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Abstract
Power Purchase Agreements are a financial instrument conceived for renewable energy projects where
a fixed power price is agreed upon for the long term. Their importance is increasing in recent years.
Therefore, these exercise of pricing turns crucial to assure that both parties reach an agreement. That
topic is the main element of this work, where an extensive investigation about the electricity markets
is done, and more in detail the one of U.S. The analysis is conducted for a data-set of more than eight
hundred PPA of the U.S classified by regions and technologies of generation. Specifically is adapted to
the regions where information is available. The factors evaluated are power prices, different terms of the
contracts, and generation profiles. Despite the lack of other factors evidenced in the results, interesting
conclusions can be obtained. First, terms and quantity are studied in comparison with the prices looking
for proofs if they could be considered as determinant factors for the pricing. After that, the SWAP
standard pricing is computed showing a good performance with linear interpolation and extrapolation.
At this point, some other factors reflect great relevance for the pricing as the time between the date
of singing the contract and the start of the exchanges, the available data, or the long-term power price
estimated. Last, the copula approach enables assessing the solar and wind price corrections due to cor-
relation and volumetric risk, exhibiting negative values.

Resumen
Los acuerdos de compra de energía (PPA) son un instrumento financiero concebido para proyectos
de energía renovable dónde se establece un precio fijo de la energía en acuerdos de largo plazo. Su
importancia está creciendo en los útlimos años y, por lo tanto, este ejercicio de “pricing” se vuelve crucial
para asegurar que ambas partes lleguen a un acuerdo. Este es el tema central de este trabajo, dónde
se lleva a cabo una amplia investigación previa sobre los mercados de la electricidad y más en detalle
sobre el de Estados Unidos. El análisis se hace para un conjunto de datos de más de ochocientas PPA
de EEUU clasificadas por región y tecnología de generación. Además, en cada caso, se adapta el análisis
a las regiones con la debida información disponible. Los factores que son evaluados son los precios
de la electricidad, diferentes términos y cláusulas del contrato y así como los perfiles de generación de
energía. A pesar de que los resultados evidencian la falta de otros factores, se pueden obtener conclusiones
interesantes de todo ello. Primero, las variables plazo y cantidad son estudiadas en comparación con los
precios en busca de pruebas de si pueden ser consideradas como variables determinantes del “pricing” o
no. Después de esto, el “pricing” obtenido haciendo uso de un enfoque puramente de SWAP parece tener
buenos resultados con la interpolación y extrapolación lineal. En este punto, otros factores muestran
gran relevancia como son el tiempo entre la firma del contrato y el comienzo de los intercambios, la
información disponible y el precio de largo plazo estimado. Por último, el uso de las cópulas permite
evaluar las correciones de precio por riesgo volumétrico y riesgo de correlación tanto para los datos de
PPA solares como las de viento, mostrando en ambos casos valores negativos.



Contents

Page

A Introduction 8

Contextualization 8

Literature review 10

Preliminaries 12
Basic concepts and types of PPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Importance of PPA from a Economic approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Importance of PPA from a Financial Risk approach . . . . . . . . . . . . . . . . . . . . . . . . 15

B Data 17

1 Power Purchase Agreements Data 17
1.1 Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 Descriptive Analysis of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Electricity U.S. Markets 21
2.1 Background of Electricity U.S. Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Structure of energy generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 CAISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 West-non-ISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Power prices data 28

C Analysis 31

4 Quantity and term analysis 31
4.1 Relationship between PPA prices and quantity. . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Whole Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 CAISO Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 West-non-ISO Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Relationship between PPA prices and term. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Whole Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 CAISO Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 West-non-ISO Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 First model: Standard SWAP pricing 39
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 CAISO results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2.2 West-non-ISO results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



6 Second model: Volumetric and correlation risk price correction in CAISO 48
6.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2.1 Previous processing of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Marginal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2.3 Goodness of fit models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.4 Copula approach for modelling the dependence . . . . . . . . . . . . . . . . . . . . . 54
6.2.5 Goodness of fit copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.6 Quantification of volumetric and correlation risk . . . . . . . . . . . . . . . . . . . . 56

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Extension of model 2: Intra-day solar volumetric and correlation risk price correction 66
7.1 Context and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

D Conclusion 70

Bibliography 72

E Appendix 75

Annex 1: Review of the literature models 75

Annex 2: Processing of the PPA database 78

Annex 3: Measurement of forecast errors 81

Annex 4: Intra-day marginal models and fitted copulas 84

4



List of Figures

1 Global capacity from renewable energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Sales of Voluntary Green Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Global Corporate PPA Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 U.S radiation map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 U.S wind speed map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Power grid interconnections of EEUU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7 Wholesale Electricity Power Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 2020 Maximum available capacity by types of fuel on CAISO . . . . . . . . . . . . . . . . 24
9 Monthly 2019 generation mix by types of fuel on CAISO . . . . . . . . . . . . . . . . . . . 25
10 Hourly 2019 power generation by types of fuel on CAISO . . . . . . . . . . . . . . . . . . 25
11 Average hourly 2019 prices on CAISO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12 2021 Capacity by types of fuel in the three regions of West-non-ISO . . . . . . . . . . . . 27
13 2019 Net generation by types of fuel in the three regions of West-non-ISO . . . . . . . . . 27
14 Histogram of the price series used for the CAISO market . . . . . . . . . . . . . . . . . . . 29
15 Histogram of the price series used for the West-non-ISO market . . . . . . . . . . . . . . . 29
16 Scatter plot between PPA prices and PPA quantities . . . . . . . . . . . . . . . . . . . . . 32
17 Prices Box-Plots of different Solar projects sizes . . . . . . . . . . . . . . . . . . . . . . . . 32
18 Prices Box-Plots of different Wind projects sizes . . . . . . . . . . . . . . . . . . . . . . . 33
19 Scatter plot between PPA prices and PPA quantities. CAISO Region . . . . . . . . . . . . 33
20 Prices Box-Plots of different CAISO Solar projects sizes . . . . . . . . . . . . . . . . . . . 34
21 Prices Box-Plots of different CAISO Wind projects sizes . . . . . . . . . . . . . . . . . . . 34
22 Scatter plot between PPA prices and PPA quantities. West-non-ISO Region . . . . . . . . 35
23 Prices Box-Plots of different West-non-ISO Solar projects sizes . . . . . . . . . . . . . . . 35
24 Prices Box-Plots of different West-non-ISO Wind projects sizes . . . . . . . . . . . . . . . 35
25 Scatter plot between PPA prices and PPA terms . . . . . . . . . . . . . . . . . . . . . . . 36
26 Scatter plot between PPA prices and PPA terms. CAISO Region . . . . . . . . . . . . . . 37
27 Scatter plot between PPA prices and PPA terms. West-non-ISO Region . . . . . . . . . . 38
28 Scheme of estimation of a long-term future power price . . . . . . . . . . . . . . . . . . . . 40
29 Market PPA pricing compared with the pricing using model 1. Solar CAISO data. . . . . 42
30 Market PPA pricing compared with the pricing using model 1. Wind CAISO data. . . . . 42
31 Market PPA pricing compared with the pricing using model 1. Solar West-non-ISO data. 45
32 Market PPA pricing compared with the pricing using model 1. Wind West-non-ISO data. 45
33 Price series sample used for the volumetric and correlation risk modelling . . . . . . . . . 49
34 Solar generation expressed as the infeed factor . . . . . . . . . . . . . . . . . . . . . . . . 50
35 Wind generation expressed as the infeed factor . . . . . . . . . . . . . . . . . . . . . . . . 50
36 Scatter-plot of solar generation and prices and their marginal distributions . . . . . . . . . 51
37 Scatter-plot of wind generation and prices and their marginal distributions . . . . . . . . 51
38 Probability integral transformation histograms . . . . . . . . . . . . . . . . . . . . . . . . 61
39 Actual prices, volumetric and correlation risk correction, and model 1 and 2 pricing . . . . 63
40 Actual prices, volumetric and correlation risk correction, and pricing models 1 and 2 . . . 63
41 Actual prices, volumetric and correlation intra-day risk correction, and model 1 and

extension of model 2 pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
42 Actual prices and model 2 with daily and intra-day series . . . . . . . . . . . . . . . . . . 68
43 Transformation done in the database to obtain the levelized prices . . . . . . . . . . . . . 79

5



List of Tables

1 Price descriptive statistics of the PPA contracts database . . . . . . . . . . . . . . . . . . 18
2 Term descriptive statistics of the PPA contracts database . . . . . . . . . . . . . . . . . . 18
3 Capacity descriptive statistics of the PPA contracts database . . . . . . . . . . . . . . . . 18
4 Price regions descriptive statistics of the Solar PPA contracts database . . . . . . . . . . . 19
5 Price regions descriptive statistics of the Wind PPA contracts database . . . . . . . . . . 19
6 Correlation Measures between PPA prices and quantity. All regions . . . . . . . . . . . . 32
7 Correlation measures between PPA prices and quantity. CAISO region . . . . . . . . . . . 33
8 Correlation measures between PPA prices and quantity. West-non-ISO region . . . . . . . 34
9 Correlation Measures between PPA prices and term. All regions . . . . . . . . . . . . . . 36
10 Correlation Measures between PPA prices and term. CAISO region . . . . . . . . . . . . . 37
11 Correlation Measures between PPA prices and term. West-non-ISO region . . . . . . . . . 37
12 Measures of the errors on the solar CAISO data . . . . . . . . . . . . . . . . . . . . . . . . 43
13 Measures of the errors on the wind CAISO data . . . . . . . . . . . . . . . . . . . . . . . . 43
14 Solar Diebold Mariano test p-values (CAISO) . . . . . . . . . . . . . . . . . . . . . . . . . 43
15 Wind Diebold Mariano test p-values (CAISO) . . . . . . . . . . . . . . . . . . . . . . . . . 43
16 Analysis of the Solar forecast errors by years in CAISO . . . . . . . . . . . . . . . . . . . 44
17 Analysis of the Wind forecast errors by years in CAISO . . . . . . . . . . . . . . . . . . . 44
18 Measures of the errors on the solar West-non-ISO data . . . . . . . . . . . . . . . . . . . . 46
19 Measures of the errors on the wind West-non-ISO data . . . . . . . . . . . . . . . . . . . . 46
20 Solar Diebold Mariano test p-values (West-non-ISO) . . . . . . . . . . . . . . . . . . . . . 46
21 Wind Diebold Mariano test p-values (West-non-ISO) . . . . . . . . . . . . . . . . . . . . . 46
22 Analysis of the Solar forecast errors by years in West-non-ISO . . . . . . . . . . . . . . . . 47
23 Analysis of the Wind forecast errors by years in West-non-ISO . . . . . . . . . . . . . . . 47
24 Main statistics of the CAISO spot prices and solar/wind infeed generation. . . . . . . . . 57
25 Prices marginal model parameters and associated coefficients. . . . . . . . . . . . . . . . . 59
26 Solar generation marginal model parameters and associated coefficients. . . . . . . . . . . 60
27 Wind generation marginal model parameters and associated coefficients. . . . . . . . . . . 60
28 Copula solar generation vs price estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
29 Copula wind generation vs price estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
30 Measures of the errors on the solar data with the pricing model 2 . . . . . . . . . . . . . . 64
31 Solar Diebold Mariano test p-values of pricing model 2 . . . . . . . . . . . . . . . . . . . . 64
32 Analysis of the Solar forecast errors (model 2) by years in CAISO . . . . . . . . . . . . . . 64
33 Measures of the errors on the wind data with the pricing model 2 . . . . . . . . . . . . . . 65
34 Wind Diebold Mariano test p-values of pricing model 2 . . . . . . . . . . . . . . . . . . . 65
35 Analysis of the Wind forecast errors (model 2) by years in CAISO . . . . . . . . . . . . . 65
36 Measures of the errors on the solar data with the pricing intra-day model 2 . . . . . . . . 68
37 Solar Diebold Mariano test p-values of pricing intra-day model 2 . . . . . . . . . . . . . . 68
38 Generation marginal models coefficients and goodness of fit measures . . . . . . . . . . . . 84
39 Price marginal models coefficients and goodness of fit measures . . . . . . . . . . . . . . . 85
40 Fitted copula parameters and goodness of fit measures of the intra-day solar model. . . . 85

6



Part A

Introduction

7



Contextualization

In the last few years, green energy has experimented a notable growth. It is becoming one of the major
concerns for companies who desire to consume power produced from renewable resources. Becoming
more environmentally friendly, improving the image among target customers, or avoiding pollution taxes
could be considered one of the main reasons for that change of behavior.

