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1. Introduction

The well known constant volatility model of Black and Scholes (1973), ex-
tended by Merton (1976), is the most often used option pricing model in financial
practice.
This model explains that a purchase option (Call option), denoted as C, is equal
to the price of the underlying asset (S0) adjusted by a dividend yield rate (q) in
a continuous way, multiplied by the Normal distribution function N(d1). Then,
the strike price (K) is countinously discounted at the r interest rate and multi-
plied by the Normal distribution function N(d2).

C = S0e
�qt ⇤N(d1)�Ke�rt ⇤N(d2)

d1 =
ln(S0

K
) + t(r � q + �

2

2 )

�
p
t

d2 = d1 � �
p
t

This model makes certain assumptions, which are e�cent markets, no transac-
tion costs in buying the option, European options which can only be exercised
at expiration, normally distributed returns on the underlying asset, constant
risk-free rate and constant volatility of the underlying.

However, in reference to the last assumption mentioned, in the last decades
evidences suggest that a constant volatility model is not appropriate.
Indeed, numerically inverting the Black-Scholes and Merton formula on real
data sets, supports the notion of asymmetry with strike price (K) as well as
dependence on time expiration (T ). In general, this dependence is referred to as
the volatility smile of an option reflecting that in practice, this implied volatility
is not constant.
This variability of the volatility contradicts the assumptions of the Black and
Scholes (1973) model mentioned before.

In order to overcome this problem, in this work di↵erent methods of mod-
elling the volatility are analised and the methods’ performance is compared to
determine which one has the best answer to this problem.

Looking through the literature on this field, three di↵erent models of option
pricing were decided to use in this work. These models focus the problem of
constant volatility of the Black and Scholes (1973) model, changing its process
in three di↵erent ways. A stochastic volatility with the Heston (1993) model, a
conditional volatility with the Heston and Nandi (2000) model and a determin-
istic volatility with the Local Volatility model.

Following the steps of Ferreira, Gago, León and Rubio (2005) work, we com-
pare the performance of the models mentioned before in the IBEX-35 pricing
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recent options on the Mini IBEX-35 Futures in sample and out of sample with
the contribution of the Local Volatility model and its impact in pricing this kind
of options.

The rest of the report is organized as it follows. Section 2 contains a discus-
sion of the three competing models used in this research and Section 3 describes
the option data used in this report. The results obtained applying these mod-
els to the data options are shown in Section 4 and Section 5 provides the final
remarks and concludes.
This report ends with the Section 6 showing all the reference articles used to
develop this work and Section 7 providing the results of the estimation of the
models’ parameters.
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2. Competing pricing models and estimation

2.1. Heston stochastic volatility model

In reference to the exposed in the introduction, the Heston stochastic volatil-
ity model is another answer to the known inconsistency problem of the constant
volatility implemented in the Black and Scholes (1973) model.
This model allows the volatility to be stochastic rather than constant, changing
to a more realistic model than Black-Scholes’ one.

The Heston (1993) model assumes that the stock price follows the di↵usion
process:

dSt = µtStdt+
p
�tStdZ1 (1)

where µt is the drift ((r � q)) with dividends for risk-neutral dynamics,
p
�t is

the di↵usion term (i.e. the volatility of the stock price) and dZ1 is a Wiener
process (i.e. a Brownian motion).

The volatility of the model is stochastic, and follows the process

d�t = (✓ � �t)dt+ �
p
�tdZ2 (2)

where  is the speed of mean-reversion, ✓ is the long term level of the variance,
�t is the variance, � is the volatility of volatility, and dZ2 is a Wiener process.

In this case, the two Wiener processes dZ1 and dZ2 are correlated by this
way

dZ1dZ2 = ⇢dt (3)

The formulation of (2) for the variance is a process as defined in Cox, Inger-
soll and Ross (1985). The only di↵erence is that here, it is applied to stochastic
variance instead of being applied to interest rates.
The reason why the variance is modelled this way is that the drift term ensures
that the variance �t is mean reverting towards the long-term mean (✓). The
higher the value of , the quicker the model reaches the long term mean of the
variance.

As shown in (2), the expression �
p
�t ensures that the variance will be

strictly non-negative for positive values of  and ✓.
If the variance gets close to 0, the stochastic process of the volatility (2) will be
defined by the drift term and it will be pull upwards to the long term mean.
Furthermore, if 2✓ � �2, the variance cannot become zero. This last expression
is known as the Feller condition deduced from his work Feller (1951).
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The partial di↵erential equation of the Heston (1993) model is derived based
on the Gatheral (2006) derivation of the PDE for this kind of models. The
derivation of the PDE is based on an Itô process, where is assumed that the
underlying asset’s price and variance satisfy (1) and (2).

Doing the pertinent numerical calculations, and expressing the PDE in terms
of the logarithmic stock price (x = ln(S)), the expression is the following

�@V

@t
= �rV+

✓
r � q � 1

2
�

◆
@V

@x
+
1

2
�
@2V

@x2
+(✓��)

@V

@�
+
1

2
�2�

@2V

@�2
+⇢��

@2V

@�@x

In an option pricing model, if the characteristic function for the price process
is known, with the use of the transforms shown in Fourier (1822), it is possible
to price call options by finding the probabilities from the characteristic function.
This was what Heston did in his paper. He got the characteristic functions of
the risk-neutral probabilities as solutions for a second order PDE.

The most common approaches are those of Carr and Madan (1999) and
Lewis (2000).
The issue with the Carr and Madan’s approximation is that the Fourier trans-
form is needed for di↵erent options that are to be priced. On the other hand,
with Lewis’ technique only the Fourier transform is needed for the option pay-
o↵. As the options’ payo↵s are defined explicitly in the contract, it is more
straightforward to get the Fourier transforms of the option payo↵s than of the
prices.

Consider a function f(x):R ! C. Then the generalized Fourier transform
of f is defined as

bf(z) =
Z 1

�1
eizxf(x)dx

where i is the imaginary unit and z 2 C for which eizxf(x) is integrable.

If f(x) is the density function for a real valued x, then bf(z) is the generalized
characteristic function

bf(z) = �(z) = E[eizx]

and its domain contains the real axis. There exists a one to one correspondence
between the characteristic function and the probability density function.
Then f(x) can be recovered from bf(z) via de inversion formula

f(x) =
1

2⇡

Z
izi+1

izi�1
e�izx bf(z)dz (4)

4



where z 2 C: z = zr + izi.

