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Universidad del Páıs Vasco/Esukal Herriko Universitatea

Campus de Sarriko, 48015 Bilbao (Bizkaia)
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Abstract

Automated trading, executed on computers via pre-programmed algorithms, constitutes
a very large percentage of price movements that are observed during trading hours. Our
main interest is to provide accurate price dynamics that allows us to make predictions on
price movements or their trends. Clearly, price anticipation drives profits for High Frequency
trading. Relatively recent contributions develop, both theoretically and through aplications,
models based on discrete price events: jump processes. In particular, we consider multivariate
Hawkes process as a prism through which we can study and observe the market reaction
to different order types and their mutual interactions. Our main objective is to evaluate
the appropriateness of this model to describe and predict price movements in electronic
exchanges. To evaluate the performance of the model we will compare it to the standard
benchmark, the VAR process.
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1 Introduction

Today’s electronic markets move very quickly. A very large percentage of price movements
we see during trading hours is driven by automated trading, executed on computers via pre-
programmed algorithms (see [1]). Another property of electronic markets is that trading occurs
on a discrete grid of prices. In the US, where our data comes from, prices are set in cents. An
asset can trade at $10.02, but not at $10.0178. Activity occurs on a very small time scale and
on a fixed price grid.

We are interested in price dynamics. The main reason for this interest is that having a model
of price dynamics allows us to make predictions on price movements or their trends, which is
advantageous on trading strategies. In particular, price anticipation and short-term price devia-
tions from the fundamental value of an asset are important drivers of profits for High Frequency
trading strategies [11][2]1.

In this paper, the main tool used to study price dynamics is the VAR and related models that
are based on a theoretical structure with discrete time steps and continuous prices. However,
time is continuous and the price grid discrete. The continuity of time is some times addressed by
changing the time scale, for example, using event time rather than clock time, and the discrete-
ness of the grid is considered a sufficiently small problem that can be ignored. But, there are
other tools that can be used instead of the VAR approach to study the price dynamics. Rela-
tively recent contributions [12][3][7] develop, both theoretically and through aplications, models
based on discrete price events: jump processes. In particular, [12] provides a very elegant model
of a process, termed a Hawkes process, that has three distinct properties: (i) it is a continuous
time process, (ii) it is discrete in nature: changes occur rarely and in discrete sized chunks,
and (iii) the future movements of the process are affected by its own recent history. The main
objective of the current paper is to evaluate the appropriateness of this model to describe price
movements in electronic exchanges. To evaluate the performance of the model we will compare
it to the standard benchmark, the VAR process.

The study proceeds as follows: we will first describe the data we use (section 2), then, in
section 3, we will describe the Hawkes process, use it to build a model for our data, and justify
the need from the additional complexity of the Hawkes process relative to a simpler standard
Poisson process. This is followed by the modeling of the same data but with the VAR model
(section 4). The study concludes by reviewing the results from both analyses and comparing
the performance of the two models.

2 Data description

2.1 The Trades and Quotes (TAQ) dataset

Data used in this paper are obtained from the Trades and Quotes (TAQ) dataset which was
purchased directly from an authorized commercial data provider. TAQ consists of high fre-
quency recordings of trades and quotes for two derivative assets on twelve US exchanges. Table
1 presents the list of exchanges for the two particular assets SPY and SDS considered in this
manuscript. The SPY Exchange Traded Fund (ETF) objective is to track the Standard & Poor’s
500 Index (ticker: SPY), and the ProShares UltraPro Short S&P 500, which is a leveraged in-

1High Frequency algorithmic trading is studied in the book [2]. The proposed models that are developed look
at how the strategies depend on different factors including the market maker’s aversion to inventory risk, adverse
selection, and short-term lived trends in the dynamics of the midprice.
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verse ETF, aims a return twice the inverse of the daily performance of the S&P 500 Index (ticker:
SDS).

Exchange SDS SPY

NASDAQ 15.61 % 21.37 %
BATS 11.47 % 16.30 %
NYSE-ARCA 16.64 % 22.18 %
NSE – 0.15%
FINRA 0.23 % 0.30 %
CSE 6.76 % 4.69 %
EDGA 10.38 % 4.16 %
EDGX 9.96 % 12.39 %
NASDAQ-BX 8.09 % 4.19 %
NASDAQ-PSX 6.61 % 6.78 %
BATS-Y 12.96 % 5.10 %
IEX 1.28 % 2.37 %

Table 1: Exchanges for SDS and SPY in the TAQ

Table 1 indicates the percentage of regular trades and quotes for each asset per exchange
in the TAQ. The arbitrage opportunities and the National Best and Best Offer rule make that
order books of different exchanges are not significatively divergent. In this manuscript, we have
selected the Nasdaq exchange during the complete observation period: December 14th, 2016.

The TAQ dataset consists of two main data tables: the Trades table and the Quotes table.
The Trades table has a record for each transaction that took place on any of the participating
exchanges. This table includes information about the volume, price and exchange for each the
transaction. The Quotes table contains information on the best bid price and best ask price.
Quotes table has a record for each update on either the price or volume of the bid side or ask
side in any one of the exchanges. It is relevant to indicate that each record in the Quotes table
represents a new state in the Order Book at Level I of the concrete exchange and asset just after
a change has been produced by a particular order operation. Those orders that cause changes
in the Quotes tables are Limit Orders (LO), Cancellation Ordes (CO) and Market Orders (MO)
matching stored outstanding LOs. The time stamps in both tables are accurate to 1 millisecond.

Table 2 shows an extract of the TAQ dataset for SPY obtained on December 14th, 2016. Let
us observe that we do not know the details about what is the concrete message that produces
such information in the TAQ.

Exchange Timestamp Price Quantity bBidSide bQuote

1 14916700 227.73 11 1 1
1 14916700 227.78 28 0 1
3 14916700 227.74 30 1 1
3 14916700 227.78 28 0 1
1 14916700 227.74 20 1 1

Table 2: Sample of TAQ dataset for SPY

The extraction of information from TAQ gives us the capacity to differentiate three types of
files classified by the two assets, SPY and SDS, for the exchange considered in this paper, Nas-
daq. For brevity, we omit the reference to ’Nasdaq’ in the rest of the manuscript. Each type of
file stores the Trades table, the Quotes table on the bid side, and the Quotes table on the ask side.
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—- Trades table —– —– Quotes Table ask side —-

Timestamp Price Quantity Timestamp Price Size

34500597 227.74 10 34500027 227.74 15
34500597 227.74 1.7 34500028 227.74 15
34500597 227.74 1 34500028 227.74 18
34500597 227.74 2 34500028 227.74 19
34500597 227.74 1 34500031 227.74 19
34505203 227.73 1 34500031 227.74 18
34505203 227.73 1 34500031 227.74 18

Table 3: Trades table (on the left) and Quotes table of the ask side for SPY.

As an example of these tables, Table 3 shows the structure of Trades table (left) and Quotes
table (right) on an actual extract of the dataset for SPY on December 14th, 2016. The first
entry in Trades table indicates that at time 34500597 msg (9:35:0.597 a.m.) there has been a
transaction of volume 10 at price 227.74$. Each entry in the Trades table can be translated into
a MO that triggers a transaction. Unfortunately, the Trades table does not indicate if the order
was a buy or a sell MO. The structure of the Quotes table on the ask side is also shown in Table
3 2.

Note that multiple entries in those tables can have the same time stamp. We do not have
unique time stamps for each entry in the tables. In reality, there are many message arrivals in
1-millisecond intervals, but we do not have a more refined time stamp. However, in the Trades
table, MOs that appear with the same time stamp have been recorded in the same order as they
appear in the table. Similarly, entries with the same time stamp in the Quotes table show the
changes at level I of the Order Book in the order that they have occurred. For a group of entries
with same time stamp in a Quotes table (just before the apparition of an entry with a new time
stamp) we retain the price after the last entry as the best price for that millisecond (one for
each side of the book, the bid and the ask). In addition, the volume indicated in that last entry
corresponds to the volume outstanding in the queue of level I at the ask and bid sides respectively.

Figure 1: Order Book example.

Figure 1 is a graphical view of the potential information available in the LOB. Blue bars
on the left half represents the queues of LOs with the same buy price. These buy orders form
the bid side with prices P ib and quantities V i

b . The right hand bars represent the queues of LOs
with the same sell price. They form the ask side with prices P ia and quantities V i

a . The level I
of the book only represents the activity at the queues of first level. We do not have available
all the activity in the book, and only observe the activity affecting P 1

b (t), V 1
b (t), P 1

a (t), V 1
a (t) at

2The structure of the Quotes table for the bid side is similar.
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timestamp t. The line in the middle corresponds to the mid-price where m(t)
def
=
P 1
a (t) + P 1

b (t)

2
;

and s(t)
def
= P 1

a (t)− P 1
b (t) is the spread at time stamp t.

2.2 Data preprocessing and Order Flow reconstruction

Data in the TAQ are neither perfect nor complete and do not contain all the information to
reconstruct each Order Book with full accuracy. Some kind of data preprocessing is necessary.
We remove entries with price equal to 0. In addition, we use data for the trading time from 10:00
to 15:00 instead of the complete normal trading hours (9:30 a.m. - 4:00 p.m.). We have removed
the first thirty minutes and the last hour of trading for parameter estimation and prediction
purposes, since the dynamics of the Order Book close to the market open and market close may
differ significantly to the behaviour throughout the remainder of the trading day.

