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Abstract

This MSc Thesis focuses on pricing and hedging fixed income derivatives under the current
negative interest rates environment. The most commonly used models in practice are
analysed and compared in order to select the most accurate one for pricing and hedging
interest-rate derivatives. Since shifted SABR model has become the “market standard”
tool for modelling negative interest rates, the main aim of this research is to examine
and test its performance, providing an empirical evidence that corroborates its general
acceptance.
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Introduction

“Essentially, all models are wrong, but some are useful.”
George E. P. Box (1919 – 2013)

In the height of the recent financial crisis large financial institutions collapsed, while
the interdependence between them led to a financial contagion that happened at both
international and domestic level. That became thereafter a potential risk for many coun-
tries, especially those in the hard core of the Eurozone.

The crash battered both banks and borrowers so that banks did not want to lend and
consumers did not want to borrow due to the poor credit quality of the counterparty and
the widespread propagation of the default risk. In this way, for many, especially small
institutions, trading became either too risky or too expensive.

In order to avoid this new environment dominated by concern and economic inactivity,
the use of negative interest rates, although it is an unconventional tool of economic policy,
has become a standard practice in recent times. Indeed, European Central Bank, but also
Central Banks of Sweden, Denmark, Switzerland, and Japan have set negative interest
rates on reserves. The rationale behind these exceptional measures is to encourage in-
vestors to borrow money and invest into the economy in order to stimulate and improve
the economic growth. A negative rate implies that investing money in a bank (deposits)
would result in a loss, and borrowing money (loans) in a profit. Therefore, setting low
and negative interest rates, the Central Banks would, in fact, punish investors for holding
their cash and reward the borrowers, who are paid for taking out loans.

This new situation has led to great economic e↵ects, but beside this it has caused
many technical problems to the financial institutions, since most of the existing interest
rate derivatives pricing models typically assume positive interest rates. In fact, in these
models positiveness of interest rates has always seemed a reasonable and attractive prop-
erty. Clearly, this assumption has become unacceptable under the current situation of
very low or even negative rates, making valuation spreadsheets break down or not value
properly, leading to incorrect prices and causing arbitrage possibilities. Therefore, in or-
der to provide solutions to overcome these problems, adapting pricing models to deal with
negative interest rates has emerged as a key concern at an international level.
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This MSc Thesis provides an extensive theoretical and practical research that com-
pares diverse commonly used pricing models able to cope with negative interest rates and
that, therefore, might be very helpful and useful in this challenging environment. The
model that outstands for its accuracy in pricing and hedging fixed income derivatives
is the shifted SABR model. This model is a natural extension of the classic stochastic
volatility SABR model introduced by (Hagan et al.,2002)[22], that handles negative
interest rates and shows great capacity to fit adequately the implied volatility curves that
are typically observed within markets. Due to these reasons, the shifted SABR model
has become the benchmark of many financial institutions for pricing and hedging fixed
income derivatives under the new context of negative rates.

This research is organized in two parts. The first one, named Theoretical background,
is devoted to the theoretical topics covered through the research. Chapter 1 provides both
brief interest-rate and mathematical frameworks necessary to understand subsequent ar-
guments and developments. Chapter 2 reviews traditional interest-rate derivatives pricing
models. Chapter 3 introduces the SABR model and its extensions able to cope with nega-
tive interest rates. Finally, Chapter 4 focuses on the shifted SABR hedging tools, including
theoretical developments on Greeks and parameters sensitivities.

The second one, entitled Empirical analysis, includes the practical application to the
topics analysed in the first part. Chapter 5 characterizes the market data used through the
research. Chapter 6 provides a methodological scheme that gradually describes the steps
followed along the empirical analysis. The attained results are presented and explained
in Chapter 7.
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Theoretical background
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Chapter 1

Preliminaries

This Chapter includes some preliminary and relevant concepts, mainly based on (Brigo

and Mercurio,2006)[8] and (Rouah,2007)[37], that will be necessary for the argu-
ments and developments along the research.1

1.1 Basic definitions

• Bank account (B(t)). The continuously compounded, at the rate r(t), bank
account (or also money-market account) represents a zero-risk investment. It is
defined at time t � 0 by

B(t) = B(0) exp

✓Z t

0

r(u) du

◆
, (1.1)

according to the di↵erential equation dB(t) = r(t)B(t)dt, and where B(0) is the
amount invested at time t = 0.

• Stochastic discount factor (D(t, T )). The continuously compounded (stochastic)
discount factor between the time instants t and T is the amount at time t that is
“equivalent” to one unit of currency payable at time T , with t < T . It is defined by

D(t, T ) =
B(t)

B(T )
= exp

✓
�

Z T

t

r(u) du

◆
. (1.2)

• Zero-coupon bond price (P (t, T )). A T -maturity zero-coupon bond guarantees
the payment of one unit of currency at time T , with no intermediate payments.
Indeed, a zero-coupon bond for the maturity T is a contract that establishes the
present value of one unit of currency to be paid at time T . Its value at time t < T

is defined by

P (t, T ) = EQ

exp

✓
�

Z T

t

r(u) du

◆��
Ft

�
, (1.3)

where Q is an equivalent martingale measure, risk-neutral measure, that will be de-
fined later. Clearly, P (T, T ) = 1. Also, notice that if interest rates r are determinis-
tic, then the discount factor D(t, T ) is deterministic as well, and P (t, T ) = D(t, T ).

1Experienced readers can ignore this Chapter if it is immediate for them.

4



1. Preliminaries

• Day-count convention (�(t, T )). The day-count convention �(t, T ) is defined as
the ratio of length of time interval [t, T ] over the length of a year. It reflects the
particular choice that is made to measure the amount of time (in years) between
two dates, i.e., the time to maturity defined as ⌧ = T � t.2

• Tenor. The tenor of a fixed income derivative is the time to maturity of the
underlying. Therefore, the “maturity” is usually understood as the time to maturity
of the derivative, and the “tenor” as the time to maturity of the underlying fixed
income product.

1.2 Interest rates

• Simply-compounded forward interest rate. The simply-compounded forward
interest rate prevailing today, at time t, for the future investment period [T

1

, T

2

] is
defined by

F (t, T
1

, T

2

) :=
1

�(T
1

, T

2

)

✓
P (t, T

1

)

P (t, T
2

)
� 1

◆
. (1.4)

• Instantaneous forward interest rate. The instantaneous forward interest rate
prevailing today, at time t, is defined as

Ft := lim
T1!T�

2

F (t, T
1

, T

2

) = �

@ logP (t, T
1

)

@T

1

. (1.5)

Therefore, the instantaneous forward interest rate Ft is defined as the simply-
compounded forward interest rate when the future investment period becomes in-
finitesimal, say Ft ⇡ F (t, T

1

, T

1

+�T

1

). It is important to remark that the instan-
taneous rates are theoretical constructions widely used in the literature for accom-
plishing analytical formulae, although they do not exist in the markets.

• Forward swap rate. The forward swap rate observed today, at time t, for the
specified interval [T

1

, T

2

]3 is given by

S(t, T
1

, T

2

) :=
P (t, T

1

)� P (t, T
2

)

L(t, T
1

, T

2

)
, (1.6a)

where L(t, T
1

, T

2

) is usually called forward level function and it is defined as the
present value at t of an annuity paying one unit of currency on the n fixed pay-
ment dates T

1

, . . . , T

2

:

L(t, T
1

, T

2

) :=
T2X

j=T1+1

�j · P (t, Tj), (1.6b)

where �j is the day-count convention applying to the period starting at Tj�1

and
ending at Tj.

2This definition is a simplification, since there are di↵erent ways to compute the day-count convention.
In the page http://www.deltaquants.com/day-count-conventions are described some of the most
commonly followed conventions.

3The length of the interval [T1, T2] accounts for the tenor of the corresponding swap.
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Pricing and Hedging Fixed Income Derivatives: An SABR approach

Important interbank interest rates for the European financial markets are LIBOR and
EURIBOR.

• LIBOR. The London Interbank O↵ered Rate (LIBOR) is the average of interest
rates estimated by each of the leading banks in the London interbank market that
would be charged were it to borrow from other banks.

• EURIBOR. The Euro Interbank O↵ered Rate (EURIBOR) is a daily reference
rate based on the averaged interest rates at which Eurozone banks o↵er to lend
unsecured funds to other banks in the European interbank market.

Another important interest rate that actually will be used in this research as a proxy
for the risk-free rate4 for both computing the forward rates and the discount factors is
the OIS rate.

• OIS. The Overnight Index Swap (OIS) is an interest rate swap in which a fixed rate
of interest is exchanged for a floating rate of interest that is the geometric mean of
a specific daily overnight rate. The overnight rates for the EUR, USD and GBP
market are the Euro Overnight Index Average (EONIA), the e↵ective Federal Funds
Rate and the Sterling Overnight Index Average (SONIA) respectively.

The election of a market rate as a proxy for the risk-free rate is not obvious. In fact, this
issue is currently under discussion, since the recent financial crisis changed progressively
the tendency of the market practice. Before the credit crunch the standard election for
discounting used to be the LIBOR rate. However, it has turned out to be a poor proxy
for the risk-free rate under stressed market conditions during recent years, and therefore
has been gradually substituted by the OIS rate. (Hull and White,2012)[26] examines
this practice and concludes that OIS curve is currently the most suitable proxy for the
risk-free discount curve.5

1.3 Interest-rate derivatives

• Swap. Usually an interest rate swap (IRS) is used to transform a fixed-rate loan
into a floating-rate loan or vice versa.6 It is a financial product in which two parties
exchange interest rate cash flows during a fixed period of time. One of the cash flows
has a fixed rate and the other has a floating rate indexed to a reference (market)
interest rate. The cash flow with the fixed rate is called the fixed leg and the cash
flow based on the floating rate is called the floating leg. Identification of the payer
and the receiver of the swap is based on the fixed leg. The one that pays the fixed

4The risk-free interest rate is a theoretical rate of return of an investment with zero risk, and its term
structure is a key input to the pricing of financial products.

5Actually, the use of single discount curve for both computing the forward rates and the discount
factors is a simplification of today’s standard market practice, where multi-curve framework is used, i.e.,
the process of implying forward rates is separated from the process of computing discounting factors.
This topic is extensively analysed in (Bianchetti,2004)[5], however it lies beyond the objectives of the
research and consequently its discussion will not be included here.

6These types of IRS receive the name fixed-floating swaps. However, there also exist floating-floating
swaps, based on two di↵erent floating rates or on the same floating rate but with di↵erent tenors; and
fixed-fixed swaps, in which both counterparties pay a (di↵erent) fixed interest rate.
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1. Preliminaries

rate and receives the floating rate is called the payer swap. On the other hand, the
receiver swap pays the floating rate and receives the fixed rate. An IRS is usually
structured so that one side transfers the di↵erence between the two payments to the
other side. Interest rate swaps allow financial managers to e↵ectively hedge their
interest rate exposure.7

• Caplet/Floorlet. A European call/put option is a financial contract between two
parties, the buyer and the seller of this option, agreed at time t. The buyer of the
call/put option has the right, but not the obligation, to buy/sell the underlying asset
from the seller of the option at a certain time, the maturity date T , for a certain
price, the strike price K. The seller is obligated to sell the underlying asset to the
buyer if the buyer so decides (exercises their option). The buyer pays a fee, called
premium, for this right. When the underlying asset is an interest rate, particularly
a forward interest rate, the call and put option are known as caplet and floorlet,
respectively. The payo↵s of a caplet and floorlet at the maturity date are

Pcaplet = N · �(t, T ) · (FT �K)+ , and (1.7a)

Pfloorlet = N · �(t, T ) · (K � FT )
+

, (1.7b)

where FT is the value of the underlying forward interest rate at the option-maturity
date T , �(t, T ) is the day-count convention, and N accounts for the notional out-
standing the caplet/floorlet.

• Cap/Floor. An interest rate cap/floor is a contract on an interest rate whereby
the seller pays the buyer, at periodic payment dates, the positive/negative di↵erence
between a reference (market) interest rate (floating rate) and the agreed floor-rate
(fixed rate, like a strike), i.e., when the reference interest rate exceeds/is below the
agreed floor-rate. The interest rate cap/floor is actually equivalent to a series of
call/put options (caplets/floorlets) each written on an individual forward interest
rate. Interest rate caps are used often as a hedging tool: by a cap, a borrower with
a floating rate loan can hedge against interest rate increases. Otherwise, an interest
rate floor reduces the risk to lenders receiving the interest payments and guarantees
a minimum rate for their loaned money (the floor-rate). Therefore, the payo↵ of a
cap/floor is simply the sum of the payo↵s of its caplets/floorlets as shown in the
next equations.

Pcap = N

T2X

j=T1+1

�(Tj�1

, Tj) · (F (Tj�1

, Tj)�K)+ , and (1.8a)

Pfloor = N

T2X

i=T1+1

�(Tj�1

, Tj) · (K � F (Tj�1

, Tj))
+

. (1.8b)

7Recall that for an IRS, the tenor of the floating leg does not have to match the tenor of the fixed leg,
and, contrary, both legs have the same notional. The notional in this context is the pre-specified amount
on which interest payments are based on.
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Caps and floors are usually understood as the “positive parts” of a payer/receiver swap
respectively, since their payo↵s can be computed as the sum of those exchange payments
which are above zero for every date of the interval [T

1

, T

2

]. Therefore, a cap/floor can be
characterised as a portfolio of n caplets/floorlets, referred to the floating rate of an IRS
for each one of the n dates among the interval [T

1

, T

2

].

1.4 Mathematical framework

In the no-arbitrage approach to pricing derivatives, the t-time value V (t) of a contingent
claim (derivative) is obtained by choosing a numeraire N(t)8 and taking an expectation
with respect to an equivalent martingale measure N under which the discounted value of
the derivative is a martingale. Accordingly, V (t) is defined from the expression

V (t) = N(t)EN

V (T )

N(T )

��
Ft

�
. (1.9)

• Risk-neutral measure (Q). The risk-neutral measure Q has the bank account
B(t) as a numeraire. Under Q, and in the absence of arbitrage, a contingent claim
is valued as

V (t) = B(t)EQ

V (T )

B(T )

��
Ft

�
. (1.10)

• T-forward measure (FT ). The T-forward measure FT has the T -maturity zero-
coupon bond P (t, T ), with P (T, T ) = 1, as a numeraire. Under FT , and in the
absence of arbitrage, a contingent claim is valued as

V (t) = P (t, T )EFT


V (T )

P (T, T )

��
Ft

�
= P (t, T )EFT

[V (T ) | Ft]. (1.11)

(Rouah,2007)[37] proves that the forward rate F (t, T ) is a martingale under
the T-forward measure.

• Radon-Nikodym Derivative. Change of numeraire. The Radon-Nikodym
derivative dFT

dQ to change the measure Q to FT can be obtained by considering the
expectations

EFT


P (t, T )

P (T, T )
V (T )

��
Ft

�
= EQ


P (t, T )

P (T, T )
V (T )

dFT

dQ
��
Ft

�
= EQ


B(t)

B(T )
V (T )

��
Ft

�
, (1.12)

where the first equality comes from applying the Radon-Nikodym derivative so that
EFT

[X] = EQ[X ·

dFT

dQ ], and the second one comes from matching both definitions
(1.10) and (1.11), and bringing the corresponding elements inside the expectations.
Therefore,

dFT

dQ =
B(t)/B(T )

P (t, T )/P (T, T )
=

e

�
R T
t r(u) du

P (t, T )
. (1.13)

8A numeraire N(t) normalizes the value of any asset in the market V (t) by referring it to the numeraire
units, i.e., V (t)/N(t). The only necessary conditions to be imposed to the numeraire is to be positive
and to pay no dividends.

8



Chapter 2

Interest-rate Models

This Chapter presents some of the most popular interest-rate models jointly with a brief
description and discussion for each of them.9

2.1 Bachelier (Normal) Model (1900)

The Bachelier (or normal) model introduced by (Bachelier,1900)[3] is the most sim-
ple model for modelling negative interest rates. It is given by the following stochastic
di↵erential equation for the instantaneous forward rate Ft:

dFt = �N · dWt, (2.1)

where �N is the constant normal volatility and Wt is a Brownian Motion under the T -
forward measure FT . The solution to the SDE (2.1) is

Ft = f + �N ·Wt, where f = F

0

, (2.2)

so the process Ft is normally distributed.

The Bachelier model allows working with negative interest rates in a natural way be-
cause of its normal distribution. However, this advantage also results in one of the main
drawbacks of the model. Indeed, the solution (2.2) evidences that with nonzero probabil-
ity, Ft may become arbitrarily negative. Under typical circumstances, however, this is a
relatively unlikely event, since rates are not assumed to go far away from the zero-barrier
into the negative domain.

Furthermore, the basic premise of this model is that �N is constant, however this
assumption is not supported by the interest volatility markets. In particular, for a given
maturity, option implied volatilities exhibit a pronounced dependence on their strikes.
This phenomenon is called the volatility smile or skew. The volatility smile/skew is dif-
ferent for each maturity as well, and the implied volatility as a function of both strike
and maturity is called the implied volatility surface.