2.1.1. Pricing formula of the Heston (1993) model

The expression for call prices in this model is derived following the technique
of Lewis (2000).

Defining XT = log(ST ) as the log price at maturity T , its generalized char-
acteristic function is �(z) and its density is q(x) and the payo↵ function of the
log price is w(x). So, the Generalized Fourier transform would be bw(z).

The t = 0 price V (S0) of the payo↵ w(xT ) is given by

V (S0,K, T ) = e�rTEQ[w(x)]

where Q denotes the risk-neutral probability.
Making use of the invertion formula, we obtain

V (S0,K, T ) =
e�rT

2⇡

Z
izi+1

izi�1
�(�z) bw(z)dz

�

So, this is the expression of the option price getting the density function
from the characteristic function of the payo↵. One of the properties of the char-
acteristic function is that �(�z) = �(z). Therefore, the integrand is well defined
along the integration line.

From here, using Lewis’ technique the expression for call prices is derived.
One thing to remark is that the call price can be expressed in terms of the spot
price and a covered call. This was shown by Rouah (2013).

The payo↵ of a covered call (CC) is given by

CC = min(ST ,K) = K � (K � ST )
+ (5)

This leads to express the price of a call option as a function of the strike
price in the following way

C(K) = S0e
�qT � CC (6)
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After applying the technique mentioned before and taking into account the
expression of the call option with the covered call, the resulting formula for the
call price is

C(S0,K, T ) = S0e
�qT

0

@1�

q
K

FT

⇡

Z 1

0

du

u2 + 1
2

RE


�0

✓
u� i

2

◆
e�iuk

�1

A (7)

where FT is the forward stock price FT = S0e(r�q)T , and k = log( K

FT
) =

log( K

S0e(r�q)T ).

Now the characteristic function �0(z) or equivalently �(z) can be found. The
characteristic function is model dependent.
Assuming that there is not drift term in (1) and taking as a function Xt =
log(St) and applying the Itô lemma, the following characteristic function is ob-
tained

�(z,X, �, t, T ) = eC(z,⌧)+D(z,⌧)�+izX (8)

where

D(z, ⌧) = r�
(1� e(�d⌧)

1� ge(d⌧)

C(z, ⌧) = ✓

✓
r�⌧ � 2

�2
ln

✓
1� ge�d⌧

1� g

◆◆

d =
p
b2 � 2a�2

r± =
b± d

�2

g =
r�
r+

After having developed and explained the Heston (1993) stochastic volatility
model, one can notice that the parameter ⇢ a↵ects the skewness of the distri-
bution. For negative values of ⇢ the distribution becomes positively skewed and
for positive values, it becomes negatively skewed.
Furthermore, � a↵ects the kurtosis of the distribution. When � increases, the
kurtosis of the distribution increases.
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2.1.2. Computation of the Heston stochastic volatility model

The purpose of the calibration is to make the Heston (1993) model prices fit
as closely as possible with the observed market prices. The parameters needed
to calibrate this model are

parameters(p) = , ✓, �,�, ⇢

where, as described before,  is the speed of mean-reversion, ✓ is the long term
level of the variance, � is the variance, � is the volatility of volatility and ⇢ is
the correlation parameter.

For this purpose, we use the non-linear least squares method. Taking as a
reference the work done in Mikhailov et al. (2003), the non-linear least square
optimization method is performed in the following way:

minpSSE(p) = minp

NX

i=1

[CH

i
(Ki, Ti)� CM

i
(Ki, Ti)]

2 (9)

where CH

i
(Ki, Ti) is the price of the call option depending of the strike price

(K) and maturity (T ) obtained with the initial values of the parameters in
the Heston (1993) model and CM

i
(Ki, Ti) is the price of the call option in the

market.
In essence, we are minimizing the sum of squared errors. To be able to

solve correctly the otpimization problem, we have to define the lower and upper
bounds of the parameters, which are:

0 < 2✓ � �2 < 10

0 < ✓ < 1

0 < � < 5

�1 < ⇢ < 1

0 < �0 < 1

These restrictions are necessary in order to avoid solutions that would not
make sense from an economical point of view. The first restriction is the Feller
condition, which is given by 2✓ � �2 � 0. It has the lower bound set to 0 in
order to ensure the variance process will be positive and never reach 0.

Giving initial values for the parameters of the model, we calculate the prices
of the options following the development showed in section 2.1.1.
Then, we minimize the errors with the market values using the non-linear least
squares method receiving the optimum parameter values. With these values,
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we recalculate the option prices.

There is another method that fits very well with this optimization problem.
This method is the ASA method (Adaptive Simulated Annealing method). The
advantage of this calibration method is that it does not stop its search in the
first minimum obtained. However, this method does not guarantee a global
minimum .
As at the time of computing this method, a lot of problems appeared, the ASA
method was dismissed for this work.

The results of the parameter estimations for the in sample and out of sample
context in this model can be seen in the Section 7.1 of the Appendix.

2.2. Heston and Nandi GARCH(1,1) model

The next model developped by Heston and Nandi (2000) and presented in
this work has a main di↵erence between the others, which is the ability to ex-
plain the path of the volatility that determines the price of the underlying asset.
It extends the model of Black and Scholes (1973) and Merton (1976) to solve
the problem exposed in the introduction by adapting the implied volatility es-
timation.

In their work, Heston and Nandi (HN from now on) considered the General-
ized Autoregressive Conditional Heteroscedasticity model (GARCH) to capture
the path dependence in volatility as well as the negative correlation of the volatil-
ity with the index returns.

GARCH models have been used to model time varying variances of assest
prices. These models where developed by Duan (1995) and Heston and Nandi
(2000). The great contribution of these last two was that they derived a semi-
closed form option pricing formula. Later, many others used this idea with some
other changes in order to price options with more accuracy.
Barone-Adesi, Engle and Mancini (2008) proposed an option pricing method
based on a GARCH with no-normal innovations and Byun and Min (2010a) and
Byun and Min (2010b) refined the work of Barone-Adesi, Engle and Mancini
(2008) letting physical and risk-neutral one-day ahead GARCH volatilities to
be di↵erent.

