West et al. (1993) and Fleming, et al. (2001), following Jondeau and Rockinger 

(2012). It measures the management fee that an investor would pay to switch from a given strategy to a 

different one. This performance fee or opportunity cost, denoted by  , is defined as the average return 

that has to be subtracted from the return of the strategy based in SR against the other strategies, such 

that the investor becomes indifferent to both strategies 

                          
          

Where         is the portfolio return of the SR based strategy and   
      is the portfolio return under the 

alternative strategy. The performance fee   is obtained by solving this equation numerically. 

To measure the utility, it can be expressed as infinite-order Taylor series expansion around the wealth at 

day t  
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where                is the portfolio return at day t+1, and      is the kth derivative of the utility 

function. Then, the expected utility is given by  

                
              

 

  

 

   

   
        

  
      

   

 

   

 

where        
   

          
    denotes the noncentered moments of order k. Following this approach, the 

expected utility depends on all the moments of the distribution of the portfolio return.  

We aim to compare some measures that account for higher moments against SR, which only accounts 

explicitly for the first two moments. A Taylor series expansion up to the fourth order is given by 

                           
   

         
   

         
   

         
   

 

where    
 

  
        . Following Jondeau and Rockinger (2012), the parameters    are calibrated 

using the power utility function             
   

      , where     (     is the relative risk 

aversion coefficient. In this case, the parameters are                               

          ,                  . 

The alternative strategies would be compared against the benchmark SR based strategy, which only 

accounts for the first two moments. So the Taylor series expansion becomes. 

                           
   

         
   

 

Table 8 exhibits the payment that an investor is willing to pay yearly to switch from a strategy based on the 

SR measure to the alternative. If the SR strategy is better than the alternative the payment is negative, 

hence, and hence, the investor would not change. It is shown that the strategy which deserves the highest 

pay is the one based on the VaR8020, of a 1,04% every year. Under SP this result is higher as the 

investor gets more risk averse. 

[INSERT TABLE 8 AROUND HERE] 

 

5.1.2. Dynamic Quantile test 

As a measure of accuracy a Dynamic Quantile Test (DQ test) proposed by Engle and Manganelli (2004) is 

carried out. This test consists of using a linear regression model to link current to past violations, testing 

whether the null hypothesis of the      is uncorrelated with any variable that belongs to the information 

set      available when the VaR was calculated and have a mean value of zero, implying the absence of 

autocorrelation in the hits. If 

           
                       

                         
  

Consider the following linear regression model, 

              

 

   

             

 

     

      



14 
 

where    is the vector of explanatory variables contained in     . Engle and Manganelli (2004) suggest 

         . This means testing whether the probability of an exception depends on the level of the 

VaR. They derive the following Wald statistic for the DQ test: 

        

      
           

  

Under the null hypothesis                     which implies             the hits are unbiased 

and uncorrelated.  

As the core of this work is not related to perfectly estimate risk measures, this test is only made to account 

for the in sample behaviour. The instruments used in the regression are a constant, one lag of the hits and 

the corresponding quantile, and the results show that the SP passes the test 93% of the times, while the 

Pr models get an 83%. 

 

5.1.3. Cumulative Returns behaviour 

Figure 14 exhibits the cumulative portfolio returns under different measures and methods. There is a clear 

result, the PMs measured with the SP models outperform the best, with the PMs based on the VaR and 

ES ratios. The best portfolio is the one based on the VaR8020. This suggests that for an investor the 

information that has to care about is not in the extreme percentiles of the distribution (90 vs 10, or a mix of 

quantiles), but in the quantiles which are close to three fourths and one fourth of the return distribution. In 

this case, measuring the skewness and kurtosis of the individual assets does not seem to be very effective 

to select assets. 

[INSERT FIGURE 14 AROUND HERE] 

 

5.2. Out of sample period 

The position of assets (Table 9) are very similar for the parametric measures except for the VaR ratios. 

Indeed the VaR9010 produces similar results to the ES ratios, while the VaR8020 changes the positions 

for the assets 2 to 4 that most appear. The SR and ASR remain unchanged under the SP framework. It is 

held that the first asset for every measure is again APPL, but there are differences in the other assets 

chosen for the VaR and ES ratios. The VaR8020, which makes the best performance during the in sample 

period, contains most of the time the two stocks  APPL and T. 

[INSERT TABLE 9 AROUND HERE] 

Figure 15 displays in separated graphs the cumulative returns for different PMs under P and SP without 

reestimation. It is exhibited that during the first two years of the OOS the SP outperform the P models. 

Specifically, the best performance is according to ES8020. After this period, the same behaviour can be 

seen. The strategies of the SR, (according both P and SP methods) outperform the other measures, and 

at the end of the period the results change again. For the P models very similar results are obtained, while 

in the SP model the VaR8020 takes the best performance, corresponding to the same strategy leading in 

the IS. 

[INSERT FIGURE 15 AROUND HERE] 
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Figure 16 only considers the SP models, which have been reestimated every 250 days. We would expect 

a different result due to the reestimation, but there are only slight differences. Depending on the investor’s 

horizon the PM to select assets is different. Specifically, for 1 or 2 years the optimal strategy would be the 

ES8020, for 3 years it is not very clear which PM to be selected, and the VaR8020 would be chosen if the 

horizon were 4 years. Figure 17 displays the previous data from the point of view of an investor entering 

that year to the strategy, what let us know the benefits obtained in each strategy if we entered in a 

different year. 