9The next Chapter focuses on the SABR model and several of its versions.
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Under the Bachelier model the prices for a caplet/floorlet on a forward rate F (t, T
1

, T

2

)
with strike K and notional N are given by

V

Bachelier
caplet (T,K, f, �N) = N · �(T

1

, T

2

) · P (t, T
2

) · BBachelier
call (T

1

, K, f, �N), (2.3a)

V

Bachelier
floorlet (T,K, f, �N) = N · �(T

1

, T

2

) · P (t, T
2

) · BBachelier
put (T

1

, K, f, �N), (2.3b)

where

B

Bachelier
call (T

1

, K, f, �N) = (f �K)�(d) + �N

p
T

1

�(d), (2.4a)

B

Bachelier
put (T

1

, K, f, �N) = (K � f)�(�d) + �N

p
T

1

�(d), (2.4b)

where �(·) and �(·) are the normal distribution function and the probability density,
respectively, and

d =
f �K

�N

p

T

1

. (2.4c)

The quantity �(T
1

, T

2

) is the day-count convention and f denotes here today’s value
of F (t, T

1

, T

2

).

Then, the prices for a cap and floor are

V

Bachelier
cap = N

T2X

j=T1+1

�j · P (t, Tj) · B
Bachelier
call (Tj�1

, K, Fj, �N), (2.5a)

V

Bachelier
floor = N

T2X

j=T1+1

�j · P (t, Tj) · B
Bachelier
call (Tj�1

, K, Fj, �N), (2.5b)

where �j is the day-count convention applying to the accrual period starting at Tj�1

and
ending at Tj ,and Fj is the today’s forward rate for that period.

2.2 Black (Lognormal) Model (1976)

The Black model is a variant of the original Black-Scholes model adapted to deal with
forward underlying assets. It was introduced by (Black,1976)[6], and it is given by the
following stochastic di↵erential equation for a instantaneous forward rate Ft:

dFt = �B · Ft · dWt, (2.6)

where �B is the constant lognormal volatility and Wt is a Brownian Motion under the
T -forward measure FT . The solution to the SDE (2.6) is

Ft = f e

�BWt� 1
2�

2
Bt
, where f = F

0

, (2.7)

so the process Ft is lognormally distributed.

Using the T -maturity zero-coupon bond P (t, T ) as the numeraire asset for the T -
forward measure FT with the property that, in the units of that numeraire, F (t, T

1

, T

2

)

10



2. Interest-rate Models

is a tradable asset, then the Black formula states the today’s prices, at time t, for a
caplet/floorlet on a forward rate F (t, T

1

, T

2

) with strike K and notional N are given by

V

Black
caplet (T,K, f, �B) = N · �(T

1

, T

2

) · P (t, T
2

) · BBlack
call (T

1

, K, f, �B), (2.8a)

V

Black
floorlet(T,K, f, �B) = N · �(T

1

, T

2

) · P (t, T
2

) · BBlack
put (T

1

, K, f, �B), (2.8b)

where

B

Black
call (T

1

, K, f, �B) = f�(d
+

)�K�(d�), (2.9a)

B

Black
put (T

1

, K, f, �B) = K�(�d�)� f�(�d

+

), (2.9b)

where �(·) is the normal distribution function, and

d± =
log( f

K
)± 1

2

�

2

BT1

�B

p

T

1

. (2.9c)

The quantity �(T
1

, T

2

) is the day-count convention and f denotes here the present
value of F (t, T

1

, T

2

).

Then, the prices for a cap and floor are

V

Black
cap = N

T2X

j=T1+1

�j · P (t, Tj) · B
Black
call (Tj�1

, K, Fj, �B), (2.10a)

V

Black
floor = N

T2X

j=T1+1

�j · P (t, Tj) · B
Black
call (Tj�1

, K, Fj, �B), (2.10b)

where �j is the day-count convention applying to the accrual period starting at Tj�1

and
ending at Tj ,and Fj is the today’s forward rate for that period.

The Black model has two important drawbacks. Firstly, it cannot be used with neg-
ative interest rates. Note that the option prices just obtained depend, among other
variables, on the logarithm of the forward rate and if the market-quoted forward rate is
negative then the logarithm is undefined. On the other hand, if the strike were negative
too, in which case the logarithm would be well defined, the model still could not be used
since, theoretically, it is not defined for negative rates.

Furthermore, as occurs in the Bachelier model (2.1), the basic premise of this model,
that �B is independent of K and f , is clearly rejected by the markets, where the volatility
smile/skew is observed. Therefore, in order to accurately value and risk manage financial
products, refinements to the Black model are necessary.

2.3 Shifted Black Model (2012)

Shifted Black model tries to solve the first drawback of the Black model (2.6) in order to
deal with negative forward rates. Black model has some highly desired features that make
institutions explore ways to remedy its breakdown for negative rates. One such remedy

11
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is the inclusion of a constant displacement parameter s to the forward rate Ft, resulting
the SDE

dFt = �B · (Ft + s) · dWt, (2.11)

where �B > 0 and Wt is a Brownian Motion under the T -forward measure FT .

The Black model only allows rates to be nonnegative, however a shifted model with
shift s > 0 allows rates larger than �s to be modelled. In practice, this shift is chosen
a priori by the analyst and this fact is the main drawback of the shifted model. The
process of fixing s should be done meticulous and accurately. Its value should be high
enough to avoid the magnitudes Ft + s and K + s going below zero for any given time,
but should not be extremely high because in this case there can be obtained arbitrarily
negative values for the forward interest rate.

Furthermore, note that by defining e
Ft := Ft+ s and e

K := K + s as well, shifted Black
model’s formulation is equivalent to the Black’s one. Consequently, pricing formulae
obtained through Black model, equations (2.8) and (2.10), are valid for the shifted Black
model. However, it is important to note that for any given cap/floor price, the implied
volatilities of the shifted model and the lognormal model are not identical for s > 0, i.e.,
the model would require a specific calibration for given option prices.

2.4 One-factor Short-rate Models

One-factor short-rate models (short-rate models from now on) are defined through the
dynamics for the instantaneous short-rate process rt. These models di↵er significantly
to the ones exposed in the previous sections, and also to the SABR model and its ex-
tensions, which will be explained in the Chapter 3, and therefore should be treated in a
di↵erent way. Since Bachelier, (Shifted) Black, Normal SABR, Shifted SABR and Free-
Boundary SABR models assume dynamics for the forward rate Ft, they could be called
forward-rate models.10 Due to their nature, forward-rate models are devoted to deal with
commonly-traded instruments of the market, such as caps/floors or swaptions, on the
easiest possible way. Conversely, the short-rate models provide a complete scheme for the
evolution of the instantaneous short rate from where prices for the mentioned instruments
are consequently deducted. Analytical formulation, if possible, usually becomes far more
complicated under this new scheme, since these models are not focused on pricing this
kind of interest-rate derivatives. In spite of this, they have been included in the research
in order to expand its framework through short-rate models context.

This Section is focused on two basic short-rate models able to cope with negative
interest rates: Vasicek model and Hull-White model (also known as Extended Vasicek
model).11

10Notice that this notation is adopted for an easy di↵erentiation between both types of models, but it
is not generally used.

11There exist other short-rate models able to cope with negative rates, as, for instance, Ho-Lee (1986),
Cox (1975) or Heath-Jarrow-Morton (1992), which is not strictly considered a short-rate model, since it
models the instantaneous forward rate (see (Heath et al.,1992)[24] for further details). However, the
study will be limited to the Hull-White model, and its particularization the Vasicek model, due to its wide
use among the industry, which is owed to the availability of analytical formulae for pricing caps/floors.

12



2. Interest-rate Models

2.4.1 Vasicek Model (1977)

The Vasicek model, firstly introduced in (Vasicek,1977)[41], assume that the instanta-
neous short rate rt follows an Ornstein-Uhlenbeck process with constant coe�cients under
the risk-neutral measure. Its formulation is given by the following stochastic di↵erential
equation

drt = k(✓ � rt) dt+ � dWt, (2.12)

where k, ✓, � are positive constants, and Wt is a Brownian Motion under the risk-neutral
measure Q.

The Ornstein-Uhlenbeck process is mean-reverting, in the sense that the instantaneous
short rate rt tends to return to the long-term value ✓ on a rate specified by the mean re-
version speed k. The coe�cient � is the instantaneous short-rate volatility.

As shown in (Brigo and Mercurio,2006)[8], under Vasicek model, the prices for a
cap and floor at time t with notional N , strike rate K and set of times T = [T

1

, T

2

] are

V

V asicek
cap = N

T2X

j=T1+1

✓
P (t, Tj�1

)�(�j � hj)� (1� �jK)P (t, Tj)�(�hj)

◆
, (2.13a)

V

V asicek
floor = N

T2X

j=T1+1

✓
� P (t, Tj�1

)�(hj � �j) + (1 + �jK)P (t, Tj)�(hj)

◆
, (2.13b)

where �(·) denotes the normal distribution function, and

P (t, T ) = A(t, T ) e�rt B(t,T )

, (2.14a)

A(t, T ) = exp

⇢�
✓ �

�

2

2k2

�
(B(t, T )� T + t)�

�

2

4k
B

2(t, T )

�
, (2.14b)

B(t, T ) =
1

k

·

�
1� e

�k(T�t)
�
, (2.14c)

�j = � ·

r
1� e

�2k(Tj�1�t)

2k
· B(Tj�1

, Tj), (2.14d)

hj =
1

�j

log

✓
(1 + �jK)P (t, Tj)

P (t, Tj�1

)

◆
+

�j

2
. (2.14e)

2.4.2 Hull-White Model (1990)

The model that present Hull and White in (Hull and White,1990)[28] extends the
Vasicek model (2.12) by allowing its parameters to depend deterministically on time. As it
has been frequently done along previous literature (see (Brigo and Mercurio,2006)[8],
for instance), here is analysed a restricted version of the Hull-White model which only
allows the long-term value ✓ to change with time. Therefore, this restricted model states
that the instantaneous short rate rt satisfies the following stochastic di↵erential equation

drt = k(✓t � rt) dt+ � dWt, (2.15)
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where k and � are positive constants, ✓t is a deterministic function of time chosen so as
to exactly fit the currently observed market term structure of interest rates,12 and Wt is
a Brownian Motion under the risk-neutral measure Q.

The formulae for the today’s values of a cap and floor under the Hull-White model
are deduced by incorporating the currently observed term structure of interest rates in
the form of both market instantaneous forward rates (at time 0 for maturity t) Fm(0, t)
and market discount factors P

m(0, t), which are actually equivalent to the theoretical
market zero-coupon bond price. Therefore, as shows (Brigo and Mercurio,2006)[8],
once Hull-White model is calibrated to market data, the prices for a cap and floor with
notional N , strike rate K and set of times T = [T

1

, T

2

] are

V

HullWhite
cap = N

T2X

j=T1+1

✓
P (t, Tj�1

)�(�j � hj)� (1� �jK)P (t, Tj)�(�hj)

◆
, (2.16a)

V

HullWhite
floor = N

T2X

j=T1+1

✓
� P (t, Tj�1

)�(hj � �j) + (1 + �jK)P (t, Tj)�(hj)

◆
,(2.16b)

where �(·) denotes the normal distribution function, and

P (t, T ) = A

m(t, T ) e�rt B(t,T )

, (2.17a)

A

m(t, T ) =
P

m(0, T )

P

m(0, t)
exp

⇢
B(t, T )Fm(0, t)�

�

2

4k
B

2(t, T )(1� e

�2kt)

�
, (2.17b)

B(t, T ) =
1

k

·

�
1� e

�k(T�t)
�
, (2.17c)

�j = � ·

r
1� e

�2k(Tj�1�t)

2k
· B(Tj�1

, Tj), (2.17d)

hj =
1

�j

log

✓
(1 + �jK)P (t, Tj)

P (t, Tj�1

)

◆
+

�j

2
. (2.17e)

2.4.3 Di↵erences between short-rate and forward-rate models

Once the previous models have been introduced, the di↵erences between the short-rate
models and the so-called forward-rate models can be clearly noticed. These di↵erences
are described below.

• The stochastic di↵erential equations that describe the forward-rate models use the
T -forward measure, while the short-rate models are defined under the risk-neutral
measure.

• The parameter � that describes the volatility of the instantaneous forward rate
Ft is related to one particular maturity date, the one given by the maturity of
the instantaneous forward rate which is specifically modelled under the T -forward
measure, and therefore depends on the maturity under consideration. Conversely,
the parameter � that describes the volatility of the instantaneous short rate rt is
not related to any other specific date.

12In (Brigo and Mercurio,2006)[8] there is an explicit expression of the calibration formula of ✓t
in terms of market instantaneous forward rates, which can be bootstrapped from the risk-free discount
curve observed at time t.
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2. Interest-rate Models

• Since both class of models have distinct nature, its calibration procedure, that will
be fully explained later, is completely di↵erent. The calibration of the forward-
rate models is performed by comparing market implied volatilities with theoretical
implied volatilities, since these ones depend on the maturity under consideration.
Conversely, short-rate models are calibrated by directly comparing market prices of
caps/floors with theoretical prices.

Since there is no strict dependence on the maturity for the parameters of both Vasicek
and Hull-White models, these can be calibrated by a non-linear least-squares comparison
between theoretical cap/floor prices given by equations (2.13) and (2.16), and market
cap/floor prices obtained by inserting the cap/floor implied volatility in the Black/Bache-
lier pricing formula (2.10)/(2.5).13

Finally, an important issue shall be commented. Notice that, within previous formu-
lation, since the Hull-White parameter ✓t is estimated previously the calibration of the
model, so as to exactly fit the currently observed market term structure of interest rates
(TSIR), this model actually presents only two parameters (k, �), less than its particular-
ization the Vasicek model, which has three (k, ✓, �). Conversely, if the parameter ✓t is
let to be a free time-dependent parameter, the calibration would be done by trinomial
trees14, and therefore Vasicek model would be a particular case of the Hull-White model.
However, doing this would imply an unfair pricing accuracy comparison between short-
rate and forward-rate models. Indeed, since the original aim of the short-rate models
that allow their parameters evolve with time is to fit today’s TSIR, if ✓t is included in
the caps calibration process, cap prices would be fitted within the model, but observed
market TSIR probably would not be fitted at all. Furthermore, all forward-rate mod-
els studied in this research account for time-independent parameters. Then, introducing
time-dependent parameters in the caps’ calibration process is equivalent to introduce an
independent-time model with infinite parameters. The model is therefore guaranteed to
fit cap prices exactly, and the comparison lacks of sense. Then, since in comparability
terms every model should have a finite number of parameters, numerical calibrations are
not considered through the research.

13Notice that the market price of a cap/floor depends on the nature of the quoted volatility (whether
if it is Black’s or Bahelier’s). Therefore, to obtain the cap/floor price, the nature of this quote should be
considered.

14See (Kooiman,2015)[29], for instance, about more details on the Hull-White model’s calibration via
trinomial trees.
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Chapter 3

The SABR Model

Fixed income derivatives have been often priced and hedged among the industry by using
the models exposed in Chapter 2 because of their simplicity. However, their major draw-
back is assuming the volatility parameter to be constant, since nowadays is well known
that options with di↵erent strikes require di↵erent implied volatilities to match their mar-
ket prices. Therefore, those models result unable to manage the phenomenon of volatility
smile/skew observed within markets.

Local Volatility models, introduced by (Dupire,Derman,Kani,1994)[16][14][13],
are able to handle this problem, but they predict the behaviour of smiles and skews op-
posite to the behaviour observed in the marketplace, specifically when the underlying
forward rate decreases, local volatility models predict that the smile/skew shifts to higher
strike prices, and when the forward increases, these models predict that the curve shifts
to lower strikes.15 That results in other problem, since due to this contradiction between
model and market, delta and vega hedges derived from the model can be unstable and
may perform worse than simple Black’s hedges.

To solve it (Hagan et al.,2002)[22] derive the Stochastic Alpha Beta Rho (SABR)
model, a stochastic-volatility version of the Constant Elasticity of Variance (CEV) model16

in which the forward rate and its volatility are correlated. This model provides an ap-
proximate closed-form formula for the implied volatility that fits really accurately the
implied volatility curves observed in the markets and, more essentially, it captures the
correct dynamics of the smile/skew, what yields stable hedges.

As it can be deduced from the paragraph above, the SABR model appears in response
to the contradiction between the prediction for the dynamics of the volatility curve by the
local volatility models and the observed market smile/skew, and therefore it is important

15Local volatility models are the first proposal for dealing with volatility smiles/skews within markets.
These models consist on an improvement over the Black model (2.6) by using the market prices of
options to find an e↵ective specification of the underlying process, so that the implied volatilities match
the market implied volatilities. However, a major problem with these models is that they predict the
wrong dynamics of the volatility curve, and this fact leads to unstable and incorrect hedges. Their
discussion is not included during the text, although interested readers can consult its main features in
Appendix B.

16Since the CEV is not able to cope with negative rates (unless � = 0, in which case the Bachelier
model (2.1) is obtained), it is not explained during the text. However, interested readers can consult the
main features of the model in Appendix A.
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3. SABR Model

to note that the value in the SABR model and its superiority over the local volatility
models is an empirical issue, not an a priori theoretical one.