Similarly, technologies for renewable energy generation are extending their possibilities and in constant
improvement. It is difficult to identify whether the improvement in terms of costs and productivity has
led to the increase in renewable power production or the other way round. However, one thing is clear:
the growth differs between regions finding countries with a strong dependence on fossil fuel energy gener-
ation and others with percentages of renewable generation next to 100%. Among the existing renewable
generation technologies, two can be considered the ones with the fastest development recently. These
are solar photo-voltaic and wind on-shore generation.

Regarding this topic, some decades ago, a financial instrument has arisen to satisfy the renewable energy
producers’ needs. It is known as Power Purchase Agreement (PPA) and involves a contract between two
parties that want to establish a long-term relationship of power exchanges for a predetermined price. In
the same way, in hand with the growth of renewable resources, this instrument has undergone a con-
siderable change in the last decade. However, in spite of its spread along with the countries, it is still
a non-standardized contract whose terms can differ a lot from one contract to another. This fact could
be explained as the particularities of each renewable project would be challenging to be satisfied with a
normalized contract. That is why the study of this financial contract becomes essential. As it has many
details, these can be analyzed to comprehend how they influence the PPA’s price. Furthermore, with the
trend already explained about renewable energies, a good understanding of PPA could be fundamental
to achieve fair agreements and encourage renewable power production.

PPA use also has remarkable differences among countries. In particular, this research is focused on the
EEUU region, which is the country with the highest number of GWh contracted with this instrument.
That has allowed finding a database with enough numbers of contracts for this research. Moreover, as
it will be seen, the power market of this country has its singularities, so the analysis is broken down
into regions. What is more, only some of them have the necessary information to be analyzed, so most
regions have to be discarded in parts of the analysis.

This research aims to study some of the critical factors that influence the pricing of solar and wind PPA
in the United States. However, this analysis cannot be done without first investigating power markets
and how they work, the different types of PPA, and the particularities that this sector involves from a
financial view.

The key contributions of this work can be summarized in three aspects. The main one is the study
of PPA using a database of PPA contracts from the U.S in order to analyze with detail factors that
influence the pricing of PPA. Never done it before, the existent researches have focused their attention
on studying individual PPA or specific elements of those instruments. Consequently, this approach tries
to price market PPA using factual information and then compares the results with the market prices to
see how far the model is from the market pricing. Second, since factual information is used, the analysis
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investigates all the possible determinants and market conditions that could influence the instrument.
Last, among all factors studied, the price correction due to volumetric and correlation risk is computed
for every PPA of one of the U.S. regions. And what is more, the price correction is computed on a com-
plex intra-day model for solar data. In particular, on the financial literature, this approach has never
been applied before. Thus, it is possible to see how this technique is applied to simulate an environment
as realistic as possible and to compare the results of using intra-day series or daily series. In a nutshell,
the work seeks to reproduce a realistic pricing to understand some of the determining components better
when it comes to pricing a PPA.

The investigation is divided into four parts. The first one starts with this section and continues with a
review of the financial literature related to this topic, and finishes with an explanation of the importance
of this research as well as a first contact with some of the basic concepts. In the second part, the data
used for the investigation is explained. First, the data about a PPA contracts database is presented
and described with their main statistics. Next, analysis of the electricity markets of these two regions
connecting the evidence observed with the theory. The end of this part corresponds to an explanation
of the power prices data about the specific regions studied. The third part corresponds to the analysis
of the mentioned factors. First of all, the effects on the prices of the term and the quantity agreed on
the contracts are evaluated. Then, a model similar to a standard SWAP pricing is tested with special
attention to the details. Finally, the model is extended to one which includes a price correction consider-
ing two risks present in this instrument: the correlation risk and the volumetric risk. To close the third
part, the model is tested using daily and intra-day series for the solar case. Last, there is an annex with
some explanations considered practical for a better comprehension of some sections.
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Literature review

Off the bat, it is necessary to clarify that Power Purchase Agreements have been little investigated in
the financial literature compared to many other topics. Maybe this is not totally true, but it is a field
with many details still open to further investigation and increasing its importance (now and expected to
continue). The obstacles in that area can be subjective, but some of them are:

• It belongs to the power commodity, which has many peculiarities which difficult its financial treat-
ment just as available information problems.

• PPA arose some decades ago, but it is not until this decade when its use has spread all over the
countries.

• The non-existence of a standardized contract makes the analysis more complex as it can be gener-
alized for all PPA and as transparent information is very unusual.

However, in this concern, there are already some works covering these problems. For example, the data
available is growing, and some investigations have collected them. For the United States, there are re-
ports prepared by the Berkeley Lab institution. Specifically, Bolinger et al. [2019] for Solar PV energy
and Wiser et al. [2020] for Wind on-shore energy. The authors provide with both reports a complete
database which has been used in this investigation. For Europe, there are also reports available from
specialized companies, but they mainly present aggregated data.

Then, focusing on the literature available about pricing or valuating Power Purchase Agreements could
be classified into two different main approaches. The classification attends to the point of view that is
taken for that objective. On the one hand, the pricing can be done from the off-taker point of view,
typically using financial arguments to price the instrument as other derivatives. The reason behind it lies
in the fact that the purchaser of a PPA usually has the main objective of hedging the price risk. On the
other hand, if a generator does the pricing, it usually comprises a detailed estimate of all the costs that
would involve the project to know the minimum price required to recover the money invested. Bearing
in mind these two possibilities, each one will be deepened in regard to the literature found. See annex 1
on page 75 for a detailed review of the principal models existent in the literature.

From the off-taker point of view, the starting point could be considered the works which apply a stan-
dard SWAP pricing approach. Though most of them develop further their models, the majority of them
begin at this point. For example, Peña et al. [2020], propose the standard model but also taking into
account the price of renewable energy certificates. Actually, their model is expressed to valuate a PPA.
However, as with any other SWAP derivative, the pricing could be done by finding the fixed price that
makes the net pricing value of both parties indifferent. Another extension is done in Edge [2015], where
the author proposes a stochastic process to model the spot price and a general way to take into account
the credit risk in long-term PPA. Then, some works try to model the volumetric and correlation risk in
order to correct the PPA price due to these elements. These are Pircalabu et al. [2017], Tranberg et al.
[2020] and Kaufmann et al. [2020]. The three of them use copulas to model the dependence between
production and price variables. In particular, the first two works are strictly related as the second one
is an extension of the first one. Likewise, other investigations do not strictly stem from the standard
SWAP approach. In this respect, Wu and Babich [2012] is focused on contingent PPA analyzing the
effects of asymmetries of information in the agreements. As well, this incentive problem is taken into
account in Ghiassi-Farrokhfal et al. [2021] where they suggest how to find the optimal PPA structure
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and terms attending to different situations. In addition, they also take into account the possibility of
battery storage. In other direction Cuervo et al. [2021] present a simple model to valuate PPA, and
also they apply a real options approach to determine the importance of the timing (the date to start a
project). Identically, Sachs et al. [2008] do not price PPA but analyzes the quantification of the political
risks from the view of the investors.

Now, from the producer’s point of view, there are some researches too. These are directly linked with
the LCOE. That is the levelized cost of energy of an energy project, and it has been studied in many
works in the literature. The ways of computing it differs from studies, so only some works will be cited to
exemplify. First, in Bruck et al. [2018] and Mendicino et al. [2019] there are presented some of the main
models. In particular, the first work presents four models in ascending order of complexity. Furthermore,
it has a link with PPA as the last model that they suggest includes the effect of the minimum or maxi-
mum quantities that could be agreed in PPA contracts. Meanwhile, the second-mentioned work breaks
down with much detail all the possible costs that can be included in the LCOE. Many works use the
NREL model for the LCOE as in Miller et al. [2017]. On Levitt et al. [2011], the authors propose a very
detailed list of the cost of an offshore wind project. However, they introduce the concept of breakeven
cost, differentiating it from the LCOE. As they explain, they consider the breakeven cost as the cost
of equilibrium, only considering the pure costs of installation and maintenance. In this regard, there
is available a software to assess all the expenses of this type of project called SAM (System advisory
model). That is, for example, used in Hernandez et al. [2016] to estimate the LCOE of a geothermal
project.

Apart from all the works mentioned, some works make use of PPA for other purposes. Gallardo et al.
[2021] for instance, use PPA to obtain or approximate the cost of the energy. Also, it appears in studies
related to the maintenance of solar or wind plants as in Lei and Sandborn [2018]. In this case, the
authors use the PPA to determine when is better to schedule the maintenance of a wind farm.

As seen, a variety of models have been proposed in the literature. However, both points of view do
not have a consensus yet about the model needed. This fact is expected to continue since, as already
explained, PPA terms and types differ a lot. Nevertheless, despite not having a unique model, the
extensions presented above do not interfere. For that reason, the extensions seen can be adapted to each
case, which is the approach that defines this research.
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Preliminaries

Basic concepts and types of PPA
Previously to the research, it is essential to define PPA and explain the different types depending on the
classification.

First of all, a Power Purchase Agreement is a contract with two parties implied where one part wants
to purchase power and the other to sell it. Usually, the parts are a utility or a company that will buy
the energy and a generator of electricity who sells it. This financial instrument has been widely spread
among many countries as an efficient way to cover the investment necessities of renewable projects (the
benefits of this instrument are going to be explained in the following sub-section). With 20 years being
the most common term, these contracts are signed for long terms. This mechanism allows managing
long-term price risk assuring a price to the consumer for a quantity of energy at a predetermined fre-
quency. On the other side, the price eliminates part of the uncertainty about the project’s performance
for the seller. Some classifications could be proposed to distinguish between types of PPA attending to
different characteristics.

If the structure is the characteristic taken into account, there are three different main types:

a). On-site PPA: The generator is established next to the company that has entered the PPA. In that
way, there is a direct supply (called direct or behind the meter PPA too).

b). Off-site PPA: Founded as sleeved or physical PPA too. It is referred to PPA where the purchase
of energy is at the meter point, and the customer receives the power through the grid.

c). Virtual PPA: It is called virtual, synthetic or financial PPA. In this case, the energy is not purchased
physically, and the transaction is purely financial. In this structure, the buyer and the seller do
not need to be in the same grid region compared to the physical PPA.

For a more detailed description of these types, see Mendicino et al. [2019]. In some cases, it is important
to say that certificates of green energy are exchanged (depending on the region, these are called RECs,
GOs or I-RECs). When the PPA is associated with the exchange of the correspondent RECs, it is called
a bundled PPA.

According to the type of buyer, there are utility PPA if the contract is between the energy generator and
a utility (seller in the wholesale market). It means that the buyer does not use the electricity purchased.
Instead, the utility sells it to its clients. On the other hand, corporate PPA is when the exchange is
made directly between a company and the energy generator. Currently, utility PPA are predominant in
the market, but corporate PPA have also experienced massive growth in the last few years.

Another classification can be used. It is possible to differentiate based on the payment structure. The
PPA can have a fixed or variable price (following an escalating rule, for example). As well, this agreement
can be for the entire production of the supplier, for a percentage of the production or for a fixed amount
(each day, month, year). A PPA is “Baseload” if there is established a fixed price for an hourly contract
volume. This volume can be identical for each hour and can be established for different frequencies:
for a given year, for a given month. Likewise, the volume can change between different hours. On the
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contrary, in PPA contracts “Pay as produced”, there is a fixed price for all the produced energy or some
percentage. So, as it is easy to imagine, the PPA price will depend on the price structure, and for that
reason, this characteristic turns to be very important.

Importance of PPA from a Economic approach
First of all, the importance of renewable energy can be pointed out. The efforts to reduce the con-
tamination and the impact of climate change are continuously growing. More and more agents become
concerned about this topic, from families to big companies or countries. That can be confirmed by
looking at the following graph (figure 1), representing the last 15 years of development in renewable
technologies.