The Heston and Nandi model used in this work is discrete and the param-
eters can be estimated by Maximum Likelihood. As it will be seen later, we
consider here an asymmetric GARCH model, where the parameter � reflects
the skewness in it.
This asymmetric GARCH version has a continuous limit identified as Heston’s
model with perfect correlation between the underlying asset and the volatility.
This fact implies that in this framework neither the volatility risk premium nor
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the jump-risk premium exist.

The HN’s GARCH(1,1) expresses the dinamics of the asset by

ln(St) = ln(St�1) + r + �ht +
p

htzt (10)

which can be written in terms of the log-return of the asset in this way

Rt = ln

✓
St

St�1

◆
= r + �ht +

p
htzt (11)

where St indicates the price of the underlying asset at time t, r is the risk-
free rate countinously compunded and Rt is the log-return of the asset price.
ht is the conditional variance of the log-return between t � 1 and t, known at
time t� 1. The expression can be shown here

ht = w + �ht�1 + ↵(zt�1 � �
p

ht��)
2 (12)

�ht is the risk premium of the underlying asset. It is embedded in returns.
zt is the standard normal random variable and, as indicated before, � is the
parameter which controls the skewness of the distribution.

This GARCH model, as being a first-order model, remains stationary with
finite mean and variance if �1 + ↵1�2

1 < 12.
It can be deduced the expression of the conditional variance of the log-return
underlying assert at time t by clearing z(t�1) from (12) and replacing its value
in (11). These steps make one reach at the following expression

h(t+�) = !+�1h(t)+↵
(log(S(t))� log(S(t��))� r � �ht � �1h(t))2

h(t)
(13)

It can be noticed with this expression that the parameter ↵ determines the
kurtosis of the distribution and, being zero, results in a deterministic time vary-
ing variance.

As it can be seen, the Heston and Nandi (2000) model can be considered as
a model with predictable volatility, since volatility can be estimated from the
past information of the underlying return path.
Another characteristic is that it enables us to appreciate the correlation between
the asset returns and the variance by this way

covt��[h(t+�), lnS(t)] = �2↵�h(t)
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where, given a positive ↵, positive values for � result in negative correlation
between returns and variance.

2.2.1. Pricing formula of the Heston and Nandi GARCH(1,1) model

After having estimated the parameters of the GARCH(1,1) process, in order
to being able to price options, the process must be represented in terms of the
risk-neutral measure

c = e�r⌧ [F (t)P1 �XP2] (14)

where P2 is the risk neutral probability of the asset being greater than X at
maturity and P1 corresponds to the delta of the call value. The estimation of
the P1 and P2 in this case requires the estimation of the risk-neutral parameters
of the GARCH model. To do so, the values that HN determined in their paper
are used, with which the risk-neutral process takes the same GARCH form as
(12) and (11), but with a variance in the skewness parameter �.

The expressions of these risk neutral parameters determined by HN are

�⇤ = �1

2

�⇤
1 = �1 + �+

1

2

The variant employed in this report is identified with the parameter �. In-
stead of applying the expression shown before, it is calculated as the argument
that minimizes the squared error between the market options and the options
calculated inserting the estimated parameters in the model with the real mes-
sure as Ferreira, Gago, León and Rubio (2005) did in their work.
It is said, the expression to define the � parameter in this work is

�⇤
t
= argmin�

X

i2t

(cHN,i(�)� ci)
2 (15)

where ci is the price observed in the market, and cHN,i(�) denotes the price
resulting from the HN formula. The rest of the parameters are those obtained
estimating the GARCH model of the volatility from the underlying log-return
series.
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Heston and Nandi (2000) derive an almost closed-form option pricing for-
mula for the European call option (C) with strike price (K) and maturity (T )

C =
1

2
St +

e�r(T�t)

⇡

Z 1

0
Ed��Ke�r(T�t)

✓
1

2
+

1

⇡

Z 1

0
Fd�

◆

being E and F defined as

E = Re

✓
K�i�f⇤(i�+ 1)

i�

◆

F = Re

✓
K�i�f⇤(i�)

i�

◆

where Re() denotes the real part of a complex number, f⇤(i�) is the condi-
tional characteristic function of the logarithmic asset price using the risk neutral
probabilities and i is the imaginary number.

Heston and Nandi (2000) also shows that the conditional generating function
of the asset price takes the following log-lienar form of the GARCH(1,1) process

f(�) = Et[S
�

T
] = S�

t
eAt+Btht+1

which is also the moment generating function of the logarithmic asset price.

The coe�cients At and Bt can be calculated recursively by working back-
ward from the maturity date using the terminal conditions

At = At+1 + �r +Bt+1w � 1

2
log(1� 2↵Bt+1)

Bt = �(�+ �)� 1

2
�2 + �Bt+1 +

1
2 (�� �)2

1� 2↵Bt+1

AT = BT = 0

2.2.2. Calibration of the Heston and Nandi GARCH(1,1) model

To fit the option prices with the Heston and Nandi (2000) model to the
market prices, the parameters must be estimated in a risk neutral enviroment.
To do so, first these parameters are estimated from the conditional variance
model (GARCH(1,1)) by Maximum Likelihood.
After that, the prices are calculated with the Heston and Nandi model in the
real measure, it is said, without changing the values of the parameters obtained
in the estimation of the GARCH.
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Once the option prices are obtained with the model under the real measure,
the risk neutral � parameter (skewness parameter) is estimated minimizing the
distance between the option market prices and the option HN prices respect
that parameter � as in (15).
Then, with the risk neutral value of � and the risk neutral value of �

�
� 1

2

�

given in the Heston and Nandi (2000), and the initially estimated values of the
parameters ↵ and �, the option prices are recalculated under the risk neutral
measure following the procedure explained in the Section 2.3.1.

The results of the parameter estimations for the in sample and out of sample
context in this model can be seen in the Section 7.2 of the Appendix.

2.3. Dupire’s Local Volatility model

The mentioned implied volatility in the introduction usually varies with both
the strike price (K) an the time to maturity (T). To be able to match market
quotes with the Black and Scholes (1973) and Merton (1976) models described
in the introduction, we would have to use a di↵erent volatility for each maturity-
strike combination, implying a di↵erent model in each occasion.
This fact leads to problems with options whose payo↵ depends on the level of
the forward rate at di↵erent points in time. Pricing these kind of options is not
possible with the Black and Scholes (1973) and Merton (1976) models.