3.1 Classic SABR Model (2002)

The classic SABRmodel introduced by (Hagan et al.,2002)[22] is a two-factor stochas-
tic volatility model whose dynamics is given by a system of two stochastic di↵erential
equations. The state variables Ft and �t can be thought of as the forward interest rate
of maturity T and its volatility parameter. In more detail, there state the following
equations.

dFt = �t · F
�
t · dW

(1)

t , F

0

= f, (3.1a)

d�t = ⌫ · �t · dW
(2)

t , �

0

= ↵, (3.1b)

EFT

[dW (1)

t · dW

(2)

t ] = ⇢ dt, (3.1c)

where ⌫ � 0, 0  �  1, �1 < ⇢ < 1.

The parameter ⌫ is the volatility of �t, so it is the volatility-of-volatility of the forward
rate. The parameter � is called the power parameter of the model. Furthermore, note
that all the parameters of the model, ↵, �, ⇢ and ⌫, are just constants, not functions of
time, and all they are specific to a particular forward rate, the one of maturity T . W

(1)

t

and W

(2)

t are two ⇢-correlated Brownian Motions under the T -forward measure FT . Under
this measure both the forward rate and its volatility are martingale (driftless) always if
you work with one forward rate in isolation at a time. Under this same measure, however,
the process for another forward rate and for its volatility would not be driftless.

It is crucial to notice that the model is specified for a particular forward rate, in this
case, the one of maturity T (the superscript T is omitted in the equations for a shorthand
notation). Therefore, within the SABR model there is no way for the various forward
rates to interact with each other. The SABR model as it stands cannot describe the
dynamics of a yield curve (TSIR), but it can be used to accurately fit the implied volatil-
ity curves observed in the marketplace for any single exercise date. More importantly,
it predicts the correct dynamics of the implied volatility curves. This makes the SABR
model an e↵ective tool to manage the smile risk in markets where each asset only has a
single exercise date.

Furthermore, the model is an stochastic volatility model, but unlike other stochastic
volatility models such as the Heston’s one17, for example, the SABR model does not
produce option prices directly. Rather, it produces an estimate of the implied volatility
curve, which is subsequently used as an input in the Black or Bachelier model to price
interest rate derivatives.

17For more details about this model see (Heston,1993)[25].
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3.1.1 Implied volatilities within the SABR model

One of the reasons of the popularity of the SABR model is the availability of an approx-
imated analytical solution for the implied (Black) volatility, called Hagan’s formula.18

This implied volatility, which should be introduced in the Black formulae (2.10) in order
to price a cap/floor for future investment period T = [T

1

, T

2

], strike K and present value
of the forward rate f , is given by

�B(T1

, K, f) = aB(K, f) · bB(T1

, K, f) ·
c(K, f)

g(c(K, f))
, (3.2a)

where
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g(x) = log
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◆
. (3.2e)

For at-the-money options (f = K), Hagan’s formula reduces to

�
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Hagan’s formula (3.2) is typically used by analysts to calibrate an implied Black volatil-
ity smile. Similarly, there exists a formula for the Bachelier model to calibrate an implied
Bachelier volatility smile. As shown in (Hagan et al.,2002)[22], the implied volatility
that should be introduced in the Bachelier formula (2.5) in order to price a cap/floor for
future investment period T = [T

1

, T

2

], strike K and present value of the forward rate f is
given by

�N(T1

, K, f) = aN(K, f) · bN(T1
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, (3.4a)
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18(Hagan et al.,2002)[22] made a small error when deriving the formula for the implied volatility,
which was fixed by (Oblój,2008)[34]. From here on, the corrected formula of Ob lój is referred to as
Hagan’s formula.
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The asymptotic solutions (3.2) and (3.4) are very easy to implement but they can lead
to arbitrage opportunities. The formula of Hagan is known to become increasingly inac-
curate as the strike approaches zero, producing wrong prices in region of small strikes for
large maturities, since it is derived under the condition that ⌫2

T

1

⌧ 1. So, it is not suit-
able for calibration of products with large maturity, in a market where volatility changes
rapidly. It implies a negative probability density for the forward rate process in some
region, although probability densities clearly should not be negative.

In addition, when the SABR model was introduced, positivity of the rates seemed
a reasonable and attractive property. However, in the current market conditions, when
rates are extremely low and even negative, in its current form the SABR (3.1) has the
drawback that it cannot be used. In spite of this, because the SABR model is widely used
within the industry, it would be practically preferable to adapt that model in a consistent
way to deal with negative rates. Sections 3.2, 3.3 and 3.4 present three possible solutions,
all of which have their pros and cons.

3.1.2 Behaviour of the SABR parameters

When fitting the SABR model, there are four parameters, ↵, �, ⇢ and ⌫, to calibrate19

for each forward rate with maturity T . Each parameter has a di↵erent interpretation
and a di↵erent impact on the volatility curve (smile/skew). Table (3.1) summarizes these
relevant features of the SABR parameters. Notice that each parameter has a main e↵ect
(in bold in the table), but also some of them have a smaller second and even third e↵ect
on the volatility curve.20

Parameter
Curve
property

Impact on the volatility curve

↵: initial volatility
Level An increase in ↵ shifts the curve upwards.

Slope As ↵ increases, the steepness of the curve increases.

�: power parameter

Slope A decrease in � decreases the steepness of the curve.

Level An increase in � lowers the level of the curve.

Curvature A decrease in � decreases the curvature of the curve.

⇢: correlation
Slope As ⇢ decreases, the steepness of the curve increases.

Curvature As ⇢ decreases, the curvature of the curve decreases.

⌫: volatility-of-volatility
Curvature An increase in ⌫ increases the curvature of the curve.

Slope An decrease in ⌫ increases the steepness of the curve.

Table 3.1: Impact of the SABR parameters on the volatility curve (smile/skew).

19The next Subsection explains why, in general, the parameter � is not actually estimated but fixed
before starting the estimation of the parameters.

20(Rebonato et al.,2009)[35] explains in detail the qualitative behaviour of the SABR model. Fur-
thermore, Figure (7.4), plotted in Chapter 7, shows the e↵ects on the volatility curve exposed in Table
(3.1).
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3.1.3 Calibration of the SABR parameters

Now are described two methods for estimating the SABR parameters. Both methods
start estimating the parameter �. Its value is predetermined either by fitting historical
market volatility data or by choosing a value deemed appropriate for that market as
stated in (Hagan et al.,2002)[22]. (Rebonato et al.,2009)[35] explains in detail
why the market seems to endorse the choice of � = 0.5 for the SABR model. It is
important to remark that, in practice, the choice of the parameter � has little e↵ect on
the resulting shape of the volatility curve produced by the SABR model, so the choice of
this parameter is not crucial. Its choice, however, can a↵ect the risk sensitivities. This
issue will be treated later.

Method 1: Calibrate ↵, ⇢, and ⌫ directly

In this first calibration method, after fixing �̂, the parameters ↵, ⇢, and ⌫ are all fitted
directly. This can be accomplished by minimizing the sum of quadratic errors between the
implied volatilities (either Black’s or Bachelier’s) computed by the model and the market
volatilities �mkt

i , obtained from interest rate derivatives (caplets) with identical maturity
and di↵erent strikes. Hence, the minimization algorithm used is

(↵̂, ⇢̂, ⌫̂) = argmin
↵,⇢,⌫

X

i

�
�

mkt
i � �(T

1

, f

i
, K

i;↵, ⇢, ⌫)
�
2

. (3.5)

Di↵erent weights wi 2 [0, 1] can be allocated to the set of market volatilities according
to the analyst criteria.

Method 2: Calibrate ⇢ and ⌫ by implying ↵ from at-the-money volatility

In this second calibration method the value of � is again predetermined as in Method 1.
However, in this case, after fixing �̂, the parameters ⇢ and ⌫ are fitted directly while ↵

is implied from the market at-the-money volatility. Therefore, the number of parameters
to be estimated now is reduced by using the market �ATM to obtain ↵̂ by equation (3.3),
rather than estimating it directly. This means that ⇢ and ⌫ are estimated as in the
previous method, while ↵ is obtained by inverting equation (3.3) and taking into account
that this parameter is the root of the following cubic polynomial that must be numerically
solved
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1�� = 0. (3.6)

(West,2004)[42] explains that this cubic polynomial can have more than one real
root and the author suggests selecting the smallest positive root in this case. In the
minimization algorithm, at every iteration ↵ is found in terms of ⇢ and ⌫ by solving (3.6)
for ↵ = ↵(⇢, ⌫). Then, the equation (3.5) becomes

(↵̂, ⇢̂, ⌫̂) = argmin
↵,⇢,⌫

X

i
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�
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, f
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�
2

. (3.7)
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3. SABR Model

Although the number of parameters to be calibrated simultaneously is reduced, this
estimation method might take more time to converge, since a root-finding algorithm must
be used in every-step to obtain ↵ from equation (3.6).21

3.2 Normal SABR Model (2002)

The normal SABR model is an extension of the Bachelier model (2.1) and it is the only
version of the classic SABR model, obtained by fixing � = 0 in equation (3.1), that can
model negative forward rates. It is defined as

dFt = �t · dW
(1)

t , F

0

= f, (3.8a)

d�t = ⌫ · �t · dW
(2)

t , �

0

= ↵, (3.8b)

EFT

[dW (1)

t · dW

(2)

t ] = ⇢ dt. (3.8c)

In this case, as it stated in (Rebonato et al.,2009)[35], the expression for the
implied Bachelier volatility becomes
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, and (3.9b)
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◆
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3.3 Shifted SABR Model (2014)

Shifted SABR model, originally proposed in (Sebastian,2014)[39], is an extension of
the shifted Black model (2.11) and it belongs to the class of shifted or displaced models.
In these models, forward rate Ft is replaced with shifted forward rate Ft + s, where s is a
positive constant, the shift parameter, and it moves the lower bound on Ft from 0 to �s.
Therefore, the shifted SABR model under the T -forward measure FT is defined as

dFt = �t · (Ft + s)� · dW (1)

t , F

0

= f, (3.10a)

d�t = ⌫ · �t · dW
(2)

t , �

0

= ↵, (3.10b)

EFT

[dW (1)

t · dW

(2)

t ] = ⇢ dt. (3.10c)

The classic SABR model only allows rates to be nonnegative, however the shifted
SABR model with shift s > 0 allows rates larger than s to be modelled. Furthermore,
notice that with e

Ft := Ft + s the classic SABR model (3.1) is obtained. So with e
Ft and

e
K := K + s as well, all expressions for the classic SABR apply.

21See, for instance, (Rouah,2007)[36].
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A drawback of the shifted SABR model is that the shift parameter needs to be selected
a priori, since it is not known how low the interest rates can go. Although there is no clear
consensus as to the exact value of the shift, it should however be such that the logarithm
of the forward rate plus the shift is well-defined (Deloitte,2016)[11]. Selecting the
shift value manually and calibrating only the classic SABR parameters might require
readjustment of the shift if rates went lower than anticipated and afterwards the present
value and risk of the entire portfolio need to be recomputed.22

3.4 Free-Boundary SABR Model (2015)

The free-boundary SABR (FB-SABR) model can be seen as a natural extension of the
classic SABR model (3.1). The main strength of this model is that it is designed to handle
with negative forward rates. This is done by introducing the absolute value in the stochas-
tic di↵erential equation of the forward rate Ft. As it can be seen in (Deloitte,2016)[10],
for instance, the dynamics of the FB-SABR model is given by

dFt = �t · |Ft|
�
· dW

(1)

t , F

0

= f, (3.11a)

d�t = ⌫ · �t · dW
(2)

t , �

0

= ↵, (3.11b)

EFT

[dW (1)

t · dW

(2)

t ] = ⇢ dt, (3.11c)

where 0  � <

1

2

guarantees the stability of the solution, as shown in (Frankena,2016)[18].

Analytical solutions for the forward rate under the FB-SABR model are available just
for the cases ⌫ = 0 and ⇢ = 0. Despite of this fact, a close formula for the implied volatility
of this model can be computed. As is known, Hagan’s formula is used to calibrate an
implied Black and Bachelier volatility smile (3.2), (3.4). Since FB-SABR can model rates
from the whole real line, it is natural to use implied Bachelier volatilities. Then, as shown
in (Frankena,2016)[18], the implied Bachelier volatility for the FB-SABR is given by
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FGM = sign(Kf)
p

|Kf |, (3.12e)

that is chosen as the generalized geometric mean.

As stated in (Frankena,2016)[18], the main drawback of the FB-SABR model is
that its implied probability density is negative for a large area around zero, which in fact

22See (Antonov et al.,2015)[2] for further details.
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is the most relevant area in a low rate environment. Therefore, although the FB-SABR is
able to model negative interest rates, its breakdown around zero makes it unreliable and
unrealistic. For this reason, the model has been generally unused in practice, while the
shifted SABR has become the natural candidate to replace the classic SABR model in a
context of negative interest rates.

3.5 Comparison of models able to cope with negative
rates

Table (3.2) presents a summarized theoretical comparison among all the models able to
cope with negative interest rates explained up to now.

Model Range Ft
Analytical
solution

Model the
smile/skew

Advantages Disadvantages

Shifted
Black

(�s, +1) Yes No
Analytical simplicity.
Negative values below the
shift (s) are not allowed.

Requires as input an
appropriate volatility that may
not be quoted in the market (s).

Bachelier (�1,+1) Yes No Analytical simplicity.
Extreme negative values are
possible.

Shifted
SABR

(�s, +1) Yes Yes
Negative values below the
shift (s) are not allowed.

Requires as input an
appropriate volatility that may
not be quoted in the market (s).

Normal
SABR

(�1,+1) Yes Yes

Able to deal with
negative interest rates
without the need of
additional input (s).

Extreme negative values are
possible.

FB-
SABR

(�1,+1)
No, in
general

Yes

Able to deal with
negative interest rates
without the need of
additional input (s).

Extreme negative values are
possible.

Vasicek (�1,+1) Yes No
Able to deal with
negative interest rates.

Complicated analytical
formulation, since it is not
focused on pricing market
instruments.

Hull-
White

(�1,+1) Yes No

Able to deal with
negative interest rates.
Fits the TSIR.

Complicated analytical
formulation, since it is not
focused on pricing market
instruments.

Table 3.2: Comparison of the models able to cope with negative interest rates.
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Chapter 4

Hedging under the SABR Model

The main goal of the previous models, jointly with the possible pricing applications, is
the ability to produce reliable risk measures, and this fact is of significant practical im-
portance. Since this research focuses on the performance of the (shifted) SABR model
(under the current context of negative interest rates), this Chapter will be devoted to the
hedging properties of this model.23 The Greeks delta, vega, dual-delta, gamma, vanna and
volga will be computed in the (shifted) SABR framework. Additionally, the sensitivities
with respect to the parameters of the model (�, ⇢ and ⌫)24 will be analysed, as well as
the sensitivity with respect to the shift parameter s.25

During the hedging analysis through this Chapter the (shifted) Black model is consid-
ered as the basis for option pricing. Furthermore, since the (shifted) SABR model provides
the value of a caplet, the treatment will focus on a caplet on a forward rate F (0, T

1

, T

2

)
with strike rate K and notional N . Let f denote the current value of the underlying
forward rate and let ↵ be the currently observed value of the instantaneous volatility �t.26

Then, it should be recalled that the caplet price obtained by the model under consider-
ation is given by V

Black
caplet (T,K, f, �B) = N · �(T

1

, T

2

) · P (0, T
2

) · BBlack
call (T

1

, K, f, �B), (see
formulae (2.8a) and (2.9a)), where �B ⌘ �B(T1

, K, f) is the implied Black volatility for
the SABR model (see formula (3.2a)).27

Furthermore, as it was explained in previous sections, with e
Ft = Ft+s and e

K = K+s,
all expressions obtained for the SABR model also apply for the shifted SABR model.
Therefore, as s is a constant, the formulae for the sensitivities of the SABR model are
exactly the same as those for the shifted SABR, taking into account that in the shifted
SABR the forward rate and the strike are shifted by s.

23It would be highly interesting and useful to analyse and test the hedges under all already explained
models that admit negative interest rate (Shifted Black, Bachelier, Normal SABR, Shifted SABR, Free-
Boundary SABR, Vasicek and Hull-White models). However, this comparison states beyond the scope
of the Thesis and, therefore, it will not be included in the research.

24As it is well known the (shifted) SABR model has four parameters, ↵, �, ⇢ and ⌫. As it will be
explained next, however, the sensitivity with respect to the parameter ↵ is defined as the Greek vega.

25Notice that both parameters � and s are assumed to be given constants. Despite of this fact, it seems
interesting to include the derivatives with respect to them to the hedging part in order to contribute to
a complete sensitivity analysis.

26The analysis is similar for floorlets, and easily extends to caps, floors.
27For simplicity and clarity in the notation, the specification by the superscript SABR will be omitted.
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4. Hedging under the SABR model

4.1 SABR Greeks

This Section develops the original delta and vega risks within the SABR model presented
in (Hagan et al.,2002)[22]. However, (Bartlett,2006)[4] argues that these risks
can be hedged more precisely by adding new terms to the original formulae. This claim is
also supported by empirical and numerical arguments in (Agarwal and McWilliams,2010)

[1], (Hagan et al.,2014)[21] and (Hull and White,2017)[27]. Therefore, the mod-
ified formulae for the delta and vega risks that lead to more robust hedges than the original
ones will be also presented.