Figure 1: Global Capacity in Renewable Power (Unit of measure: GWh). Source: UNEP, Frankfurt
School-UNEP, BloombergNEF. *Large hydro-electric projects of more than 50MW are not included

It is easy to say that attending to the graph, the energy generated by renewable sources is increas-
ing. Moreover, the most remarkable growth comes from wind and solar technologies that have started
representing a low percentage of the capacity but turning to represent now more than the 75% of the
renewable energy produced. Those technologies have benefited from governments and public policies.
Many countries have encouraged the development of these projects at the beginnings. Nevertheless, this
behaviour becomes more testimonial once the region has developed a more mature renewable energies
market. In this situation, in a more mature market than the last decade, different instruments are
evolving between the participants of these markets to satisfy new needs. Renewable energy projects have
different inversion structures than traditional sources. Because of that and other reasons, new financial
instruments are appearing to respond to these new challenges and attracting inversion for renewable
projects

In figure 2 it is possible to see some of the different instruments that are being used in order to carry out
new renewable projects (from the producer’s view) and to meet its sustainable goals (from the buyer’s
view). The data is about the United States, and for a better understanding of the different existent
mechanisms, it should be checked the following reference Ajadi et al. [2020].
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Figure 2: Sales of Voluntary Green Power. Source: National Renewable Energy Laboratory.

In figure 1 3 it is visible that the use of these contracts by companies has grown with giant steps in the
last years. In particular, in the last four years, it has been especially fast. The region with an earlier start
has been the one denominated as AMER, with two breaks in the trend but with a positive tendency. The
situation in the region “EMEA” shows a later growth but with a notable jump in the last year (opposite
with AMER, whose volume has descended the last year compared with the previous one). The “APAC”
zone has had a similar increase in the volume contracted by the companies but with separate paths in
the last two years, maintaining the volumes in lower levels.

Figure 3: Global Corporate PPA Volumes. Source: BloombergNEF.

This graph allows seeing the increasing importance of PPA between companies in the last years. Besides,
the positive trend is shared in all the zones reflecting growing importance worldwide. The cumulative
value could be interpreted as a proxy of the power bought that year by companies through this type

1The unit of measure is in gigawatts per hour and is referred to as the DC Capacity contracted (total wattage of
all the project). This data does not include onsite PPA (direct PPA) and other exceptions as Australian sleeved PPA
or pre-market reform Mexico PPA. The quantities are not definitive because more information could become available,
and specifically, the APAC value is an estimate. AMER includes North, Central and South America. EMEA includes
Europe, Middle East and Africa. Furthermore, APAC includes the Pacific part of Asia. The values at the end of the
columns represent the cumulative of each zone.

14



IMPORTANCE OF PPA FROM A FINANCIAL RISK APPROACH Óscar Bernardos Yagüe

of financial instrument (to be more accurate, as the PPA are not signed for the perpetuity, this proxy
should take into account that the contracts have different terms, but this is not the objective of this
epigraph so as the graph only shows the last eleven years, it does not seem a critical assumption to think
that PPA with terms lower than ten years are not so common)

Between the corporate buyers, there are multi-national companies such as Amazon, Google, and Face-
book that want to reduce their carbon emission while reducing their power market risk assuring a fixed
price. Also, it is used between industrial or other companies with high electric necessities. Virtual
PPA have played a fundamental role in this growth, given that contracts between companies of different
countries or power grid regions are possible. That incentives the competition and usually reduces the
purchase price, becoming more attractive for the buyers.

Importance of PPA from a Financial Risk approach
Attending to pure financial arguments, Power Purchase Agreements constitute a very attractive instru-
ment for both parties if the terms and structure are adequate for the individual needs of both parties.
From the point of view of the generator of energy it gives him the following main benefits:

• It assures a price for the energy during the long-term that in some cases can cover all the expected
life of the project. As with other commodities, it is usual that the producer turns to future markets
to lock the price when he knows with some certainty the quantity that is going to have available
to sell. Indeed, the seller objectives do not include speculating with the commodity price, so he
will prefer to erase the price uncertainties. Furthermore, renewable energy projects usually can
estimate their expected production for the whole active period of the project.

• Fixing a price for the exchanges allows the generator to plan its cash-flows and estimate its cost
structure finer.

• Linked with the previous reason, PPA improve the so-called bankability of these projects. In other
words, banks would see better a project endorsed by a PPA. That turns into lower interests and
more favourable financial conditions too.

However, despite the benefits, there are as well some cons. With PPA, some risks are covered or partially
covered, but some others arise for the producer. These are the risks associated with the uncertainty on
the production volume and the negative correlation between prices and production. Both of them will
be seen in detail in the analysis of this research.

Attending to the point of view of the off-taker, the key benefits are:

• As for the seller, the buyer avoids the market price risk in the sense that the amount that will have
to pay would be known with a PPA. Nonetheless, as for every hedging strategy, future scenarios
where the buyer would have had better results without the PPA could be possible (if the market
price goes in the other direction, so, if the price decreases above the agreed PPA price). Despite
this, electricity markets are very volatile. As in the other case, buyers whose intentions are related
to using the energy for their business or basic needs do not want to be exposed to these risks.

• In some sense, it could be interpreted that it allows obtaining more competitive prices (however,
this will not always be true as it will depend on the market structure and the negotiation power).

• It also helps the plans for the companies as they will be able to know their expenses related to this
element. Indeed, this could be crucial for companies with extensive use of power.
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1 Power Purchase Agreements Data

1.1 Source
This research needs information about power purchase agreement contracts. Nonetheless, there is little
public data available as the contract is not negotiated in a financial market, but it is usually an agree-
ment between two parties. Besides, as explained before, this contract appeared not so many decades
ago and is not until the last decade when its use has experimented a significant increase. That is why
it is not so well-known yet. Currently, companies whose work is related to those instruments collect
data and offer advice to valuate or price these derivatives. After a deep search, a database has been
found. Berkeley Lab, the national laboratory of the U.S energy department, has two data sets, updated
frequently, with information about solar PPA and wind PPA contracts. It contents the PPA execution
date of the contract, the term in years, the capacity (quantity of MWh agreed to exchange), the levelized
price, and the region where the contract is going to take place. The sample available for that research
comprises 842 contracts where all this information is specified. It is fundamental to point out that all the
PPA collected in the database are bundled PPA. That type of PPA always includes the selling of RECs
simultaneously as the contract is signed. So, this aspect is essential to keep in mind as it will influence
the pricing.

Then, as this investigation seeks to propose a model for pricing these instruments, a transformation is
done. In this way, the actual prices agreed in the contract are obtained from the levelized prices, as these
are expressed to be compared between them, but this research aims to do the realistic pricing. This
procedure involves obtaining the price that makes both parties indifferent to entering into the contract
or not (at the date of signing the contract). Previously, the data needs to be transformed as the prices
available are the levelized prices for 2019. A detailed description of this process is included in annex 2
on page 78.

1.2 Descriptive Analysis of the data
For a better understanding of the available data, a brief descriptive analysis is provided. First of all,
the main statistics of each series are computed. These statistics are the sample size, mean, standard
deviation, median, mode, skewness, kurtosis, and maximum and minimum prices. Furthermore, this is
obtained for the prices, the terms, and the quantities. The results are presented in tables below. Table
1 shows the descriptive statistics of the prices by type of energies where the differences between solar
and wind data are notable. The sample has 353 solar PV PPA contracts and 489 wind on-shore PPA
contracts. The mean or the median values of solar prices are more than 50 % higher than wind prices.
Also, the variability seems to be much more significant in solar prices. The mode shows a relevant success
since the more common price is higher on the wind data. The skewness and kurtosis reflect that the
distributions of the prices are not similar to a Normal distribution. Regarding extreme values, solar
prices have higher values in the distribution’s right tail. In particular, it could remind of a log-normal
distribution. Indeed, using the Jarque-Bera test, the null hypothesis of log-normality cannot be rejected
in the wind and general samples2, as seen in the Jarque-Bera statistics shown in table 1.

2The critical value is compared with the statistic obtained for each case, and the null will be rejected if the critical
value is lower than the statistic. For a confidence level of 5% the crtical value is 5.99.

17



1.2 DESCRIPTIVE ANALYSIS OF THE DATA Óscar Bernardos Yagüe

Sample
size Mean Std

dev Median Mode Skew Kurt Max Min Jarque-Bera
Log-normality

Solar 353 125.56 76.03 105.97 92.82 1.41 5.35 494.6 21.99 12.8
Wind 489 78.35 41.28 69.79 131.02 1.05 3.77 207.7 17.27 5.5
All 842 98.14 62.86 82.60 92.82 1.80 7.66 494.6 17.27 1.9

Table 1: Price descriptive statistics of the PPA contracts database. Dollars per MWh

After that, in tables 2 and 3 the descriptive statistics of the term and capacity variable can be seen. In
general terms, the contract’s duration is very similar in both technologies of generation. Meanwhile, the
quantities agreed for the exchange of power are higher on wind projects (except for one solar PPA with
an agreement to exchange 690 MWh being the highest observation). That is reasonable as large-scale
wind projects are more common than solar projects.

Mean Standard
deviation Median Mode Skewness Kurtosis Maximum Minimum

Solar 22.20 3.93 20 20 -0.21 4.49 34 3
Wind 20.10 4.27 20 20 -0.32 4.23 34.20 5
All 20.98 4.26 20 20 -0.31 4.25 34.20 3

Table 2: Term descriptive statistics of the PPA contracts database. Years

Mean Standard
deviation Median Mode Skewness Kurtosis Maximum Minimum

Solar 66.30 78.81 40 20 3.16 18.59 690 3.60
Wind 99.61 74.29 80 50 1.05 3.85 400 1.98
All 85.64 77.93 59.90 20 1.86 9.26 690 1.98

Table 3: Capacity descriptive statistics of the PPA contracts database. Megawatt hour

After that analysis, a very similar one has been replicated but, in this case, differentiating between
regions. That has made clear the need to separate the models by region. Tables 4 and 5 present the
same statistics for each region PPA prices. Generally, the differences are noticeable between regions in
both technologies. Indeed, the differences observed in prices between solar and wind projects can be
better explained due to the different percentages that each region represents in the available contracts
than due to the difference between the generation technologies. The solar data have relevant samples
for the CAISO and West-non-ISO regions overall. However, the wind data have relevant samples for the
SPP, MISO, and West-non-ISO regions. Only attending regions with a sufficient number of contracts,
there are great differences between the CAISO region and the West-non-ISO solar median price (and
also concerning Southeast-non-ISO). The same is true for the wind data where SPP reflects fairly low
median prices, then MISO, West-non-ISO, PJM, and CAISO have higher median prices (in that order).

This fact is consistent from a financial view because these regions represent different power markets, as
explained before. So, the electricity prices in each market are expected to differ between different regions
due to different demand and supply forces operating in each market. A power purchase agreement is
directly related to the electricity, so, for coherent pricing, the agreement should consider the level of the
prices in the particular region where the contract is being signed (spot prices and futures prices as well).
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Sample
size Mean Standard

deviation Median Mode Skewness Kurtosis Maximum Minimum

CAISO 123 139.93 74.18 119.09 92.82 1.15 3.86 365.55 34.15
West

(non-ISO) 100 104.45 66.05 78.92 32.89 1.05 3.51 346.63 21.99

MISO 12 92.32 27.80 83.85 48.74 0.38 2.10 142.05 48.74
SPP 7 103.82 46.87 87.43 70.22 1.49 3.83 201.76 70.22

ERCOT 10 112.17 115.98 65 31 1.64 4.05 381.31 31
PJM 15 118.22 99.10 73.63 57.35 1.77 4.68 356.10 43.74

NYISO 3 342.99 131.92 279.67 254.67 0.68 1.50 494.63 254.67
ISONE 9 127.25 30.85 141.48 77.96 -0.73 2.15 161.82 77.96

Southeast
(non-ISO) 46 102.82 68.76 96.99 52.48 2.44 9.85 396.14 33.64

Hawaii 28 179.81 46.60 174.80 124.69 1.14 3.74 307.18 124.69

Table 4: Price regions descriptive statistics of the Solar PPA contracts database. Dollars per MWh

Sample
size Mean Standar

deviation Median Mode Skewness Kurtosis Maximum Minimum

CAISO 45 132.49 52.13 143.89 196.89 0.01 1.48 207.79 54.35
West

(non-ISO) 96 87.06 37.06 89.57 131.02 0.22 2.41 171.75 17.27

MISO 121 76.2 32.49 72.4 67.46 1.04 4.43 190.13 26.9
SPP 130 48.34 19.81 43.45 32.29 0.96 3.44 108.33 18.31

ERCOT 19 53.45 18.48 44.77 34.23 1.08 3.43 102.16 34.23
PJM 53 95.83 33.02 100.67 129.59 0.67 3.44 204.21 44.1

NYISO 1 121.22 0 121.22 121.22 - - 121.22 121.22
ISONE 15 109.98 48.20 81.27 65.8 0.780 1.92 199.37 65.80

Southeast
(non-ISO) 9 69.11 28.30 68.24 33.50 0.25 1.89 110.76 33.50

Table 5: Price regions descriptive statistics of the Wind PPA contracts database. Dollars per MWh

Apart from this descriptive analysis, it could also be very revealing the following two figures. In particular,
in figure 4 the long-term annual average solar resource is presented and, in figure 5 the wind speed. This
information can help explain why some regions have more PPA contracts than other regions (not being
the unique factor, obviously). As can be expected, regions will attract more projects the higher their
production expectations are. That could explain to some extent the number of wind PPA contracts
available on the SPP or MISO regions or even the West-non-ISO region. The same argument for the
solar PPA contracts where CAISO and West-non-ISO seem to be the regions with the highest irradiance
values coinciding with the number of solar PPA available for that regions.
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Figure 4: U.S radiation map. Source: National Renewable Energy Laboratory (NREL)

Figure 5: U.S wind speed map. Sources: AWS Truepower, National Renewable Energy Laboratory
(NREL)

In conclusion, attending to the analysis carried out, it seems clear that a different treatment should be
applied to wind and solar contracts as well as for different electricity regions of the United States. Fur-
thermore, not all regions have sufficient contracts neither the minimum required information to develop
the analysis. So, only two regions are considered to propose and test models.