One solution for this problem was found by Dupire (1993).
Given the prices of European Calls C of all strike prices K and maturities T
(C(K,T )), he got a risk neutral process for the underlying asset (S) in the form
of a di↵usion

dS

S
= r(t)dt+ �(S, t)dW (16)

where the instantaeous volatility � is a deterministic function of the spot
(S) and of the time (t). By this way, the underlying asset price follows a one
dimensional difussion process and the model would be complete.

To illustrate this idea, for a collection of option prices C(K,T ) of di↵er-
ent strike prices, a risk neutral density function 'T of the spot price of the
underlying asset S at time T is yield as it can seen in the following relationship

C(K,T ) =

Z 1

0
(S �K)+'T (S)dS (17)

12



and, di↵erentiating twice with respect to the strike price K, the risk neutral
densitiy function of the spot price of the underlying asset is obtained as function
of the strike price:

'T (K) =
@2C(K,T )

@K2
(18)

This expression of the density function is which must be calculated to get a
risk-neutral process for the underlying asset.
In order to know if there is a unique di↵usion proces which generates these
densities, a conversion problem is posed. The notation (K,T ) is changed into
(x, y) to generalize the conversion.

dx = a(x, y)dt+ b(x, y)dW

where W is a Wiener process. From the coe�cents a and b the conditional
distributions 'T can be deduced using the Fokker-Planck equation

1

2

@2(b2f)

@x2
� @(a, f)

@x
=

@f

@y
(19)

where f(x, y) is used to denote 'T (x). Restricting to risk-neutral di↵usions,
we can recover a unique difussion process from the f(x, y).
As Dupire assumes the interest rate (r(t)) is 0, in this development the Fokker-
Planck equation results as the following

1

2

@2(b2f)

@x2
=

@f

@y

and, as f can be written as @
2
C

@x2 , the previous equation can be written in
this sense

1

2

@2(b2f)

@x2
=

@2

@x2

✓
@C

@y

◆

where the function f is known but not b.

Integrating twice in x for a constant y and taking the only possible candidate,
the following expression is deduced

1

2
b2
@2C

@x2
=

@C

@y

13



and clearing away b

b(x, y) =

vuut2@C(x,y)
@y

@2C(x,y)
@x2

Once this expression is obtained, the instantaneous volatility can be deduced
with the spot price of the underlying asset’s (S) process

�(S, t) =
b(S, t)

S

and taking into account that the expressoin of the risk neutral densitiy func-
tion of the spot price of the underlying asset ('T ) has been expressed in terms
of the strike price (K) and maturity (T ), the Dupire’s Local Volatility formula
is given by

�LV (K,T ) =
1

K

vuut2@C(T,K)
@T

@2C(T,K)
@K2

=

vuut 2@C(T,K)
@T

K2 @2C(T,K)
@K2

(20)

So, calculating the Dupire’s formula, we calculate the instantaneous volatil-
ity function which enables the estimation of the process of the underlying asset
S under a risk-neutral framework.

Even if the assumption of continuity of the given option prices holds, prob-
lems arise in the implementation of the second derivative of the option price

from the strike price @
2
C(T,K)
@K2 .

Numerical approximations for the derivatives have to be made, which are
imperfect by they nature.
On the one hand, problems can arise when the values are very small and small
absolute errors in the approximation can lead to big relative errors, perturbing
the estimated quantity. When the disturbed quantity is added to other values,
the e↵ect will be limited. This does not happen in Dupire’s formula where
the second derivative with respect to the strike in the denominator stands by
itself. Small errors in the approximation of this derivative will get multiplied
by the strike value squared resulting in big errors at these values, sometimes
even giving negative values, resulting in negative variances and complex Local
Volatilities.
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On the other hand, the continuity assumption of option prices is not very
realistic. In practice, option prices are known for certain discrete points. Usu-
ally, option maturities correspond to the end of a certain fixed period, like the
end of a month. So the number of di↵erent maturities is always limited. The
result of this is that in practice, the inversion problem has not a unique solution
and is unstable. An extra problem for the implementation of Dupire’s formula.

An easier and more stable method to obtain the Local Volatility surface is
to obtain it from the implied volatility surface. This is the method chosen for
this work.
The Local Volaitlity can be described as a function of the implied volatility if
a change of variables is made in (17) by using C as a function of some other
variable. Because of the non disposal of a closed form formula for C to be trans-
formed, this is not possible. But we can make use of the Black-Scholes formula
and the concept of implied volatility.

Adapting the method proposed in Gatheral (2006), the option price under
the Black and Scholes (1973) and Merton (1976) framework has the following
expression

CBS(S0, t0,K, T, r,�imp) = S0e
�

R T
t0

qsds[N(d1)� eyN(d2)] (21)

where

y = ln

✓
K

S0

◆
+

Z

t0

T (qs � rs)ds

d1 = � yq
�2
imp

(K,T )(T � t0)
+

q
�2
imp

(K,T )(T � t0)

2

d2 = � yq
�2
imp

(K,T )(T � t0)
�

q
�2
imp

(K,T )(T � t0)

2

Taking derivatives of the expression (21) from the maturity (T ) and from
the strike price (K) once and twice, and inserting these results in (20), results in
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where a = �2
imp

(K,T )(T � t0).

Simplifying this expression and putting it in terms of the variable y, the
Local Volatility formula from the Implied Volatility is obtained
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where ⌃ = �imp(K,T ).

The transformation of Dupire’s formula into one which depends on the im-
plied volatility ensures that there no longer is a lone second derivative in the
denominator as in (20). Small errors in it will not necessarily lead to large errors
in the local volatility function.
But there is still the matter that the implied volatility is not a continuous func-
tion of strike and maturity, but only known at certain points. To get the Local
Volatility function, some method has to be used to interpolate and extrapolate
the given data points into a surface, and we have to acknowledge since obtaining
the local volatility out of the data involves taking derivatives, the extrapolated
surface cannot be too rough to avoid irregularities in the Local Volatility surface.

2.3.1. Pricing formula of the Local Volatility model

The Local Volatility model takes the same variables as the Black and Scholes
(1973) and Merton (1976) models with the exception of the implied volatility,
which is a correction of the Black Scholes implied volatility in terms of the Local
Volatility.