We consider only regular messages on the TAQ for data processing. For each concrete
exchange and asset, we can make a partial reconstruction of the order flow by identifying (i)
LOs that establish a new best ask price (LOpa); (ii) LOs that establish a new bid price (LOpb);
(iii) LOs that change the volume on the best ask price (LOqa); (iv) LOs that change the volume
on the best bid price (LOqb); (v) COs on the ask side (COa); and (vi) COs on the bid side (COb).
However, those last orders could also be MOs on one of the sides of the book. The identification
between COs and MOs is not perfect, and requires some heuristic approach. We find that for
some markets we observe no movement in the bid and ask price or quantity for significant periods
of time, so even though there are many markets, the main activity is concentrated in a small
subset of them. In Appendix A, we give a more detailed explanation of how we reconstruct the
order flow.

2.3 State of the Order Book

Order flow reconstruction from TAQ is imprecise since we have only the information about the
Order Book at Level I. For this reason, we use a more direct information that is obtained from
the TAQ through the Quotes tables. Basically, we reconstruct the state of the Order Book for
each asset at unique time stamps, the end of each millisecond (with some activity). Thus, we
can merge information on the ask and bid sides for any asset to form a Unique Quotes Table
(UQT) for that asset, where each entry contains the information at the end of each time stamp.
In other words, we construct for each asset the state of the Order Book at unique time stamps
reflecting the achieved state at that time. In the rest of this paper, we reserve the letter ’a’
for ’ask’ and ’b’ for ’bid’. We construct two tables, UQTsds and UQTspy, with the following
variables:

UQTsds = [tssds, P sdsb , V sds
b , P sdsa , V sds

a ]

UQTspy = [tsspy, P spyb , V spy
b , P spya , V spy

a ]

Recall that the sets of time stamps are not the same on both tables, i.e., it is possible to
find different time stamps in both tables. Table 4 shows an extract of the UQTspy. Each entry
represents the state of the Order Book at time stamp tsspy. In both tables, entries are ordered:
k-th and r-th at UQTspy satisfies that tsspyk > tsspyr if and only if k > r.

In addition, we classify each transition between two consecutive states into types of events.
In this study, we consider transitions indicating a change in the price. Notation for the types of
events are given in the next Table 5, where the notation used is: assetmoveside , asset is the ticker
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timestamp price bid volume bid price ask volume ask

36002574 227.55 1 227.56 60
36004084 227.55 1 227.56 60
36004377 227.55 2 227.56 60
36004833 227.55 4 227.56 60
36004834 227.55 10 227.56 59

Table 4: An extract of UQTspy

of the asset (sds or spy), side is the side of the order book: a : ask, b : bid, and, move describes
the change in the price (up or down).

Type of event Notation Type of event Notation

sdsdowna e1 spydowna e5
sdsupa e2 spyupa e6
sdsdownb e3 spydownb e7
sdsupb e4 spyupb e8

Table 5: Notation for the types of events

Consecutive entries without any change are of the type unchanged events. However, we do
not include events of this type in the analysis. Thus, we have a total of eight types of different
events. This events are also timestamped, e.g, if the transition UQT spyk−1 → UQT spyk , for two
consecutive entries k− 1 and k, is an event of type spyupa then the pair (tsspyk , spyupa ) defines the
time stamped event. We consider the time stamp of the event when it takes place.

Furthermore, data in UQTsds and UQTspy allow us to track different signals for each asset
x ∈ {sds, spy}: the spread signal sx(t), the mid-price signal mx(t), and the imbalance imbx(t)3

for each asset x ∈ {sds, spy}.

Figure 2 illustrates the price evolution for the two assets, P sdsa (t), P sdsb (t) , P spya (t), and
P sdsb (t), from 10:00 to 15:00. It is worth mentioning that SDS prices move in the opposite
direction to SPY prices.

3 Multivariate Hawkes Process

In order to model the data we have just described, we consider using a Hawkes process. Certain
physical systems exhibit temporal behaviours in which the arrival of events modifying the sys-
tem state tend to cluster. These behaviors cannot be modeled by homogeneous Poisson process,
due the fact that the arrival of each event depends on the recent history of arrivals. One of the
simplest model that accouns for the dependency between events is the Hawkes process. This
process generalizes the notion of homogeneous Poisson process model. Hawkes introduced such a
model as a self-exciting point process [4]. This model has been useful for studying and modeling
earthquarkes [9], and, more recently, in the study of spike trains in neurons [8].

Due to its ability for modeling clustering of events in temporal series, Hawkes processes have
also been applied in different areas of finance. A particular application of interest is the mod-
elling of the dynamics of Limit Order Books (LOB). In [5], the authors propose a mathematical

3Imbalance value was introduced by Cartea [6] to measure the imbalance between the bid-ask volumes as a
predictor for price movement imbx(t) = V x

b − V x
a /V

x
b + V x

a

7



3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

10
7

14.65

14.7

14.75

14.8

14.85

14.9

14.95

Pr
ic

es
 ($

)
P

sds

ask

P
sds

bid

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4

Timestamps (milliseconds) 10
7

226

226.5

227

227.5

228

228.5

Pr
ic

es
 ($

)

P
spy

ask

P
spy

bid

Figure 2: Movements of ask and bid prices of SDS and SPY in Nasdaq.

structure in which the temporal series of LOs, MOs an COs arriving at the LOB are modeled
using multivariate Hawkes processes. Multivariate-Hawkes processes have the characteristic that
they can include contagion effects among the temporal series. Mutual influence between series
can be also interpreted as causal relations between them, see [10].

In a similar way, Y. Chen [7], introduces a framework based on multivariate Hawkes pro-
cesses with exponential decays for estimating the direction of the next price movement in a LOB.
Chen demonstrates that Hawkes processes perform better than Poisson processes in terms of
both model fitting and performance prediction. In addition, Cartea et. al. [11] have developed
high frequency trading strategies to post limit sell and buy orders taking into account multi-
factor mutually exciting processes modeled via Hawkes processes. In this study, we consider
the Hawkes process as a prism through which we can study and observe the market reaction
to different order types and their interactions. From that point of view, we will use Hawkes
processes for modeling the sequences of events that modify the state of the Order Book.

This section is devoted to apply estimated multivariate Hawkes processes as a tool for pre-
dicting the price movements of the assets considered in this manuscript, SDS and SPY in Nasdaq.
The rest of this section is organized as follows. Subsection 3.1 provides a short presentation of the
multivariate Hawkes process and its main properties. Subsection 3.2 describes the data prepara-
tion for the different estimations and predictions we are going to do in the study. Subsection 3.3
illustrates the goodness of fit of the estimated models in order to validate our initial assumption
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about the appropriate selection of Hawkes processes. In subsection 3.4, we explain the predic-
tion process using the estimated Hawkes model and the results obtained for the prediction tests.
Finally, a subsection of discussion end the section.

3.1 Notion of multivariate Hawkes process

This subsection includes a short presentation of the notion of multivariate Hawkes process and
some well-known results. We start with the original definition of a D-variate Hawkes process [4]
(in short form D-variate-HP). The reader may consult [14] for a short introduction to Hawkes
processes and some of their statistical properties. For a complete revision of point processes see
Daley and Vere-Jones’s book [15].

A D-dimensional multivariate point process consists of an increasing sequence of positive
random times 〈Tk〉k∈N and a matching sequence of random marks 〈Ek〉k∈N where each mark Ek
is an element of a set of marks, i.e., Ek ∈ E with E = {1, 2, ..., D}4.

For each k ∈ N, the pair (Tk, Ek) is an event of type Ek arriving at time Tk. Each finite
concrete realization of the random process is a finite sequence of events that will be denoted by
lower case letters, 〈(tk, ik)〉1≤k≤K . In addition, we denote by tjk the time of the k-th event of
type j in the sequence. In the following, i, and j denote types of events and k is used to denote
an index of order of the elements in the sequence.

For a D-dimensional multivariate point process, 〈(Tk, Ek)〉k∈N, we can provide an equivalent

counting process representation given by N(t)
def
= (N1(t), N2(t), ..., ND(t)) where

Ni(t)
def
=

∑
k∈N

1{Tk≤t,Ek=i}, t ≥ 0, i ∈ E (1)

The process Ni(t) counts the number of events of type i ∈ E that have occurred until time t.
The counting processes N(t) is called non-explosive if Pr{Limk→∞Tk =∞} = 1. Intuitively: a
counting process is non-explossive if no realizations have a finite time interval with an infinite
number of events in it.

The next definition presents the notion of a D-variate-HP as a mutually exciting process. It
captures the self-excitation feature from the univariate case, and it also has cross-exciting effects
between different dimensions.

Definition 1 (Hawkes 1971 [4]) Let N(t)
def
= (N1(t), N2(t), ..., ND(t)) be a D-dimensional mul-

tivariate point process satisfying

(i) N(0) = 0; and, for each i ∈ E,

(ii) λi(t) is a left continuous stochastic process given by the Stieltjes integral

λi(t)
def
= µi +

∑
j∈E

∫ t

0
αij e

−βij(t−s)dNj(s) (2)

= µi +
∑
j∈E

∑
{k:tjk<t}

αij e
−βij(t−tjk) (3)

4The label assigned to a mark denotes the type of event.
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where µi > 0, αij ≥ 0 and βij ≥ 0, for i, j ∈ E.

(iii) λi(t), independently for each i ∈ E, is the stochastic intensity of the marginal
point process Ni(t)

P{Ni(t+ h)−Ni(t) = 1|FN
t−} = λi(t)h+ o(h) (4)

(iv) the point process is orderly,

P{Ni(t+ h)−Ni(t) ≥ 2|FN
t−} = o(h) (5)

where FN
t− is the natural filtration of the process, is called a D-variate Hawkes process

with exponential decays on [0,∞).