In that direction, the first region considered is the CAISO region with the biggest amount of solar PPA
contracts usable and rich information on electricity prices (spot and future prices especially). The sec-
ond region considered is the West-non-ISO region. Its power prices are very similar in characteristics to
CAISO, and the region constitutes a representative part (almost one quarter) of all the PPA contracts
available.
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2 Electricity U.S. Markets

2.1 Background of Electricity U.S. Market
The generation and supply of electricity in EEUU are governed by a complex framework of laws at the
national, federal, and local levels. There are three zones of interconnection, eight regions in charge of
the accuracy of the supply and the wholesale market, and various organized markets competing among
them.
Three electricity interconnections that are almost independent between them (with limited energy ex-
changes) divide the United States at the first level. Those are:

• Western interconnect

• Eastern interconnect

• ERCOT or Texas Interconnect (that includes the majority of Texas)

Figure 6: Power grid interconnections of EEUU. Source: United States Environmental Protection
Agency

Going deeper, the North American Electric Reliability Corporation has eight regional entities to ensure
that the power grid works appropriately.
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Figure 7: Wholesale Electricity Power Markets

In this research, the northwest and southwest regions are treated as one unique region. Moreover, in the
case of solar technology, the region of Hawaii is also included.

The FERC (Federal Energy Regulatory Commission) regulates the wholesale electricity markets (except
the ERCOT market). Two types form these markets: On the one hand, there are restructured markets
that compete with each other (whose transport management is done by independent system operators,
ISOs, or regional transmission organizations, RTOs) where independent power producers and non-utility
generators trade power. Those markets are usually more attractive for renewable producers. On the
other hand, there are bilateral regulated markets where the power companies are vertically integrated
to control the transport, generation, and distribution. Those second types of markets are the Southeast,
Southwest, and Northwest regions of the map.

The structure of the market determines the renewable energy options, as said above. The explanation is
that traditionally regulated markets are bounded to green power products offered by their utility (prod-
ucts that include renewable energy certificates, RECs). Meanwhile, customers in competitive electricity
markets can shop for various electricity service providers, competitive products, or green marketing prod-
ucts.

Besides, the most important for this study is that the market structure also significantly influences the
opportunities to enter into a power purchase agreement contract. For a physical or direct PPA, the
electricity consumer must be in a competitive retail market and the project in a competitive wholesale
market with connections with the consumer’s ISO. However, for a financial PPA, an electricity consumer
can be anywhere in the U.S., and the project must be in a competitive wholesale market.

2.2 Structure of energy generation
Currently, energy is a commodity that must be produced and consumed simultaneously (maybe in the
future, if storage systems continue improving their characteristics, this affirmation could lose impor-
tance). This fact implies that the resources (energy generation plants) need careful monitoring in each
electricity grid region. In the short term equaling the demand and supply of power by choosing the
plants that should be actively generating energy and in the medium/long term forecasting the expected
needs of energy and promoting new plants for the future when needed. This resource monitoring in the
short term is done trying to have in operation the plants which lead to the minimum cost simultaneously
assuring that the energy needs are covered. The different types of energy generators that operate in a
region are crucial to price formation. With the introduction of renewable energy generation, some of
these requirements have become more important, and others have arisen. One of the causes of these
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changes is the non-dispatchability of wind or PV-solar (currently the primary renewable sources). The
non-dispatchability is a typical feature of both technologies and refers to sources of electricity that can-
not deliver the energy on demand. In particular, this energy generation is dependent on the weather
conditions and, more specifically, the wind’s speed and solar irradiance. That is highly problematic in
every market where these technologies are being integrated because it challenges the existing procedures
to meet the region’s electricity needs. In response to it, there is a vast literature about how to face
this problem on integrating efficiently non-dispatchable resources as on Perera et al. [2017]. Another
influencing feature is the ramping of the different plants in each region. Ramp rate is referred to the
rate, expressed in megawatts per minute, that a generator can change its output. Applied to energy
generators, it is related to the costs and ability to shut down or start production. It is relevant since
it causes inefficiencies because of the inter-temporal constraints of some technologies whose production
cannot be stopped or started immediately. This characteristic is not so problematic if the energy produc-
tion of the existing and active generators is regular. However, with the inclusion of renewable energy, as
the production of these plants can be very irregular, it implies that the ramping of each available plant
becomes very relevant to avoid inefficient scenarios.

To better understand electricity prices, it is necessary to comprehend how they are formed following the
so-called merit-order effect. This effect means that power prices are the marginal cost of the last needed
electricity generation technology. In particular, renewable energies very often have very low marginal
costs. Hence, including renewable generation in this process shifts the supply curve to the right (con-
cerning their priority dispatch), resulting in lower energy prices. Another characteristic of electricity
is its highly inelastic demand in the short run due to consumer difficulties changing their consumption
patterns of this commodity. This economic argument has been investigated so far in many countries and
applying diverse methods. In Würzburg et al. [2013] the authors make an exhaustive review of the exist-
ing researches about the price effect of renewable generation. One of the main conclusions is that despite
the differences observed between countries and the different methods applied, it could be accepted that
including renewable resources in a market region results in a decrease in electricity prices. However, as
renewable production is irregular and intermittent (due to its dependence on weather conditions), that
is not the unique effect observed in the article. Indeed, renewable production could challenge electricity
markets, increasing its uncertainty and turning more complex to match the supply and demand. For
example, for the case of Germany, Kyritsis et al. [2017] present an empirical study about this topic
focused on wind and solar generation. The results for that sample showed that solar power had reduced
prices and its volatility. On the other hand, wind power had also reduced prices (at a greater level) but
had increased the volatility by introducing electricity price spikes. In this way, it could be remarkable
the importance of having a deep knowledge about the energy generators in the region to be studied.
Likewise, the arguments explained before are related to the main objective of this paper. PPA are a
financial instrument likely to promote renewable projects. As it can be viewed, this development must
go hand in hand with a correct comprehension of the phenomenons explained above.

In the descriptive analysis of the database PPA prices, the regions with a more significant sample and the
required power prices information are CAISO and West-non-ISO. Furthermore, the results showed that
different wind and solar PPA treatment is needed, but it also seems the same for the different regions. In
accordance with this, it has been decided to do the modelling of the PPA prices with these two regions,
expecting that as more contracts are available, the better for the model’s reliability. For that reason and
the arguments explained above, before developing the models, it has been considered necessary to do a
brief research about the main characteristic of these two regions and their power markets with particular
attention to the generation structure. For that objective, it is essential to define the capacity ratio
previously. This ratio is between the energy produced by a generator and its capacity at its maximum
performance. In this case, it will be used to talk about the capacity ratio of each type of generation. For
example, nuclear generation usually has a ratio of nearly 90% or more, and some fossil fuels as natural
gas or coal have a ratio around 50%. Meanwhile, wind generation has a lower ratio of around 40 %
and solar generation even lower with a 25-30%. For this reason, it is crucial to differentiate between
generation and capacity when talking about types of energy generation.
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2.3.1 CAISO
The California Independent System Operator is a non-profit ISO covering most California (80%) and
a small part of Nevada. It grants access to electricity in the region with almost 26,000 circuit miles
of transmission lines and coordinates the energy resources from different term perspectives. As can be
noticed in the map of figure 7 is the unique ISO of the Western U.S.

For an adequate comprehension of the market prices, it is fundamental to know how the market operates
and the composition attending to the different energy generation technologies available in the region. In
figure 8 it is the percentage that represents each type of generator of the maximum on-peak available
capacity in the summer of 2020. According to this, the availability of energy generation was based on
a significant percentage of natural gas power. Gas is a fossil fuel and typically with higher costs than
renewable energies. That implies that the price structure is going to depend a lot on the price of this
underlying. Also, hydropower represents a significant 16% of the maximum capacity available. In the
third position, solar technology can provide up to 9% of the total energy consumed on the maximum
on-peak.

Likewise, it is helpful to see the percentage of energy generated by each type of technology because
the capacity available with each technology is not usually the same as the percentage of use of each
one. In figure 9 this data is presented for the year 2019. On the left graph, the percentages have
changed, and gas is not as important as in the full capacity graph. That means that on-demand peaks
of energy prices will depend more on gas prices than in everyday situations. It is also noticeable that
renewals (including solar, wind, biomass, and others) have a percentage higher than hydro-power3 as
well as the significant importance of the imports of energy. Along the months, it is visible a changing
profile with fewer percentages of gas energy generation approximately during the spring. The increase
of energy production in renewals and hydroelectric technologies could explain that. So, price expecta-
tions are lower in those months due to the higher importance of technologies with fewer production costs.

Figure 8: Percentage of generation by each type of fuel on the Maximum Available Capacity. CAISO.
Source: Report of CAISOs website

This changing production structure occurs during the day too. In figure 10 this is shown with the daily
generation profile of each technology. It has to be remembered that solar production has a relevant
impact on the total production, and attending to this last graph, the influence of this generation would

3As it represents a relevant percentage, it would be helpful to know the percentage of hydroelectric generation due
to conventional damns or to pumped storage plants. Hydroelectric generation is considered dispatchable. More specifi-
cally, when the plant is a pumped-storage one, the possibility to pump the water (on off-peak electricity demand periods)
allows to generate power and storage it. These characteristics can be advantageous to mix in markets where renewable
energy is being integrated as it permits to match the demand because it is dispatchable and allows energy storage
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be more decisive in the sun hours. In this interval, gas, imports, and hydroelectric (at a fewer level)
experiment significant reductions. The hours of maximum energy demand are usually on the interval
between 16 - 20. Thanks to the amount of solar energy, this market probably does not show its higher
prices in this interval. Instead, maximum prices will probably be around 20-22 in concordance with
the decrease of solar production and increase of gas and imports. This can be confirmed in figure 11,
where the interval hours with higher prices of 2019 coincided with the hours where the solar production
was decreasing or almost zero between 18-22 interval hours. The same occurs for the lower prices that
matched the peak solar production hours.

Figure 9: Percentage produced each month by types of fuel on 2019. CAISO.
Source: Report of CAISOs website

Figure 10: Percentage produced each hour by types of fuel on 2019. CAISO.
Source: Report of CAISOs website
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Figure 11: Average hourly prices 2019. CAISO.Source: Data from Reuters, own elaborated graph

2.3.2 West-non-ISO
The West-non-ISO covers the Southwest and Northwest regions. It is the part of the west of the U.S
without an ISO operator. Both regions are examined as a unique region in this research as the PPA
database considers both regions as the West-non-ISO region. Nevertheless, it includes the Northwest
Power Pool (NWPP), the Rocky Mountain Power Area (RMPA), and the Southwest Power Area (where
are listed Arizona, New Mexico, and Southern Nevada). All of them belong to the Western Electricity
Coordinating Council (WECC). A common characteristic of these areas is that they contain many bal-
ancing authorities (B.A.s) with different competencies (dispatching generation, obtaining power, assuring
the electricity grid reliably, among other things).

The NWPP comprises seven states and one small portion of California, covering 1.2 million square miles.
It has up to 20 Balancing Authorities. The Southwest electric market encompasses the three states
already mentioned. The Rocky Mountain Power area is the smallest one, responsible for the electricity
grid in parts of Utah, Wyoming, and Idaho.