Those variables are, the current underlying price (S0), the strike price (K),
risk-free interest rate (r), amended implied volatility (�a), time until option
exercise (⌧ = T � t0) and the dividend yield (q).
So, the pricing formula of the call option (C) is

C(S0,K, T, r,�a, q) = S0e
�qt ⇤N(d1)�Ke�rt ⇤N(d2)
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This amended implied volatility is obtained in function of the Local Volatil-
ity function as Hagan, Kumar, Lesniewski and Woodward (2002) did in their
work using perturbation methods
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where �LV is the quadratic Local Volatility function that will be described in
section 2.3.2 and which depends on the strike price (K) and the maturity (T ).

2.3.2. Computation of the Local Volatility model

The first step to obtain the Local Volatility model is to calculate the market
Implied Volatility from the given market option prices. To do so, the bisec-
tion method is implemented. This scheme is based on the intermediate value
theorem for continuous functions that was exposed by Burden and Faires (2000).

Once the Implied Volatility is obtained, the Local Volatility is calculated
from it with (22). Since the number of data points is always many times less
than the number of grid points for the surface, there are many degree of freedom
in the fitting of the surface. Although it cannot be said with certainty which
method of fitting and smoothing the Local Volatility surface is the best, in this
report the Thin Plate Splines (TPS) method is used, which is considered to be
a natural candidate for this type of problem.

The TPS is the two-dimensional equivalent of the cubic spline. It is con-
strained to go through all the data points and it is the fit with the least amount
of curvature. The name of this method comes from the physical process of
bending a thin plate methal. If the spline function is denoted by f(x, y), and
the bending energy function by

J =

Z Z
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the TPS is found by minimising the bending energy function

E =
1

n

nX

i=1

(f(xi, yi)� zi)
2 + �J (25)

where zi are the n data points at coordinates (xi, yi) and � is the smoothing
parameter. For �=0 the procedure simply finds the interpolation spline. When
� >0, the resulting function is smoothed to reduce the function’s curvature. By
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adjusting the value for �, the amount of smoothing can be controlled. This
procedure ensures the TPS agrees with the original data as good as possible.

From the original paper by Duchon (1976) and the work by Meinguet (1979),
it is deduced that there’s an unique solution to this problem, which is

f(xi, yi) =
nX

j=1

ajAi,j +
3X

j=1

bjBi,j (26)

Here, A is an [nxn] matrix and B an [nx3] matrix, where n denotes the number
of data points.
This function f is the necessary one to interpolate and smooth via splines the
Local Volatility function.

When the smoothed Local Volatility surface is obtained, a quadratic func-
tion is fitted to it in order to get the volatility in terms of the strike price and
maturity to obtain the amended implied volatility. It takes the following form

�LV = b1 + b2K + b3T + b4KT + b5K
2 + b6T

2

Since Local Volatility surface is obtained by using the implied volatility as
an input, the right value of these options can be calculated from the Black
Scholes equation. However, this implied volatility inserted in the Black and
Scholes equation is not the same as its model’s. That implied volatility must
be adjusted via the Local Volatility function as explained in (23), where the
second term inside the brackets is a small correction to the first term. More
terms follows in this equation, but they are so small that we don’t consider them
in this work.

Once we obtain the amended implied volatility, we insert it in the Black and
Scholes formula and we get the option prices with this model.
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3. Option data description

The Spanish IBEX-35 index is a value-weighted index comprising the 35
most liquid Spanish stocks traded in the continuous auction market system.
The o�cial derivative market for risky assets, which is known as MEFF, trades
a Future contract on the IBEX-35, the corresponding option on the IBEX-35
Mini Future contracts for calls and puts, and individual option contracts for
blue-chips stocks.

In the case of the options on this index, there is only an option contract,
“‘the small”. That is, there are only options on the Mini Future contract con
the IBEX-35 index.
These contracts give you the right but not the duty of buying or selling a Mini
Futurecontract on the IBEX-35 index at a date and with a change previously
determined.

The nominal of these contracts is a Mini Future on the IBEX-35 and the
multiplier of the contract is 1. In other words, if the index is quoting in 10.800
points, the Future Mini on the IBEX-35 will have as value 10.800e.
This kind of contracts quote in integer points of the Mini Future on the IBEX-
35 index with a minimum fluctuation of one point. It is said, if the quote of
an option premium is 800e, its inmediatly bottom and mayor quote would be
799e and 801e respectively.

Its time to maturity is monthly, the third Friday of each month, as same as
the Mini Future on the IBEX-35. In this work, when we refer to the maturity
date only giving the month, actually we are refering to July, 21st, August, 18th
and September 15th.

These options are European options, so they can only be exercised at ma-
turity. However, if the investor decides to materialize his inversion, it is always
possible to close the position with an opposite operation to the initial one.
The risk-free rate used in this work has the value of 0, 01563 which is the corre-
sponding rate to the Government Bonds.
The dividend yield corresponding to the dates used in this work is 0, 04.

The database1 used for this report comprise call options on the IBEX-35
index Mini Futures traded daily during the period of May 2th and June 28th of
2017 with maturities at the third friday of July, August and September of 2017.
All of them have six di↵erent strike prices, which go from 9.000e to 11.500e in
intervals of 500e.
We have 233 observations for the option prices expiring in the month of July,
144 for the month of August and 252 for the month of September.

1The data used for this work have been provided by the quantitative department of BBVA.
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The underlying asset used for this work, the Mini Future on the IBEX-35, takes
a range of values from 10.600e to 10.900e. This will be taken into account
when analysing the performance in reference to the strike prices, taken the last
two as being out of the money and the strike price of 10.500e as reference for
the at the money options.

One remarkable fact is that in the case of the Local Volatility model, as it
has to be defined a volatility function for each stock price and di↵erent strike
prices and maturities are needed to do so, the data has been modified taking
into account those underlying pices of the Mini Future on the IBEX-35 which
have three di↵erent maturity dates and excluding those which have two or less
maturity dates in order to define as well as possible the Local Volatility function.

This is why we analyse 504 observations for the in sample framework and
336 observations in the out of sample framework.
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4. Pricing Performance

This section reports the pricing performance of the three di↵erent models
used in this analysis taking as reference, the market prices provided in the data
set. These results are divided in three sections. The first one will show the
results in a global manner for each of the three maturities, the second one will
focus the results on each of the maturity dates and the third one will focus on
the performance of the models in every strike price.
Each of the analysis will be provided for the in sample and the out of sample
contexts.