A crucial issue that would be commented with respect to the new terms added to
the original formulae is that their e↵ect is minimized when both delta and vega risks are
hedged, but are substantial when only delta is hedged. As it was explained before, in
the SABR model usually the parameter � is fixed before the model’s calibration, and its
choice does not have a big e↵ect on the resulting shape of the volatility curve produced by
the model. However, the original delta risk then depends on the � chosen as explained in
(Hagan and Lesniewski,2017)[20]. With the new term, the delta risk (i.e., the modi-
fied delta risk) is much less sensitive to the particular value of the parameter �.

This Section will also present the Greeks gamma, dual-delta, vanna and volga.

4.1.1 Delta and Vega hedging. Bartlett’s corrections

The delta risk is defined as the change in the caplet price caused by a unit change in the
value of the underlying forward rate.

The SABR delta depends on the calibration method used: Method 1 - calibrating ↵,
⇢, and ⌫ directly (see formula (3.5)), or Method 2 - calibrating ⇢ and ⌫ by implying ↵

from the ATM volatility �

ATM (see formula (3.7)).28

With the fist method, where �B ⌘ �B(T1

, K, f,↵, �, ⇢, ⌫), the original delta with
respect to the present value of the underlying forward rate f , as presented in (Hagan et

al.,2002)[22], is given by29
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With the second method, where �B ⌘ �B(T1

, K, f,↵(�ATM), �, ⇢, ⌫) with �

ATM given
in the formula (3.3)30, the original delta with respect to the present value of the underlying
forward rate f , as presented in (Hagan et al.,2002)[22], is given by
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28Although in the research the first calibration method is used, as it will be explained later, here are
presented both types of delta for continuity of the analysis.

29Notice that here, and also in all partial derivatives through the Chapter, it will be applied the Chain
Rule of Di↵erentiation, which can be refreshed, if was needed, in (Sydsæter,2005)[40], for instance.

30Note that �ATM depends on f , and therefore ↵ depends on f implicitly.
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Moving on to the vega risk, the focus is now the e↵ect on the caplet price when the
volatility of the underlying forward rate changes by a unit amount.

Before defining the expression of the vega it is important to discuss the nature of this
Greek in the SABR model. In the (shifted) Black model the hedging is often expressed
in terms of price sensitivities to quantities that are unambiguously defined. Particularly,
the vega is unambiguously defined as the sensitivity of the caplet price to a change in
the lognormal volatility. However, when dealing with the (shifted) SABR model, one has
to be careful when taking derivatives with respect to the the volatility, since in this case
there are the implied Black volatility �B(T1

, K, f,↵, �, ⇢, ⌫) and the instantaneous volatil-
ity �t, whose currently observed value was denoted as ↵. Then, should the derivative be
taken with respect to �B or with respect to ↵? Through the revised literature the authors
compute the vega by deriving the price of a caplet with respect to ↵. Despite of this
fact, computing vega as the derivative with respect to the implied volatility �B(·) also
makes sense, since the implied volatility is the volatility that is quoted in the markets, so
when this volatility changes, the price of the cap is, obviously, also changing. Therefore,
it would be convenient, for comparison purposes, to compute both types of vega.31 In
what follows the vega will be defined as it can be found in the bibliography32, but in the
part of Empirical analysis both types of vega will be computed numerically and compared.

The expression of the original vega is as follows.
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As it was mentioned before, in general, the expressions of delta and vega just de-
scribed do not provide the best hedge, understanding by best hedge the optimal position
in the forward rate to minimize the variance of the hedged portfolio returns, as shown
in (Rebonato et al.,2009)[35]. Therefore, the Bartlett’s corrections to the delta and
vega risks are presented now.

As it was seen, in the SABR model, the Brownian motions in the dynamics of the
forward rate process Ft and the volatility process �t are ⇢-correlated. However, this
correlation is not accounted in the �Hagan and ⇤Hagan derivations shown above. Roughly
speaking, the risk measures are computed by shifting only one parameter. This means
that the shift to f and ↵ in both cases are as the following diagrams indicate.

�Hagan :
f ! f +�f

↵ ! ↵

(4.4)

⇤Hagan :
f ! f

↵ ! ↵ +�↵

(4.5)

31As explained in (Deloitte,2016)[12], in practice the traditional vega, i.e., vega computed with
respect �B(·), is not often a quantity used in Front-O�ce risk management. As the authors agree, banks
using a (shifted) SABR would hedge the individual SABR parameters, particularly the vega computed
with respect to ↵, rather than the traditional vega. Traditional vega, however, will still have to be
computed for regulatory purposes, in particular for the Fundamental Review of the Trading Book.

32During the Chapter, this argumentation will be applied to all the SABR Greeks that use a derivative
with respect to the volatility, particularly to vanna and volga.
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Taking into account the correlation in the dynamics of the SABR model, these dia-
grams are not fully correct, since when one factor (f or ↵) changes, the other factor (↵
or f) is also likely to change according to the correlation ⇢.

Following the Bartlett’s approach, when deriving delta it is necessary to introduce a
shift for ↵ that depends on the shift in f (�f↵), and when deriving vega a shift for f that
depends on the shift in ↵ (�↵f) should be added. Graphically this idea states as follows.

�Bartlett :
f ! f +�f

↵ ! ↵ +�f↵
(4.6)

⇤Bartlett :
f ! f +�↵f

↵ ! ↵ +�↵

(4.7)

The corresponding mathematical approach for this correction proceeds as follows.33

Firstly, the dynamics of the SABR model is expressed in terms of two independent
Brownian motions by using the Cholesky decomposition34
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When combining equations (4.8a) and (4.8b), and rearranging terms, the following
expressions are obtained
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It can be clearly seen that the changes to �t and the changes to Ft come from one of
the two terms in each expression, respectively, originating two types of changes which are
denoted as
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for the “changes in �t caused by a change in Ft”, and
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for the “changes in Ft caused by a change in �t”.

33For a thorough discussion, see (Hagan and Lesniewski,2017)[20] and (Hansen,2011)[23].
34The Cholesky decomposition states that if W (1)

t and Zt are two uncorrelated Brownian motions, then

W

(1)
t and dW
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t +
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2
· dZt are two ⇢-correlated Brownian motions, with ⇢ 6= 0. See

(McDonald,2006)[33], for example, if a refreshment about the Cholesky decomposition was needed.
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Therefore, with the corrections, the modified expressions for delta and vega are35
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Note that in both formulae (4.11) and (4.12), the Bartlett’s correction involves the
term f

�. Then, recall that when dealing with negative interest rates through the shifted
SABR model this term should be e

f

�, where e
f := f + s. Otherwise, since f < 0 and

0  �  1 (particularly, � = 0.5), this term would result in complex number and,
therefore the Bartlett’s delta and vega would not be correctly computed.

4.1.2 Other Greeks

Dual-delta is defined as the sensitivity of the caplet price with respect to infinitesimal
changes in the strike rate, and it is given by
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The Greek gamma, which accounts for the sensitivity of delta with respect to infinites-
imal changes in the forward rate, is given by
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The vanna and volga Greeks, which account for the sensitivity of delta and vega,
respectively, to infinitesimal changes in the volatility of the underlying forward rate, are
given by the following expressions.
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Given the significant complexity of obtaining a closed-form solution for the SABR
Greeks, it is a common practice to compute the partial derivatives numerically by using
finite di↵erence methods.36

35No information has been found about the modified delta for the second calibration method, therefore
here is presented only the adjustment to the delta for the first calibration method. However, since in the
research the Method 1 is used, the absence of developments for the corrected delta under the Method 2

is not concerning.
36See Appendix D.
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4.2 SABR parameters sensitivities

This Section analyses the dependence of the caplet price (2.8a) with respect to the SABR
parameters �, ⇢, ⌫ (and s in the shifted SABR model).37 Parameters sensitivities are an
important aspect, in addition to the Greeks, since know how the price of an instrument
changes when quantities that the model assumes to be constant are allowed to vary, im-
proves the quality of the hedge providing robustness. This type of sensitivities are related
to possible misspecifications of the model parameters, which can arise from an incorrect
calibration of the model, i.e., from the use of an inappropriate model, and since SABR
parameters are determined by fitting the implied volatility curve observed in the market-
place, risks to �, ⇢ and ⌫ changing (especially, to ⇢ and ⌫, as it was commented before)
clearly exist and they should be analysed.

Regarding the SABR parameters sensitivities analysis through the literature, not too
much information has been found. The idea of the hedging against the parameters of
the model is commented by (Rebonato et al.,2009)[35], although the authors do not
perform an explicit analysis on the topic. The authors of (Hagan et al.,2002)[22]

suggest that the parameters ⇢ and ⌫

38 are very stable (need to be updated only every
few weeks, contrary to ↵, which may need to be updated every few hours in fast-paced
markets), because the SABR model reproduces the usual dynamics of smiles and skews,
but they do not accomplish any study on the topic.

Let denote these sensitivities of the caplet price V Black
caplet with respect to the parameters

as S(�), S(⇢) and S

(⌫). Therefore, they are given by the expressions
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As in the case of the SABR Greeks, these sensitivities will be numerically computed,
and the obtained results will be fully explained in Section 7.2.

Finally, a new shifted SABR sensitivity is defined. It accounts for the sensitivity of a
caplet price with respect to the shift parameter s.39

As it was explained, all sensitivities already computed are valid for both the SABR
and shifted SABR models. Therefore, until now the dependence of the forward rate and
the strike rate on the shift parameter s was implicitly considered, since the notation was
not changed by e

Ft = Ft+s and e
K = K+s for clarity and simplicity in the text. However,

since the sensitivity of a caplet price with respect to the shift parameter s will be derived

37Recall that the sensitivity with respect to the parameter ↵ was already computed, since this sensitivity
is defined as the Greek vega.

38The parameter � is assumed to be a given constant.
39It is remarkable that this sensitivity analysis is an innovative contribution to the research, since no

information about it has been found during the literature review.
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now, an explicit expression that contains s is needed.

Let denote the caplet price obtained through the shifted SABR model by e
V

Black
caplet (T1
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e
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,

e
K,

e
f,↵, �, ⇢, ⌫) is the implied shifted Black volatility, and e

f = f + s

and e
K = K + s. Then, the formula for this sensitivity, which is denoted by S

(s), is given
by
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This sensitivity will also be numerically computed and analysed in Section 7.2.
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Chapter 5

Data

This Chapter is devoted to the description of the data used through this second part of
the research. Firstly, some basic and relevant issues related to the market conventions for
the datasets included in the study are explained, particularly for the implied volatilities
used in the calibration procedure of the models. Secondly, the main features of these data
are described and explained in detail.

5.1 Data conventions

The first issue that should be commented is that the interest rate markets use implied
volatilities, instead of monetary units such as EUR or USD, for quoting interest rate
derivatives such as caps/floors.40 The main reason of this practice is that the implied
volatility does not change as frequently as the derivative prices, since the implied volatil-
ity removes the e↵ect of parameters not related to the volatility that a↵ect the derivative
price, such as the discount curve, the strike, the maturity and the tenor. When the price of
the underlying interest rate changes, the derivative price might change while the volatility
may not.

In markets where the interest rates have not yet reached negative values, the implied
Black volatilities are fully defined and there are no technical problems (for instance, in
the US market), i.e., in these markets the implied Black volatilities are quoted as usual.
However, in markets where interest rates have gone negative (for instance, in the EUR
market) the implied Black volatilities are not defined for negative values and this brings
technical problems into the market quoting system. As a solution to this problem the
a↵ected markets have started to quote implied volatilities using the shifted Black or the
Bachelier (normal) model. The corresponding quoted cap volatilities in these markets are
then shifted Black implied volatilities and Bachelier (normal) implied volatilities respec-
tively.

Another important issue, especially when calibrating models using caps (as it is done
in this research, and as it will be fully explained later), is that caps contracts do not
necessarily have the same definition across di↵erent markets. Since through the research
EUR market implied cap volatilities are used, the convention of how caps are defined in

40Recall that the implied volatility is the volatility that should be introduced in a benchmark pricing
model (as the Black or the Bachelier models) in order to recover the market price of a derivative product.
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this market is explained.

First, for cap maturities up to 2 years the corresponding underlying caplets are of
3 months, i.e., the EUR quoted caps with maturity up to 2 years (1Y, 18M and 2Y)
have a tenor of 3 months, and the caplet corresponding to the first 3-month interval is
excluded from the cap.41 However, the caps with maturities above 2 years (3Y, 4Y,...,
20Y) are based on 6-month underlying caplets, then these caps have a tenor of 6 months.42

In Figure (5.1) and Figure (5.2) are illustrated the quoting features of the EUR quoted
caps in order to clarify the di↵erences just commented.

Figure 5.1: Cap grid for cap maturities up to 2 years in the EUR market. The caps are
composed of 3-month underlying caplets. Note that the first caplet is omitted.

Figure 5.2: Cap grid for cap maturities between 3 and 10 years in the EUR market. The
caps are composed of 6-month underlying caplets.

41The convention of omitting the very first period of the cap, i.e., its first caplet, is applied to all quoted
spot-starting caps. In a cap as that the first caplet payment is done on the cap-start date. Therefore,
since the first payment is already known, the optionality is left in the first 3-month period. Then, the first
caplet is excluded when calibrating models in order to achive a synthetic forward-starting cap, in which
the randomness of all caplet payments is recovered. See (Lesniewski,2008)[32] for further details.

42In the EUR market the convention of how caps are defined are quite di↵erent from the US market,
for instance, where caps are defined with 3-month underlying caplets for all maturities of the cap, i.e.,
the USD quoted caps have a tenor of 3 months for all maturities.
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5.2 Data description

The implied cap volatilities, also known as volatility surface, since they depend on both
the cap maturity and strike, and the discount curves used through the research are ac-
cessed through Thomson Reuters Eikon. It is important to know that the quoted implied
cap volatilities are stated in the platform from di↵erent sources and on di↵erent markets,
therefore they are changing depending on the source used, and also available strikes may
be di↵erent. In this research, the volatilities are obtained from the source ICAP, which
o↵ers a wide range of strikes that are close to ATM-strikes.

The implied cap volatilities are the following.

• Implied SHIFTED BLACK EUR cap volatilities (Reuters identifier (RIC): VCAP3A)
corresponding to the trading day 23-May-2017.

– Range of strikes (%): {ATM, -0.75 , -0.5, -0.25, -0.13, 0, 0.25, 0.5, 1, 1.5, 2, 3,
5, 10}.

– Range of maturities (years): {1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20}, the
maturities {1Y, 18M, 2Y} have tenor 3 months and the rest 6 months.

– Shift: 3.00%.

– Use: To obtain the EUR caplet shifted Black volatility term structure, and
consequently to calibrate the Shifted Black, Shifted SABR, Vasicek and Hull-
White models.

• Implied BACHELIER (NORMAL) EUR cap volatilities (Reuters identifier (RIC):
VCAP10) corresponding to the trading day 23-May-2017. Unfortunately, for these
volatilities, several quoting ine�ciencies were detected. The two more disturbing
are:

– Gaps for several particular data. The Bachelier volatility values corresponding
to the shortest maturities and the highest strikes, which coincide with the
lowest caplet prices (roughly zero), are not quoted in the market.

– Arbitrage exists. It has been tested that introducing shifted Black and Bachelier
quoted volatilities in their pricing formulae, (2.10a) and (2.5a), does not result
in the recovery of identical prices for the considered caps. Then, an arbitrage
is allowed if both datasets are used together.

Therefore, in order to avoid these quoting ine�ciencies and to be able to accomplish
the empirical analysis, data corresponding to the Bachelier volatilities are obtained
from shifted Black quoted volatilities by an unique-price hypothesis. That means,

1. Firstly, for every strike and maturity outstanding, it is imposed that the recov-
ered cap prices by Black’s formula (2.10a) using implied market shifted Black
volatilities, equals the ones which would have been obtained by Bachelier’s
formula (2.5a) using implied market Bachelier volatilities.
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2. Secondly, the transformed implied Bachelier volatilities are extracted from the
cap prices via formula (2.5a) by applying an one-dimensional root finder.43

Applying this hypothesis, the arbitrage is forbidden, and no gaps quote in the
transformed data. Resulting implied Bachelier volatilities share, obviously, their
main features with the implied market shifted Black volatilities,

– Range of strikes (%): {ATM, -0.75 , -0.5, -0.25, -0.13, 0, 0.25, 0.5, 1, 1.5, 2, 3,
5, 10}.

– Range of maturities (years): {1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20}, the
maturities {1Y, 18M, 2Y} have tenor 3 months and the rest 6 months.

– Use: To obtain the EUR caplet Bachelier volatility term structure, and con-
sequently to calibrate the Bachelier, Normal SABR and Free-Boundary SABR
models.