Now, for a better comprehension of this market, a brief analysis of the capacity and net generation by
fuel types is presented. Attending to figure 12 natural gas is the central capacity resource in the region.
However, the North-West region has a higher percentage of hydroelectric generation. Indeed, this type
of generation has a significant percentage in all regions. Nuclear is only available (in significant quanti-
ties) in the South-West region. Coal is a fossil fuel used in the three regions too. Last, wind and solar
generation differ from each sub-region, but they similarly have a significant percentage.

However, focusing on figure 13 renewable generation with solar or wind technologies had residual impor-
tance in the period shown in the figure but increasing with the years. Furthermore, as seen, coal has
greater use than natural gas, or the difference is not as big as with the maximum capacity.

So, the market has a similar composition as the CAISO market except for the coal that has significant
importance in the generation. In contrast, in the CAISO grid, the generation is residual. Besides, attend-
ing to the graphs at the top of figure 13, base-load fuel types predominate in the region, so the prices are
expected to be more regular than if non-dispatchable generators represent a higher percentage. Though
hydroelectric generation represents a significant part of the net generation, as stated before, it would be
useful to know the production originated by conventional damns and by pumped storage plants. Know-
ing that would determine the percentage of energy generation that can be considered purely base-load
type (but as with the CAISO market, this information is unavailable).
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Figure 12: Capacity by types of fuel in the three regions of West-non-ISO (2021 information).
Source: WECC website

Figure 13: Net generation by types of fuel in the three regions of West-non-ISO (2019 information).
Source: WECC website
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3 Power prices data

A brief description of the data used related to power prices (both spot and forwards) corresponds to
this section. In particular, two markets have been analyzed: the CAISO market and the West-non ISO
market.

First, the CAISO market available data is explained. This region is divided into three main sub-regions
called SP-15, NP-15, and ZP-26. Among these three regions, there is only available data about SP-15
and NP-15. So, these two regions have to be used as a proxy of the CAISO’s prices. To unify the series,
the weighted average has been computed to have the price of all the region. Nevertheless, SP-15 seems
to be predominant between these two regions, so the individual SP-15 prices series has been considered
a possible proxy too. Indeed, data is broken down into regions for both spot prices and future prices, so
this explanation is handy for both cases.

Second, the West-non-ISO region available data has different particularities. As seen in section 2.3.2,
this region covers a vast territory of the west of the U.S. Additionally, being a non-ISO region could make
it more complex to find transparent and precise data. Despite these problems, there is data available
of future prices of the Mid-C hub, and spot series also from this hub and some others as Palo-Verde or
Mead hub. Consequently, taking into account the different options, the best one seems to use for the
future price series and the spot series the Mid-C hub data. Although there are many hubs in this region,
and the Mid-C hub only represents one of them, it seems more reasonable to use as a proxy only this
data since for future prices is the unique hub that information has been found. This hub is from the
North-West power region specifically, but the spot series seemed to be very similar to the other ones
regarding the trend.

The following paragraphs refer to both regions but divided for the spot series first and the future series
second. The spot series used are available on the data source “reuters” where the explained information
is organized. In particular, the series from the ICE day ahead prices provided on this data source are
used because the data starts some years before the original Reuters series. In fact, for the West-non-ISO
region, the original Reuters series for the day ahead prices are not available.

Second, the future prices, also provided by Reuters, are described with more precision, as they have
other characteristics fundamental to be explained and necessary to understand the first model later. In
particular, the future contracts available data is from the Tullet and Prebon broker. More precisely,
there are available prices for energy purchases in the next three ends of the months, in the next six ends
of the quarters, and in the next eight ends of the years. However, only the quotes of the year contracts
are used.

At each date, there is the spot price of the last day quoted and the future price for the end of the
next eight years. So, for example, in the first of January 2019, the database has the spot price of this
day and the future yearly prices with maturity on 31/12/19, 31/12/20, 31/12/21, 31/12/22, 31/12/23,
31/12/24, 31/12/25, and 31/12/26. Then, the series are ordered so that at each date all the row has the
future prices ordered from the nearest maturity contract to the farthest one. So, a curve of prices can
be formed with all this information covering the actual price and the next eight prices at the end of the
years to purchase 1 MWh of power between the next day when the contract expires and the hole next year.
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In figures 14 and 15 the histograms of the spot series used are presented. The CAISO prices reflect a
very similar distribution comparing the SP-15 data and the SP-15 and NP-15 mixed data. Likewise, the
West-non-ISO prices have also a very similar distribution with the main difference in the left tail, which
has more negative values. To sum up, the three distributions have heavy right tails and a remarkable
asymmetry, with the mode being the lowest value, after the median, and last the mean.

Figure 14: Histogram of the price series used for the CAISO market

Figure 15: Histogram of the price series used for the West-non-ISO market
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4 Quantity and term analysis

This chapter presents a brief analysis of the relationships between the PPA prices and other variables
to see if these variables can be considered determinant factors of the PPA pricing. For that purpose, to
evaluate the relationship between variables, a graphical and correlation analysis is done. The correlation
analysis includes the following three existing correlation measures:

• Pearson correlation

• Kendall correlation

• Spearman correlation

Moreover, to complete the analysis, a formal test is going to be computed to see if the correlation
coefficient (Pearson’s correlation) is different from zero or not. For that purpose, the t-test is used. In
that way, it could be evaluated if a conclusion about the population can be drawn from the available
sample or not. That test is useful if the variable to be considered as the response is not clear. Formally,
the null hypothesis for the t-test of the population correlation coefficient will be:

H0 : ρ = 0 and H1 : ρ 6= 0 (1)

The t-statistic is:

t∗ =
r
√
n− 2√

1− r2
(2)

Then, the p-value is calculated assuming that the statistic follows a Student-t distribution with n-2
degrees of freedom. After that, the hypothesis is rejected or not if the value is lower than the significance
level of α < 0.01 (**) or not.

4.1 Relationship between PPA prices and quantity.
The first part of the analysis is about the connection between the price and the quantity. The underlying
argument in this relationship could be that the quantity may be related to the price as could be interpreted
that the larger the project is, the lower cost the project has. Nevertheless, arguments in favour of possible
dis-economies of scale for especially large projects could also be considered as Bolinger et al. [2019] explain
in their empirical analysis of PV Utility-scale solar projects. The authors hypothesize higher costs to
face (administrative, regulatory, or some others) or the longer time needed to construct these projects.

4.1.1 Whole Database
As it could be expected, the data shows a negative relation and more or less similar between solar or wind
data. This relationship is relatively low, confirmed by the scatter plot where the relationship does not
seem clear. However, the t-test rejects the null hypothesis. It means that sufficient statistical evidence
exists to conclude a linear relationship between the variable price and quantity in the database.
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Correlation \Sample Solar Database Wind Database

Pearson -0.1534
(0.0039)**

-0.1877
(0.000)**

Kendall -0.2520 -0.1668
Spearman -0.3603 -0.2485

Table 6: Correlation Measures between PPA prices and quantity. All regions (p-value of the t-test)

Figure 16: Scatter plot between PPA prices and PPA quantities

Identically, the analysis can also be done by separating the sample into four different size groups. In
that way, it is possible to see if there are differences between small, medium, large, or very large projects
(lower than 20 MWh, between 20-50 MWh, between 50-100 MWh, and higher than 100 MWh projects,
respectively).

Figure 17: Prices Box-Plots of different Solar projects sizes

Figures 17 and 18 show that Solar and Wind prices of the database reflect a decreasing trend. However,
very large solar projects are more dispersed and with a slightly higher median price.
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Figure 18: Prices Box-Plots of different Wind projects sizes

As seen in section 1.2, the database is very heterogeneous among all the regions. As the model proposed
is tested on CAISO and West-non-ISO data, the analysis is now focused only on these regions.

4.1.2 CAISO Region
When only CAISO data is contemplated, the results change significantly. On the one hand, solar data
shows a non significant relationship. In addition, the t-test does not show enough statistical evidence
to reject the null hypothesis. On the other hand, surprisingly, wind data reflect a positive relationship.
Indeed, the sample shows a strong relation confirmed with the t-test that rejects the hypothesis of the
in-existence of a linear relationship between wind PPA prices and quantities.

Correlation \Sample Solar CAISO Wind CAISO

Pearson 0.1309
(0.1491)

0.6282
(0.000)**

Kendall -0.0083 0.4365
Spearman -0.0135 0.6055

Table 7: Correlation measures between PPA prices and quantity. CAISO region. (p-value of the t-test)

Figure 19: Scatter plot between PPA prices and PPA quantities. CAISO Region

Same as before, the Box-Plots are presented below to see the trends by project size but only considering
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the CAISO data. Figure 20 reflects an increasing median price for the case of solar very-large projects
compared with the previous size. Moreover, for the wind case, figure 21 reflects the facts already seen.
When increasing the size of the project, the PPA prices seem to increase too.

Figure 20: Prices Box-Plots of different CAISO Solar projects sizes

Figure 21: Prices Box-Plots of different CAISO Wind projects sizes

4.1.3 West-non-ISO Region
Now, the West-non-ISO region is examined. This time, solar and wind data reflect a negative correlation.
Indeed, it is stronger than the correlations found for the full sample. The t-tests also confirm the existence
of a linear relationship. In solar at the significance level of 1%, and in wind it is non significant at the
level 1% but at 5% yes.

Correlation \Sample Solar West-non-ISO Wind West-non-ISO

Pearson -0.3204
(0.0012)**

-0.2225
(0.0293)

Kendall -0.3851 -0.1592
Spearman -0.5468 -0.2502

Table 8: Correlation measures between PPA prices and quantity. West-non-ISO region. (p-value of the
t-test)
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Figure 22: Scatter plot between PPA prices and PPA quantities. West-non-ISO Region

The Box-Plots are presented as in the other cases. Figure 23 reflects a decreasing median price along with
the different sizes. In the wind case, figure 24 shows a decreasing trend but less evident. Furthermore,
the dispersion seems to decrease by the size in the solar case while it seems to increase for the wind data.

Figure 23: Prices Box-Plots of different West-non-ISO Solar projects sizes

Figure 24: Prices Box-Plots of different West-non-ISO Wind projects sizes
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In general terms, different relationships have been found. The two specific regions present significantly
different results. That could confirm that the analysis should be done separated by regions and tech-
nologies of generation as the data seems to differ attending to the evidence.

4.2 Relationship between PPA prices and term.
This second part of the analysis can be justified as some approaches consider that some prices have
implicit a term-premium in their values. This framework has been intensely studied in the literature of
interest rate markets. So, considering that this argument is also possible in this market, the relation
between these variables is analyzed.

4.2.1 Whole Database
Positive but not so high values can be seen for all the regions. Nevertheless, the results cannot be
considered valid for all the population if a significance level of 0.01 is determined.

Correlation \Sample Solar Database Wind Database

Pearson 0.1330
(0.0124)

0.1018
(0.0244)

Kendall 0.1207 0.0425
Spearman 0.1614 0.0546

Table 9: Correlation Measures between PPA prices and term. All regions (p-value of the t-test)

Figure 25: Scatter plot between PPA prices and PPA terms

4.2.2 CAISO Region
Again, when only the CAISO region contracts are considered, the situation changes. Now, the relation-
ship seems to be positive in solar data as well as in wind data. Furthermore, focusing on the graphs,
the direct relationship could be expected before seeing the correlation coefficients. Finally, this idea is
strengthened as the t-test allows concluding with sufficient statistical evidence that a linear relationship
exists in solar and wind CAISO data.
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Correlation \Sample Solar CAISO Wind CAISO

Pearson 0.2761
(0.002)**

0.6732
(0.000)**

Kendall 0.2989 0.5558
Spearman 0.3894 0.6823

Table 10: Correlation Measures between PPA prices and term. CAISO region. (p-value of the t-test)

Figure 26: Scatter plot between PPA prices and PPA terms. CAISO Region

4.2.3 West-non-ISO Region
Another time, the West-non-ISO region differs a lot from the CAISO region. Both correlations do not
reject the null hypothesis of the inexistence of a linear relationship. And what is more, the wind sample
reflects a negative correlation (though it is very weak).