By (4), the intensity λi(t) in (2) is interpreted as the infinitesimal rate of events of type i
at time t. The µi parameters are called the base intensities and can be viewed as background
intensities. Whenever an event occurs, the intensities increase, making subsequent events arrive
at a higher frequency. Such effects are controlled by the kernels kij(t). The original definition
[4] is for exponential kernels where an exponential kernel is parameterized as:

kij(t)
def
= αij exp(−βij · t), t ≥ 0, i, j ∈ E (6)

with αij ≥ 0 and βij ≥ 0. These parameters are called the impact coefficient and decay coeffi-
cient between dimensions j and i respectively.

Kernel functions control the instantaneous increases and the relaxation speeds of the inten-
sities in response to excitations. For a D-variate-HP, kii(t) describe the self-excitation, while
kij(t) for different events, i 6= j, may be viewed as a measure of the cross-excitation, that is, the
impact of an event of type j on the arrival of an event of type i.

From (2), each D-variate-HP is fully determined by their baseline intensity vector µ
def
= [µi]i∈E

and the matrix K
def
= [kij(t)]i,j∈E of kernel functions. The choice of exponential kernel functions

(6) presents the additional advantage that the joint process (N, λ), with λ
def
= [λi]i∈E , is a Markov

model as was proven by Massoulié [16]. Massoulié also studied general conditions for stability
and uniqueness of a D-variate-HP with arbitrary kernels. One of Massoulié’s results is that the
components of the kernel matrix K have to be formed by bounded functions. This condition is
satisfied by exponential kernels. In fact, the original paper of Hawkes [4] indicates that a suf-

ficient condition for stationarity is that the matrix Γ = [
αij
βij

]i,j∈E has a spectral radius5 ρ(Γ) < 1.

Simulation algorithms for D-variate-HPs have been provided by different authors. In par-
ticular, Chen [7] presents an algorithm extending the previous one proposed by Ogata [9].

Likelihood function. Parameters of a D-variate-HP can be estimated via maximum likelihood
estimation as it was proposed by Ozaki (1979) [18]. Let us consider a marked point process
〈(Tk, Ek)〉k∈N and a given realization 〈(tk, ik)〉1≤k≤K over a time horizon [0, τ ]. By grouping the

parameters of the model in a vector θ where θ
def
= [µ, α, β] with µ

def
= [µi]i∈E , α

def
= [αij ]i,j∈E , and

β = [βij ]i,j∈E , the log likelihood function can be expressed as:

5The maximum of the set formed by the modules of its eigenvalues.
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Ln L(θ) =
K∑
k=1

Ln λik(tk)−
∫ τ

0

∑
i∈E

λi(t)dt (7)

Equation (7) is obtained from Daley and Vere-Jones’ book [15] in subchapter 7.3, for log like-
lihood functions using conditional intensities of marked point processes. The details on the
computation of such a function is not provided in this manuscript. Its computation requires
numerical methods of minimization and the execution time is expensive. However, the

∑
i∈E

appearing explicitly in the second term of (7) and implicitly in the first term, allow a parallel
computation for the log likelihood function. The resulting estimated parameters are denoted by
θ̂.

Goodness of fit. Once the parameters (θ̂) of a D-variate-HP have been estimated for a given
realization 〈(tk, ik)〉1≤k≤K of the process 〈(Tk, Ek)〉k∈N, it is required to study the adequacy of
the estimated model to the observed data. For such a purpose, we use a well-known goodness-
of-fit criterion for the distribution of forward recurrence times. For notation convenience, we
denote by ki the index k in the sequence that exactly corresponds to the event of type i. This
notation allows us to use them like ordinal indexes for i, e.g., (k − 1)i is the previous index of i
to ki, or 1i is the first index for i.

Given the sequence 〈Tki〉1i≤ki≤Ki
of times at which an event of type i occurred in 〈(Tk, Ek)〉k∈k,

we have the following classic result: the transformed durations (time residuals) {τki}1i≤ki≤Ki

are defined by

τki
def
=

∫ Tki

T(k−1)i

λi(t)dt ki = 1i..Ki, i ∈ E (8)

which are i.i.d. exponential random variables with parameter 1, see for example the paper of
Bowsher [17].

This property is used to test the goodness-of-fit of the estimated model by using the esti-
mated intensity λ̂i(t) for each type of event i in the realization 〈(tk, ik)〉1≤k≤K . The Q-Q plots
of the empirical quantiles with respect to the theoretical exponential distribution quantiles are
used to asses the goodness of fit.

Other exponential kernels. In this paper, we also use for estimation of a D-variate-HP a
kernel of the following form:

φij =

U∑
u=1

αuijβ
uexp(−βu · t) i, j ∈ E (9)

This kind of exponential kernel is called exponential kernel (with fixed decays) of order U .
In this case, the decay coefficients are fixed a priori. These kernels maintain the property of a
fast computation of the intensity function via a recurrence equation. As decay coefficients are
fixed, the computation of the maximum Likelihood function is faster than in the case of a simple
exponential kernel.

In Appendix B, we provide a fast form to compute the intensity function using the kernel
(9). In Appendix C, we illustrate the algorithm for the simulation of the next event based on
Ogata’s simulation algorithm [9]. We have implemented those programs in Matlab R2017 since
they are needed for forecasting based on estimated D-variate-HPs.
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3.2 Data preparation

To prepare data for parameter estimation and prediction we need to define time intervals and
establish the sequence of events within those intervals. Each interval [τr, τ

′
r] is denoted by Tr,

i.e., Tr
def
= [τr, τ

′
r]. The sequence of events within interval Tr is denoted by Sr = 〈(tk, ik)〉r1≤k≤Kr ,

where ik ∈ {1..8} and Kr denotes the total number of events in the sequence. We recall that
there are eight types of events. The reader is referred to Table 5 for the types of events and the
notation, e.g., an event e1 (or simply 1) is an event of type sdsdowna .

We do not study each asset in isolation. Instead we consider the behaviour of events of the
two assets as a whole. In order to build the sequences of events, we have to use the state Order
Book as indicated in section 2.3. Each time stamped event in a sequence corresponds to a state
transition in the Order Book that is produced by such an event.

Each sequence Sr has associated to it a counting process: Nr(t) = (N r
1 (t), ..., N r

8 (t)). For
each process Nr(t) we will estimate the parameters of an 8-variate-HP. Thus, the estimated
8-variate-HP will be used to make predictions about the evolution of the counting process. In
order to evaluate such predictions, we consider the previous time ranges extend about 30 min-
utes. We use the notation ∆Sr to denote the events within that time interval. Table 6 shows
the proposed periods for estimation and prediction. The whole period [10:00, 15:00] is simply
denoted by T .

Counting Process Time Range Extended Range Sequence of events Sequence extensions

N(t) T = [10:00, 15:00] — S —
N1(t) T1 = [10:00, 12:00] (12:00, 12:30] S1 ∆S1

N2(t) T2 = [11:00, 13:00] (13:00, 13:30] S2 ∆S2

N3(t) T3 = [12:00, 14:30] (14:30, 15:00] S3 ∆S3

Table 6: Periods for estimation and prediction

We have selected these periods based on the results in Figure 2. In Table 6, the first pe-
riod T1 = [10:00, 12:00] starts near of the market open (9:30) and the second period T2 =
[11:00, 13:00] shows a behavior similar to the first one with respect to price movements. The
last period T3 = [12:00, 14:30] presents a different behavior as it approaches the market closing
time (16:00). Activity in the number of orders received is significantly increased, and this fact
is also reflected in the state of the Order Book.

Type of event S S1 S2 S3

e1: sdsdown
a 294 30 21 198

e2: sdsupa 305 33 18 206
e3: sdsdown

b 260 31 23 164
e4: sdsupb 276 34 20 177
e5: spydown

a 13035 2030 1248 7436
e6: spyupa 12789 1992 1270 7250
e7: spydown

b 13031 2138 1322 7259
e8: spyupb 13228 2109 1346 7434

Table 7: Number of events of each type for the considered periods.

To check the different activity patterns, Table 7 shows the total number of events of each
type for each period. Though periods are overlapping, periods T1 and T2 show slight differences.
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In the second period, as we move away from the opening time, the number of events decreases
and the activity is more relaxed than in the first period near the opening. In the last period T3
the number of events increases significantly as we get closer to the market closing time (16:00).
In all the periods the activity in SDS is notably lower than SPY.

3.3 Parameter estimation and goodness of fit

Let us consider the whole period of observation T = [10:00, 15:00] and the complete sequence of
events S = 〈(tk, ik)〉1≤k≤K . Each recorded event time is an observation of points {tki}1i≤ki≤Ki

in the counting process Ni(t) for each i ∈ {1..8}. We assume that the observations are from
a realization of an 8-variate-HP with exponential kernels as defined in Equation (6). The log-
likelihood function for θ = [µ1×8, α8×8, β8×8] is Ln L(θ|{tik}i:1..81≤k≤K). By eq. (7), the log likelihood
function is nonlinear with respect to the parameters θ and its maximization has to be performed
numerically by using nonlinear optimization techniques. For such a purpose, we use the Python
library mpoints6 developed by Patrichi and Pakkanen [13]. The main goal of this initial param-
eter estimation for the whole counting process N(t) is to provide a significant evidence that the
process under analysis is derived from an 8-variate-HP. At this point of the analysis the values of
the estimated parameters θ̂ are not relevant since they are only useful to evaluate the goodness
of fit of the estimated model.