The zero-coupon curve used for both computing the discount factors and implying the
forward rates 44 is the EUR OIS curve (EONIA)45 (Source: OIS EONIA) corresponding
to the trading day 23-May-2017 with a set of tenors from 1 day to 50 years. The curve is
continuously-compounded and the day-count convention on which the EUR OIS is quoted,
is the Actual/Actual basis.46

In Appendix E are presented the data corresponding to the implied market shifted
Black cap volatilities (Table (E.1)), and to the OIS discount curve (Figure (E.1)).

43Here is used the standard Newton-Raphson algorithm. For more details about one-dimensional root
finding methods see (Kopecky,2007)[30].

44The 1-week rate of the EUR OIS curve is also used as a proxy for the instantaneous short rate that
appears as input in the Vasicek and Hull-White models. This issue is explained in detail later.

45Euro Overnight Index Average
46This convention accounts for the number of days in the period of one year based on the portion in a

leap year and the portion in a non-leap year.

35



Chapter 6

Methodology

This Chapter is devoted to the methodology followed so as to analyse empirically the
topics already discussed in the theoretical part.47

Firstly, an empirical comparison of the models able to cope with negative interest rates
will be performed. This part of the practical analysis is the most extended one, since a
large number of models is tested: Shifted Black, Bachelier, Shifted SABR, Normal SABR,
Free-Boundary SABR, Vasicek, and Hull-White models. The relative performance of each
model when pricing caplets is analysed in terms of precision of both calibration proce-
dure (in-sample analysis), and predictive capacity when pricing caplets not used within
the calibration (out-of-sample analysis). As it will be seen, under both approaches, the
shifted SABR model arises as the most accurate one among the range of models under
consideration, what corroborates its general acceptance in the industry through an em-
pirical evidence.

Secondly, since the shifted SABR model emerges as the best model among the consid-
ered ones, its ability to reproduce reliable risk metrics will be test empirically. The hedge
analysis under the shifted SABR will be performed for caplets by computing numerically
both the most relevant Greeks and the sensitivities with respect to the parameters of the
model, including the shift parameter.

6.1 Stripping caplet volatilities

The SABR calibration methods given by formulae (3.5) and (3.7) require caplet implied
volatilities, since by its approach the (shifted) SABR model provides the value of caplets.
However, markets are not quoting caplets but caps. Indeed, as it was explained in Chap-
ter 5, markets quote cap prices, ordered by strike and maturity, through their implied flat
volatilities.48 Therefore, a conversion is needed from the quoted cap flat volatilities to

47The empirical analysis is fully performed using the software MATLAB, version R2017a.
48The implied flat volatility quoted in the interest-rate markets for given strike K and maturity T

is the volatility that should be introduced in the Black/Bachelier formula (2.8a)/(2.3a) for every cap-
constituent caplet in order to obtain every caplet price and, therefore, to recover the price of the cap
under consideration. In this sense, notice that the implied flat volatility is an averaged implied volatility
extrapolated to every caplet constituting a given cap.
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caplet volatilities.

The process that allows extract caplet volatilities from market quoted cap volatilities is
known as caplet stripping and it is thoroughly explained in (Såmark and Jönsson,2016)

[38], (Deloitte,2016)[11] and (Hagan and Konikov,2004)[19], for example. There
are several types of such stripping process and through this research it will be used the
so-called bootstrapping technique.49 The bootstrapping technique is based on assuming a
specific functional dependence of the caplet implied volatilities, for both strike and tenor
given, with the time to maturity of the cap under consideration. In this sense, di↵erent
functional form can be used for modelling this dependence. In the sake of simplicity, here
is selected a piecewise constant functional form for the caplet implied volatility between
every cap maturity under consideration, for any strike and tenor given.

The caplet stripping process under the piecewise constant bootstrapping technique
can be structured as follows.

1. Using the formula (2.8a) or (2.3a), depending on which quoted implied flat volatil-
ities are used (shifted Black’s or Bachelier’s), every constituent caplet of each cap
under consideration is priced with the same cap flat implied volatility. Therefore,
the price of each cap is obtained by aggregating single caplet prices through the
formula (2.10a) or (2.5a).

2. For a given strikeK, the n cap prices obtained Vcap(T1

, K), Vcap(T2

, K), . . . , Vcap(Tn, K),
are settled in ascending order of maturity, starting from the shortest one.

3. For the strike K, the series of price di↵erences for consecutive caps is computed as
follows

Vcap(Tj, K)� Vcap(Tj�1

, K), j = 1, . . . , n, (6.1)

where Vcap(T0

, K) := 0.

4. Every price di↵erence of the series is assigned to the corresponding number of caplets
on that set. For instance, the first price di↵erence corresponds to the first set
of caplets (in this case the caplets in the first cap), the second price di↵erence
corresponds to the second set of caplets, and so on.

5. Every price di↵erence is therefore allocated with a given number of caplets on specific
start and maturity dates that lie in the considered set. Since a piecewise constant
assumption on the caplet implied volatilities is stated, the implied caplet volatilities
�j(K), j = 1, . . . , n, are constant on each interval between two subsequent cap
maturities, i.e., for a given interval [Tj�1

, Tj] all caplets have the same volatility,
and therefore they can be obtained by applying an one-dimensional root finding
method50 to the equation

Vcap(Tj, K)� Vcap(Tj�1

, K) =

njX

i=j1

Vcaplet(Ti, K, �j(K)), j = 1, . . . , n, (6.2)

49In (Såmark and Jönsson,2016)[38] three di↵erent types of such stripping caplet process are widely
discussed: Bootstrapping, Rebonato and Global SABR. In this research the bootstrapping technique is
selected because of its simplicity, fastness and e�ciency, as the authors claim.

50Here is used the standard Newton-Raphson algorithm. For more details about one-dimensional root
finding methods see (Kopecky,2007)[30].
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where nj is the number of caplets in that specific set.

It is important to notice that the stripping process with cap implied volatilities requires
to be implemented separately for the maturities up to 2 years and the rest of maturities
(from 3 to 20 years), since the tenor of the underlying forward rate changes from 3 months
to 6 months, as explained in the previous Chapter 5, and consequently, the piecewise con-
stant bootstrapping technique provides two implied volatility term structures.

For at-the-money caps the strikes are specific for each maturity, as it can be seen
in Table (E.1). Therefore, the stripping process explained above is not valid anymore,
since the di↵erence Vcap(Tj, K

ATM
j ) � Vcap(Tj�1

, K

ATM
j�1

), j = 1, . . . , n do not provide the
ATM caplets on the desired set. Then, in order to extract caplet volatilities from quoted
ATM cap implied volatilities there would be used a strike-interpolating model, such as
the (shifted) SABR model, since it allows to obtain prices for caps with strikes that are
not quoted in markets. The process can be summarized as follows.51

1. Using the formula (2.8a) or (2.3a), depending on which quoted implied flat volatili-
ties are used (shifted Black’s or Bachelier’s), every constituent caplet of each ATM
cap under consideration is priced with the same ATM cap flat implied volatility.
Therefore, the price of each ATM cap is obtained through the formula (2.10a) or
(2.5a).

2. For each maturity Tj, j = 1, . . . , n, there is a di↵erent ATM cap. Therefore, the
di↵erent fixed-strike ATM caps are stripped as described above.

3. The (shifted) SABR model is calibrated for each cap maturity.

4. A price di↵erence series between the current cap market prices and the previous
cap theoretical prices for the current ATM strike is built by using the interpolated
implied volatility from the previous maturity at the current ATM strike

Vcap(Tj, K
ATM
j )� V

theoretical
cap (Tj�1

, K

ATM
j ), j = 1, . . . , n, (6.3)

where V

theoretical
cap (T

0

, K) := 0.

5. Steps 4 and 5 of the fixed-strikes stripping algorithm are replicated.

6.2 Calibration of the models

The calibration procedure used for the models under consideration is di↵erent in each
case, since the nature of each model is di↵erent. Indeed, there are three di↵erent classes
of models, whose calibration is completely di↵erent: Shifted Black and Bachelier models;
Shifted SABR, Normal SABR and Free-Boundary SABR models; and, Vasicek and Hull-
White models. The calibration procedures used during this empirical part of the research
are as follows.52

51The authors of (Deloitte,2016)[11] present an illustrative example that can be helpful in under-
standing the ATM-strikes stripping algorithm, which was firstly stated in (Zhang and Wu,2016)[43].

52In each model calibration is used the MATLAB standard routine fmincon which optimizes with
constrains.
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• Shifted Black and Bachelier models.

In both shifted Black and Bachelier models, the unique parameter �, which ac-
counts for the volatility of the models (�B in shifted Black and �N in Bachelier),
is calibrated using the expression (3.5) for any given maturity. In both models the
imposed constraint when using fmincon is � � 0.

• Shifted SABR, Normal SABR and Free-Boundary SABR models.

In Section 3.1 there were presented two methods for calibrating the (shifted) SABR
model. However, when putting in practice both of them, the formula (3.5) provides
more robust results than the formula (3.7) and needs less time to converge. Ac-
cordingly, the calibration of the shifted SABR, normal SABR and free-boundary
SABR models is accomplished using the expression (3.5) for any given maturity.
The imposed constraints when using fmincon are ↵ � 0, �1  ⇢  1, and ⌫ � 0.
Furthermore, each model uses the following specifications.

– Shifted SABR. The parameter � is fixed at 0.5 for every maturity to sim-
plify the calibration process, as suggested by (Rebonato et al.,2009)[35],
among others; and, since the model is calibrated with implied flat shifted Black
volatilities, formulae (3.2) is used for computing the theoretical shifted SABR
implied volatilities.

– Normal SABR. In this case � = 0 by definition, and the model is calibrated
with implied flat Bachelier volatilities. For computing the theoretical normal
SABR implied volatilities formula (3.9) is used.

– Free-Boundary SABR. In terms of fair comparison with the shifted SABR
model, here the parameter � is fixed to a close value to 0.5 that allows sta-
ble solutions. The model is calibrated with implied flat Bachelier volatilities,
and the formula (3.12) is used for computing the theoretical FB-SABR implied
volatilities.

• Vasicek and Hull-White models.

Unlike the previous ones, the calibration process of these models can be accom-
plished with either cap or caplet prices, since the caplets are a particular case of
caps with a single payment date. However, both procedures are di↵erent.

– Calibration using caps.

1. Recover the cap market prices from the quoted implied shifted Black (or
Bachelier)53 volatilities for any maturity and strike given by using a shifted
Black (or Bachelier) pricing formula, see (2.8a) (or (2.3a)).

53Given the unique-price hypothesis explained in Chapter 5, the prices computed with the flat implied
shifted Black volatilities should be equivalent to the ones computed with the flat implied Bachelier
volatilities. Therefore, calibrating the Vasicek and Hull-White models with either one of both type of
volatilities is equivalent.
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2. Minimize the sum of squared di↵erences for every strike and given maturity
between the cap market price and the theoretical cap price given by (2.13a)
in Vasicek or (2.16a) in Hull-White:

(�̂, k̂, ✓̂) = argmin
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– Calibration using caplets.

1. Strip caplet volatilities from flat cap quoted volatilities as explained in
Section 6.1.

2. Steps 1 and 2 of the calibration using caps are replicated.

Despite of involving a data transformation, the calibration using caplets is chosen
for being the Vasicek and Hull-White models calibrated under equal conditions with
the rest of models. Indeed, the previously-calibrated models need to be calibrated
by minimizing caplets’ (and not caps’) pricing error, therefore the error introduced
in the stripping process, due to its dependence on the interpolation method used
(piecewise constant), might prejudice the calibration results. Consequently, in order
to remove the dependence of the instrument used (caps or caplets) for the calibration
procedure, and to achieve a fair comparison between all models under considera-
tion, the stripping process should be used in every model’s calibration. Indeed, if
Vasicek’s and Hull-White’s calibrations are performed without prior caplet strip-
ping, there exists an advantage for those models, which is not due to the nature of
the models itself, but to the way the data is quoted in the markets.

Additionally, as it can be noticed in formulae (2.14a) and (2.17a), Vasicek’s and
Hull-White’s calibrations need a proxy for the instantaneous short rate rt. The
1-week rate of the OIS curve is chosen as the optimal proxy in terms of avoiding
excess of market noise, and representing the instantaneous short rate. This choice
can be discussed, since it has been thoroughly done among previous literature and
no agreement seems to have been reached.54

6.3 Comparison of the models’ pricing accuracy

As mentioned before, in order to test all models under consideration, their caplets pricing
accuracy is compared by using both in-sample and out-of-sample analysis.

• In-sample analysis. After all models have been calibrated, the corresponding
pricing formula is applied to each term structure of stripped caplet volatilities in
order to recover each matrix of caplet prices.55 Therefore, in order to analyse the
models’ performance in pricing in-sample, these matrices are compared with the one
of the caplet market prices obtained by the quoted implied volatilities.

54See, for instance, (Elton et al.,1990)[17].
55An standard notional of N = 100 is used in every pricing algorithm.
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• Out-of-sample analysis.

– Excluding an arbitrary strike. As each column of the matrix containing
stripped caplet volatilities corresponds to a di↵erent strike56, an arbitrary col-
umn57 is removed from the array, and each model is recalibrated without these
data. After that, the caplet price for each maturity and the omitted strike is
forecasted by using the corresponding pricing formula.

– Excluding an arbitrary maturity. As each row of the matrix containing
stripped caplet volatilities corresponds to a di↵erent maturity, an arbitrary
row58 is removed from the array, and each model is recalibrated without these
data. After that, the caplet price for every strike and the omitted maturity is
forecasted by using the corresponding pricing formula.

In both types of out-of-sampling, when recovering the caplet prices in the shifted
Black, Bachelier, shifted SABR, normal SABR and free-boundary SABR models,
the pricing shifted Black/Bachelier formula, (2.8a)/(2.3a), is used. Otherwise, in the
short-rate models Vasicek and Hull-White, the caplet prices are directly forecasted
through the pricing formulae (2.13a) and (2.16a) respectively.

Additionally, in the strike out-of-sampling under the shifted SABR, normal SABR
and free-boundary SABR models, the implied volatility for the omitted strike is
interpolated through the volatility smile/skew, which is an horizontal line in the
shifted Black and Bachelier models. In the maturity out-of-sampling under these
models, the previous interpolation is substituted by a constant interpolation, since
by the piecewise constant hypothesis the implied volatility for the omitted maturity
is the one of the previous maturity for any strike under consideration.59 Therefore,
in this case might be made bigger errors than in the strike out-of-sample analysis.

6.4 Computation of the shifted SABR sensitivities

The procedure used for the computation of the shifted SABR sensitivities (Greeks and
parameters sensitivities) requires only the finite di↵erence methods presented in Appendix
D, since the sensitivities are defined by partial first and second order derivatives, which
are computed numerically. Next the modus operandi for each case is explained.

• Bartlett’s Delta. Since Bartlett’s delta is Hagan’s delta plus a correction term
(see formula (4.11)), firstly Hagan’s delta is computed, and then the correction term
is added.

56Recall that the matrices of caplet volatilities and caplet prices account for maturities in their rows
and strikes in their columns.

57This column shall not be neither the first nor the last one of the matrix, to avoid the problem of
extrapolating in strike.

58This row shall not be neither the first nor the last one of the matrix, to avoid the problem of
extrapolating in maturity.

59Notice that when applying shifted Black/Bachelier pricing formulae, (2.8a)/(2.3a), the maturity of
the caplet should be the actual maturity of the caplet being priced, not the previous one, i.e., the piecewise
constant hypothesis applies in implied volatilities, but not in prices.
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1. The derivative �Hagan = @V

Black
caplet /@f is computed by stressing the value of f

by a small perturbation (�f = 1b.p.60), and then using the di↵erence method
(D.2) or (D.3).61

2. Bartlett’s delta correction term is given by ⇤Hagan +
⇢⌫

(f+s)�
, then once ⇤Hagan

is computed (see the next step), the other term is added, and the Bartlett’s
delta is obtained.

• Bartlett’s Vega (with respect to ↵ and with respect to �B(·)).

– ⇤↵. Since Bartlett’s vega is Hagan’s vega plus a correction term (see formula
(4.12)), firstly Hagan’s vega is computed, and then the correction term is added.

1. The derivative ⇤Hagan = @V

Black
caplet /@↵ is computed by stressing the value of

↵ by a small perturbation (�↵ = 1b.p.), and using the di↵erence method
(D.2) or (D.3).

2. Bartlett’s vega correction term is given by �Hagan + ⇢(f+s)�

⌫
, then once

�Hagan is computed (see the previous step), the other term is added, and
the Bartlett’s vega is obtained.

– ⇤�B
. In this case the volatility surface (implied caplet volatilities for each strike

and each maturity computed by shifted SABR model) is stressed by a small
perturbation (��B = 1b.p.), and then the derivative ⇤�B

= @V

Black
caplet /@�B is

computed using the di↵erence method (D.2) or (D.3).

• Dual-delta. The strike K is perturbed by 1b.p. and the derivative Dual-� =
@V

Black
caplet /@K is computed by (D.2).

• Gamma. The forward value f is stressed by 1b.p. and the derivative � =
@

2

V

Black
caplet /@f

2 is approximated by the formula (D.4).