Correlation \Sample Solar West-non-ISO Wind West-non-ISO

Pearson 0.1274
(0.2066)

-0.0546
(0.5969)

Kendall 0.1255 -0.0842
Spearman 0.1619 -0.0921

Table 11: Correlation Measures between PPA prices and term. West-non-ISO region. (p-value of the
t-test)
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Figure 27: Scatter plot between PPA prices and PPA terms. West-non-ISO Region

In conclusion, on the one hand, the correlation between price and size reflect significant negative re-
lationships for the full sample and the West-non-ISO solar data. Nevertheless, CAISO does not have
a significant correlation for solar data, but for wind data, a positive relationship is confirmed by the
t-test. In addition, wind West-non-ISO data seems to be non-significant. So, the prices and size depend
on the sample considered, and despite expectations of negative or non-significant values, the CAISO
sample does not follow that assumption. On the other hand, between prices and terms, less significant
relationships are observed. Specifically, only the CAISO region shows a significant positive correlation
for both technologies (in fact, high values). Meanwhile, the terms appear to not indicate a relationship
in the West-non-ISO case and in the whole sample.
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5 First model: Standard SWAP pricing

5.1 Methodology
The first model to be tested is based on the traditional approach for swap valuation but with some
modifications. Generally, in a swap, a fixed leg has to pay flat or pre-agreed prices, and there is also a
float leg in which the payments will depend on the price of the predetermined underlying. Specifically,
a Power Purchase Agreement is a regular daily/monthly/yearly exchange of a predetermined quantity
of power for a fixed price (or a price based on some rule established before starting the contract). The
float leg of the PPA is the part that must deliver the energy, and the fixed leg is the part that receives
and pays the power. In this way, there are cash-flows of the fixed and float leg. In particular, the net
present value of each leg (supposing an exchange of 1 Mwh) is given by:

NPV fixed =

n∑
i=1

PPPAi · e−r·(ti−t0) ; NPV float =

n∑
i=1

P (ti) · e−r·(ti−t0) (3)

Where PPPAi is the price agreed for the PPA for the exchange number “i”. In particular, in this research,
the price agreed is taken as it remains at the same value in all the exchanges, so the sub-index i from
PPPA could be erased.

Furthermore, ti is the date associated with the cash-flow number “i”. (ti − t0) are the years between the
execution date and each concrete cash flow (obtained dividing by 365 the number of days in the inter-
val). It is essential to remember the period between the agreement and the start of the trade-offs (t1 - t0).

Likewise, “n” is the number of exchanges that the PPA involves. It is obtained by multiplying the term
of the contract with the frequency of the exchanges. For example, if the contract is for monthly deliveries
of energy, the multiplier will be 12, but if there are exchanges each day, it will be 365.

Last, P (ti) is the electricity quote in the market where the PPA has been signed on the date ti. It
represents the variable and unknown price of electricity. As the pricing is done when the PPA con-
tract is signed, these prices will not be certainly known. For that reason, those should be estimated.
Taking expectations and under the risk-neutral measure, it can be substituted by the forward’s elec-
tricity prices available at that moment. In particular, following the notation used in the literature,
as for example in Benth and Koekebakker [2008], a future contract of power is expressed in that way:
EQ
t0 [
∑n
i=1 P (ti)] =

∑n
i=1 F (t0, ti, ti+1). As electricity is a commodity that cannot be storable, these con-

tracts involve that future prices are not for a specified moment. Instead, the price includes an interval
after the contract’s maturity (the interval can be hours, days, months). For that reason, future contracts
on energy markets can be considered swaps as the exchange of power is agreed upon for an interval of
time. That is why in the expression below, there are three dates. It represents the day of observation
of the future price of a contract with delivery over the last two dates. Additionally, attending to non-
arbitrage conditions, a SWAP with delivery over [t1,tn] and N - 1 swaps with deliveries over the disjoint
periods [ti, ti+1] with i = 1,2,..., N-1 and the union of all the periods equals [t1,tn] must have the same
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value. Expressed formally: 1
tn−t1

∑n−1
i=1 F (t0, ti, ti+1) = F (t0, t1, tn). Now, it is easy to see that float leg

could be expressed as the price of the forward F (t0, t1, tn). In particular, it is assumed that the forward
involves exchanges of power with the same frequency as the PPA. This means that if the PPA price is
for the exchange of the quantity agreed each day of the period, the forward needed, also will need to be
for daily exchanges. In that way, the discounting factors can be erased, and it is easy to the that the
final equation is:

PPPA = F (t0, t1, tn) (4)

So, the best method to calculate the PPA price would be if a future contract for the exchange of power
during the interval of t1 and tn existed. Nevertheless, this is not going to happen in most of the electricity
markets. That is why, as this data is not available, an approximation may be used with the existing
future contracts. In this regard, interpolation and extrapolation can be used to estimate the prices of
contracts with lower intervals. In figure 28, a scheme exemplifies one of the possible procedures used
with the existing contracts on CAISO’s market (that coincides with the one used with the West-non-ISO
market, as the future prices available have the same characteristics in both markets).

Figure 28: Estimation of F (t0, t1, tn)

The black lines represent the existing contracts in that example. Meanwhile, the blue lines represent the
concatenated contracts for one year whose prices are interpolated or extrapolated. The extrapolation
method becomes relevant as the PPA terms are usually longer than 15 years, so more than half of the
future yearly contracts will be extrapolated. For that purpose, different extrapolations and interpolations
have been tested. First of all, between the different interpolations tried, the output differs insignificantly.
Secondly, to extrapolate, the possibilities considered are mainly two. It turns out to be crucial to
determine a long-term future price. Otherwise, the procedure can result in “exploding” extrapolations
with extreme future prices (really high or low prices outputs).

The options considered 4 are the price of the last maturity future contract available or the average of
4More complex options exist to estimate the long-term future price. For example, to model historical data with an
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the last eight/seven years 5 electricity spot prices in the market analyzed. In that way, the procedure
has become an interpolation where there are eight future yearly contracts and a long-term price at each
time. Different methods have also been tried showing that “spline”, “makima”, or others more complex
have shown strange behaviors. At the same time, the linear interpolation outputs seem to be the more
reasonable one 6. Then, comparing the two long-term price possibilities considered, the output is very
similar. On the basis of the argument behind each one, the first one assumes that the best estimate
of the long-term price with the available information is the last future price available, and the second
one relies on the fact that history is the best estimator of the future. With this in mind, the aver-
age last eight/seven years’ spot price could be less biased by temporary external factors than the other
estimate. Even so, both methods are applied and present to see different behaviors of the model variants.

To sum up, to price each PPA, it is needed the forward’s electricity curve 7, and the contract information.
In this case, the information needed is the term and the date of execution of the contract. As it can be
observed, the capacity is not used.

5.2 Results
Model 1 proposed before is tested now with the markets already analyzed in detail. In this way, nearly
half of the PPA contracts available in the database will be evaluated with this model.

5.2.1 CAISO results
First of all, there is an explanation of the pricing model variations considered. Actually, the models are
pretty the same, but they differ in two main things:

• Price series: The SP-15 price series is used in the first two cases and the mixed SP-15 and NP-15
(weighted by their volumes) in the other two.

• Extrapolation method: As explained, the methods contemplated are the latest final maturity future
price available or the long-term price as the average of the eight last years. The long-term price
corresponds to the second and fourth models.

The CAISO region has the biggest sample of solar PPA contracts in the database and a large enough
sample of wind PPA contracts. Using the contracts information and applying model 1, the following
results have been obtained. First, in figure 29 the solar PPA are priced with model 1 but using the dif-
ferent variations explained. Then, the output is shown in the figure, where an apparent underestimation
can be remarked. The same occurs for the wind PPA, whose results are in figure 30.

ARMA specification. Nevertheless, it does not seem to involve a significant improvement compared with the require-
ments implied (it will be needed to model the last spot prices for each PPA execution date). The objective of this re-
search is not to model electricity prices at all. For that reason, simpler estimators are considered

5The choice of the last eight/seven years is justified as is the largest sample available previous to the first PPA exe-
cution dates.

6The “interp1” function of the software Matlab has been used for that aim. The software also has a cubic interpola-
tion, but the results are very similar to those of the linear interpolation.

7In particular, as explained before, the future and spot electricity price series are two possible options: only using the
SP-15 data as a proxy for the electricity prices of this region, or a weighted series between SP-15 and NP-15 data.
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Figure 29: Market PPA pricing compared with the pricing using model 1. Solar CAISO data.

Figure 30: Market PPA pricing compared with the pricing using model 1. Wind CAISO data.

After the results, an analysis of these results is done. For that aim, different measures of forecast errors
are presented. The explanation of them is in annex 3 on page 81.
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Error measure \Model Pricing 1 Pricing 2 Pricing 3 Pricing 4
Mean Squared Error Root 108.04 109.41 107.31 109.09

Mean Absolute Error 85.32 87.22 84.92 87.12
BIC 504.53 504.07 503.40 503.40
AIC 501.75 501.29 500.62 500.62

Correlation (Market vs Model) 0.5681 0.7105 0.5703 0.6930

Table 12: Measures of the errors on the solar CAISO data

As seen in table 12 the MSER and MAE are better using SP-15 data prices only and the same if the ex-
trapolation used is the second one. However, attending to the information criterion statistics, the second
extrapolation reflects better or equal results. The SP-15 price data has worse results than mixed prices
data in the BIC and AIC cases. Concerning the correlation coefficient, whose justification is explained
in the annex 3, the second extrapolation method captures better the trend of the pricing in the market.
Meanwhile, between the CAISO or SP-15 data, the results are not the same clear.

Error measure \Model Pricing 1 Pricing 2 Pricing 3 Pricing 4
Mean Squared Error Root 109.19 109.58 109.69 110.09

Mean Absolute Error 99.49 100.63 99.89 101.07
BIC 121.94 120.80 122.16 121.00
AIC 120.51 119.36 120.73 119.57

Correlation (Market vs Model) 0.3945 0.6396 0.3519 0.5820

Table 13: Measures of the errors on the wind CAISO data

In table 13 the SP-15 data gets lower MSER and MAEs. Furthermore, the first extrapolation method
returns higher values too. As in the previous case, with the BIC and AIC, the second extrapolation
would be preferred. Nevertheless, in this case, SP-15 also seems better attending to AIC and BIC,
opposite with the solar case. The correlations are lower than in solar data and have higher values if the
extrapolation method uses the historical average. In addition, in this case, the SP-15 data detects better
the movements attending to the results.

Despite this brief analysis, the main conclusions are that the models have significant deviations from the
market prices. In addition, the performance of each model does not seem to be very different among
them (the differences are minimal in all the measures).

Loss Function \DM p-value Pricing 1 Pricing 2 Pricing 3 Pricing 4
First Loss Function 0.0000 0.0000 0.0000 0.0000
Second Loss Function 0.0081 0.0082 0.0097 0.0088
Third Loss Function 0.0000 0.0000 0.0000 0.0000

Table 14: Solar Diebold Mariano test p-values (CAISO)

Loss Function \DM p-value Pricing 1 Pricing 2 Pricing 3 Pricing 4
First Loss Function 0.0000 0.0000 0.0000 0.0000
Second Loss Function 0.0019 0.0014 0.0013 0.0011
Third Loss Function 0.0000 0.0000 0.0000 0.0000

Table 15: Wind Diebold Mariano test p-values (CAISO)

Looking at tables 14 and 15 the expectations are confirmed by the DM test. As the output shows,
there is enough evidence to reject the null hypothesis in all the cases. This result would mean that the
losses caused by the forecast errors are statistically different from zero in the four models and both wind
and solar data (and the loss functions do not matter a lot as the three of them conclude the same results).
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Lastly, the forecast errors are studied by years. The objective of this is to explore the changes over time
of the model estimates versus the market prices. Furthermore, the relationship between that errors and
the size and term is computed too. Specifically, the forecast errors computed are the ones of the pricing
4, as it uses the mixed prices of the two available hubs information and the average of the last eight
years for the long-term price. So, the results are presented in tables 16 and 17.

The evidence reflects an important underestimation in the first years of the sample. In particular, solar
data has high values at the beginning and these have become moderate in comparison since 2013. At-
tending to the correlations, the size does not have a significant linear relationship except in the year 2011
where a high negative correlation is found. Meanwhile, the duration of the PPA contract seems to be
significant more often, finding that the full sample has a positive significant relationship as well as 2010
and 2014 when strong relationships are observed. Secondly, attending to wind data, only a few years
allow computing the correlations. Nonetheless, the whole sample reflects significant positive relationships
for both variables. Besides, in 2010 exists a very high correlation between the size and the forecast errors
and in 2009, term and forecast errors have a significant relationship almost perfectly positive.

Compared with the results of the previous chapter, the correlations are very similar to the ones found
for the values of the market prices contrasted with the two variables. Overall, the wind data still shows
strong positive relationships and the solar data for the case of the term. That fact could help to find
other influential factors in the pricing since the results show the persistence of the relationships previously
detected.