[INSERT FIGURE 16 AROUND HERE] 

[INSERT FIGURE 17 AROUND HERE] 
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6. Conclusions 

We show two methods, P and SP, to model different PMs to select assets. 

We show that not only the PMs selected matter, but also the approach to estimate them is important as 

well. The family of VaR ratios provide a better performance, especially when measured for quantiles closer 

to the center of the distribution than the usual ones studied in risk measures, like the 5 or 1 percent 

confidence levels. For an investor, the relevant information relies on the quantiles that do not go far from 

the center of the returns distribution.  

The SP measures seem to be more appropriate in this framework, not only for the higher returns these 

portfolios provide, but also because under this method the PMs exhibit less noise. Note that this leads to a 

less rebalancing strategy and therefore less transaction costs.  

In the OOS the results are quite different. It is not so clear the strategy that should be used to select 

assets, the optimal PM seems to be here time dependent. We let the study of this behaviour for further 

research.  
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8. Appendix 

Bayesian estimation  

Following Jondeau and Rockinger (2012), Bayesian estimation is used to obtain the parameter estimates, 

using Markov chain Monte Carlo (MCMC), and obtaining the chain using the Metropolis-Hastings 

algorithm. A description of this methodology is given below. 

Lets denote      the vector of parameters obtained at step t. In each step, a new guess X is generated for 

a vector of parameters. For the first step,       is drawn from the asymptotically normal distribution of the 

ML estimated parameters, and next steps for     follow the next scheme: 

1. Generate              . 

2. Take  

        
                                            

                                    
  

Where  

              
                 

                    
     

           is the proposal density, in this case the asymptotic multivariate normal distribution resulting 

from the ML estimation.         is the objective or tarjet density, with          
 . The target density is 

obtained or posterior distribution: 

                     

Where         is the data density or likelihood of the model (in this case of the Hansen’s t), and      is 

the prior density of the parameter set. 

In this case for each equity the chain samples 50.000 estimations, and after the burning period of 40.000 

the mean and the standard deviation of the chain are taken as the estimated parameters and their 

standard deviation respectively. Comparing the new likelihood of the model against the previous with the 

parameters estimated via Nelder-Mead and Quasi-Newton let us know the improvement on the parameter 

estimation.  

The prior distributions are chosen as in Jondeau and Rockinger (2009) to ensure that the model is 

stationary. Parameters of the GARCH processes are drawn from a          , distributions to ensure 

positivity 

                              

    
       

    
       

       
    

   
 

Parameters     and     are chosen to ensure that their values are in the usual range for daily returns4. 

With the following prior distribution for the degrees of freedom,      and the asymmetry parameter     . 

                                                           
4
 The selected values are                           
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These distributions are chosen as in Jondeau and Rockinger (2012), consistent with the null hypothesis 

that there are no dynamics in the conditional distribution, with a mean value of 0 for the parameters that 

drive the residuals, and a variance of 2. The mean value for the autoregressive parameters are also 0, but 

with a lower variance of 0.3, with a truncation to ensure that the range of this parameter is between -1 and 

1. And for the constant terms the mean value is chosen to be similar to the previous estimations, and a 

large variance of 5. 
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Tables and Figures 

This section shows the tables and figures containing the results. 

Table 1 Summary statistics for market returns. 

This table reports summary statistics for the market returns on the in sample period: The annualized average return and standard 

deviation, the skewness and kurtosis, the Jarque-Bera test (JB), the Ljung-Box test statistic for no serial correlation (LB(1)), the 

Engle test (Engle(1))  for no serial correlation in squared returns, the first-order serial correlation of returns       and of the 

squared returns      . The critical values at 5% are 5,99 and 3,84 respectively for the JB test and the Ljung-Box and Engle  

 

Table 2 Parameter estimation of the GARCH model. 