• Vanna. The values of f and ↵ are both stressed by 1b.p. and the cross derivative
Vanna = @

2

V

Black
caplet /@f@↵ is approximated by the formula (D.5).

• Volga. The value of ↵ is stressed by 1b.p. and the derivative Volga = @

2

V

Black
caplet /@↵

2

is computed by using (D.4).

• �, ⇢, ⌫, and s sensitivities. Each parameter is stressed by a small quantity (1b.p.)
and the corresponding first order derivatives (see formulae (4.17) and (4.18)) are
approximated by the di↵erence method (D.3).

601 b.p. (basis point) = 0.01% = 0.0001.
61The finite di↵erence methods (D.1), (D.2) and (D.3) for approximating the first order derivative

provide similar or di↵erent results depending on the values of the function to be numerically computed.
Although, the Forward Di↵erence Method is the most immediate one, since it results directly from the
definition of the first order derivative, usually, Central Di↵erence Method and Secant Method provide
more accurate results. Furthermore, Secant Method is usually the most precise one, however for null
values it does not apply, so in this case the Central Di↵erence Method is applied.
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Chapter 7

Empirical results

7.1 Comparison of the models

7.1.1 Volatility term structures

Figure (7.1) presents both piecewise constant caplet volatility term structures recovered
by the stripped European marked-quoted cap shifted Black and Bachelier volatilities.
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Figure 7.1: Caplet volatility term structure recovered by stripped market-quoted cap shifted
Black (left) and Bachelier (right) volatilities.

As it can be seen, both volatility term structures converge to a given long-term value
with the time to maturity of the caplets, being this convergence especially pronounced in
the shifted Black volatilities. However, this convergence is di↵erent in both cases. The
shifted Black dynamic evolution is characterized by the switch of the low strike and the
high strike-volatilities when time to maturity increases (for short maturities the high-strike
volatilities are bigger than the low-strike ones, and for large maturities this behaviour is
switched). On the other hand, the Bachelier dynamic evolution is monotonous with time
to maturity, i.e., the di↵erent strike volatilities never cross each other.

Regarding the caplet volatilities behaviour as time to maturity grows, in both cases
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for short-maturity volatilities they increase with the strike.62 For large maturities this
behaviour is maintained in the Bachelier volatilities, but it is fully reverted in the shifted
Black volatilities.

Additionally, in both shifted Black and Bachelier volatility term structures, two di↵er-
ent patterns are observed for the di↵erent strikes under consideration. In the low-strike
range (negative, ATM and lowest positive strikes) volatilities increase with time to ma-
turity, but in the high-strike range (highest positive strikes) this tendency is switched
resulting in decreasing volatilities when increases time to maturity. These patterns can
be clearly observed in Figure (7.2) where the volatility term structures are separated in
strike.
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Figure 7.2: Strike dependence of the shifted Black (up) and Bachelier (down) volatility
term structures.

7.1.2 Calibration of the models

Figure (7.3) presents the calibrated parameters of each model under consideration ob-
tained by fitting each of them to the corresponding volatility term structure presented in
Figure (7.1), for every maturity outstanding.

The resulting parameters in the shifted SABR, normal SABR, free-boundary SABR,
shifted Black and Bachelier models seem to evolve quite smoothly, and this accounts for
the stability63 of these models. On the other hand, the Vasicek and Hull-White parameters

62As regards caplet pricing, a trade-o↵ between several magnitudes appears at this point. While
increasing the strike results in a pricing descent (in order to guarantee that the price term structure is
arbitrage-free), higher implied volatilities increase the price of the caplet. Therefore, the volatility term
structures suggest a trade-o↵ between higher strikes (lower prices) and higher volatilities (higher prices).

63The concept of stable model accounts for a model whose parameters term structure evolves smoothly,
i.e., in a continuous way, suggesting that the model is correctly specified avoiding the overparameteri-

zation. On the other hand, an unstable model accounts for a model whose parameters (at least one of
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7. Results interpretation

evolving accounts for the instability of both models. The reason of this fact is that during
the Vasicek and Hull-White models calibration, several numerical di�culties have been
found.64

0 5 10 15 20

Maturity (years)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
ar

am
et

er
s 

va
lu

es

Shifted SABR parameters (  = 0.5) 
calibrated with shifted Black volatilities

0 5 10 15 20

Maturity (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ar

am
et

er
s 

va
lu

es

Shifted SABR parameters (  = 0.5)
calibrated with Bachelier volatilities

0 5 10 15 20

Maturity (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ar

am
et

er
s 

va
lu

es

Normal SABR parameters (  = 0)
calibrated with Bachelier volatilities

0 5 10 15 20

Maturity (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ar

am
et

er
s 

va
lu

es

Free-Boundary SABR parameters (   0.5)
calibrated with Bachelier volatilities

0 5 10 15 20

Maturity (years)

14

14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

B
 (

%
)

Shifted Black volatility parameter

B

0 5 10 15 20

Maturity (years)

0.35

0.4

0.45

0.5

0.55

N
 (

%
)

Bachelier volatility parameter

N

0 5 10 15 20

Maturity (years)

-0.5

0

0.5

1

1.5

2

P
ar

am
et

er
s 

va
lu

es

Vasicek parameters calibrated
with shifted Black volatilities

k

0 5 10 15 20

Maturity (years)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

P
ar

am
et

er
s 

va
lu

es

Hull-White parameters calibrated
with shifted Black volatilities

k

Figure 7.3: Calibrated parameters of Shifted SABR, Normal SABR, Free-Boundary SABR,
Shifted Black, Bachelier, Vasicek and Hull-White models.

Regarding the estimated parameters of the SABR model extensions, their behaviour
is very similar, except in the normal SABR model. For every SABR extension, the value
of today’s forward rate volatility, ↵, is almost zero, irrespective of the maturity being
considered, and the value of the volatility-of-volatility, ⌫, tends to decrease smoothly with
time to maturity. On the other hand, the dynamic evolution of the correlation between
the Brownian Motions of Ft and �t, ⇢, depends on the model being considered. For
the shifted SABR model, with independence of the market-quoted volatility used in the
calibration (shifted Black or Bachelier), and for the FB-SABR model, ⇢ decreases quite
monotonically from close-to-one values in the short maturity range (from 1 to 4-5 years
approximately) to almost null values in the long-maturity range (from 12 to 20 years). In
the normal SABR model, however, its behaviour is fully opposite.

In both Vasicek and Hull-White models, the instantaneous volatility of the short rate,
�, fluctuates wildly in the short-maturity range, becoming stable in the middle-long-
maturity range. In the Vasicek model, the mean reversion speed of the short rate towards
its long term value, k, evolves in discontinuous peaks with time to maturity, while in the
Hull-White model, its value is much more stable, except one pronounced jump (from the
value for T = 3 to the one for T = 4), and also lower. Regarding the long term value of

them) evolve widely, with peaks, i.e., in a discontinuous way, suggesting that the model specification is
not correct (misspecification of the parameters in the calibration process).

64See Appendix E for further discussion about this issue.
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the short rate, ✓, in the Hull-White model, its value is very close to zero for any maturity
under consideration, in consonance with the current situation of low and even negative
interest rates.

Figure (7.4) presents the fitted volatility smiles/skews for some representative matu-
rities, particularly T = 1, T = 5 and T = 10, when modifying ceteris paribus each one of
the shifted SABR parameters ↵, ⇢, ⌫ to several values close to the calibrated ones.65
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(a) Varying ↵ (↵̂ = 0.0083), ⇢ (⇢̂ = 0.9420) and ⌫ (⌫̂ = 1.0616) for T = 1 year.

0 2 4 6 8 10

Strikes (%)

0

10

20

30

40

50

60

70

V
o

la
ti

li
ty

 (
%

)

Shifted SABR volatility for T=5 years varying 

0 2 4 6 8 10

Strikes (%)

5

10

15

20

25

30

V
o

la
ti

li
ty

 (
%

)

Shifted SABR volatility for T=5 years varying 

0 2 4 6 8 10

Strikes (%)

10

12

14

16

18

20

22

24

26

28

30

V
o

la
ti

li
ty

 (
%

)

Shifted SABR volatility for T=5 years varying 

(b) Varying ↵ (↵̂ = 0.0296), ⇢ (⇢̂ = 0.3079) and ⌫ (⌫̂ = 0.3737) for T = 5 years.
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(c) Varying ↵ (↵̂ = 0.0325), ⇢ (⇢̂ = 0.2743) and ⌫ (⌫̂ = 0.1673) for T = 10 years.

Figure 7.4: Behaviour of the shifted SABR parameters ↵, ⇢ and ⌫ (the parameter � is
fixed at 0.5) for the maturities (a) T = 1, (b) T = 5 and (c) T = 10 years.

As it can be observed, for each maturity outstanding the main e↵ect of an increase in
the initial volatility ↵ is to shift parallel the curve upwards. This behaviour has sense,
since ↵ is just the expectation at time 0 of the future volatility for any time t  T

and, therefore, a small perturbation of ↵ upwards will result in higher average volatility.
Looking at small e↵ects, it can be also observed that an increase in the initial volatility

65This figure illustrates the behaviour of the shifted SABR parameters, whose interpretation and impact
on the volatility curve (smile/skew) was explained in Section 3.1. Recall that ↵ accounts mainly for the
curve level, rho for the curve slope, and ⌫ for the curvature of the curve.
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7. Results interpretation

brings about a modest steeping of the curve (low strikes increse more than high strikes).
Additionally, when time to maturity grows, the curve becomes more stable in strike, since
the volatilities of the high-strike range decrease considerably.

Regarding dependence on ⇢, Figure (7.4) shows principally a pronounced change in
the steepens of the curve, in fact, as ⇢ increases the steepness of the curve decreases. Fur-
thermore, for negative and close-to-zero values of the parameter, the curve is negatively
sloped, while for high correlation values the slope becomes positive. As well as, when time
to maturity grows the curve becomes more stable, since the values of the implied volatil-
ities are smaller and their evolving through the strikes under consideration is smoother.

Finally, it can be seen that increasing the parameter ⌫ increases the curvature of the
smile/skew. On the other hand, in general, the values of the volatilities-of-volatilities are
higher when time to maturity grows.

Furthermore, notice that, the changes, with respect the parameters ⇢ and ⌫ mainly,
are not entirely symmetric across the volatility curve, since ⇢ has a secondary e↵ect
on curvature just as ⌫ has secondary e↵ect on steepness.66 The interaction of these
parameters (and also �, but not now, since its value is fixed to 0.5) on slope and curvature
allows this model to capture subtle di↵erences in the shape of the implied volatility curve.
Indeed, Figure (7.5) shows clearly the capacity of the shifted SABR model to adjust
many di↵erent smile/skew shapes to the ones observed in the markets, as well as the
incapacity of the shifted Black model to adjust these curves due to its assumption on
constant volatility.
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Figure 7.5: Shifted SABR, shifted Black and market volatilities through all strikes and for
every maturity under consideration. Evidence for smile/skew existence in the markets.

66See Table 3.1.
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As it can be seen, the existence of market smiles/skews for any given maturity is
empirically evidenced in Figure (7.5) (notice �mkt behaviour through the strike, for each
maturity under consideration), what fully refuses the constant volatility hypothesis as-
sumed by shifted Black (and Bachelier) model (notice �Black behaviour through the strike,
for each maturity under consideration). By itself, shifted SABR model shows its great
flexibility for fitting market volatility curves (notice �SABR behaviour through the strike,
for each maturity under consideration).

7.1.3 In-sample analysis

Now is tested the in-sample accuracy of each previously calibrated model when recovering
caplet prices.

Figure (7.6) compares caplet market prices term structure with caplet prices term
structures implied by every calibrated model for every strike under consideration.
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5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Shifted SABR model
 with shifted Black VTS

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Shifted SABR model 
with Bachelier VTS

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Normal SABR model

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Free-Boundary SABR model

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Shifted Black model

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Bachelier model

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Vasicek model

5 10 15 20

Maturity (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
ri
c
e

s
 (

%
) 

(N
=

1
0

0
)

Caplet Prices - Hull-White model

(b) Caplet prices term structures recovered by the calibrated models.

Figure 7.6: Caplet prices term structures.
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7. Results interpretation

This figure illustrates that every model fits the caplet market prices67 fairly well. At
a first sight, only Vasicek model tends to fail systematically, for every strike, for the ma-
turity T = 5 regarding typical market behaviour. Market prices term structure as well as
each model term structure are arbitrage-free, since caplet prices are sorted in descending
order in strike for any given maturity, never crossing each other’s curve. Furthermore,
for any given strike, caplet prices tend to increase for longer maturities, although they
stabilize, and even decay, for the last maturity (T = 20).

Figure (7.7) aggregates the caplets prices term structures for every model for several
representative strikes in order to perform a more explicit comparison with the market
prices term structure.
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Figure 7.7: Models’ pricing in-sample accuracy within the market benchmark for some
representative strikes.

Indeed, in this figure can be clearly observed that pricing accuracy of the models is
essentially challenged for the highest strikes under consideration, which correspond to the
lower prices. While negative and low-positive strike prices curves are very similar, prices
term structures for K = 5% di↵er significantly. In fact, only shifted SABR and FB-SABR
prices curves reproduce market prices behaviour.

In Figure (7.8) is tested the pricing accuracy of each model outstanding in terms of
absolute and relative errors. First and second columns of the figure present the absolute
and relative pricing errors, respectively, of every model. Third column of the figure ag-
gregates the models with, at a first sight, smallest relative pricing errors. Finally, since
shifted SABR and FB-SABR are the models that best reproduce market prices behaviour,

67Notice that the caplet market prices term structure is the same irrespective of the implied volatilities
used (shifted Black or Bachelier), since the unique price hypothesis applies when recovering that prices.
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the fourth column is devoted to their relative pricing errors. This analysis is performed
for the previously considered strikes.
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Figure 7.8: In-sample comparison of the di↵erent models in terms of absolute and relative
pricing errors for some representative strikes.

Regarding the first column of Figure (7.8), no model commits a high absolute pricing
error irrespective of the maturity under consideration, since it not surpasses the maxi-
mum value of 0.12% for a standard notional of N = 100 (except Vasicek model’s absolute
pricing error for K = 1% and T = 6). Term structures of absolute errors tend to decrease
when the strike increases in every model. Shifted SABR and FB-SABR arise as the best
models in terms of absolute pricing errors irrespective of the maturity or strike being
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7. Results interpretation

considered, with slight superiority of the first one, and, contrary, Bachelier and Vasicek
are, in general, the worst models in absolute error terms. On the other hand, shifted
Black, normal SABR and Hull-White models accomplish reasonably well for the negative
and low-positive strikes, but tend to fail for higher strikes.

As it can be seen in the second and third columns of Figure (7.8), relative pricing
errors grow hugely, particularly for shortest maturities (from T = 1 to T = 3, 4, 5 years,
depending on the model), since caplet market prices are especially small in this range,
and also for the highest strikes. Table (7.1) shows its values, which reach magnitudes
⇠ 10�7 in the problematic area. This results in a great di�culty when fitting such small
caplet prices and the relative errors show this fact. Indeed, except for the shifted SABR
and FB-SABR models, every model outstanding fails for the shortest maturities in rela-
tive pricing errors terms, highlighting as the worst models shifted Black and Bachelier,
followed by normal SABR, Vasicek and Hull-White models.

Then, shifted SABR and FB-SABR relative pricing errors should be compared apart
from the others. This comparison is accomplished through the fourth column of the Figure
(7.8). In the long-maturity range (from T = 3, 4 to T = 20), shifted SABR relative errors
are smaller than the FB-SABR ones for all strikes under consideration, while along the
shortest maturities shifted SABR tends to present smaller relative errors, but not always
(for instance, for K = 1% and T = 1.5 the shifted SABR relative pricing error is bigger
than the FB-SABR one for maturities T = 1.5, 2, 3 years).

T/K(%) -0.75 -0.50 -0.25 -0.13 0.00 0.25 0.5 1.00 1.50 2.00 3.00 5.00 10.00

1Y 0.1092 0.0477 0.0076 0.0037 0.0021 0.0009 0.0005 0.0002 0.0001 4e-5 2e-5 5e-7 5e-7

18M 0.1275 0.0675 0.0240 0.0150 0.0100 0.0054 0.0035 0.0018 0.0011 0.0007 0.0004 0.0002 4e-5

2Y 0.1557 0.0998 0.0532 0.0390 0.0282 0.0171 0.0116 0.0063 0.0040 0.0028 0.0016 0.0007 0.0002

3Y 0.4119 0.2953 0.1904 0.1539 0.1231 0.0833 0.0595 0.0329 0.0209 0.0143 0.0077 0.0031 0.0008

4Y 0.5454 0.4393 0.3375 0.2943 0.2550 0.1930 0.1470 0.0925 0.0630 0.0456 0.0274 0.0129 0.0039

5Y 0.6753 0.5710 0.4730 0.4268 0.3818 0.3118 0.2545 0.1709 0.1202 0.0868 0.0495 0.0214 0.0053

6Y 0.8182 0.7148 0.6153 0.5681 0.5265 0.4429 0.3739 0.2695 0.1935 0.1421 0.0810 0.0313 0.0059

7Y 0.9610 0.8552 0.7547 0.7096 0.6556 0.5726 0.4991 0.3726 0.2810 0.2125 0.1266 0.0521 0.0112

8Y 1.0774 0.9724 0.8670 0.8211 0.7754 0.6885 0.6094 0.4722 0.3630 0.2771 0.1653 0.0715 0.0144

9Y 1.1813 1.0726 0.9728 0.9271 0.8814 0.7818 0.6975 0.5569 0.4319 0.3386 0.2078 0.0814 0.0137

10Y 1.2483 1.1464 1.0506 0.9970 0.9421 0.8574 0.7813 0.6230 0.4967 0.3929 0.2416 0.1001 0.0148

12Y 1.3060 1.2079 1.1093 1.0648 1.0206 0.9333 0.8436 0.6891 0.5520 0.4445 0.2727 0.1031 0.0110

15Y 1.3191 1.2274 1.1340 1.0984 1.0510 0.9601 0.8793 0.7362 0.6071 0.4865 0.3195 0.1295 0.0207

20Y 1.1912 1.1077 1.0304 0.9899 0.9532 0.8850 0.8142 0.6797 0.5634 0.4703 0.3163 0.1451 0.0274

Table 7.1: Caplet market prices.