For such purpose, we examine the time residuals τki (see (8)) obtained with the estimated
intensity λ̂(t) for the sequence S. For comparison, we use an 8-variate Poisson processes as
the baseline model. An 8-variate Poisson process can be considered as a special case of an
8-variate-HP, with the constraint that αij = 0 for i, j ∈ {1..8}. The parameters to estimate are

θpoisson = [ν1, .., ν8] and whose values are calculated using νi =
Ki

τ ′ − τ
where Ki are the total

number of events of type i and τ ′ − τ is the duration of the period T .

In Figure 3 red colour lines are for the residuals of the estimated 8-variate-HP, line black is
the exponential distribution with parameter 1, and the green colour lines are for the 8-variate
Poisson process. The Q-Q plots in Figure 3 show that the unconditional distribution of residuals
vary among the type of events. SPY events are well fitted to the exponential distribution and
SDS events are poorly adjusted. However, in comparison with the Poisson process, the provided
estimated Hawkes model can be considered as an 8-variate-HP.

As the reader can see in Table 7, although the total number of events of SDS is much smaller
than the total number of events of SPY, there is convergence when searching for the maximum
of the log likelihood function. However, using an exponential kernel as the one used in the
parameter estimation with the algorithm provided in [13], the result for the maximum of the log
likelihood function is a negative value. We reevaluate the estimation using adjustments in the
gradient descent technique used in the Python library to improve the results. Unfortunately,
the adjustments lead to very high execution times.

Due to timing constraints, we consider an exponential kernel of order U with fixed decays
(see eq. (9)). The program used for the estimation of the multivariate Hawkes process with
kernel functions of this type is the Python library Ticks7. Using exponential kernels of order

U , the model parameters to be estimated are µ
def
= [µi]i∈E , κ

def
= [κuij ] = [αuij · βu]i,i∈E,u∈U given

the fixed decays β
def
= [βu]u∈U . We recall that our set of events is E is {1, ..., 8}.

6htpps://mpoints.readhedocs.io
7https://x-datainitiative.github.io/tick/modules/api.html#api-datasets
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Figure 3: Q-Q plot for the estimated 8-variate-HP (red), 8-variate Poisson process (green)
against the theoretical quatiles of a standard exponential distribution (black).

Thus, we start the estimation of our 8-variate-HP by selecting a set of fixed decays. We
use an heuristic procedure with the target of obtaining a better value for the maximum log
likelihood for the whole sequence S and its associated counting process N(t). We have ob-
tained that with four decays (U = 4) defined as β1 = 0.1, β2 = 2, β3 = 32, and β4 = 256,
the estimated parameters are obtained with a maximum log likelihood value of 16.3016104.
Varying the order U and values of fixed decays do not provide any significant improvement
in the value of the maximum log likelihood function. The base intensities obtained are µ =
[0.0000, 0.0000, 0.0000, 0.0000, 0.0114, 0.0213, 0.0286, 0.00445]. The base intensities for the SDS
events are negligible by which we conclude that their conditional intensities functions are purely
endogenous. However, for the SPY events there appear to be contributions to conditional in-
tensities functions coming from outside the process considered.

We now turn to the matrix Γ̂ (kernel norm) with the estimated parameters given by the
equation,

‖Γ̂ij‖
def
=

∫ ∞
0

φ̂ij(s)ds i, j ∈ E (10)

Table 8 illustrates the values in the kernel norm matrix. Each value Γ̂ij may be interpreted as the
average number of events of type i that have been directly triggered by an event of type j within
t seconds of its occurrence (in practice its not necessary to do the integral up to ∞). Thus, we
may view those values as a measure of the Granger causality among the types of events. We find
cross-effects: SDS events trigger SPY events and viceversa. Zeros in the kernel norm matrix indi-
cate a lack of Granger causality between event types. The fact that SPY aims to track the return
of the SPX, and the SDS, the twice inverse of daily performance of SPX, may justify such zero
values in the kernel norm matrix in those entries. For example, when an spyupa event happens
increasing the SPY price ask, events sdsupa or sdsupb increasing SDS price ask or bid do not occur.

To check stationarity we calculated the spectral radius ρ(Γ̂). Its value is greater than 1:
ρ(Γ̂) = 1.8. This does not prevent that the estimated process is a stationary process since the
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—– sdsdown
a sdsupa sdsdown

b sdsupb spydown
a spyupa spydown

b spyupb
sdsdown

a 0.2446 0.3628 0.8281 0.2423 0 0.0080 0 0.0026
sdsupa 0.3772 0.3053 0.3605 0.3125 0.0054 0 0.0132 0
sdsdown

b 0.3271 0.3377 0.3622 0.4219 0 0.0100 0 0.0039
sdsupb 0.3438 0.7897 0.4013 0.2471 0.0040 0 0.0064 0
spydown

a 0.4462 0.9399 0.3807 0.6578 0 0.5376 0.3774 0
spyupa 0.7143 0.3137 0.5055 0.0602 0.6138 0.1191 0 0.1383
spydown

b 0.2965 0.8630 0.2441 0.3515 0.1887 0 0.1194 0.5528
spyupb 0.9156 0.6263 0.9244 0.4230 0 0.3832 0.5469 0

Table 8: Kernel norm of the estimated 8-variate-HP for the counting process N(t)

condition ρ(Γ̂) < 1 is a sufficient condition for stationarity. However, we think that this value
(1.8) may be due to difference in the number of events in the joint estimation–the number of
events for SDS is very low as compared with those of the SPY. There are 52.083 SPY events and
only 1.135 SDS events in the entire period. This difference affects the estimation of the Hawkes
process. If we compare this estimate with the ones when we fit the models individually, we find
that the spectral radius of the kernel norms for the estimated 4-variate-HP of SPY events only
and the estimated 4-variate-HP of SDS events only are 0.9673 and 0.8619 respectively. The point
process for SDS events and SPY events taking in an isolated way are stationary 4-variate-HPs.

3.4 Prediction via a Multivariate Hawkes process

Our main goal is to fit the dynamics of SDS and SPY prices. We now look at how well the
Hawkes process helps predict the price movements for given an estimated 8-variate-HP for a
given time period. Table 6 indicates estimation periods and the periods used to predict the
data. For each estimation period Tr = [τr, τ

′
r] given in that table, we can provide a price model

as follows.

We start from the assumption that the data is generated by the counting process Nr(t),
with t ∈ [τr, τ

′
r]. The counting process is an 8-dimensional point process Sr = 〈(tk, ik)〉1≤k≤Kr is

formed by the marginal counting processes (N r
1 (t), ..., N8(t)). EachN r

i (t) corresponds to an event
of type i ∈ {1, .., 8}. In our case, the eight types of events are 1 : sdsdowna , 2 : sdsupa ,3 : sdsdownb ,
4 : sdsupb , 5 : spydowna , 6 : spyupa , 7 : spydownb , and 8 : spyupb . At this point, we make a simplifying
assumption, namely, that the jump of the best bid or ask price following an event of each type is
a constant value, one tick (one cent). This approximation is consistent with the real behaviour
of the chosen data set, for which the average jump size of the best bid and ask prices is about
$0.01. Under this assumption, we can reconstruct the price dynamics in a simple way as a
by-product of event arrivals:

P
(r)sds
a (t) = P

(r)sds
a (τr) + (N r

2 (t)−N r
1 (t)) · η(r)sdsa

P
(r)sds
b (t) = P

(r)sds
b (τr) + (N r

4 (t)−N r
3 (t)) · η(r)sdsb

P
(r)spy
a (t) = P

(r)spy
a (τr) + (N r

6 (t)−N r
5 (t)) · η(r)spya

P
(r)spy
b (t) = P

(r)spy
b (τr) + (N r

8 (t)−N r
7 (t)) · η(r)spyb

(11)

for any t ∈ [τr, τ
′
r].

As we have estimated an 8-variate-HP in that period Tr, we need a method in order to
predict those prices in the test period of prediction. The idea of the method is based on the
prediction method proposed by Daley and Vere-Jones [15]. Briefly, the prediction algorithm is
based on a simulation algorithm of the Hawkes process [15] (Chapter 7):
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For a given realization of the point process on some finite interval [t1, t2], let us suppose that
our aim is to predict a particular quantity V that can be represented as a functional of a finite
segment of the future of the process. To fulfil our aim, we estimate the distribution of V . The
prediction procedure is as follows

1. Choose a time horizon (t2, t3) sufficient to encompass the predicted quantity of interest.

2. Simulate the process forward over (t2, t3) using the estimated structure of the conditional
intensity function and initial history H0.

3. Extract from the simulation the value V of the functional that it is required to predict.

4. Repeat steps 2 and 3 sufficiently often to obtain the required precision for the prediction.

5. The output consists of the empirical distribution of the values of V obtained from the
successive simulations.

In the previous procedure the quantity of interest may be for example the time interval for
the next event, or the next four events. In our case, we are interested on predicting a sequence
of events of certain length since that predicted sequence can be used to predict the marginal
counting processes and, thus, to have a prediction of the price movements. Given equation (11),
the accuracy in the predicting price changes depends on an accurate prediction of the differences
(N r

j (t)−N r
i (t)). Therefore, we describe how to predict such differences.

1. Let us consider an estimation period Tr = [τr, τ
′
r]. Let Sr = 〈(tk, ik)〉1≤k≤Kr be the point

process in that period and Nr(t) with t ∈ [τr, τ
′
r] its counting process. The 8-variante-HP,

with exponential kernel of order U and fixed decays, is estimated for that period with
parameters θ̂r = [µi, κi,j , β

u]. Its estimated intensity is λ̂r(t) = [λ̂ri (t)]. The intensity is
calculated using the procedure described in the Appendix B. From this we have the matrix
Ar(tKr) = [Auj ] for the last point of Sr.