    Mean SD 5% Median 95% 

APPL 

   0,0821 0,0072 0,0722 0,0803 0,0959 

   0,9524 0,0018 0,9499 0,9523 0,9551 

  
  0,0288 0,0045 0,0234 0,0273 0,0375 

  
  0,0650 0,0024 0,0603 0,0650 0,0691 

JNJ 

   0,0110 0,0048 0,0041 0,0108 0,0198 

   0,9060 0,0086 0,8924 0,9071 0,9189 

  
  0,0374 0,0019 0,0343 0,0376 0,0403 

  
  0,1628 0,0181 0,1339 0,1626 0,1926 

BRK.A 

   0,0422 0,0058 0,0325 0,0421 0,0503 

   0,9297 0,0026 0,9254 0,9298 0,9347 

  
  0,0173 0,0036 0,0098 0,0184 0,0217 

  
  0,0491 0,0063 0,0387 0,0488 0,0609 

DIS 

   0,0117 0,0018 0,0085 0,0122 0,0138 

   0,9495 0,0041 0,9446 0,9480 0,9565 

  
  0,0316 0,0030 0,0274 0,0311 0,0360 

  
  0,0743 0,0049 0,0653 0,0759 0,0810 

GE 

   0,0251 0,0072 0,0145 0,0249 0,0357 

   0,9070 0,0142 0,8844 0,9064 0,9268 

  
  0,0476 0,0113 0,0307 0,0495 0,0656 

  
  0,1335 0,0169 0,1102 0,1336 0,1615 

KO 

   0,0087 0,0036 0,0028 0,0088 0,0146 

   0,9116 0,0132 0,8904 0,9111 0,9339 

  
  0,0808 0,0150 0,0551 0,0813 0,1054 

  APPL JNJ BRK.A DIS GE KO XOM SO SPG DOW T JPM 

Mean 27,24 3,42 6,15 2,85 0,85 1,01 3,69 7,04 5,84 0,67 0,85 1,39 

SD 49,77 21,45 44,50 33,08 32,00 23,93 25,93 33,84 35,44 36,25 29,05 42,93 

Skewness -2,81 -0,36 0,08 -0,09 0,01 0,05 0,06 -0,21 0,25 -0,30 0,08 0,24 

Kurtosis 77,49 14,51 10,70 10,74 10,28 9,73 11,88 11,67 20,98 10,18 7,96 13,68 

JB 980.609,27 23.366,05 10.435,58 10.532,36 9.300,65 7.955,72 13.862,91 13.245,48 56.826,24 9.117,53 4.328,89 20.069,60 

LB(1) 4,31 0,00 51,65 6,77 0,94 0,19 51,54 11,85 133,75 8,51 5,96 24,40 

Engle(1) 3,02 59,93 138,90 62,09 256,41 194,87 346,12 210,23 525,38 115,96 84,02 436,25 

     -0,03 0,00 -0,11 -0,04 -0,01 -0,01 -0,11 -0,05 -0,18 -0,04 -0,04 -0,08 

      0,03 0,12 0,18 0,12 0,25 0,21 0,29 0,22 0,35 0,17 0,14 0,32 
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  0,1311 0,0275 0,0857 0,1314 0,1760 

XOM 

   0,0127 0,0072 0,0029 0,0114 0,0260 

   0,9275 0,0051 0,9178 0,9285 0,9340 

  
  0,0443 0,0041 0,0365 0,0455 0,0494 

  
  0,1421 0,0089 0,1277 0,1421 0,1576 

SO 

   0,0688 0,0109 0,0527 0,0677 0,0838 

   0,9375 0,0061 0,9258 0,9389 0,9457 

  
  0,0056 0,0040 0,0010 0,0047 0,0157 

  
  0,0708 0,0062 0,0635 0,0692 0,0822 

SPG 

   0,0148 0,0038 0,0081 0,0154 0,0210 

   0,8780 0,0186 0,8466 0,8782 0,9087 

  
  0,1163 0,0105 0,0984 0,1174 0,1328 

  
  0,1878 0,0209 0,1547 0,1873 0,2241 

DOW 

   0,0423 0,0058 0,0325 0,0421 0,0503 

   0,9297 0,0026 0,9254 0,9298 0,9347 

  
  0,0173 0,0036 0,0098 0,0184 0,0217 

  
  0,0491 0,0063 0,0387 0,0488 0,0610 

T 

   0,0293 0,0064 0,0169 0,0299 0,0389 

   0,9173 0,0111 0,9002 0,9164 0,9381 

  
  0,0770 0,0058 0,0683 0,0765 0,0865 

  
  0,0684 0,0214 0,0302 0,0706 0,1026 

JPM 
 

   0,0076 0,0022 0,0040 0,0074 0,0109 

   0,9371 0,0061 0,9269 0,9370 0,9472 

  
  0,0195 0,0090 0,0103 0,0159 0,0376 

  
  0,1140 0,0102 0,0949 0,1152 0,1288 

This table reports the Bayesian parameter estimates for the asymmetric GARCH process. The Mean and SD columns make 

reference to the mean and standard deviation of the posterior distribution of the parameters, and the last two columns contain the 

5%, median and 95% quantiles of the distribution. 
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Table 3. Estimates of the Skew-t dynamic parameters 