In order to be able to make these comparisons, the Relative Absolute Error
(RAE errors from now on) and the Mean Absolute Relative Error or Mean Ab-
solute Percentage Error (MAPE errors from now on) will be deployed. These
errors are defined as it follows

RAE =
|yi � ŷi|

yi

MAPE =
1

n

nX

i=1

|yi � ŷi|
yi

where yi is the price of the option observed in the market an ŷi is the price
of the option calculated with the model.
RAE errors will not be displayed in tables, but they are used in order to build
the boxplots that will be shown in the following sections.

4.1. Global pricing performance

When analysing the performance of the models in sample and out of sample,
we obtained these results2 expressed in a global vision:

2The results of the errors given in all sections are expressed as so much per one. In order
to express them as percentage they would be multiplied by 100.
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Table 1: Global Mean Absolute Percentage Errors

In Sample Out of Sample

Heston (1993) 0,063 0,1332

Heston and Nandi (2000) 0,4648 0,859

Local V olatility 1,163 1,966

This table shows the MAPE errors in a global context for the three di↵erent models analysed in

this work.

According to the results, the Heston (1993) model has the minimum error
pricing the options on the Mini IBEX-35 Futures in the two context, in sample
and out of sample.
It can be seen that changing from the in sample context to the out of sample
context, the Heston (1993) model increases its errors in a 111,43% while the
Heston and Nandi (2000) model does the same in a 84,81% and in a 69,05%
does the Local Volatility model.

Comparing the three models taking the Heston (1993) as the one which best
fits the option prices on the Mini Future on the IBEX-35, in the in sample con-
text the Heston and Nandi (2000) model fits 6 times worse than the stochastic
volatility model and 17 times worse does the Local Volatility model.
With regard to the out of sample context, the Heston and Nandi (2000) model
performs 5 times worse than the sotchastic volatility model and the Local
Volatility worsens 14 times the Heston (1993) model.

In order to examine in more detail and understand these global results, in
the following sections they will be analysed from others perspectives.

4.2. Pricing performance at di↵erent maturity dates

The errors obtained in the previous Section 4.1 can be summarised in the
following graphics and in the table 2 depending on each maturity date for the
in sample and out of sample context.
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Table 2: Mean Absolute Percentage Error at each maturity in sample context

July August September

Heston (1993) 0,083 0,077 0,028

Heston and Nandi (2000) 0,11 1,219 0,063

Local V olatility 1,424 0,74 1,33

This table shows the MAPE errors when pricing the options with each of the three models in the

in sample performace at each maturity date.

With the results of the table 2, it can be detected that the accuracy of the
Heston (1993) model is greater when the maturity increases.
Not the same behaviour happens in the Heston and Nandi (2000) model, where
on the maturity dates of July and September, the MAPE errors are relatively
small, increasing in a 1008,18% from July to August and dicreasing in a 94,83%
from August to September. This evolution of the MAPE error in the Heston
and Nandi (2000) model suggests a bad fit with the option prices belonging to
this maturity date which will be analysed in the following section.

In the case of the Local Volatility model, the maturity date where the model
fits the best is on the August date, increasing its accuracy a 48% with regard
to the July maturity date and worsening a 79% from August to September.

In order to show this table’s results in a graphic display, we show how the
RAE errors behave at each maturity with boxplots. This kind of charts vi-
sualizes the distribution of a data set. The red line points the median of the
distribution and the upper an lower lines of the box point the third quartile and
the first quartile of the distribution respectively. The first quartile (Q1) shows
until which value does the 25% of the errors reach and the third quartile (Q3)
shows until which value does the 75% of the errors reach. The space between
Q1 and Q3 is called the interquartile range.
The lines extending from the box reach the maximum or minimum value of the
data set or until 1,5 times the interquartile range. If any value exceeds these
lines, it will be represented with a red cross indicating atipic values of the data
set.
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Figure 1: Heston (1993) In Sample RAE errors

This figure shows the RAE errors in the In Sample performance of the Heston 1993 model and how

they are distributed.

As it can be appreciated in figure 1, in the Heston (1993) model the value of
the errors decreases as the maturity date moves away and they come together
in a more accurate range as shown in table 2.

In the case on the Heston and Nandi (2000) model, figure 2 clarifies the
evolution mentioned before refering to the August maturity date. As it can be
seen, while the 75% of the RAE errors in July and September are consolidated
in a small area next to 0, in the case of the August maturity date the RAE errors
have a 75% of the values between a value next to 0 to 1, extending the maximum
value till 2 and having a considerable amount of extreme errors above 2. This
means a bad accuracy of the model and it is reflected in its global performance
in table 1 raising the MAPE error up to 0,4648 (46,48%) in a global context.
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Figure 2: Heston and Nandi (2000) In Sample RAE errors

This figure shows the RAE errors in the In Sample performance of the Heston and Nandi 2000

model and how they are distributed.

Figure 3: Local Volatility In Sample RAE errors

This figure shows the RAE errors in the In Sample performance of the Local Volatility model and

how they are distributed.
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In the case of the Local Volatility model, we can see that although the max-
imum errors increase their value as the maturity date moves away, the median
mark raises with the maturity date meaning that inside the interquartile range,
the RAE values behave in a di↵erent way at each maturity.
On the July maturity date, most of the RAE errors are located between the me-
dian and the third quartile while on the September maturity date, these errors
are located between the first quartile and the median.
This is why, although the maximum error increases with the maturity date, the
RAE errors at September are less than at July as the table 2 shows.
In figure 3 it can be appreciated that the RAE errors at August are less because
the interquartile range is the smallest.

Refering to the out of sample performance of the models, the results analysing
the MAPE errors in reference to each of the maturities are the following

Table 3: Mean Absolute Percentage Error at each maturity out of sample context

July August September

Heston (1993) 0,160 0,196 0,043

Heston and Nandi (2000) 0,251 2,2323 0,0936

Local V olatility - - 1,966

This table shows the MAPE errors when pricing the options with each of the three models in the

out of sample performace at each maturity date.