2. Let ∆Sr = 〈(tp, ip)〉Kr<p≤Lr the test point process for (τ ′r, τ
′′
r ]8. The counting process

Nr(t) is calculated for t ∈ [τr, τ
′′
r ], i.e., it is updated with the extended point process ∆Sr.

3. The prediction process is based on the idea of ’evaluation on a rolling forecasting origin’.

4. (Initial Step): Starting at the last event of Sr with index Kr, we select a number δ of
new events to be predicted. Set a variable origin := Kr and Nr(torigin).

5. (Iteration Step): We use the simulation algorithm based on next event computation
provided in Appendix C to calculate such new events from origin+ δ. Due to the random
nature of that algorithm, we follow the advice of Daley and Vere-Jons, we repeat this
computation up to 10 times. Thus, we have ten different sequences of new events. For
each sequence of new events, we calculate the predicted increment in the counting process
∆Nne, with ne : 1..10. Finally, they are aggregated to form the predicted increment ∆N.

6. (Result): The counting process Nr(torigin) + ∆N is the prediction for the test counting
process Nr(torigin+δ).

7. (Exit condition): Since, this procedure is iterative: (1) as our simulation algorithm
requires the matrix A, we update it for torigin+δ, i.e., recalculate A(torigin+δ); (2) we
update origin := origin+ δ and (3) repeat (Iteration Step) until the length of the test
sequence Lr has been reached.

8τ ′′r is approximately τ ′r + 1800 sg.
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Remark: torigin+δ is always the time of an event at ∆Sr = 〈(tp, ip)〉Kr<p≤Lr , this also implies
that A(torigin+δ) is well calculated. In (Iteration Step), the aggregation may be done on dif-

ferent ways. We have selected the simplest one: ∆N = round(
1

10

10∑
ne=1

∆Nne). In addition, we

can select a greater number of trials in the (Iteration Step). However, ten trials has been
sufficient to obtain reasonable results.

As the reader can see, the proposed prediction procedure uses the test point process as feed-
back for the next prediction once the previous prediction has been obtained. This is a legitimate
prediction procedure since we never use the future knowledge of the test point process to get
a prediction. Note that the possible errors in the predictions are maintained throughout the
forecast period. Having the results Nr(torigin)+∆N and Nr(torigin+δ) we can trivially calculate
the differences that are required in equation (11) to obtain the price prediction.

In order to evaluate prediction accuracy, we use the Mean Absolute Error,

MAE(r)x
y (δ) =

1

M

M∑
m=1

|P̂ (r)x
y (tKr+mδ)− P (r)x

y (tKr+mδ)| (12)

where x ∈ {sds, spy}; y ∈ {a, b}; δ is the number of predicted events; tKr+mδ, with m : 1..M , are
time stamps of the test point process ∆Sr = 〈(tp, ip)〉Kr<p≤Lr ; and M is the last value satisfying

M ≤ Lr −Kr

δ
.

The following Tables show the results obtained with the proposed prediction procedure.

δ = 1 δ = 2 δ = 4 δ = 8

MAE
(1)sds
a (δ) 0.0001 0.0002 0.0004 0.0008

MAE
(1)sds
b (δ) 0.0001 0.0002 0.0004 0.0011

MAE
(1)spy
a (δ) 0.0049 0.0066 0.0078 0.0123

MAE
(1)spy
a (δ) 0.0054 0.0066 0.0083 0.0133

Table 9: Results obtained in the test period T1

δ = 1 δ = 2 δ = 4 δ = 8

MAE
(2)sds
a (δ) 0.0001 0.0001 0.0002 0.0008

MAE
(2)sds
b (δ) 0.0001 0.0001 0.0004 0.0015

MAE
(2)spy
a (δ) 0.0053 0.0078 0.0095 0.0147

MAE
(2)spy
a (δ) 0.0053 0.0072 0.0091 0.0141

Table 10: Results obtained in the test period T2

As we can see in Tables 9 to 11, MAE values for the prediction of the next δ events are
very similar across sample periods. There are no great differences between the different periods
despite the fact that the last period near the closing market has a different behavior (see Figure
2). Best predictions are obtained when δ = 1, i.e., when we attempt to predict the next event.
As we try to predict more new events, the prediction results worsen. The error when predicting
δ = 8 events is highest and yet the prediction error grows less than linearly. In all cases, since
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δ = 1 δ = 2 δ = 4 δ = 8

MAE
(3)sds
a (δ) 0.0001 0.0002 0.0003 0.0007

MAE
(3)sds
b (δ) 0.0001 0.0002 0.0003 0.0009

MAE
(3)spy
a (δ) 0.0052 0.0080 0.0083 0.0124

MAE
(3)spy
a (δ) 0.0054 0.0074 0.0084 0.0125

Table 11: Results obtained in the test period T3

the greater frequency of SPY events is associated with with greater MAE. However, in most
cases, the MAE falls below the tick (one cent).

Given that in period T3, the number of events in the test is much greater than in the other
periods (see Table 7), we comment in more detail prediction test T3 with δ = 1. In the predic-

tion made, 99.08% of ask prices P̂
(3)sds
a (t) and P

(3)sds
a (t) have the same value. Similar result of

99.11% is found for bid prices P̂
(3)sds
b (t) and P

(3)sds
b (t). In the case of SPY, 49.9% of the ask

prices P̂
(3)spy
a (t) and P

(3)spy
a (t) are the same; and 48.39% for the case of bid prices P̂

(3)spy
b (t)

and P
(3)spy
b (t). For the rest of SPY prices wrongly predicted in the test, 48.1% of them shows a

difference, |P̂ (3)spy
a (t)− P (3)spy

a (t)|, about $0.01; and 1.99% about $0.02. There are no ask price
differences greater than $0.03. For SPY bid prices, the results are 49.3% for $0.01, 2.34% for
$0.02, and again, there are no bid price differences greater than $0.03 between predicted price
and test price.

Based on the above results, we can conclude that the estimated 8-variate-HP models in the
proposed periods have a good behavior when making predictions about price dynamics for the
two assets.

4 VAR model

In this section, we are going to consider an N -dimensional Vector AutoRegressive Model (VAR).
The VAR model is a widespread model introduced in [19] and customarily used in econometrics
in order to describe the dynamic relationship among the different components of an economic

time-series. The model is defined by a set of N processes Y (t)
def
= {Yi(t) | i : 1..N} evolving in

discrete time. In vector notation, the model is defined by the equation:

Y (t) = A0 +
∑̀
k=1

AkY (t− k) + ε(t) (13)

where t is a discrete time, i.e., t ∈ {t1, t2, ..}. In (13), A0 is a vector (N × 1) of constant terms;
` denotes the maximum number of lags; and, for each lag k ∈ {1, .., `}, Ak is a matrix (N ×N)
of coefficients. Finally, ε(t) is a vector (N ×1) of innovations, i.e., non autocorrelated processes,
E(εtε

′
t+h) = 0N×N for h 6= 0, with covariance matrix E(εtε

′
t) = Σε.

In the VAR model all the variables are treated symmetrically, being explained by the past of
all variables taken together. The number of equations in the model coincides with the number
of variables, and the lagged values of those variables in all the equations enter as explanatory
variables. we use the VAR model as the standard benchmark with which to compare the perfor-
mance of the Hawkes process estimated with our data, in particular, we want to compare their
predictions for evolution of the bid and ask prices for the two assets SDS and SPY. Figure 2
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shows the price movements for SDS and SPY in Nasdaq. The VAR model allows us to analyze
jointly the bid and ask prices as a whole system. We analyze how the two quotes prices for SDS
and SPY interact with each other in order to predict the future movement of the whole price
series.

This section is organized as follows. In subsection 4.1, we explain the process of parameter
selection and variable definition for our VAR model. Subsection 4.2 is devoted to parameter
estimation of the proposed VAR models. In subsection 4.3, we study the impulse response
function of estimated VAR models. Finally, subsection 4.4 presents the procedure of prediction
via VAR model and the results obtained in the test periods. In this section, we have mainly
used the Matlab Econometrics Toolbox9.

4.1 VAR model selection

In general, VAR models assume that the variables yi(t) are stationary. Because the variables
(prices) in our model are not stationary, we follow standard procedure and look at first differ-
ences, which removes trends in the price series. We apply the Augmented Dickey-Fuller test
[20] to determine whether we could reject the null hypothesis of a unit root in the level of
the quote prices. Table 12 shows an example of results of the ADF tests for the ask price
of SDS. Former result illustrates that the original price process it is non-stationary; the next
result obtained for the difference price process indicates that the transformed series is stationary.

Augmented Dickey-Fuller Test on "SDS ask" --------

Null Hypothesis: Data has unit root. Non-Stationary.

Significance Level = 0.05

Test Statistic = -2.8321

Critical value 1% = -3.43

Critical value 5% = -2.862

Critical value 10% = -2.567 => P-Value = 0.0538.

Weak evidence to reject the Null Hypothesis. => Series is Non-Stationary.

Augmented Dickey-Fuller Test on "SDS ask" --------

Null Hypothesis: Data has unit root. Non-Stationary.

Significance Level = 0.05

Test Statistic = -376.2572

Critical value 1% = -3.43

Critical value 5% = -2.862

Critical value 10% = -2.567 => P-Value = 0.0.

Rejecting Null Hypothesis. => Series is Stationary.

Table 12: ADF tests for the original ask price of SDS and the first difference of prices respectively
for the period (10:00-12:00). The rest of tests for other periods and prices have shown the same
results.