All 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
1 87.05 234.7 159.0 126.9 82.9 66.5 53.3 51.8 23.6 19.6 21.6 18.4

2 0.0849
(0.35)

-0.301
(0.46)

-0.049
(0.85)

-0.742
(.01)**

0.2859
(0.34)

-0.5
(0.04)

-0.069
(0.77)

-0.383
(0.11)

0.5447
(0.45)

0.6249
(0.13)

-0.448
(0.55) -

3 0.2711
(.00)**

-0.012
(0.97)

0.6723
(.00)**

0.5785
(0.08)

0.5538
(0.05)

0.533
(0.03)

0.7153
(.00)**

0.1742
(0.49)

-0.971
(0.03)

-0.012
(0.97)

0.4373
(0.56) -

Table 16: Analysis of the Solar forecast errors by years in CAISO. 1: Average forecast error.
2: Correlation between forecast error and size. 3: Correlation between forecast error and term.

All 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
1 101.1 141.5 131.8 82.2 94.0 50.8 63.3 - 40.1 19.8 24.2

2 0.5758
(0.000)**

0.4511
(0.37)

0.8151
(0.002)**

0.7476
(0.14) - - - - 0.6844

(0.52) - -

2 0.6587
(0.000)**

0.9836
(0.000)**

0.5624
(0.07)

0.7378
(0.15) - - - - 0.8136

(0.39) - -

Table 17: Analysis of the Wind forecast errors by years in CAISO. 1: Average forecast error.
2: Correlation between forecast error and size. 3: Correlation between forecast error and term.

5.2.2 West-non-ISO results
In this case, as explained before, only one price series is used. So, there are two pricing outputs: one
extrapolating with the latest final maturity future price available, the “Pricing 1”, and the other with the
long-term price calculated as the average of the seven last years, the “Pricing 2” (the sample is a little
shorter than with CAISO data, so, to be able to price PPA of 2009 the average should be done with the
last seven years instead of eight).

This market has more or less the same amount of wind and solar PPA contracts (around one hundred
each). Nevertheless, many wind contracts are from dates earlier than 2009. So, as 2009 is the first date
where future yearly prices are available, the model is only tested in approximately half of the wind con-
tracts (this also occurs in CAISO data, but the percentage of discarded PPA contracts is smaller). When
model 1 is applied, the results obtained are shown in figures 31 and 32 . Three series are represented on
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the graph: the real market pricing, the pricing with the last future price available extrapolation, and the
pricing extrapolating with the historical average price. Similar to the previous market results, there is
an underestimation in both types of PPA. This repeated fact reveals the existence of other factors which
influence the pricing not being taken into account.

Figure 31: Market PPA pricing compared with the pricing using model 1. Solar West-non-ISO data.

Figure 32: Market PPA pricing compared with the pricing using model 1. Wind West-non-ISO data.
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To quantify the errors, the same procedure as with the CAISO market is done. The different measures
of the forecast errors proposed are presented in order to be able to evaluate the output better.

Error measure \Model Pricing 1 Pricing 2
Mean Squared Error Root 82.05 84.07

Mean Absolute Error 61.99 64.55
BIC 400.86 400.65
AIC 398.27 398.06

Correlation (Market vs Model) 0.8124 0.8718

Table 18: Measures of the errors on the solar West-non-ISO data

Table 18 shows that the MSER and MAE are higher when the extrapolation with the average of the last
seven years is used. However, the information criteria reflect lower values for the mentioned extrapola-
tion method. As it can be seen, the correlations in this market are stronger, with values very near to 1.
Indeed, the second extrapolation method reflects a coefficient of almost 0.9.

Error measure \Model Pricing 1 Pricing 2
Mean Squared Error Root 54.56 55.37

Mean Absolute Error 42.63 43.60
BIC 203.45 201.93
AIC 201.44 199.92

Correlation (Market vs Model) 0.6459 0.7468

Table 19: Measures of the errors on the wind West-non-ISO data

Similarly, table 19 manifests results in the same direction as with solar data. The errors measured with
the MSER and MAE are shorter if the extrapolation with the latest future price available is applied,
and the opposite occurs with the information criteria values. The correlation coefficients for wind data
are lower but still high, compared to the other market. Moreover, better results are found for the second
extrapolation method.

Loss Function \DM p-value Pricing 1 Pricing 2
First Loss Function 0.0000 0.0000
Second Loss Function 0.0001 0.0001
Third Loss Function 0.0000 0.0000

Table 20: Solar Diebold Mariano test p-values (West-non-ISO)

Loss Function \DM p-value Pricing 1 Pricing 2
First Loss Function 0.0000 0.0000
Second Loss Function 0.0000 0.0000
Third Loss Function 0.0000 0.0000

Table 21: Wind Diebold Mariano test p-values (West-non-ISO)

Lastly, tables 20 and 21 show that the null hypothesis of the losses due to forecast errors being not
statistically different from zero is rejected in all the cases firmly.

Consequently, the conclusion does not differ a lot from the conclusion of CAISO data. The model has
significant errors in both cases, and the differences between the extrapolation methods are not deep
enough to confirm the best performance of one of them. The most relevant difference seems to be in
the correlation, as with the information available, the trend of the prices agreed for the PPA has been
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captured better for the West-non-ISO market.

Identically to the CAISO analysis, the study of the forecast errors by years is presented below in tables
22 and 23. In this case, as previously seen in the graph, the solar forecast errors are lower but the
trend is similar. However, wind data differs in the trend as in 2012 the forecast average error is very
low, then it experiments an increase of two years and another decrease even with a negative value in 2018.

Solar forecast errors seem to have a significant negative relationship with the size when the full sample
is used. In contrast, the term shows a significant correlation neither in the full sample nor in specific
years. For the wind case, the results are almost equal to the ones of the previous chapter. The size
reflects a negative significant correlation in the full sample but in specific years not. And the duration
of the contract has an exception as in 2009 a positive significant relationship is detected. So, in the
West-non-ISO case, the results also are close to the ones of the previous chapter except that the wind
data now shows a significant relationship at the confidence level of 1% (and in the previous chapter was
at the confidence level of 5%).

All 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
1 64.14 175.0 153.0 138.8 96.0 71.8 59.5 45.7 39.5 46.5 18.9 9.8 24.3

2 -0.323
(.00)**

0.049
(0.96)

0.401
(0.22)

-0.187
(0.66)

0.081
(0.88)

-0.716
(0.49)

0.038
(0.92)

-0.091
(0.76)

-0.942
(0.22)

-0.112
(0.81)

-0.415
(0.10)

0.294
(0.35)

0.606
(0.28)

3 0.184
(0.07)

-0.7934
(0.42)

0.365
(0.27)

-0.358
(0.38)

0.677
(0.14) 0 0.610

(0.06)
0.38
(0.18) 0 -0.304

(0.50)
0.289
(0.26)

0.628
(0.03)

0.905
(0.03)

Table 22: Analysis of the Solar forecast errors by years in West-non-ISO. 1: Average forecast error.
2: Correlation between forecast error and size. 3: Correlation between forecast error and term.

All 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
1 41.9 73.5 80.6 32.6 5.3 18.5 62.9 51.1 39.9 16.2 -5.4 7.0

2 -0.3763
(.00)**

0.1753
(0.53)

-0.6948
(0.08)

-0.6062
(0.28) - -0.3867

(0.34) - - - -0.9966
(0.05)

-0.8048
(0.05)

0.9468
(0.05)

3 -0.0204
(0.18)

0.2557
(.00)**

-0.1934
(0.42)

0.4319
(0.55) - -0.3663

(0.37) - - - 0.9924
(0.07)

-0.5073
(0.30)

0.4918
(0.51)

Table 23: Analysis of the Wind forecast errors by years in West-non-ISO. 1: Average forecast error.
2: Correlation between forecast error and size. 3: Correlation between forecast error and term.

In general, the correlations suggest that PPA with higher terms or larger size have higher forecast errors.
That could be related to the fact that more specific terms could be defined in this type of contracts
turning more difficult to price a PPA with a standard model.
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6 Second model: Volumetric and
correlation risk price correction in
CAISO

6.1 Context
Not only exists price risk in power but also volumetric risk and correlation risk are crucial factors to
manage in renewable energy projects. Volumetric risk is related to the uncertainty on production. Mean-
while, the correlation risk concerns the relationship between power generation and prices. Specifically,
it is when higher production volumes coincide with low prices. Indeed, if the importance of renewable
production in a market increase, this event is more likely to occur as this type of generation is expected
to lower prices. So, a negative relationship can be expected.
In particular, renewable energies have irregular productions dependent mainly on weather conditions.
Furthermore, as stated before in section 2.2, these technologies are non-dispatchable. That is why mar-
kets where renewable power generation is increasing its importance are experiencing structural changes
due to the complexity to plan production. These alterations have lead to changes in prices too. All this,
coupled with the fact that renewable energies are increasing their weight in many electricity markets,
makes that risk modelling fundamental.

Regarding PPA, these risks are very important since price risk is hedged with this instrument, but these
others not. For that reason, a correction of the price can be calculated referred to this element. The
correction will usually result in a lower fixed price agreed for the exchanges. The justification lies in the
fact that the buyer of energy will require a better price for the energy since it is exposed to uncertainty
in the already mentioned events. Nevertheless, this argument is based on a negative correlation, but the
price correction would be added to the forward price if the correlation was positive. All this assuming
that PPA have a payment structure known as “pay-as-produced” previously defined in the preliminaries.

That topic has been covered in different researches. Their objectives have mainly been to study the
relationship between price and renewable production in different markets and propose hedging strategies
or instruments. Namely, this research follows an approach with ideas from Pircalabu et al. [2017] and
Kaufmann et al. [2020]. In both cases, the authors model the price and generation series in different
ways. After that, using a copula approach, they fit the standardized residuals of the marginal series
to different types of copulas to replicate the relationship between both variables. Similar to the first
investigation, Tranberg et al. [2020] propose a different way to realize the procedure made in Pircalabu
et al. [2017]. Moreover, the copula approach can be applied with three variables as Pircalabu and Jung
[2017] developed with a vine-C copula.

This research will apply this methodology to price the mentioned risk correction that each PPA should
incorporate in its pricing. For that purpose, there is data available of solar and wind generation be-
tween 10/04/2018 and 31/03/2021. Altogether the sample has 1081 observations (five days are not
available from the source). For a more rigorous correction, each PPA price correction should be calcu-
lated with the generation data of the dates before the day of pricing. Thus, if the pricing is done at the
PPA execution date, the correction at this time could only be done with historical data. Nevertheless,
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this fact will be omitted justified by two arguments. First, there is no data available before 2018 of
power generation in CAISO. Second, even if this information is available, the procedure seems to be
very large computationally as the method will require to be replicated for each PPA with a different
sample. So, keeping in mind the limitations of these assumptions, the procedure can be interpreted as
the existing way to estimate in this market the volumetric and correlation risks but losing some accuracy.

As already mentioned, the analysis will be done for both solar and wind generation technologies. In
the literature, the most common technology to apply this procedure is wind. The reason usually comes
from the more irregular generation profile compared with the solar generation profile. The irregularity
makes more likely to find a negative correlation between generation and prices. Nevertheless, in this
research, the approach is followed for both technologies. That is because solar generation has the highest
importance in renewable generation and since the number of contracts is larger for solar PPA. In addition,
if the results reflect an absence or small values for the price correction, that would also be very relevant.

6.2 Methodology
A detailed formalization of the procedure followed is going to be presented. The first part of the method,
the modelling of the series, is based on the approach followed by Kaufmann et al. [2020]. Specifically,
section 6.2.2 closely follows the steps done in the cited article. Then, a copula approach is used to fit the
modelled data. After that, the model proposed to price the volumetric and correlation risk correction by
Pircalabu et al. [2017] is used with some adjustments. In particular, the equations of section 6.2.6 stem
from this mentioned article. Furthermore, the goodness of fit measures for marginal models as well as
for copulas appear in both works (and in related literature). Likewise, there are some other measures to
extend the ones of these two investigations

6.2.1 Previous processing of the data
In figures 33, 34 and 35 it can be observed the series that are going to be used to model the solar
or wind volumetric and correlation risks. Moreover, in figure 36 the marginal distributions and joint
distribution of solar generation and prices are presented. Similarly, in figure 37 wind generation and
price distributions are shown.