    Mean SD 0,0500 Median 0,9500 

APPL 

   -3,1813 0,1262 -3,3395 -3,2142 -2,9669 

   0,0443 0,0085 0,0309 0,0455 0,0557 

  
  0,1340 0,0106 0,1108 0,1378 0,1459 

  
  -0,6504 0,0444 -0,7238 -0,6477 -0,5958 

   -0,0197 0,0099 -0,0339 -0,0198 -0,0043 

   -0,0262 0,0158 -0,0510 -0,0278 -0,0039 

  
  -0,0901 0,0197 -0,1147 -0,0970 -0,0490 

  
  0,1782 0,0090 0,1652 0,1796 0,1919 

JNJ 

   -1,7066 0,0102 -1,7214 -1,7072 -1,6884 

   -0,0026 0,0047 -0,0106 -0,0029 0,0059 

  
  0,2081 0,0110 0,1887 0,2084 0,2231 

  
  0,0094 0,0264 -0,0337 0,0052 0,0500 

   -0,0078 0,0037 -0,0115 -0,0087 0,0009 

   0,0212 0,0134 0,0006 0,0215 0,0434 

  
  0,1323 0,0069 0,1208 0,1319 0,1439 

  
  -0,0120 0,0074 -0,0222 -0,0138 0,0024 

BRK.A 

   -1,3087 0,2019 -1,5538 -1,3421 -0,8604 

   0,4577 0,0813 0,3449 0,4462 0,6326 

  
  -0,4820 0,1329 -0,7779 -0,4590 -0,2677 

  
  -0,6710 0,1292 -0,8836 -0,6381 -0,4963 

   0,1274 0,0120 0,1104 0,1256 0,1459 

   0,8322 0,1467 0,5737 0,8207 1,1194 

  
  -0,4836 0,0689 -0,6095 -0,4801 -0,3604 

  
  0,5489 0,0404 0,4854 0,5483 0,6292 

DIS 

   -1,9974 0,0076 -2,0080 -1,9990 -1,9837 

   0,1144 0,0247 0,0781 0,1152 0,1603 

  
  0,0732 0,0070 0,0630 0,0720 0,0854 

  
  0,0017 0,0145 -0,0263 0,0028 0,0221 

   0,0852 0,0007 0,0839 0,0854 0,0861 

   -0,1158 0,0039 -0,1220 -0,1160 -0,1099 

  
  -0,1400 0,0076 -0,1504 -0,1426 -0,1256 

  
  0,1529 0,0138 0,1324 0,1542 0,1803 

GE 

   -2,2557 0,0486 -2,3440 -2,2441 -2,1948 

   0,0792 0,0161 0,0564 0,0786 0,1060 

  
  0,0258 0,0127 0,0064 0,0236 0,0456 

  
  -0,6455 0,0487 -0,7118 -0,6462 -0,5683 

   -0,0119 0,0139 -0,0306 -0,0134 0,0092 

   -0,0539 0,0227 -0,0869 -0,0519 -0,0206 

  
  0,0653 0,0284 0,0186 0,0700 0,1048 

  
  0,0800 0,0063 0,0674 0,0796 0,0892 

KO 

   -2,1516 0,0110 -2,1693 -2,1527 -2,1342 

   0,1992 0,0470 0,1248 0,1998 0,2757 

  
  -0,2432 0,0769 -0,3792 -0,2417 -0,1236 
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  -0,4825 0,0798 -0,6216 -0,4816 -0,3595 

   0,0351 0,0580 -0,0626 0,0360 0,1292 

   -0,0034 0,0158 -0,0319 -0,0003 0,0205 

  
  -0,3054 0,1885 -0,6280 -0,3009 -0,0053 

  
  0,0174 0,0121 -0,0049 0,0195 0,0342 

XOM 

   -2,4302 0,0841 -2,5779 -2,4331 -2,3067 

   -0,1000 0,0110 -0,1173 -0,1004 -0,0828 

  
  0,1847 0,0611 0,0880 0,1895 0,2846 

  
  -1,6288 0,0955 -1,7720 -1,6234 -1,4642 

   -0,2780 0,0294 -0,3294 -0,2797 -0,2333 

   0,1213 0,0205 0,0871 0,1210 0,1533 

  
  -0,1451 0,0178 -0,1743 -0,1454 -0,1195 

  
  0,1537 0,0425 0,0859 0,1580 0,2230 

SO 

   -1,8936 0,2621 -2,2374 -1,8616 -1,4602 

   0,0327 0,0115 0,0140 0,0318 0,0492 

  
  0,4471 0,0834 0,3128 0,4319 0,5810 

  
  -0,1053 0,1744 -0,3425 -0,0934 0,2021 

   0,0119 0,0181 -0,0140 0,0097 0,0417 

   0,1811 0,0499 0,1088 0,1767 0,2658 

  
  -0,2182 0,0432 -0,2990 -0,2070 -0,1621 

  
  0,2665 0,0763 0,1607 0,2706 0,4058 

SPG 

   -0,7008 0,8546 -2,0754 -0,7175 0,7346 

   -0,3201 0,3115 -0,8452 -0,3133 0,1784 

  
  0,3964 0,1148 0,2026 0,3980 0,5822 

  
  0,0245 0,1213 -0,1659 0,0311 0,2220 

   -0,0709 0,1258 -0,2794 -0,0704 0,1342 

   0,0981 0,1536 -0,1547 0,0999 0,3492 

  
  0,1262 0,1404 -0,1093 0,1287 0,3537 

  
  0,3467 0,0795 0,2231 0,3439 0,4833 

DOW 

   -1,3087 0,2019 -1,5539 -1,3416 -0,8605 

   0,4577 0,0813 0,3449 0,4463 0,6326 

  
  -0,4820 0,1329 -0,7780 -0,4592 -0,2677 

  
  -0,6710 0,1292 -0,8835 -0,6381 -0,4963 

   0,1274 0,0120 0,1104 0,1256 0,1459 

   0,8322 0,1467 0,5737 0,8206 1,1192 

  
  -0,4836 0,0689 -0,6095 -0,4801 -0,3603 

  
  0,5489 0,0404 0,4854 0,5483 0,6293 

T 

   -2,1167 0,0901 -2,2676 -2,1159 -1,9699 

   0,0533 0,0483 -0,0261 0,0516 0,1352 

  
  0,4884 0,0586 0,3942 0,4870 0,5904 

  
  -0,0680 0,0718 -0,2016 -0,0681 0,0629 

   -0,0976 0,0238 -0,1362 -0,0971 -0,0590 

   -0,0815 0,0351 -0,1373 -0,0768 -0,0255 

  
  0,2885 0,0568 0,2002 0,2841 0,3921 

  
  0,0954 0,0216 0,0573 0,0961 0,1325 

JPM    -1,3636 0,5390 -2,2914 -1,3432 -0,5148 
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   -0,1985 0,3609 -0,8274 -0,1910 0,3832 