Our VAR model is then fitted on the first differences in prices. Using the following notation
for prices: P xa (t), P xb (t) with x ∈ {sds, spy}, we use ∆P xa (t), ∆P xb (t) to denote their first
differences. We propose the following VAR model:

9https://es.mathworks.com/products/econometrics.html
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∆P sdsa (t) = c1 +
∑̀
i=1

βi1∆P
sds
a (t− i) +

∑̀
i=1

βi2∆P
sds
b (t− i)+

+
∑̀
i=1

βi3∆P
spy
a (t− i) +

∑̀
i=1

βi4∆P
spy
b (t− i) + ε1(t)

∆P sdsb (t) = c2 +
∑̀
i=1

βi5∆P
sds
a (t− i) +

∑̀
i=1

βi6∆P
sds
b (t− i)+

+
∑̀
i=1

βi7∆P
spy
a (t− i) +

∑̀
i=1

βi8∆P
spy
b (t− i) + ε2(t)

∆P spya (t) = c3 +
∑̀
i=1

βi9∆P
sds
a (t− i) +

∑̀
i=1

βi10∆P
sds
b (t− i)+

+
∑̀
i=1

βi11∆P
spy
a (t− i) +

∑̀
i=1

βi12∆P
spy
b (t− i) + ε3(t)

∆P spyb (t) = c4 +
∑̀
i=1

βi13∆P
sds
a (t− i) +

∑̀
i=1

βi14∆P
sds
b (t− i)+

+
∑̀
i=1

βi15∆P
spy
a (t− i) +

∑̀
i=1

βi16∆P
spy
b (t− i) + ε4(t)

(14)

We denote by VAR(r)(`, θr) the VAR model proposed in the previous equations (14) for each
estimation period. The superscript r identifies that estimation period Tr (see Table 6). The
parameters of each VAR model, θr comprises the coefficients θr = [cj , β

i
m] with ranges defined

in equation (14), j : 1..4, i : 1..`, and m : 1..16. Hence, we are going to construct three VAR
models, one for each estimation period. The next step, prior to model estimation, consists on
an adequate selection of the number of lags, the parameter `.

Lag order selection. One of the most common contrasts in a VAR model is the one related
to the number of lags (`) to be included as explanatory variables. Let us observe that in each
equation there is a block of delays of all dependent variables. We have already seen that the
number of parameters to estimate increases quickly with the number of variables in the model.
This makes that the VAR model quickly become over-parameterized, making reliable estimations
difficult and preventing its adoption as a prediction tool in high dimensional settings. Several
authors have sought to address this issue by incorporating regularized approaches, e.g, the lasso
regularization method [21]. This regularization imposes sparse or low-rank structures on the es-
timated coefficient of the VAR. The traditional approach, which we use in this study, attempts
to eliminate the over-parametrization by selecting a universal low lag order for all components,
based on the assumption that dynamic dependencies among components are short-range [22].
This strategy allows us to remove the autocorrelation of the error terms. We propose to use the
Bayesian Information Criterion (BIC) that was developed by Schwarz [23]. The use of informa-
tion criteria as a model selection method became popular from the work of Akaike [26]. BIC is a
penalized-likelihood criteria, it penalizes model complexity more heavily, i.e., it provides a lesser
number of lags, than other information criteria proposed in the literature. The number of lags
proposed by BIC resolves the trade-off between the elimination of autocorrelation of the residu-
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— Lag order selection —
Information criteria T1 T2 T3

Akaike Information Criterion 35 29 35
Akaike’s Final Prediction Error 35 29 35
Hannan-Quinn Criterion 25 19 35
Bayesian Information Criterion 11 11 24

Table 13: Information criteria for lag order selection

als and model complexity. Let us observe that keeping the order of complexity of the model as
low as possible favors a lower computational time-cost for adjusting the VAR model’s coefficients.

The BIC equation for each period is BICr = |θr|·log(Kr)−2log(L̂r), where Kr is the number
of observations in Tr, |θr| is the number of model coefficients, and L̂r is the maximized value of
the likelihood function of the model VARr(`, θr). We have used the statsmodels v0.12.0.dev0

Python library to compute the BIC. In our proposed models the number of lags selected for all
periods is ` = 11. Table 13 shows other information criteria.

4.2 VAR parameter estimation

Equations in (14) define the structure of the VAR models proposed in this study with ` = 11
lags. The VAR system of equations can also be expressed in matrix form. For notation brevity,
we consider the general VAR equation (13) from which our models are particular cases. Each
equation in (13) can be rewritten as:

yi(t) = a0i +

11∑
k=1

4∑
j=1

akij · yj(t− k) + εi(t) i ∈ {1, .., 4} (15)

where i is referred to the i-th price difference serie in reference to our original VAR in equation
(14). By considering all discrete times t ∈ {t1, t2, .., tK}10; for each i ∈ {1, .., 4}, all resulting set
of equations {yi(t1), yi(t2), ..., yi(tK)}, allow us to form the vector yi = [yi(t1), yi(t2), ..., yi(tK)]′

and to produce a compact matrix form for all resulting set of equations for i:

yi = Xi · πi+ εi (16)

where Xi is the matrix of the variables at each lag, πi is the matrix of all coefficients and εi is
the vector of innovations. Let us observe that equation (16) does not have ‘time’ as free variable
because we have used the history of the process to characterze the process as described in the
equations. In this system of equations the only free variables are the coefficients that we want
to estimate, which we do using Ordinary Least Squares (OLS). Basically,

π̂i = ((Xi)
′ ·Xi)−1Xi′yi (17)

We will use Ordinary Least Squares (OLS) to estimate the unknown parameters of the VAR
models in the three estimation periods. For each VARr(`, θr), the number of parameters to
be estimated is 180. In order to study the consistency of the VAR models, we consider the
innovations terms. If the model is fitted correctly, then innovations should be noise processes
uncorrelated with the explanatory variables. The absence of autocorrelation in the innovation

10We abuse the notation and we do not write the letter r that is associated in the text with the period of
estimation Tr. We think it is clear that discrete time values for t are in the range [τr, τ

′
r] for each estimation

period.
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terms in all equations is thus a relevant property of the estimated parameters. In order to check
this we use the Ljung–Box test and the ACF.
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Figure 4: ACF for estimation SDS in period T2

Figure 4 shows the ACF graph of innovation ε2(t) for the estimation period T2 (see equation
(14)). Relevant delays do not have structure; however, to make sure of this fact, we apply the
Ljung–Box test [25] to check the non-autocorrelation in the innovations. The test results also
indicate that there is no autocorrelation in innovations. Therefore, we have confidence that the
model is well estimated. Once the model is estimated, we could proceed to exclude explanatory
variables based on their statistical significance. However, there are reasons not to do it. In
particular, if the same set of explanatory variables is maintained in all equations, then Ordinary
Least Squares is an efficient estimator.

4.3 Impulse response function

After parameter estimation for the VAR models, VAR(r)(11, θ̂r) with r ∈ {T1, T2, T3}, we turn
to study the General Impulse Response Function (GIRF) of each VAR model. GIRF is used
to describe how time series react to exogenous impulses or shocks [27] [28]. Let us denote the
Vector Moving Average (VMA) representation of the VAR model in equation (13) as

Yt = ct +
∞∑
h=0

Bhεt−h (18)

where c is the VMA constant vector, and B0, B1, ... are the VMA coeffcient matrices with
B0 = I4. The GIRF is defined as,

GIRF(h, δj ,Ωt−1) = E(Yt+h|εj,t = δj ,Ωt−1)− E(Yt+h,Ωt−1) (19)

where δj is the size of the shock from variable j and Ωt−1 = {Yt−1,Yt−2, ...} is the total
information set known at time t − 1. By setting δj =

√
σjj then the size of the shock is one

standard deviation. Thus, the scaled GIRF is [27][28],

GIRF(h, δj =
√
σjj ,Ωt−1) = BhΣεej(σjj)

− 1
2 (20)

The GIRF is interpreted as the effect of a one-standard-deviation shock in the innovation (δj)
from variable j at a given time horizon H. That shock causes significant increases (decreases)
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Figure 5: Plot of GIRF for the estimated model at period T1.

in the others variable for a time horizon after which its effect dissipates. Let us consider the
estimated VAR models V AR1(11, θ̂1) and V AR2(11, θ̂2) for the periods T1 and T2 respectively.
Each variable shock only affects the opposite side of the asset (ask or bid) to which the shock

refers, e.g., if we generate a one standard deviation shock to the innovation error of ∆P
(r)sds
a at

time 0, then this shock affects positively to ∆P
(r)sds
b at h = 2. The study of the possible cases

provide us with information about the relationships between the behaviour on both sides of the
order book for both the assets. This indicates that the market is keeping the spread for each
asset constant and it is not moving away from its tick size (which for these two assets is one
cent). These effects are shown in Figure 5. This Figure contains several lines, one for a shock
in one of the variables: the GIRF from applying a one-standard-deviation shock on variable j at
time 0, and its effect on all variables in the system over the forecast horizon, in this case H = 20.

Let us consider the estimated VAR model V AR3(11, θ̂3) for the period T3. We observe

in Figure 6 that a shock in the fourth variable, ∆P
(3)spy
b , affects all other variables since it is

also transmitted to the other variables of the system. In Figure 6, an increase in innovation of

∆P
(3)spy
b is followed by an increase in ∆P

(3)spy
a . However, it also goes up ∆P

(3)sds
a at h = 2

when ∆P
(3)spy
b decreases but ∆P

(3)sds
a goes down very quickly h = 3 and finally, it returns to its

normal state. In a sense, the behavior described by the GIRF reflects the fact that SPY aims
to track the return of the SPX, and the SDS, the twice inverse of daily performance of SPX.