Summarizing, in absolute errors terms, every model is quite accurate when fitting
caplet market prices, although this accuracy worsen within the strike. However, in rela-
tive errors terms, shifted SABR and FB-SABR models tend to perform better in every
considered in-sample test, with slight preference for the shifted SABR. Regarding matu-
rity in-sample analysis, for the shortest maturities both are the unique admissible models,
and for the longest maturities they can be considered the most accurate ones. On the
other hand, in terms of strike in-sample analysis, shifted SABR and FB-SABR account
for the best models as well. Models as normal SABR, Vasicek and Hull-White perform
reasonably well in the low-strike range, but they all fail in the high-strike range, while
shifted Black and Bachelier models tend to perform unsatisfactory in both strike and
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maturity in-sample analysis.

7.1.4 Strike out-of-sample analysis

Now is tested the strike out-of-sample accuracy of every model under consideration when
recovering caplet prices, i.e., models pricing accuracy when interpolating prices for strikes
not included in the calibration (excluded from the sample).

Figure (7.9) presents an aggregate of several caplet prices term structures in compar-
ison with caplet market prices when out-of-sampling some representative strikes.
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Figure 7.9: Models’ pricing strike out-of-sample accuracy within the market benchmark
for some representative strikes.

Just like in the in-sample analysis68, in this figure can be clearly observed that the
adjustment accuracy of the models depends, in general, on the strike range. Within the
negative and low-positive strikes prices term structures present a similar behaviour, while
for high strikes, as is the case of K = 5%, all models, except shifted SABR and FB-SABR,
fail in pricing accurately.

In Figure (7.10) is tested the strike out-of-sample pricing accuracy of each model
outstanding in terms of absolute and relative errors for the previously considered strikes.
First and second columns of the figure present the absolute and relative pricing errors,
respectively, of every model. Third column of the figure zooms the relative performance
of the models with, at a first sight, smallest relative pricing errors. Finally, since shifted
SABR and FB-SABR are the models that best reproduce market prices behaviour, the
fourth column is devoted to their relative pricing errors.

68Compare Figure (7.7) and Figure (7.9).
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Figure 7.10: Strike out-of-sample comparison of the di↵erent models in terms of absolute
and relative pricing errors for some representative strikes.

As it can be observed in the first column of the Figure (7.10), no huge absolute errors
are made, as occurred in the in-sample analysis. Again, for every maturity and strike
considered, shifted SABR and FB-SABR account for the most accurate models in terms
of absolute pricing errors. The highest (in this scale) absolute error values are observed
throughout the low-strike range and for the shortest maturities, highlighting Bachelier’s
and Vasicek’s errors.

Second and third columns of the figure under examination exhibit, once again, that,
with exception of shifted SABR and FB-SABR, every model fails in terms of relative
pricing errors for the shortest maturities for at least one of the out-of-sampled strikes.
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Finally, shifted SABR and FB-SABR relative pricing errors are compared through the
fourth column of Figure (7.10). The high-grade performance of the shifted SABR model
is clearly observed through these subfigures. Although FB-SABR relative errors are gen-
erally small, they increase considerably for both the lowest maturities and the highest
strikes, and therefore this model performance is clearly poorer than the shifted SABR
one.

Summarizing, when out-of-sampling in strike (interpolating prices for strikes not in-
cluded in the calibration), the behaviour of the models in terms of pricing accuracy is very
similar to the observed through the in-sample analysis. Shifted SABR and FB-SABR ac-
count as the best models under the strike out-of-sample analysis, with slight preference
for the first one based on its general superiority in absolute and relative terms.

7.1.5 Maturity out-of-sample analysis

At last, the maturity out-of-sample accuracy of every model under consideration when
recovering caplet prices, i.e., models pricing accuracy when interpolating prices for matu-
rities not included in the calibration (excluded from the sample) is tested.

Figure (7.11) presents an aggregate of several caplet prices term structures in compar-
ison with caplet market prices when out-of-sampling some representative maturities.
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Figure 7.11: Models’ pricing maturity out-of-sample accuracy within the market bench-
mark for some representative maturities.

As it can be observed, roughly speaking, it seems that every model fits market prices
quite precisely, although the adjustment accuracy worsens as time to maturity increases.
Moreover, caplet prices tend to rise as time to maturity grows for every strike under con-
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sideration, in consonance with the results presented in Figure (7.6).

In Figure (7.12) is tested the maturity out-of-sample pricing accuracy of each model
in terms of absolute and relative errors for the same representative maturities. First and
second columns of the figure present the absolute and relative pricing errors, respectively,
of every model. Third column of the figure is devoted to the shifted SABR and FB-
SABR relative pricing errors, since those are the models that best reproduce market
prices behaviour.

-2 0 2 4 6 8 10

Strike (%)

0

0.01

0.02

0.03

0.04

0.05

0.06

Ab
so

lu
te

 d
iff

er
en

ce
 (p

p)

Absolute Pricing Error, T = 18 months out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

100

200

300

400

500

600

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 18 months out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

10

20

30

40

50

60

70

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 18 months out-of-sample

Shifted Black

FB-SABR

-2 0 2 4 6 8 10

Strike (%)

0

0.05

0.1

0.15

0.2

0.25

Ab
so

lu
te

 d
iff

er
en

ce
 (p

p)

Absolute Pricing Error, T = 7 years out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 7 years out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

10

20

30

40

50

60

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 7 years out-of-sample

Shifted Black
FB-SABR

-2 0 2 4 6 8 10

Strike (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

Ab
so

lu
te

 d
iff

er
en

ce
 (p

p)

Absolute Pricing Error, T = 10 years out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 10 years out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

10

20

30

40

50

60

70

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 10 years out-of-sample

Shifted Black

FB-SABR

-2 0 2 4 6 8 10

Strike (%)

0

0.05

0.1

0.15

0.2

0.25

Ab
so

lu
te

 d
iff

er
en

ce
 (p

p)

Absolute Pricing Error, T = 15 years out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

20

40

60

80

100

120

140

160

180

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 15 years out-of-sample

Shifted Black

Bachelier

Shifted SABR

Normal SABR

FB-SABR

Vasicek

Hull-White

-2 0 2 4 6 8 10

Strike (%)

0

5

10

15

20

25

30

35

R
el

at
iv

e 
di

ffe
re

nc
e 

(%
)

Relative Pricing Error, T = 15 years out-of-sample

Shifted Black

FB-SABR

Figure 7.12: Maturity out-of-sample comparison of the di↵erent models in terms of abso-
lute and relative pricing errors for some representative maturities.
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The absolute errors observed in the first column above are, in average, higher than
the ones observed in the in-sample and strike out-of-sample analysis presented in Figures
(7.10) and (7.8), at least for maturities T = 7, 15 and Vasicek model. Moreover, it can be
seen that absolute errors in the low-strike range (from �0.75% to 4� 5%), especially for
the shortest maturities, are higher than the ones in the high-strike range (from 5� 6% to
10%), where they tend to decrease with the strike for every model. Again, shifted SABR
and FB-SABR account as the best models in terms of absolute errors, while the rest of
models are, in general, quite unsatisfactory.

Regarding second column of the figure, it is clear that models relative accuracy when
predicting caplet prices for maturities removed from the calibration procedures is essen-
tially challenged for the low-strike range in the shortest maturities and for the high-strike
range in the longest maturities. The area resulting from the combination (high strikes,
long maturities) is the most startling in terms of relative errors. Indeed, notice that in
that area errors tend to increase with the strike almost uncontrollable for every model
under consideration. Furthermore, for some particular strikes and maturities belonging to
this zone, FB-SABR model is being outperformed in relative terms by several competitors
as shifted Black and Vasicek models. On the other hand, Bachelier, normal SABR and
Hull-White are still the worst candidates in relative errors terms.

These outcomes can result surprising, since in previous analysis the behaviour of
the relative pricing errors, especially for the shifted SABR and FB-SABR models, was
smoother than the observed ones in Figure (7.12). However, notice that these models are
focused on advanced accuracy in smile-fitting process, while interpolation in maturity is
conducted through piecewise constant hypothesis, which attends for less precision. Fur-
thermore, when a maturity is removed for out-of-sampling purposes, a full model is being
eliminated from the calibration, since a di↵erent model for each maturity is calibrated,
and the made assumption is that previous-maturity implied volatility applies for the ma-
turity outstanding. Therefore, this argument supports maturity out-of-sample obtained
results.

Finally, fourth column of Figure (7.12) shows the relative pricing errors made by
shifted SABR and FB-SABR models, since, although they perform worse in the maturity
out-of-sample analysis, they are still the models that best fit the prices, in average terms.
As it can be seen, in the low-strike range both models perform quite accurately, with
slight preference for the shifted SABR, while for the high-strike range both of them fail
systematically because of their pronounced relative errors.

Summarizing, when out-of-sampling in maturity (interpolating prices for maturities
not included in the calibration), the pricing accuracy of the models su↵ers a reduction,
in relative terms, due to its nature and the method of interpolation in maturity used.
However, again, shifted SABR and FB-SABR account as the best models under the
maturity out-of-sample analysis, with slight preference for the first one based on its general
superiority in absolute and relative terms.
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7.2 Greeks and parameters sensitivities

This Section is devoted to the empirical analysis of the di↵erent caplet prices sensitivities
under the shifted SABR model since it accounts as the best model in terms of accuracy
in pricing caplets.

7.2.1 Delta and Vega

Figure (7.13) shows delta69 (sensitivity of the caplet price with respect to infinitesimal
changes in today’s forward rate value, which accounts for the underlying of the caplet) with
respect to the underlying forward values for each strike outstanding. Additionally, Table
(7.2) shows the value of each underlying forward rate with its corresponding maturity,
i.e., the maturity of its corresponding caplet. Since the underlying forward rate and the
corresponding caplet maturity are directly related, the behaviour of the �-curve will be
analysed equivalently either in terms of forward rates or in terms of maturities.
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Figure 7.13: Delta with respect to the underlying forward rate for each strike under con-
sideration.

T (years) 1 1.5 2 3 4 5 6 7 8 9 10 12 15 20

f (%) -0.31 -0.24 -0.12 0.05 0.29 0.53 0.83 1.13 1.41 1.65 1.84 2.06 2.26 2.49

Table 7.2: Forward rates with their corresponding maturities.

For the shortest maturities, where the underlying forward rate is negative or zero,
a clear di↵erence between delta for low strikes, K = �0.75,�0.25,�0.13, 0, 1(%) (cold
colours) and delta for middle-high strikes, K = 1.5, 2, 3, 5, 10(%) (warm colours) can be
observed. While the curve is increasing for the lowest strikes, it is decreasing for the

69Actually, this delta is referred to the Bartlett’s delta, since Bartlett’s correction provides more stable
and robust hedges, as it was explained in Section 4.1. The same argument applies for vega, which is in
fact Bartlett’s vega.
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highest ones. For middle maturities (T = 4� 7 years approximately), this �-behaviour is
opposite, and for largest maturities the evolving of the curves is similar for every strike,
indeed, the values of delta converge to a given (negative) long-term value with time to
maturity.

The sign of delta depends to a large degree on the shape of the volatility smiles/skews,
at least for some maturities. In order to compare �-curves behaviour with respect to the
volatility curves, Figure (7.14) presents the shifted SABR implied volatilities through ev-
ery strike under consideration and for some representative maturities. For each maturity,
the vertical line crosses the point of the curve which corresponds to the at-the-money
strike volatility, and it is used as a delimiter between two clearly di↵erentiated areas. In-
deed, in the first area, which corresponds to the strikes below the ATM’s one, the volatility
curve is decreasing. The second area corresponds to the strikes above the ATM’s one and
there the volatility curve is increasing. Notice that for the longest maturities (T = 15, in
this case) the volatility smile is decreasing irrespective of the ATM-strike area, although
it smoothly increases for the highest strikes.
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Figure 7.14: Shifted SABR implied volatilities through every strike under consideration
and for some representative maturities.

Before analysing the figures, it is crucial to take into account some important issues
about the relationship between caplet price Vcaplet, implied volatility �, strike K, and
today’s forward rate f .70 Firstly, notice that an increase in the today’s forward rate f

can be seen as equivalent to a decrease in the strike K. Indeed, if the value of f goes
up today, the corresponding caplet will have an smaller strike K, since the payo↵ of a
caplet is max(0, f �K).71 Secondly, when the implied volatility � goes up/down, the cor-

70Since this Section is devoted to the sensitivity analysis under the shifted SABR model exclusively,
subscripts and superscripts in the notation result redundant, and therefore they are omitted.

71This is a simplified version of the right payo↵-formula (1.7).
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responding caplet price goes down/up, since vega is positive for all strikes and maturities
under consideration, as it will be observed in Figure (7.15).

Regarding the volatility curves in Figure (7.14), for maturities T = 1.5, 2, 5 in the
left part (below K

ATM) the volatility goes down when the strike increases, and in the
right part (above K

ATM) the volatility goes up with the strike. For T = 15, volatility
goes down for almost every strike (note that for K = 7, 8, 9, 10% the curve increases
smoothly). Then, as illustrated in Figure (7.13), the behaviour of � is as follows.

• Short-middle maturities (T = 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10)72:

– If K < K

ATM (the volatility curve decreases), then " f(⌘# K) )" � )

" Vcaplet ) � > 0.

– If K > K

ATM (the volatility curve increases), then " f(⌘# K) )# � )

# Vcaplet ) � < 0.

• Long maturities (T = 12, 15, 20): � < 0 8K (irrespective of the ATM-strike area).

This �-behaviour depending on the dynamic evolution of the volatility curve is clear
in the short-middle maturity range, however for long maturities the argument does not
apply. Indeed, since in these cases the volatility curve is decreasing in almost all strikes,
delta should be positive, but it is clearly negative. This fact could be a result of an
unsuitable performance of the shifted SABR model in calibrating products with large
maturities, as it was commented Section 3.1.

In what follows, the vega (sensitivity of the caplet price with respect to infinitesimal
changes in the volatility of the underlying forward rate) is analysed. As it was previously
discussed73, there are two di↵erent ways of computing the vega, with respect to ↵ (today’s
forward rate volatility) or with respect to �B (implied shifted SABR volatility). In order
to clarify the di↵erences between them, Figure (7.15) presents both types of vega for every
strike and maturity under consideration.
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Figure 7.15: Vega with respect to the volatility parameter ↵ (left) and with respect to the
implied volatility �B (right) for each strike and maturity under consideration.

72See the shape of the corresponding smiles in Figure (7.5).
73See Section 4.1.
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As it can be seen in Figure (7.15), the shape of the sensitivity curves are very similar
in both cases, being the vega-curves with respect to ↵ smoother (notice that vega with
respect to �B presents some peaks corresponding to the negative and lowest positive
strikes at maturity T = 3). Furthermore, the values of the vega with respect to the
implied volatility �B are quite higher than the ones achieved by the vega with respect to
the parameter ↵ (notice the scale in both subfigures) and this indicates that the caplet
prices are more sensitive to the changes in �B than to the changes in ↵. The most
important issue is that vega, irrespective of the volatility considered for its computation,
is always positive. That means that when the volatility grows, the caplet price grows too,
and this is the typical market behaviour, since more uncertainty usually makes prices go
up.

7.2.2 Gamma, Dual-delta, Vanna and Volga

This Subsection is devoted to other Greeks also important for the hedging analysis.

Figure (7.16) shows the Greek gamma (sensitivity of delta with respect to infinitesimal
changes in today’s forward rate value) with respect to the underlying forward values for
each strike outstanding.
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Figure 7.16: Gamma with respect to the underlying forward rate for each strike under
consideration.