  
  0,3135 0,1879 -0,0047 0,3388 0,5914 

  
  -0,8658 0,4371 -1,6297 -0,8468 -0,1943 

   0,0391 0,1031 -0,1530 0,0768 0,1729 

   -0,1517 0,2320 -0,4158 -0,2310 0,2699 

  
  0,2396 0,5020 -0,5664 0,2273 1,0992 

  
  -0,0452 0,6100 -1,0190 -0,0674 1,0182 

This table reports the Bayesian parameter estimates for the time-varying parameters of Skew-t distribution. The Mean and SD 

columns make reference to the mean and standard deviation of the posterior distribution of the parameters, and the last two 

columns contain the 5%, median and 95% quantiles of the distribution. 
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Table 4. Estimates of the parameters of the semiparametric model 

    q0 q1 q2 q3 q4 

    parameter SD parameter SD parameter SD parameter SD parameter SD 

APPL 

   0,0529 0,0333 -0,0118 0,0333 -0,0090 0,0147 -0,0046 0,0029 -0,0393 0,0220 

   0,9465 0,0089 0,9427 0,0089 0,9420 0,0567 0,9852 0,0042 0,9591 0,0123 

   0,1072 0,0112 0,0458 0,0112 0,0036 0,0065 -0,0101 0,0030 -0,0951 0,0283 

JNJ 

   0,0204 0,0076 0,0048 0,0076 0,0105 0,0080 -0,0052 0,0114 -0,0587 0,0203 

   0,9419 0,0056 0,9397 0,0056 0,0975 0,4645 0,8742 0,0487 0,8999 0,0177 

   0,1298 0,0120 0,0396 0,0120 -0,0271 0,0092 -0,0974 0,0393 -0,2102 0,0277 

BRK.A 

   0,0963 0,0546 0,0173 0,0546 0,0000 0,0000 -0,0307 0,0088 -0,0100 0,0197 

   0,9214 0,0236 0,8860 0,0236 -0,8618 0,0307 0,9174 0,0227 0,9502 0,0117 

   0,1610 0,0476 0,0756 0,0476 0,0000 0,0000 -0,0454 0,0156 -0,1426 0,0309 

DIS 

   0,1302 0,0531 0,0002 0,0531 0,0000 0,0001 -0,0080 0,0054 -0,0189 0,0145 

   0,8728 0,0234 0,9298 0,0234 0,9921 0,4666 0,9429 0,0154 0,9562 0,0116 

   0,2420 0,0351 0,0544 0,0351 0,0000 0,0001 -0,0396 0,0110 -0,1050 0,0289 

GE 

   0,0204 0,0177 0,0025 0,0177 0,0000 0,0124 -0,0219 0,0116 -0,0656 0,0375 

   0,9250 0,0164 0,9547 0,0164 -0,9680 0,0000 0,8853 0,0302 0,8924 0,0267 

   0,1813 0,0458 0,0327 0,0458 0,0000 0,0035 -0,0748 0,0256 -0,2432 0,0484 

KO 

   0,0586 0,0330 -0,0003 0,0330 0,0000 0,0000 -0,0048 0,0046 -0,0348 0,0133 

   0,8931 0,0377 0,9589 0,0377 -0,5063 0,8280 0,9243 0,0206 0,9298 0,0151 

   0,2218 0,0844 0,0327 0,0844 0,0000 0,0000 -0,0545 0,0154 -0,1571 0,0365 

XOM 

   0,0892 0,0569 0,0047 0,0569 0,0000 0,0000 -0,0183 0,0129 -0,0621 0,0128 

   0,8886 0,0436 0,9528 0,0436 -0,4734 0,6900 0,8969 0,0306 0,9025 0,0104 

   0,2259 0,1167 0,0324 0,1167 0,0000 0,0000 -0,0730 0,0236 -0,1965 0,0177 

SO 

   0,0909 0,0230 -0,0030 0,0230 -0,0025 0,0031 -0,0160 0,0264 -0,0333 0,0348 

   0,9193 0,0189 0,9368 0,0189 -0,7769 0,1902 0,9215 0,0313 0,9455 0,0180 

   0,1560 0,0417 0,0499 0,0417 -0,0027 0,0027 -0,0565 0,0214 -0,1207 0,0410 

SPG 

   0,0438 0,0080 -0,0086 0,0080 -0,0020 0,0039 -0,0156 0,0217 -0,0696 0,0266 

   0,9445 0,0043 0,9237 0,0043 0,9622 0,0800 0,9072 0,0430 0,8642 0,0347 

   0,1110 0,0100 0,0648 0,0100 0,0012 0,0023 -0,0652 0,0264 -0,3280 0,1028 

DOW 

   0,0154 0,0314 0,0089 0,0314 0,0000 0,0000 -0,0149 0,0101 -0,0214 0,0128 

   0,9541 0,0199 0,9404 0,0199 -0,6433 0,5644 0,9109 0,0277 0,9506 0,0104 

   0,1128 0,0395 0,0408 0,0395 0,0000 0,0000 -0,0622 0,0189 -0,1158 0,0177 

T 

   0,0224 0,0131 -0,0004 0,0131 0,0000 0,0000 -0,0169 0,0072 -0,0105 0,0348 

   0,9567 0,0065 0,9582 0,0065 -0,5761 0,6645 0,9159 0,0166 0,9529 0,0180 

   0,1008 0,0125 0,0332 0,0125 0,0000 0,0000 -0,0540 0,0149 -0,1160 0,0410 

JPM 

   0,0453 0,0232 0,0005 0,0232 0,0000 0,0001 -0,0224 0,0152 -0,0207 0,0266 

   0,9208 0,0103 0,9373 0,0103 0,9928 0,5678 0,8670 0,0191 0,9143 0,0347 

   0,1782 0,0120 0,0486 0,0120 0,0000 0,0002 -0,0916 0,0136 -0,2190 0,1028 

This table reports the parameters (parameter) and their standard deviation (SD) estimated with Nelder-Mead algorithm (following 

Engle and Manganelli 2004) for the quantiles 0,025 (q0) , 0,25 (q1), 0,5 (q2), 0,75 (q3), 0,975  (q4). 
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Figure 1. Conditional Volatility parametric approach 

 

This figure displays the conditional Volatility resulting from the parameter estimates reported in table 2 for 4 selected stocks of the 