4.4 Prediction via VAR model

As we said in subsection 3.4, our main goal is to predict the price movements for SDS and SPY.
In this subsection the prediction of price movements is done using an estimated VAR model for
a given time period. Let Tr = [τr, τ

′
r] be the period under study. In this period, we know the
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Figure 6: Plot of GIRF for the estimated model at period T3.

series ∆P
(r)x
y (t) and P

(r)x
y (t) where x ∈ {sds, spy}, y ∈ {a, b}, and t ∈ [τr, τ

′
r]. For the period

Tr, the extended period for the prediction is the time range (τ ′r, τ
′′
r ]. In this extended period

the differences of prices and the prices are also available: ∆P
(r)x
y (t) and P

(r)x
y (t) for t ∈ (τ ′r, τ

′′
r ].

The details of those time ranges are shown in Table 6. The procedure for making predictions is
as follows.

1. For the considered period Tr = [τr, τ
′
r], given ∆P

(r)x
y (t) for t ∈ [τr, τ

′
r], we estimate the

VAR model for that period, VARr(11, θ̂r) using OLS as we have indicated in subsection
4.4.

2. Given the estimated VAR model VARr(11, θ̂r), by equation (14) with innovations setting

to value 0, we proceed to predict ∆P̂
(r)x
y (t) with t within the period test (τ ′r, τ

′′
r ]. The initial

values for starting the prediction are the values ∆P
(r)x
y (τ ′r − 11) to ∆P

(r)x
y (τ ′r) where time

is in milliseconds.

3. Iteratively compute ∆P̂
(r)x
y (τ ′r+h) via VARr(11, θ̂r) where h ∈ {1, 2, ...,H}, with τ ′r+H =

τ ′′r . That is, the iteration ends when τ ′′r is reached.

4. Finally, we reconstruct the predicted prices by reverting the differences of prices, P̂
(r)x
y (t)

with t ∈ (τ ′r, τ
′′
r ].

As we can see, the prediction procedure does not make use of the information available on
prices or their differences that are available in the test period. Each new prediction point is
based exclusively on the values of the previous predictions and their delays. In all cases the pre-
dictions are made approximately during the half hour after the estimation period. We consider
it to be a long enough time range to adequately evaluate the predictability of the estimated
VAR models in each period.
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T1 T2 T3

MAE
(r)sds
a 0.0000 0.0000 0.0000

MAE
(r)sds
b 0.0000 0.0000 0.0000

MAE
(r)spy
a 0.0003 0.0003 0.0010

MAE
(r)spy
b 0.0003 0.0003 0.0010

Table 14: MAE values for the three test periods.

In order to evaluate prediction accuracy, we use the Mean Absolute Error,

MAE(r)x
y =

1

H

H∑
h=1

|P̂ (r)x
y (τ ′r + h)− P (r)x

y (τ ′r + h)| (21)

where x ∈ {sds, spy}, y ∈ {a, b}, and τ ′r + h ∈ (τ ′r, τ
′′
r ] (test period for Tr) with τ ′r +H = τ ′′r .

Table 14 shows the results obtained with the proposed prediction procedure. SDS prices are
predicted without errors and the errors in SPY prices are below the tick size. In conclusion, the
proposed VAR model has a very high predictive capacity as is evident from the results in Table
14. To graphically illustrate this fact, we show in the Figure 7 the predicted price charts (red
lines) versus current (blue lines) in the third period. Figure 8 is a zoom of the Figure 7 for the
SPY prices.
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Figure 7: Prediction period T3. SDS and SPY prices are in top and bottom panels respectively.
Red and blue lines are for predicted and current prices respectively
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Figure 8: An enlargement of the graph in Figure 7 that corresponds to SPY bib prices P̂
(3)spy
b (t)

(red line) and P
(3)spy
b (t) (blue line)

5 Conclusions and future work

As we have indicated in the introductory section, the main objective of the current paper is to
evaluate the appropriateness of multivariate Hawkes process for modelling and predicting the
price movements in electronic exchanges. We have used the high frequency data provided in the
TAQ for SDS and SPY assets in Nasdaq. To evaluate the performance of multivariate Hawkes
process, we have compared prediction results to the standard benchmark, the VAR model.

We have used an 8-variate-HP for modeling the sequences of events that modify the state
of the Order Book at Level I. The eight types of events (Table 5) correspond with transitions
that modify the prices in the Order Book. In a first analysis, we have found sufficient evidence
to justify the use of the 8-variate point process to described the Order Book dynamics. This is
reflected in th QQ-plots (Figure 3) for the estimated 8-variate-HP (with exponential kernels (6))
as compared with a homogeneous Poisson process. After that, we have studied another kind of
exponential kernel in order to (a) improve the parameter estimation, and (b) reduce the time
computation of the estimator. The usage of exponential kernels with fixed decays (9) has shown
to be adequate for these goals.

By using the exponential kernels with fixed decays, we have estimated an 8-variate-HP for
the entire period of observation considered in this paper: 10:00 - 15:00. The kernel norm matrix
obtained (Table 8) may be interpreted as an estimate of the Granger causal relationships be-
tween the different types of events. There are natural cross-exciting effects: SDS events trigger
SPY events and viceversa; however, there are some types of events that display no Granger
causal relationships (as concluded from the zeros in the kernel norm matrix). In fact, the ab-
sence of those relations may be interpreted in terms of the fundamental relationship between
the SPY and SDS: both aim to mimick the S&P500 index index in different ways; the SPY aims
to replicate the index returns, while the SDS tries to obtain a return equal to twice the inverse
of the daily performance of the index. A point not note about the estimation is that SDS events
appear to have an endogenous dynamic driven by SPY events, and these latter ones appear to
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be driven by events outside our analysis.

In order to evaluate the prediction capability of the proposed 8-variate-HP, we have consid-
ered three time ranges along the trading day for capturing different patterns of activity. For each
period, we have estimated an 8-variate-HP as base model for making predictions. As our main
objective is price prediction, we have proposed a price model based on the counting process that
is generated by the sequence of events (see equation (11)). The fact that the current ask and bid
price differences is about the tick size (one cent) allows us to consider the proposed price model
very adjusted to the current data. Then, we have proposed a prediction procedure (subsection
3.4 that is based on a general prediction schema proposed by Vere-Jones [15]. Briefly, we use the
algorithm of the ’next event simulation’, which is based on the Ogatas’s simulation algorithm [9],
to predict the following δ next events before the δ real events occur in the test period. Tables 9,
10, and 11 show that the proposed prediction process is well defined and accurate when making
those predictions.

At this point on the discussion, we add the following comment: the 8-variate-HP proposed in
this paper provides an explanation for the price dynamics using the internal information about
how the prices have been formed trough events happened along the traiding day. This is an
important difference with other prediction models as the one used in this paper as a comparative
benchmark: VAR model.

In order to compare the prediction results obtained with the 8-variate-HP, we have defined
a VAR model which, described briefly, (a) has four main variables, the ask and bid price first
differences for SDS and SPY, for modeling the sequences of price differences at discrete times;
and (b) its equations are formed by considering 11 lags which have been selected acording to
BIC [23]. VAR models have been estimated for the different periods under consideration using
standard OLS. In a similar way as we have done with the Hawkes process, we have used the
estimated VAR models for predicting the prices in the test periods (subsection 4.4). Table 14
shows prediction results using the VAR model. From that table, we conclude that the proposed
VAR models have better performance than the 8-variate-HPs for predicting SPY prices and for
SDS prices, the results are very close in both models. Although the VAR model undoubtedly
has a greater ability to predict the dynamics of prices, it is of less use as an explanatory tool to
describe the way in which prices are formed since it only model the price signals and their lags
over time.

As future works, we propose the following: 1) complete the price prediction study proposed
in this work for the different exchanges indicated in Table 1, 2) apply other Hawkes process
models proposed in the literature, specifically the model of regimes introduced by Vinkovskaya
[12] and state-dependent Hawkes process proposed by Morariu-Patrichi and Pakkanen [13]. Both
models are an extension of the Hawkes process in which system state is included in the Hawkess
process to refine the type of events. In particular, we propose to include the imbalance measure
[6] as a dependent state in the multivariate Hawkes process due to its good properties for price
prediction.
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A Order flow reconstruction

For the goal of reconstructing the precise order flow, i.e. the complete sequence of MOs, LOs and
COs along with their price and volume that lead to the generation of given trades and quotes
tables, is necessary an algorithm for the determination of that order flow. The algorithm would
be straightforward if the database were perfectly coherent, but inconsistencies exist, mainly
because of the non-synchronization of the timestamps of the trades and quotes files, and maybe
because of probable inaccuracies in the data building process. In addition, in our case, we only
have the information at Leve I of the book. The procedure of reconstruction basically consists
on scan line by line the quotes tables. In the following, we explain the procedure with a simple
example:

Timestamp Price Size

34524356 227.71 60
34524357 227.70 1
34524360 227.70 1
34524374 227.70 2
34524376 227.70 1
34524376 227.71 60

Table 15: An extract of the Quotes table of ask side for SPY in Nasdaq

We start at the first entry on the quotes table (see Table 15). At 34524356 ms, there is an
ask price of 227.71 and a quantity of 60. In the next entry, at 34524357 ms, we observe how the
price is 227.70 and a quantity of 1 unit. This is clearly explained by the arrival of a LO that
affects the price (LOpa) at that timestamp. The quote table does not change at the next time.
At 34524374 ms a new unit appears over the established quantity, this is because a new LO has
entered that adds a unit at the same price (LOqa). Two ms later a unit has disappeared, due
to a CO (cancellation) or MO (trade). At the last entry, a possible CO or MO returns to the
initial state. Situations without any change are identified as unchanged (U) in the order flow.
They corresponds with hidden orders unknown al Leve I.