As the table 3 shows, the MAPE errors of the Heston (1993) and Heston
and Nandi (2000) models are divided in the three maturity dates, but the Lo-
cal Volatility’s errors are only reflected at September. This is because for the
out of sample performance with the Local Volatility, we had to get a function
depending on all maturities and strike prices for the Local Volatility from each
underlying asset. To do so, we used the maturities of July and August and the
six di↵erent strike prices in order to get that function, and then implement it
with the maturity of September and see how it worked.

The Heston (1993) model is again the one with the smaller MAPE errors on
the three maturities. In contrast to the results obtained in table 2, it can be
appreciated a slight increase in the error from July to August of a 22,5%. But
it is still at the September’s maturity where the model fits the best.
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Figure 4: Heston (1993) Out of Sample RAE errors

This figure shows the RAE errors in the Out of Sample performance of the Heston 1993 model and

how they are distributed.

Figure 5: Heston and Nandi (2000) Out of Sample RAE errors

This figure shows the RAE errors in the Out of Sample performance of the Heston and Nandi 2000

model and how they are distributed.

Highlighting the evolution mentioned in the in sample context, it is remark-
able that the Heston and Nandi (2000) model has the same behaviour as the
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one described in figure 2. In this occasion, from July to August the MAPE
errors increase in a 789,36%.This high increase of the errors is understandable
since the model has a worsening of 84,81% from in sample to out of sample
performance. As it happens in the Heston (1993) model, it is on the farthest
maturity date where the model fits the best.

Figure 6: Local Volaitlity Out of Sample RAE errors

This figure shows the RAE errors in the Out of Sample performance of the Local Volatility model

and how they are distributed.

Refering to the Local Volatility model , it can be appreciated the high RAE
errors and the high number of atypical errors given in the out of sample context,
worsening the performance of the model in a 47,82%.
It is by far the model which fits the worst on the September maturity date in
the out of sample context, adjusting 20 times worse than the Heston and Nandi
(2000) model and 44 times worse than the Heston (1993) model.

4.3. Pricing performance in di↵erent strike prices

In order to be able to explain bad performances at each maturity dates,
di↵erent boxplots are built pointing out the Relative Absolute Errors given at
each strike price of each maturity date.
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Figure 7: Heston (1993) In Sample RAE errors of each strike price

This figure shows the RAE errors of each strike price in the In Sample performance of the Heston

1993 model and how they are distributed.

In figure 7, it can be appreciated that the highest values of the errors in the
Heston (1993) model are located in the last strike price (11.500e) of the three
maturity dates.
In fact, the values of the errors become higher as we move towards higher values
of the strike price. This means that the model responds in a worse way as the
strike price takes a higher value.

A similar behaviour occurs in the Heston and Nandi (2000) model, where
the greatest values of the RAE errors come about in the strike price with value
11.500e.
Unlike the case of the Heston (1993) model, the behaviour of these errors is not
ascendent in the three maturity months. In the month of September, form the
strike price of 9.000e to the strike price of 9.500e is when the 75% of the errors
is stored in the highest values until the strike price of 11.000e, when they take
greater values. Even so, this di↵erence of values is not too large.
This time, the worst performance of the model is located in the highest value
of the strike price too.
As a remark, the scale of errors obtained for the maturity of August is larger
than in the others’ maturities, reaching error values such as 10 (which, being
relative errors, means errors of 1000% relative to the real market option prices).
This bad performance in the last strike price of the maturity date of August is
reflected in the huge MAPE error value described in table 2.
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Figure 8: Heston and Nandi (2000) In Sample RAE errors of each strike price

This figure shows the RAE errors of each strike price in the In Sample performance of the Heston

and Nandi 2000 model and how they are distributed.

Figure 9: Local Volatility In Sample RAE errors of each strike price

This figure shows the RAE errors of each strike price in the In Sample performance of the Local

Volatility model and how they are distributed.

In figure 9, it can be seen that the values of the RAE errors in the Local
Volatility model increase upwardly as the strike price value gets higher. At the
maturities of July and September, when the models fits worse in sample, the
higher values are given in the last strike price. This does not happen in the
case of August, where the higher values of these errors, on average, are located
in the strike price of 11.000e, being the errors of the last strike price a little
smaller.
So, as in the other cases, the performance of the Local Volatility model becomes
worse in the last strike prices at each of the maturities.

In the context of out of sample, the results in the Heston (1993) model is
quite similar to the results given in the in sample context. As it can be seen
in figure 10, the value of the Relative Absolute Errors increases as the strike
prices become higher, obtaining the highest values in the last strike price again
(11.500e). This fact is present at all maturity dates, refuting that this model
fits the worst in the strike price of 11.500e on all maturity dates.
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Figure 10: Heston (1993) Out of Sample RAE errors of each strike price

This figure shows the RAE errors of each strike price in the Out of Sample performance of the

Heston 1993 model and how they are distributed.

Figure 11: Heston and Nandi (2000) Out of Sample RAE errors of each strike price

This figure shows the RAE errors of each strike price in the Out of Sample performance of the

Heston and Nandi 2000 model and how they are distributed.

In the case of the Heston and Nandi (2000) model, the same behaviour is per-
ceived in figure 11 as in the in sample context. The results obtained in the three
maturities clarify that the model fits the worst in the strike price of 11.500e,
reflecting again the big di↵erence of the August maturity date, reaching errors
of 1400% regarding the real option market prices, what distorts the accuracy
observed in table 1.

Regarding to the deterministic volatility model, the out of sample perfor-
mance in figure 12 shows that the Relative Absolute Errors increase in value
as the strike price becomes higher, taking the 75% of these errors the highest
values in the two last strike prices (11.000e and 11.500e).
This fact means that the Local Volatility model fits the worst in the higher
strike prices as the models of Heston (1993) and Heston and Nandi (2000) do,
and having the same behaviour as in the in sample context.
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Figure 12: Local Volatility model Out of Sample RAE errors of each strike price

This figure shows the RAE errors of each strike price in the Out of Sample performance of the

Local Volatility model and how they are distributed.
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5. Conclusions and Remarks

The main objective of this work was to analyse which model solved in the
best way the problem of the constant volatility implemented in the Black and
Scholes (1973) model. To do so, three di↵erent models with three di↵erent
volatility modelling have been presented. A stochastic volatility model with the
Heston (1993) model, a conditional volatility model with the Heston and Nandi
(2000) model and a deterministic model with the Local Volatility model.