sample. 

 

Figure 2. Degree of Freedom parameter parametric approach 

 

This figure displays the conditional degrees of freedom resulting from the parameter estimates reported in table 3 for 4 selected 

stocks of the sample. The series are smoothed using a 2 week simple moving average following Jondeau and Rockinger 2012. 
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Figure 3. Asymmetry parameter parametric approach 

 

This figure displays the conditional asymmetry parameter resulting from the parameter estimates reported in table 3 for 4 selected 

stocks of the sample. The series are smoothed using a 2 week simple moving average. 

 

Figure 4. Conditional Skewness parametric approach 

 

This figure displays the conditional Skewness resulting from the parameter estimates reported in table 3 for 4 selected stocks of 

the sample. The series are smoothed using a 2 week simple moving average. 
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Figure 5. Conditional Kurtosis parametric approach 

 

This figure displays the conditional Kurtosis resulting from the parameter estimates reported in table 3 for 4 selected stocks of the 

sample. The series are smoothed using a 2 week simple moving average. 

 

Figure 6.Quantile evolution semiparametric approach 

 

This figure displays the conditional quantiles at the confidence level of 0,025, 0,25, 0,5, 0,75, 0,975 resulting from the parameter 

estimates reported in table 4 for 4 selected stocks of the sample. 
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Figure 7. Conditional Volatility semiparametric approach 

 

This figure displays the conditional Volatility based on quantiles resulting from the parameter estimates reported in table 4 for 4 

selected stocks of the sample. 

 

Figure 8. Conditional Skewness semiparametric approach 

 

This figure displays the conditional skewness based on quantiles resulting from the parameter estimates reported in table 4 for 4 

selected stocks of the sample. 
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Figure 9. Conditional excess of Kurtosis semiparametric approach 

 

This figure displays the conditional excess of kurtosis based on quantiles resulting from the parameter estimates reported in table 

4 for 4 selected stocks of the sample. 

 

7.2. Risk measures 

Next in this part of the appendix figures of the VaR and ES risk measures for selected confidence levels 

are displayed.  

 

Figure 10. VaR and ES estimates of APPL 

 

This figure displays the returns of APPL and the estimated VaR in the upper (dashed line) and lower tails (solid lines) (at 90% and 

10% confidence level respectively) in red, and the corresponding ES measures in black, estimated with the P approach (left 

figure) and with the SP approach (right figure) . 
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Figure 11. VaR and ES estimates of GE 

 

This figure displays the returns of GE and the estimated VaR in the upper (dashed line) and lower tails (solid lines) (at 90% and 

10% confidence level respectively) in red, and the corresponding ES measures in black, estimated with the P approach (left 

figure) and with the SP approach (right figure). 

 

Figure 12. VaR and ES estimates of KO 

 

This figure displays the returns of KO and the estimated VaR in the upper (dashed line) and lower tails (solid lines) (at 90% and 

10% confidence level respectively) in red, and the corresponding ES measures in black, estimated with the P approach (left 

figure) and with the SP approach (right figure). 
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Figure 13. VaR and ES estimates of JPM 

 

This figure displays the returns of JPM and the estimated VaR in the upper (dashed line) and lower tails (solid lines) (at 90% and 

10% confidence level respectively) in red, and the corresponding ES measures in black, estimated with the P approach (left 

figure) and with the SP approach (right figure). 