Order Type Timestamp Price Size

LOpa 34524357 227.70 1
U 34524360 0 0

LOqa 34524374 227.70 1
COa 34524376 227.70 1
COa 34524376 227.70 1

U 34524376 0 0

Table 16: Order flow reconstruction for the example in Table 15

The second step of the order flow reconstruction deals with the parsing of the trades table.
Each entry on the trade table should represent a MO, however we do not know if it is a sell
or buy MO. In a perfect case, at the exact same timestamp, we should see in the quotes tables
of ask or bid a decrease of the quantity at the same price and with the same volume. In other
words, each line of the trades table should match a CO of the same volume, at the same price
and timestamp in the order flow. However, it is very rare to exactly match a corresponding
MO read in the trades table to a CO read in the quotes tables. Therefore, the approximation
to identify a MO consists on looking for not only at the exact MO timestamp, but within −δ
and +δ milliseconds around this MO timestamp in both quotes tables. For the possible CO
candidates, we use a scoring method to search for the maximum score CO candidates. We may
identify up to 20% of MOs with maximum score. In Table 17, we show the number of types of
orders without considering MOs. There are 259 MOs in Nasdaq for SDS (0.123% of the total
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number of orders) and 14365 MOs (0.530%) in the Nasdaq for SPY. Thus, we do not consider
relevant MOs identification. This is a common practice in other papers using Order Books at
Level I [12]. Let us also observe in Table 17 an important difference in activity at SDS and SPY.

SDS ask bid SPY ask bid

U 52532 56012 U 753664 860882
LOq 22220 20376 LOq 302169 243419
LOp 306 352 LOp 15624 17008
COq 24116 23045 COq 275895 243965
COp 321 335 COp 15556 16691

Table 17: Number of types of orders in the considered period 10:00-15:00 at Nasdaq

B Computation of the intensity function

Let us consider a D-dimensional point process 〈(Tk, Ek)〉k∈N where Ek ∈ E , E = {1, 2, .., D}.
Let us assume that the point process is modelling via a D-variate-HP with exponential kernels
of fixed decays defined as in eq. (9),

φij(t) =

U∑
u=1

αuijβ
uexp(−βut) i, j ∈ E

By (4) and (5), the conditional intensity is defined by

λi(t) = µi +
D∑
j=1

∑
{tjk<t}

φij(t− tjk) i ∈ E

where tjk denotes the time of the k-th event of type j in the given realizationH(t) = 〈(tjk, jk)〉1≤k≤K
of the D-dimensional point process up to time t.

Thus, for each i ∈ E ,

λi(t) = µi +

D∑
j=1

Sij(t) with

Sij(t) =
∑
{tjk<t}

φij(t− tjk) =
∑
{tjk<t}

U∑
u=1

κuij exp(−βu(t− tjk))

Sij(t) =

U∑
u=1

κuij
∑
{trj<t}

exp(−βu(t− trj )) j ∈ E

where κuij = αuijβ
u for any i, j ∈ E and u ∈ U , U = {1, .., U}. In the previous equation rj

denotes the index in H(t) of the r-th apparition of an event of type j ∈ E . For a fixed j ∈ E ,
{tjk < t} = {trj < t} and the previous equalities hold.
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Then, for each i, j ∈ E ,

Sij(t) =

U∑
u=1

κuijB
u
j (t) with

Bu
j (t) =

∑
{trj<t}

exp(−βu(t− trj )) u ∈ U

We provide the computation of Bu
j (t) for each j ∈ E and u ∈ U :

� By convention, if {trj < t} = ∅ then Bu
j (t) = 0, in particular Bu

j (0) = 0; otherwise,

� Bu
j (t) = exp(−βu(t− t1j )) if t1j < t ≤ t2j ; and, in general,

� Bu
j (t) =

fj∑
r=1j

exp(−βu(t− tr)) if t1j < t2j < ... < tfj < t ≤ t(f+1)j

In the following, we provide a recurrence for a fast computation of Bu
j (t). For each j ∈ E

and u ∈ U :

Bu
j (t) =

fj∑
r=1j

exp(−βu(t− tr)), as t− tr = t− tfj + tfj − tr

Bu
j (t) = exp(−βu(t− tfj ))

fj∑
r=1j

exp(−βu(tfj − tr))

Bu
j (t) = exp(−βu(t− tfj )) · [1 +

(f−1)j∑
r=1j

exp(−βu(tfj − tr))], since tfj − tfj = 0

Define, Auj (fj) =

(f−1)j∑
r=1j

exp(−βu(tfj − tr)), with Auj (1j) = 0

Thus, for fj ≥ 2j , as tfj − tr = tfj − t(f−1)j + t(f−1)j − tr

Auj (fj) = exp(−βu(tfj − t(f−1)j ))
(f−1)j∑
r=1j

exp(−βu(t(f−1)j − tr))

Auj (fj) = exp(−βu(tfj − t(f−1)j )) · [1 +

(f−2)j∑
r=1j

exp(−βu(t(f−1)j − tr))]

Therefore, Auj (fj) = exp(−βu(tfj − t(f−1)j )) · (1 +Auj ((f − 1)j))

32



Below we present a summary of the intensity function computation:

For each i ∈ E , λi(t) = µi +

D∑
j=1

Sij(t)

For each i, j ∈ E , Sij(t) =
U∑
u=1

κuijB
u
j (t)

For each j ∈ E , u ∈ U ,

Bu
j (t) = 0 if t ≤ t1j

Bu
j (t) = exp(−βu(t− tfj )) (1 +Auj (fj)) if t1j < ... < tfj < t

where
Auj (1j) = 0, and, otherwise

Auj (fj) = exp(−βu(tfj − t(f−1)j )) · (1 +Auj ((f − 1)j)), with, 2j ≤ fj
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C Simulation algorithm of the Next Event in a D-variate Hawkes
Process

Let us consider an estimated D-variate Hawkes process with exponential kernel of fixed decays.
Estimated parameters of the process, θ̂ = [[α̂uij β̂

u]i,j∈E,u∈U , [β̂
u]u∈U , [µ̂i]i∈E ], have been learned

for a given realization H(t) = 〈(tjk, jk)〉1≤k≤K in the period [t1, tK ], where tK is the time of the
last event in H(t). Let A(tk) be the matrix A(tk) = [Auj (tfj ≤ tk)]. This matrix is needed to the
intensity function computation as we have indicated in Appendix B. The matrix is calculated
at the times tk (event occurrence times) in H(t). Let us recall that Auj (t1j ) = 0 for each j ∈ E .
Thus, we assume that H(t) has a sufficient number of events of each type in order to obtain non
null values for A.

The simulation of a D-variate Hawkes process can be performed by thinning as proposed
by Ogata [?][9]. The Ogata’s simulation algorithm can be modified to simulate the process in
an event-by-event fashion. This is convenient in practice, for example, when our target is to
simulate a given number of events rather than all the events from a Hawkes process over a
specific interval. We assume that H(t) = 〈(tjk, jk)〉1≤k≤K has been generated by the simulation
algorithm up to tK , but the algorithm has not finished yet. Then, we obtain the next event as
an additional iteration of the simulation algorithm. Simulation algorithm of the Next Event is
detailed in Algorithm 1.

Algorithm 1 can be used as a procedure in order to generate a simulation of δ next events. We
provide an algorithm to simulate the increment of the counting process N(t) = (N1(t), ..., ND(t)),
t ∈ [t1, tK ], from the last instant of time tK in history H(t). This Algorithm 2 is applied in
subsection 3.4 for predicting via Hawkess process.
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Algorithm 1 Simulation algorithm of the Next Event in a D-variate Hawkes Process

1: Input: θ̂ = [[α̂uij · β̂u]i,j∈E,u∈U , [β̂u]u∈U , [µ̂i]i∈E ], tK , A(tK)
2:

3: Output: (s, e) the next event is of type e, at time s
4:

5: s := tK + 0.0001; . Initialize s with the last time tK plus 0.0001 sg.
6: . to take into account in the intensity the occurrence of the last event at tK
7: Calculate [λ̂i(s)]i∈E using A(tK) and θ̂; . see Appendix B
8: exit := false;
9: while not exit do

10: Set λ̄ :=
D∑
i=1

λ̂i(s);

11: Generate p ∼ uniform(0, 1);

12: Let ω := −Ln(p)

λ̄
; . thus, ω ∼ exponential(λ̄)

13: Set s := s+ ω;
14: Generate d ∼ uniform(0, 1);
15: Calculate [λ̂i(s)]i∈E using A(tK) and θ̂;

16: if d · λ̄ ≤
D∑
i=1

λ̂i(s) then

17: e := 1; . search for the first e such that d · λ̄ ≤
e∑
i=1

λ̂i(s)

18: while d · λ̄ >
e∑
i=1

λ̂i(s) do

19: e := e+ 1;
20: fwhile
21: exit := true;
22: fif
23: fwhile
24: return (s, e) . the next event is of type e, at time s
25:
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Algorithm 2 Simulation algorithm of δ Next Events in a D-variate Hawkes Process

1: Input: θ̂, tK , A(tK), N(tK) = (N1(tK), .., ND(tK)), δ.
2:

3: Output: ∆N = N(tK+δ)−N(tK) . return the increment of the counting process after δ
new events

4:

5: h := 0;
6:

7: repeat
8: (s, e) := Algoritmo 1(θ̂, tK+h, A(tK+h)); . simulate next event
9:

10: tK+h+1 := s;
11: Ne(tK+h+1) = Ne(tK+h) + 1; . Update the counting process for the event of type e
12:

13: Update A(tK+h+1);
14:

15: h := h+ 1;
16: until h = δ
17:

18: return (∆N = N(tK+δ)−N(tK))
19:
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