The results obtained in the previous section suggest that the Heston (1993)
model is the one which solves the best the problem discussed at the three matu-
rities, meaning that modelling the volatility with a stochastic behaviour is the
best solution of the three exposed in this work.
This suggestion reveals that the volatility modelled with a stochastic behaviour
is more realistic, since it takes into consideration what is observed in financial
markets, namely the volatility’s mean reversion, the leverage e↵ect, volatility
clustering and negative correlation between stock returns and volatility.

Indeed, the model permits a fast and easy calibration to the market data
since it provides a semi closed form solution and if the volatility weren’t mean
reverting, it would either go to infinity or go to 0 and stay there. It would be
non-stationary.
The model also allows for non-Gaussianity, unlike the Black and Scholes (1973)
model, the Heston and Nandi (2000) model and the Local Volatility model
(based in the Black and Scholes (1973) model). This fact is consistent with
empirical researches which have shown that the distribution of returns is most
often non-Gaussian and it is in fact characterized by heavy tails and sharper
peaks, as it was seen in Cont (2001).

More over, the leverage e↵ect is modelled in the Heston (1993) model as the
correlation ⇢ and it fits the implied volatility surface realtively well.

Finally, we have shown that extending the model of Black and Scholes (1973)
and Merton (1976) but still letting the volatility being deterministic, the per-
formance is still not adjusted to the reality of the market, resulting in huge
biases which suggest that a deterministic behaviour is not an advisable way of
modelling the volatility.

But, although the results obtained after developing the analysis of the work
indicate that the suggestions previously mentioned could be authoritative, we
are not able to assert them since the results obtained are not which we were
expecting.
It is clear that with the data set employed in this work, the Local Volatility
model results being the worst fitting the prices of the option market prices, but
the bias produced specially in the out of sample context is too high.
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Similarly, it is comprehensible that the errors produced in the Heston and
Nandi (2000) model can be greater than the errors given with the Heston (1993),
but they are a 637,77% higher in the in sample context and a 545% in the out
of sample context.
Although the most amount of the global errors in the Heston and Nandi (2000)
model is located at August maturity date, these di↵erences are too high of what
is usually given between these two models.

These discrepancies and oddities can be considered for the small size of the
data set at each maturity and specially in the August maturity date data set.
As described in Section 3, the number of observations at each maturity does
not exceed the 300 observations.

In this way, the bad accuracy of the Local Volatility model can arise because
we are force to build the Local Volatility function with only two maturities.
Having more observations in order to build that function, the accuracy could
be improved and the errors reduced.

This is why we suggest in order to obtain a more reliable conclusions, to
acquire this analysis with a larger data set.

Another fact that must be taken into account is that, if the error given by
the Heston and Nandi (2000) model on the August maturity date was not so
big, at the time of choosing between the Heston (1993) model and the Heston
and Nandi (2000) model, we would have to take into account that although
the errors increase a 70% on average with the Heston and Nandi (2000) model
(which continue being relatively small because of the great accuracy of the
Heston (1993) model), the time it takes to computationally solve the Heston
(1993) model and get the option prices is 4,8 times greater (92,147sec. versus
15,943sec.) than computationally solving the Heston and Nandi (2000) model
and get those option prices with it.

This fact leads us to pose that in the choice of a model to price these options,
in practice it may be better loosing a little bit of precission but gaining greater
speed, getting the results in a more inmediate way.

As final three remarks, the three models show a bad accuracy pricing these
options on the Mini Future on IBEX-35 in the last two strike prices at each
maturity. Taking into account that the price of the Mini Future on IBEX-
35 on the dates of the data set moved between 10.600e and 10.900e, we can
suggest that the options with strike prices of 9.000e and 9.500e were in the
money (ITM), the options with strike prices of 10.000e and 10.500e were at
the money (ATM) and those with strike prices of 11.000e and 11.500e were
out of the money (OTM).
So, in this work, it is revealed that in the three cases, the models fits the worst
at each of the maturities the options which are out of the money.

34



The second remark deals with the � parameter of the Heston and Nandi
(2000) model. As it can be seen in the Section 7.2 of the Appendix, at the
maturities of July and September the value of this parameter is really high,
pointing out the great asymmetry of the distribution that is collected on these
maturity dates, meaning that large negative shocks (z(t)) raise the variance
more than a large positive shock.
This fact wouldn’t have been reflected by the model if we had not defined this
parameter as in (15), producing higher biases in the model if we had taken the
risk neutral � parameter defined by the Heston and Nandi (2000) model.

Finally, the third and last remark goes with the idea that the reason why
the Heston and Nandi (2000) model has a poorer performance than the Heston
(1993) model is that it does not incorporate the information contained in the
cross-section of option prices, in spite of the fact that the asymmetric GARCH
parameter is estimated implicity from option data. It cannot generate the skew-
ness and the kurtosis needed to price these options because the volatility inferred
from the history of the index returns is not high enough.
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7. Appendix

7.1. Parameter estimation of the Heston (1993) model

Table 4: Parameters of Heston (1993) model In Sample

July August September

 22,37 1008,255 0,486

⇢ 0,385 -0,7403 -0,565

� 0,004 4,99 0,28

✓ 0,0205 0,0173 0,0808

� 0,0038 0,0000000196 0,0189

This table shows the estimation of the Heston’s (1993) model in sample context.

Table 5: Parameters of Heston (1993) model Out of Sample

July August September

 15,825 1014,69 0,0477

⇢ 0,5247 -0,305 -0,585

� 0,026 4,99 0,249

✓ 0,0243 0,0172 0,999

� 0,00009 0,000584 0,015

This table shows the estimation of the Heston’s (1993) model out of sample context.
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7.2. Parameter estimation of the Heston and Nandi (2000) model

Table 6: Parameters of Heston and Nandi (2000) model In Sample

July August September

↵ -0,000000137 0,0001997 -0,000000137

� 0,7965 0,39984 0,7965

� 2100 5,999 1700

� -0,5 -0,5 -0,5

This table shows the estimation of the Heston and Nandi’s (2000) model in sample context.

Table 7: Parameters of Heston and Nandi (2000) model Out of Sample

July August September

↵ -0,000000708 0,00000568 -0,000000844

� 0,4001 0,39995 0,282

� 1399,99 5 1199,99

� -0,5 -0,5 -0,5

This table shows the estimation of the Heston and Nandi’s (2000) model out of sample context.
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