 

Table 5. Equity positioning, in sample period 

  Parametric Semiparametric 

Position SR ASR ES8020 ES9010 VaR8020 VaR9010 SR ASR ES8020 ES9010 VaR8020 VaR9010 

1 3 1 12 12 7 6 1 1 1 1 1 1 

2 2 2 12 12 1 4 2 2 4 1 9 1 

3 3 3 2 2 9 4 3 3 4 6 8 4 

4 4 4 2 2 12 5 4 4 6 6 8 2 

5 5 5 5 5 8 5 5 5 6 6 8 2 

6 6 6 1 1 2 2 6 6 6 10 8 2 

7 7 7 1 1 2 8 7 7 6 10 10 2 

8 8 8 1 1 5 8 8 8 10 11 10 6 

9 9 9 8 8 5 8 9 9 10 11 10 10 

10 10 10 7 7 4 1 10 10 10 11 6 10 

11 11 11 7 7 4 1 11 11 7 7 6 10 

12 3 3 3 3 6 7 12 12 3 7 3 3 

             
Numeration 

1 2 3 4 5 6 7 8 9 10 11 12 

APPL JNJ BRK.A DIS GE KO XOM SO SPG DOW T JPM 

This table displays the position, in descending order, that each equity has occupied for the longest time during the in sample 

period for both P and SP approaches of measuring the PMs. 
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Table 6.  Differences in sorting, in sample period 

    Parametric Semiparametric 

    1 2 3 4 5 6 7 8 9 10 11 12 

P
ar

am
at

ric
 

1 0 0,083 0,746 0,746 0,703 0,631 0,383 0,383 0,250 0,395 0,529 0,338 

2 0 0 0,791 0,791 0,728 0,652 0,374 0,374 0,235 0,386 0,523 0,328 

3 0 0 0 0 0,787 0,720 0,875 0,875 0,778 1,000 0,861 0,725 

4 0 0 0 0 0,787 0,720 0,875 0,875 0,778 1,000 0,861 0,725 

5 0 0 0 0 0 0,536 0,759 0,759 0,652 0,771 0,701 0,725 

6 0 0 0 0 0 0 0,664 0,664 0,570 0,673 0,585 0,689 

S
em

ip
ar

am
et

ric
 

7 0 0 0 0 0 0 0 0 0,442 0,405 0,643 0,497 

8 0 0 0 0 0 0 0 0 0,442 0,405 0,643 0,497 

9 0 0 0 0 0 0 0 0 0 0,333 0,386 0,412 

10 0 0 0 0 0 0 0 0 0 0 0,463 0,611 

11 0 0 0 0 0 0 0 0 0 0 0 0,720 

12 0 0 0 0 0 0 0 0 0 0 0 0 

  
             

 Numeration 
1 2 3 4 5 6 7 8 9 10 11 12 

  SR ASR ES8020 ES9010 VaR8020 VaR9010 SR ASR ES8020 ES9010 VaR8020 VaR9010 

This table displays the differences in sorting with the different PMs, measured as the Euclidean norm divided by the maximum 

value, so it ranges from 0 (minimum difference) to 1 (maximum difference).  

 

Table 7.  Number of days (%), in which the portfolio remains unchanged during the in sample 

 

This table displays the number of days as a percentage that the assets remain the same, so the portfolios does not need a 

rebalance. 

 

Table 8.  Perfomance fee measure (%), In sample period 

    ASR ES8020 ES9010 VaR8020 VaR9010 

Parametric 

  = 5 -0,0005 0,0006 0,0006 0,0065 -0,0001 

  = 10 -0,0004 0,0014 0,0014 0,0067 0,0007 

  = 15 0,0007 -0,0007 -0,0007 0,0061 0,0009 

Semiparametric 

  = 5 -0,0001 0,0072 0,0078 0,0090 0,0083 

  = 10 0,0000 0,0080 0,0086 0,0098 0,0090 

  = 15 0,0011 0,0080 0,0082 0,0104 0,0098 

 

This table displays the annualized Performance Fee for the in sample period measure of changing from the SR based strategy to 

the other proposed strategies. The results are percentage and computed for 3 different values of the risk aversion parameter 

ranging from 5 (less risk averse) to 15 (more risk averse).  

 

Parametric Semiparametric 

SR ASR ES8020 ES9010 VaR8020 VaR9010 SR ASR ES8020 ES9010 VaR8020 VaR9010 

9,43 9,25 22,53 22,59 35,35 21,85 9,12 9,11 53,36 53,68 55,41 52,85 
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Figure 14. Cumulative returns for the in sample portfolios 

 

This figure displays the cumulative returns for the In Sample period, the dashed lines represent the portfolios based on the SP 

measures and the black line represents the equally weighted portfolio. 