As it can be observed, for strikes around zero, particularlyK = �0.25, �0.13, 0, 0.5, 1%,
gamma curves form a pronounced peak (high positive value) around the maturity T = 3,
corresponding to the forward rate f = 0.05% (see Table (7.2)), contrary to their be-
haviour for the rest of strikes, which is quite smooth through the values of the underlying
forward rate. However, these peaks disappear as time to maturity increases, leading to
monotonous decreasing gamma-curves that converge to a given long-term value with the
time to maturity for every strike. 74

74Notice that these gamma curves resemble classical Black-Scholes gammas.
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Regarding the sign of this Greek, gamma is positive for all strikes and maturities un-
der consideration. At first sight this fact would result natural, since under the classical
Black-Scholes model call-gammas are positive and they have a similar shape as the ob-
served in Figure (7.16). However, these results are not mathematically consistent with
the delta-curves presented in Figure (7.13). Indeed, delta-curves are increasing and de-
cresing, depending on the maturity range under consideration, then since gamma is the
derivative of delta with respect f , gamma should be positive and negative, depending on
the maturity range under consideration. The analysis of this inconsistency is not obvious
and it is left for further research.

Figure (7.17) presents the Greek dual-delta (sensitivity of the caplet price with respect
to infinitesimal changes in the strike rate) with respect to the strike for every maturity
outstanding.
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Figure 7.17: Dual-delta with respect to the strike for each maturity.

As it can be seen in this figure, for all maturities under consideration, the sign of this
Greek is always opposite to the sign of the strike, the parameter with respect to which
this caplet price sensitivity is computed. Indeed, for negative strikes the dual-delta is
positive, for strike zero its value is zero, and for positive strikes it becomes negative, with
independence of the considered maturity. Furthermore, the behaviour of the di↵erent
dual-delta curves is completely symmetric, since the curves for each maturity have the
same shape through the strikes, being clearly more negative the curves corresponding to
the long maturities. Additionally, notice that all of them converge to the same value
(zero) with the strike.

Finally, Figure (7.18), shows the Greeks vanna and volga (sensitivities of delta and
vega, respectively, with respect to infinitesimal changes in the volatility of the underlying
forward rate ↵).
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Figure 7.18: Vanna (left) and volga (right) with resoect to the maturity for each strike
under consideration.

Firstly, vanna (left graph) is analysed. The behaviour of the vanna-curves is quite
unstable, since they present many (negative) peaks for the shortest maturities for almost
all strikes irrespective of their sign. Furthermore, this Greek takes negative values for all
strikes and maturities under consideration, and converges to a long-term (negative) value.

Secondly, volga (right graph) is analysed. Again, the di↵erence in these curves is
observed between negative and positive strikes, at least in the shortest maturities. Indeed,
in the maturity range T = [1, 5], for the negative strikes volga curves are positive, and for
the positive strikes they are negative. For maturities T = 8, 9 volga curves are negative
for all strikes, and for T = [10, 20] they are all positive, converging to a given (positive)
long-term value. However, these results are not mathematically consistent with the ones
obtained for the vega in Figure (7.15). Indeed, vega-curves (with respect ↵) are increasing
in maturity for all strikes outstanding, then since volga is the derivative of vega with
respect ↵, volga-curves should be all positive. As in the gamma case, the analysis of this
inconsistency is left for further research.

7.2.3 Parameters sensitivities

As stated in (Deloitte,2016)[12], in some practices, the daily risk-management goes
even further by managing the sensitivities associated to the SABR parameters. Therefore,
these sensitivities are empirically analysed now.

Figure (7.19) shows the sensitivities of the caplet prices calibrated with the shifted
SABR model with respect to its parameters: � (the power parameter), ⇢ (the correla-
tion between the Brownian Motions of Ft and �t), ⌫ (the volatility-of-volatility, i.e., the
volatility of �t), and the shift parameter s.
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Figure 7.19: Shifted SABR parameters sensitivities.

The main conclusions of the analysis of Figure (7.19) are the following.

• � sensitivity (S(�)) (subfigure (a)). S(�) is negative for all strikes and for all matu-
rities under consideration. The dependence of the caplet prices with respect to the
parameter � decreases drastically with time to maturity until 5� 7 years, and then
becomes smoother for all strikes under consideration. Furthermore, the smallest
values of S(�) are observed for the strikes around zero.

• ⇢ sensitivity (S(⇢)) (subfigure (b)). S

(⇢) is positive for the highest strikes (K =
3, 5, 10%, 8T ), and negative for the rest (negative and low positive strikes, 8T ).

• ⌫ sensitivity (S(⌫)) (subfigure (c)). S(⌫) is positive for all strikes and for all maturities
under consideration. The sensitivity of the caplet prices with respect to ⌫ increases
drastically in the maturity range [1, 5] [ [10, 20] for the negative and low positive
strikes, while for the highest strikes it increases through all maturities, reaching its
major values for K = 5, 10% and T = 15, 20 years.

• s sensitivity (S(s)) (subfigure (d)). S(s) is positive for all strikes and for all maturities
under consideration. The dependence of the caplet prices with respect to the shift
parameter s increases drastically with time to maturity until 5� 7 years, and then
becomes smoother for all strikes under consideration. Furthermore, the major values
of S(s) are observed for the strikes around zero.

As it can be observed, the behaviour of the � and s sensitivities is inversely propor-
tional, since the shape of both set of curves seems to be the same but inverted, as the axis
of the strike were a mirror, although �-sensitivity curves accomplish smaller negative val-
ues (the scale is from 0 to �1.4) than the positive ones accomplished by the s-sensitivity
curves (the scale is from 0 to 4.5).75 This means that there might exist an inverse relation
between � and s, when one increase the other decreases, and vice versa.

75Compare subfigures (a) and (d) of Figure (7.19).
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Furthermore, all parameters sensitivities seem to converge to a long-term value (obvi-
ously, di↵erent in each case), although each of them in a di↵erent way. However, in every
case it can be seen that the curves for the highest strikes (K = 5, 10%) are the ones that
present a di↵erent behaviour in convergence terms, with respect to the sensitivity curves
for other strikes (negative and low positive).
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Conclusion

The current negative rates environment has led to di�culties in using standard models
for pricing and hedging fixed income derivatives. On the other hand, the assumption of
constant volatility in traditional simplistic models is inconsistent with existent smile/skew
e↵ect in the volatility curves observed within markets.

During this MSc Thesis several models able to cope with negative rates have been cal-
ibrated and compared in terms of accuracy when recovering caplet prices term structures,
testing both their in-sample fit and out-of-sample forecast. Empirical results have shown
that each model under consideration fits market prices fairly well, however in terms of
absolute and relative pricing errors, not all models have been appropriate. Shifted SABR
and Free-Boundary SABR definitely outperformed the remaining models, with explicit
preference for the former. This result supports Shifted SABR’s general acceptance in the
industry.

Since the utility of the Shifted SABR model as a pricing tool has been empirically
shown, in the second part of the practical approach, its ability to produce reliable risk
measures has been tested. Greeks and parameters sensitivities of significant practical
importance have been analysed, and the reached outcomes have resulted consistent with
the markets behaviour, highlighting delta risk which strongly depends on the shape of the
volatility curve.

Although the results seem satisfying, there are several areas that might be considered
in a further research in order to improve the quality of the empirical analysis.

Piecewise constant hypothesis used in the research does not seem precise enough, since
pricing accuracy of the Shifted SABR model, particularly, worsens when maturity out-of-
sample analysis is considered. Therefore, the influence of the functional form in maturity
of the caplet implied volatility in the stripping process should be tested in order to select
the most appropriate one.

The setting of the parameter � at 0.5 in the Shifted SABR model, based on the general
agreement among academics and practitioners, should be tested (either fixing it at other
values or calibrating it directly) in order to check the influence of this parameter on the
subsequent results.

The use of single discount curve for both computing the forward rates and the dis-
count factors is a simplification of today’s standard market practice, where multi-curve
framework is used. Therefore, this new approach should be adopted in order to deal with
the possible inconsistencies resulting from the single-curve method.
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Hull-White model was calibrated through its analytical pricing formula. However,
the standard calibration method for this model is numerical, based on tree approaches.
Therefore, this short-rate model should be calibrated numerically, in consonance with the
common practice, in order to test the influence of the used method (analytical or numer-
ical) on the subsequent comparative results.

Hedging analysis has been performed only for the Shifted SABR model, since it has
accounted as the preferred one in terms of pricing accuracy. In order to justify empirically
its superiority in producing reliable risk metrics, hedging analysis for the rest of models
should be fulfilled.

Since caps are the instruments that actually are quoted within markets, a conversion
of both caplet pricing and hedging analysis should be performed for caps. That would
result in higher interest for the industry. Furthermore, a parallel analysis should be done
for floors, what would not imply an additional di�culty, and for swaptions, for instance,
what would require a completely di↵erent methodology given the nature of this product.
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Appendix A

Constant Elasticity of Variance
Model (1975)

The Constant Elasticity of Variance (CEV) model was developed by (Cox,1975)[9]. In
this model the forward rate Ft follows the following stochastic di↵erential equation

dFt = � · F

�
t · dWt, (A.1)

where � is the constant volatility and Wt is a Brownian Motion under the T -forward
measure. The parameter � is the CEV-exponent and in interest rate markets, it usually
holds 0  �  1. Note that if � = 1 there is the Black model and if � = 0, the Bachelier
model is obtained.

One of the main features of the CEV process (A.1), which concerns most analysts, is
its transition probability density function P(Ft = f |f). (Frankena,2016)[18] shows that
this function can be of two forms for 0 < � < 1 depending on a boundary condition at
Ft = 0.

• For 0 < � <

1

2

with an absorbing boundary condition at Ft = 0 and for 1

2

 � < 1
without the need of applying a boundary condition.

• For 0 < � <

1

2

with a reflecting boundary condition at Ft = 0.

The CEV process with an absorbing boundary condition is a martingale, while the
CEV process with a reflecting boundary is not, as shows (Labordére,2008)[31]. Fur-
thermore, paths {Ft}t�0

that hit zero, stay in zero forever with the absorbing boundary
condition, but reflect to positive values with the reflecting boundary condition. The SABR
model uses an absorbing boundary condition, since this allows the underlying process to
be a martingale. Therefore, the transition probability density function of the CEV process
with an absorbing condition gives insights on the probability density of the SABR model.

The main drawbacks of the CEV model are that it cannot deal with negative rates
(unless it is shifted, in which case a restricted version of the shifted SABR model with
constant volatility is obtained), and that it cannot reproduce the volatility smile/skew
observed in the markets.
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Appendix B

Local Volatility Models (1994)

As it was already described the implied volatility is not constant in practice. Dupire, Der-
man and Kani, see (Dupire,1994)[16], (Derman and Kani,1994)[14], (Derman and

Kani,1994)[13] and (Derman et al.,1996)[15], found an apparent solution for this
problem by introducing local volatility. They extended the Black model by replacing the
constant volatility � by the so-called local volatility function �LV (t, Ft) that is dependent
on time t and the underlying forward rate Ft. The stochastic di↵erential equation that
describes the dynamics of the forward rate Ft under the local volatility model is given by

dFt = �LV (t, Ft) · Ft · dWt, (B.1)

where Wt is a Brownian Motion under the T -forward measure FT .

(Dupire,1994)[16] argued that instead of theorizing about the unknown local volatil-
ity function �LV (t, Ft), one should obtain it directly from the marketplace by calibrating
the local volatility model to market prices of liquid options, i.e., by using the market prices
of options to find an e↵ective specification of the underlying process, so that the local
implied volatilities match the market implied volatilities. Then, under the local volatility
model, the value of a cap/floor, for instance, is obtained by Black’s formula (2.10) by
introducing the corresponding estimated volatility.

However, there is a major problem with the local volatility model. Although the smile
calibration that provides is really accurate for any given maturity, it predicts that the
market smile/skew moves in the opposite direction as the price of the underlying asset,
i.e., it predicts that the smile/skew will shift to lower prices after an increase of the under-
lying. This is contrary to the typical market behaviour, in which smiles and skews move
in the same direction as the underlying. In other words, it predicts the wrong dynam-
ics of the volatility smile/skew. Due to this contradiction, as it is clearly explained and
exemplified in (Hagan et al.,2002)[22], delta and vega risk metrics under the local
volatility model may perform worse than the risk metrics of the naive Black model.76

In conclusion, the local volatility model is suited for pricing purposes, but not for
proper risk management, and, for this reason, the model has been discarded over the
industry during recent years.

76Full argument is omitted here because it lies beyond the objectives of the research, but interested
readers can attend (Hagan et al.,2002)[22] for further details.
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Appendix C

Vasicek and Hull-White calibrations.
Numerical issues

During the Vasicek and Hull-White models calibrations through the caplet pricing for-
mulae (2.13a) and (2.16a), several numerical di�culties have been found. Indeed, some
di↵erent combinations of the parameters resulted in similar values of the considered ob-
jective function, and the algorithm struggled to optimize it in the parametric space.

One possible reason for these numerical obstacles might be the classical optimization
problem of getting stuck in a local critical point. In order to test this possibility, mod-
els restrictions and initial values was subtly varied, and, in view of optimization process
stopping criteria details, it seems that this is not the problem.

Another habitual cause that can aggravate the optimization results is the discontinuity
of the pricing function. In Figure (C.1) is presented the dependence on the parameter ✓
of the Vasicek caplet pricing formula (2.13a) fixing k and � to their values for T = 3Y
and K = 0%, as a representative example.77
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Figure C.1: Vasicek caplet pricing formula as a function of the long term value ✓.

77Since formulae (2.13a) and (2.16a) have a similar structure, the pricing problems are stated in both
of them, and therefore the discussions made during the appendix applies for both of them.
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As it can be seen the pricing function is notably discontinuous, and therefore the cali-
bration algorithm cannot fit properly any price between two given points of the parametric
space for ✓. Indeed, since every considered point of the parametric space for ✓ gives a
di↵erent price of the market price, the step-size tolerance is not enough to guarantee a
proper fit for small caplet prices, where the relative pricing error increases highly as soon
as the market price is not attained with proper accuracy.

Then, it seems that the problems during the optimization are due to the nature of the
caplets pricing function, and not to the optimization procedure itself.
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Appendix D

Numerical di↵erentiation

This appendix summarizes the most commonly used finite di↵erence methods when com-
puting numerically first and second order (partial) derivatives.78

Given the function f(x, y, z) 2 Rn
, n 2 N, the first order partial derivative of this

function with respect the variable x (without loss of generality) can be approximated by
the following equations.

• Forward Di↵erence Method
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• Central Di↵erence Method
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• Secant Method
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The second order partial derivative of the function with respect to the variable x

(without loss of generality) can be approximated by
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and the second order cross partial derivative with respect to x and y (without loss
of generality) is given by
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where f

(1,1) = f(x
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78For further details about the topic see (Burden and Faires,2011)[7], for instance.
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Appendix E

Market data

STK ATM -0.75 -0.50 -0.25 -0.13 0.00 0.25 0.5 1.00 1.50 2.00 3.00 5.00 10.00

1Y -0.20 5.57 2.70 4.30 5.80 7.40 9.00 11.60 13.80 17.40 20.40 22.80 26.80 32.60 41.00

18M -0.20 6.88 6.90 6.40 6.90 8.30 9.70 12.00 14.00 17.30 20.00 22.30 25.90 31.10 38.60

2Y -0.20 8.70 9.80 8.40 8.20 9.40 10.50 12.50 14.30 17.20 19.60 21.70 24.90 29.60 36.40

3Y 0.02 11.55 13 .00 11.50 10.40 10.80 11.40 12.70 14.00 16.10 18.00 19.60 22.20 25.90 31.30

4Y 0.14 13.68 15.30 13.70 12.40 12.60 13.10 14.10 15.00 16.70 18.20 19.50 21.70 24.80 29.30

5Y 0.27 15.15 16.70 15.20 14.00 14.00 14.30 15.10 15.80 17.00 18.10 19.00 20.50 22.80 26.20

6Y 0.40 16.05 17.40 16.10 15.00 14.90 15.20 15.70 16.20 17.10 17.80 18.40 19.40 20.90 23.30

7Y 0.52 16.46 17.80 16.60 15.60 15.50 15.60 16.00 16.40 17.00 17.50 17.90 18.60 19.70 21.70

8Y 0.65 16.61 18.00 16.90 15.90 15.80 15.90 16.20 16.50 16.90 17.20 17.40 17.80 18.70 20.30

9Y 0.77 16.58 18.10 17.00 16.10 16.00 16.10 16.20 16.40 16.70 16.80 16.90 17.10 17.60 18.80

10Y 0.88 16.45 18.10 17.10 16.30 16.10 16.10 16.20 16.40 16.50 16.50 16.50 16.50 16.80 17.60

12Y 1.06 16.06 18.10 17.20 16.40 16.20 16.20 16.20 16.20 16.10 15.90 15.80 15.50 15.40 15.70

15Y 1.26 15.42 17.90 17.10 16.30 16.20 16.10 15.90 15.80 15.60 15.30 15.00 14.60 14.20 14.30

20Y 1.42 14.66 17.60 16.80 16.10 15.90 15.80 15.60 15.40 15.00 14.60 14.30 13.80 13.30 13.20

Table E.1: Implied Shifted Black EUR volatilities (%) at 23-May-2017.
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Figure E.1: EUR OIS discount curve at 23-May-2017 with tenors from 1 day to 50 years.
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