 

7.3.2. Out of sample period 

In this section the results for the out of sample period are displayed 

Table 9. Equity positioning, out of sample period 

Parametric Semiparametric 

Position SR ASR ES8020 ES9010 VaR8020 VaR9010 SR ASR ES8020 ES9010 VaR8020 VaR9010 

1 3 1 12 12 7 12 1 1 1 1 1 1 

2 2 2 12 12 7 12 2 2 5 5 11 4 

3 3 3 2 2 3 2 3 3 9 2 11 4 

4 4 4 2 2 8 2 4 4 9 9 11 11 

5 5 5 5 5 1 5 5 5 6 10 8 11 

6 6 6 1 1 1 1 6 6 6 10 8 6 

7 7 7 1 1 5 1 7 7 11 10 8 6 

8 8 8 1 1 5 1 8 8 6 8 8 9 

9 7 9 8 8 2 8 9 9 10 11 10 2 

10 10 10 7 7 2 7 10 10 10 11 10 10 

11 11 11 7 7 2 7 11 11 12 11 2 10 

12 3 3 7 7 12 7 12 12 3 7 3 3 

             Numeration 1 2 3 4 5 6 7 8 9 10 11 12 

  APPL JNJ BRK.A DIS GE KO XOM SO SPG DOW T JPM 

This table displays the position, in descending order, that each equity has occupied for the longest time during the out of sample 

period for both parametric and SP ways of measuring the PMs. 
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Table 10. Differences in sorting, out of sample period 

 
  Parametric Semiparametric 

    1 2 3 4 5 6 7 8 9 10 11 12 

P
ar

am
at

ric
 

1 0 0,126 0,817 0,817 0,846 0,817 0,419 0,419 0,456 0,491 0,773 0,491 

2 0 0 0,864 0,864 0,896 0,864 0,400 0,400 0,429 0,458 0,757 0,530 

3 0 0 0 0 0,697 0,000 0,875 0,875 0,967 0,990 0,988 0,984 

4 0 0 0 0 0,697 0,000 0,875 0,875 0,967 0,990 0,988 0,984 

5 0 0 0 0 0 0,697 0,801 0,801 0,967 1,000 0,943 0,896 

6 0 0 0 0 0 0 0,875 0,875 0,967 0,990 0,988 0,984 

S
em

ip
ar

am
et

ric
 

7 0 0 0 0 0 0 0 0 0,586 0,477 0,856 0,664 

8 0 0 0 0 0 0 0 0 0,586 0,477 0,856 0,664 

9 0 0 0 0 0 0 0 0 0 0,456 0,571 0,557 

10 0 0 0 0 0 0 0 0 0 0 0,677 0,530 

11 0 0 0 0 0 0 0 0 0 0 0 0,694 

12 0 0 0 0 0 0 0 0 0 0 0 0 

  
             

 Numeration 
1 2 3 4 5 6 7 8 9 10 11 12 

  SR ASR ES8020 ES9010 VaR8020 VaR9010 SR ASR ES8020 ES9010 VaR8020 VaR9010 

This table displays the differences in sorting with the different PMs for the out of sample period, measured as the Euclidean norm 

divided by the maximum value, so it ranges from 0 (minimum difference) to 1 (maximum difference).  

 

 

Table 11. Number of days (%), in which the portfolio remains unchanged 

Parametric Semiparametric 

SR ASR ES8020 ES9010 VaR8020 VaR9010 SR ASR ES8020 ES9010 VaR8020 VaR9010 

8,125 8,4 22,4 22,6 24,9 22,1 7,875 8 54,125 53,05 61,375 56 

This table displays the number of days as a percentage that the assets remain the same, so the portfolios does not need a 

rebalance. 

 

Table 12. Perfomance fee measure (%), out of sample period 

    ASR ES8020 ES9010 VaR8020 VaR9010 

Parametric 

  = 5 -0,0011 -0,0002 -0,0001 -0,0066 0,0001 

  = 10 -0,0010 -0,0001 0,0000 -0,0065 0,0002 

  = 15 -0,0007 0,0002 0,0002 -0,0062 0,0004 

Semiparametric 

  = 5 -0,0011 -0,0002 -0,0001 -0,0066 0,0001 

  = 10 -0,0010 -0,0001 0,0000 -0,0065 0,0002 

  = 15 -0,0007 0,0002 0,0002 -0,0062 0,0004 

This table displays the annualized Performance Fee for the out of sample period measure of changing from the SR based strategy 

to the other proposed strategies. The results are as a percentage and computed for 3 different values of the risk aversion 

parameter ranging from 5 (less risk averse) to 15 (more risk averse).  
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Figure 15. Cumulative returns for the out of sample portfolios 

 

This figure displays the cumulative returns of the portfolios for the Out of Sample period, the dashed lines represent the equally 

weighted portfolio of the 12 equities. Parametric and SP portfolios are respectively in the upper and lower figures. 

 

 

Figure 16. Cumulative returns for the out of sample SP portfolios yearly reestimated 

 

This figure displays the cumulative returns of the SP PM based portfolios. The dashed line represents the equally weighted 

portfolio of the 12 equities. The Vertical lines represent the day where the reestimation is made. 
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Figure 17. Cumulative returns for the out of sample SP portfolios depending on the entrance. 

 

This figure displays the cumulative returns of the SP PM based portfolios. The dashed line represents the equally weighted 

portfolio of the 12 equities. Each year the cumulative returns are restarted as if we entered in the portfolio and stayed in that 

position until the end in 2017. 
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