Figure 33: Price series sample used for the volumetric and correlation risk modelling
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Figure 34: Solar generation expressed as the infeed factor

Figure 35: Wind generation expressed as the infeed factor
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Figure 36: Scatter-plot of solar generation and prices and their marginal distributions

Figure 37: Scatter-plot of wind generation and prices and their marginal distributions

Now, different transformations and models applied are explained in detail. First of all, the generation
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series is transformed in two stages. First, it is expressed as the value of the total installed capacity,
commonly known in the literature as the infeed factor. Second, as the domain of the infeed factor is
between 0 and 1, a logistic transformation is applied to obtain values along the entire real line. Formally,
the logistic transformation is:

F (x) = ln

(
x

1− x

)
(5)

In Kaufmann et al. [2020] the authors apply an outlier treatment before modelling the marginal price
series. However, this research differs from this approach, as the prices observed are considered values
caused in the market. Thus, it only seems necessary to treat any value if exogenous factors interfere with
that value. So, the point of view is that the PPA valuation will be biased if this treatment is done, and
the objective will be to find suitable distributions which fit well with extreme observations.

6.2.2 Marginal models
After that, the different resources used for the marginal models are presented. The aim is to account
for seasonality and other factors in the data separating these effects from the series. For the case of
the prices, denominating Pt the day-ahead price, the proposed model has short and long-term seasonal
components and a stochastic component:

Pt = STSCt + LTSCt +Xt (6)

Where each component tries to capture different patterns. The LTSC is a sinusoidal function for yearly
periods to capture the existent pattern along the year (the different levels of the prices each period of
the year). The use of sinusoidal functions has already been used in similar analyses showing a good
performance. In particular, the parameters are the following ones:

LTSCt = A0 +A1 · sin
[
2π(

t

365.25
)

]
+A2 · cos

[
2π(

t

365.25
)

]
(7)

*Where A1 and A2 determine the phase and amplitude of the function and A0 the mean.

Secondly, STSC is intended for capturing daily patterns as differences in prices can be expected depending
on the day of the week. For that objective, dummy variables of each day of the week are defined:

STSCt = d1 · 1{Day(Pt)=Monday} + ...+ d7 · 1{Day(Pt)=Sunday} (8)

*Where d1, d2, ..., d7 will be the coefficients assigned with each dummy.

Lastly, to estimate the marginal distribution, the stochastic element is a model for the mean and variance
(ARMA-GARCH). The model chosen would be the one that returns an error series independent and
identically distributed nt ∼ Distribution(0, σ2) (It is usually the Normal distribution). Formally this is:

Xt = k +

p∑
i=1

φiXt−i +

q∑
j=1

θjεt−j + εt (9)

εt = nt · σt (10)

σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjε
2
t−j (11)

Also, to consider possible asymmetries, a leverage term is used. In particular, is the specification of a
GJR-GARCH model considering only one lag for the leverage parameter:
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σ2
t = ω +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjε
2
t−j + γ1{εt−1<0} (12)

With the following restrictions for the parameters:

• The autoregresive, φi, and moving average, θi, parameters should satisfy the stationarity and
invertibility conditions.

• Likewise, to ensure stationarity, the GARCH parameters should satisfy: ω > 0, αi and βi ≥ 0 and∑p
i=1 βi +

∑q
j=1 αj + γ

2 < 1

If the model is well-specified, the variable nt will be white noise for all t. Moreover, transformed us-
ing the cumulative distribution function of the fitted distribution, it should return a uniform distribution.

For the infeed transformed factor, the model estimated is the same except for the short-term component
that is not used since different generation patterns between the days of the week are not expected.

6.2.3 Goodness of fit models
For this part of the procedure, different evaluations are used to choose the best possible model. First,
to chose the lag order of the ARMA and GARCH parameters, the BIC or AIC can be utilized. Second,
to test the goodness of fit, the simple and partial autocorrelation functions should reflect no significant
values. Specifically, this can be tested with the Ljung-Box test of serial independence. The statistic is
the following one:

Q = N(N + 2)

h∑
k=1

ρ̂2
k

N −K
(13)

*Where the null hypothesis is that the data is independently distributed. Furthermore, N is the sample
size, ρ̂2

k the sample autocorrelation at lag k and h the last lag for which the test is calculated.

Third, the Kolmogorov-Smirnov and Cramer-von-Misses tests are computed too. These are used to see
the goodness of fit of the residuals from the estimated distributions. In other words, the standardized
residuals need to be fitted to a specified distribution. Additionally, these two tests compare if two series
can be considered having the same distribution. That is why the empirical distribution of the data is
compared with a specified distribution using the mentioned tests. The null hypothesis is H0 : D = D0,
where D is the sample distribution and D0 the known distribution. In a formal way, the statistics are:

KSi = Max
t
|Ut − Ût| (14)

CMi =

T∑
t=1

(Ut − Ût)2 (15)

*where Ut is the fitted parametric distribution and Ût the empirical CDF.

Moreover, after modelling the marginal models, two other verification can be done. With the chosen
distribution F, using its cumulative distribution function, the probabilities of the series can be obtained
(F (yt)). These values could be interpreted as uniform numbers and are very useful to see if all the
procedure is well-specified. First, the resulting series can be compared to the standard uniform distri-
bution with the already presented KS and CvS tests. Second, Berkowitz [2001] proposed a more robust
test where the null hypothesis is that the probabilities are a sequence of random numbers. For that
aim, the uniform numbers are transformed into normal numbers with the inverse of the CDF of the
normal standard distribution since tests for the uniform distribution are not as straightforward as tests
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on the normal distribution. So, being Zt = Φ−1(F (yt)) the null hypothesis would be now that Zt is
identically and independently distributed as a N(0,1) against the alternative of Zt being identically and
independently distributed as a N(µ, σ2). Then, the test is based on the likelihood ratio statistic:

− 2ln(LR) = −ln
(
L0

L1

)
∼ χ2

2 (16)

That can be expressed as:

− 2ln(LR) =

N∑
t=1

Z2
t −

N∑
t=1

(
Zt − µ̂
σ̂

)2

−N · ln(σ̂2) (17)

This last verification can also be shown with the graph of the probability integral transformation, where
it could be checked if all the intervals have similar frequencies.

6.2.4 Copula approach for modelling the dependence
The copula model is now applied. These instruments allow modelling the relationship between variables
when the relationship is certainly complex due to non-linear dependences or asymmetric relationships.
Some previous definitions are presented below:

A multivariate copula is a distribution function defined on the [0, 1]d plane with marginal uniform dis-
tributions. For the particular case of this analysis, the bivariate copula has the following properties:

It acts on the range of the values taken by both distribution functions:

C : [0, 1]× [0, 1]→ [0, 1]

The marginal uniform distributions should satisfy:

C(u1, 1) = u1;C(1, u2) = u2

And also two conditions from every bivariate distribution function:

C(u1, 0) = 0;C(0, u2) = 0

for all u1, u2, v1, v2 in [0, 1] with u1 ≤ v1, u2 ≤ v2 : C(v1, v2)− C(u1, v2) ≥ C(v1, u2)− C(u1, u2)

*Non-decreasing in every component

In addition, with the assumption of differentiability of the marginal distributions, the copula can be
expressed as:

C(u1, u2) = F (F−1
1 (u1), F−1

2 (u2))

Nevertheless, this analysis works with conditional distributions. So, an extension of Sklar’s theorem is
applied. Having a joint conditional distribution function F (Θ|Ft−1) and the correspondent marginal
distribution functions F1(Θ|Ft−1) and F2(Θ|Ft−1). The conditional copula is defined in the following
way:

F ((x1, x2|Ft−1) = C(F1(x1|Ft−1), F2(x2|Ft−1)|Ft−1)

And if the marginal distributions are continuous, the copula is unique: Ut|Ft−1 ∼ C(Θ|Ft−1)

After these previous statements, a brief description of the copulas to be used will come in the following
paragraphs.
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Copulas can be divided into two big groups. The first group involves the ones based on elliptical distri-
butions. The most common elliptical or implicit copulas are the Gaussian and Student’s t distribution.
Their formal expressions are:

Gaussian = Cρ(u1, u2) = ΦΣ(Φ−1(u1),Φ−1(u2)) (18)

*Where ρ is the correlation, Σ the correlation matrix, and Φ the cumulative distribution function of a
Normal standard

Student t = Cν,Σ(u1, u2) = tν,ΣΣ(t−1(u1), t−1(u2)) (19)

*Where Σ is the correlation matrix, t the cumulative distribution function of the student t with ν degrees
of freedom.

The second group involves the Archimedean copulas, which use the generator functions explicitly defined
(so, these are explicit copulas). Two of the best-known ones are the Clayton and Gumbel copulas.

Gumbel = Cθ(u1, u2) = exp
(
−[(−ln(u1)θ) + (−ln(u2)θ)]

) 1
θ (20)

Clayton = Cα(u1, u2) = (u−α1 + u−α2 − 1)−
1
α (21)

To fit these copulas to the data the maximum log-likelihood method is going to be used. In other words,
the objective is to find the values of the parameters that return the higher value of the logarithm of the
likelihood function. Formally, defining αi as the vector of parameters of the marginal distributions, θ as
the parameters of the copula distribution and xi the vector or variables:

lnL(α, θ, x1, x2) =

T∑
t=1

lnc(F1(x1;α1), F2(x2;α2); θ) +

T∑
t=1

lnf1(x1t;α1) +

T∑
t=1

lnf2(x2t;α2) (22)

From this equation, it is easy to see that an estimation in two stages can be done. First, the parameters of
the marginal density can be calculated and then the parameters of the copula using the already estimated
marginal parameters α̂i:

Max
αi

T∑
t=1

lnfi(xit;αi) for i = 1, 2. (23)

Max
θ

=

T∑
t=1

lnc(F1(x1; α̂1), F2(x2; α̂2); θ) (24)

Actually, equation 23 is not true as the marginal models are estimated as explained above. However, it
is helpful to show that the estimation can be divided in two stages where the marginal models are first
estimated individually. Second, the copula model is estimated with the maximum log-likelihood method.

Now, the likelihood functions of the different copulas mentioned are presented below:

Gaussian copula:

c(u1, u2; ρ) =
1√

1− ρ2
exp

(
−ρ

2ξ2
1 − 2ρξ1ξ2 + ρ2ξ2

2

2(1− ρ2)

)
(25)

Student t copula:
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c(u1, u2; ρ) = K
1√

1− ρ2

[
1 +

ξ2
1 − 2ρξ1ξ2 + ξ2

2

ν(1− ρ2)

]− ν+2
2

[(1 + ν−1ξ2
1)(1 + ν−1ξ2

2)]
ν+1
2 (26)

Where K is:

K = Γ
(ν

2

)n−1

Γ

(
ν + 1

2

)−n
Γ

(
ν + n

2

)
(27)

Gumbel copula:

c(u1, u2; θ) = ([(−ln(u1)θ) + (−ln(u2)θ)]
1
θ + θ − 1)([(−ln(u1)θ) + (−ln(u2)θ)]

1
θ )1−2θ

exp(−[(−ln(u1)θ) + (−ln(u2)θ)]
1
θ )(u1u2)−1(−ln(u1))θ−1(−ln(u2))θ−1

(28)

*In this case and the next one, the uniform numbers are obtained with the CDF of the marginal distri-
bution.

Clayton copula:

c(u1, u2) = (α+ 1)
(
u−α1 + u−α2 − 1

)−2− 1
α u−α−1

1 u−α−1
2 (29)

6.2.5 Goodness of fit copulas
At this point, to choose the best copula fitting, some of the mentioned goodness of fit measures can be
used. The ones used in this case are the log-likelihood of each copula, the information criteria (BIC and
AIC), and the Kolmogorov-Smirnov and Cramer-von-Mises tests. The last ones, in that case, are used
to compare the estimated copula with the empirical results, so they are formally defined as follows:

KSC = Max
t
|C(Ut; Θ̂T )− ĈT (Ut)| (30)

CvMC =

T∑
t=1

(C(Ut; Θ̂T )− ĈT (Ut))
2 (31)

*Where the empirical copula is computed with the following formula:

ĈT (u) ≡ 1

T

T∑
t=1

n∏
i=1

1{Ûit=ui} (32)

6.2.6 Quantification of volumetric and correlation risk
After all this process to price the risk correction, the pricing model is presented. In particular, this new
model is the same presented in Pircalabu et al. [2017] but changing the sign of “c” as it is considered
better in this way. The reason is that with this change, the price correction will have a sign that reflects
the impact on the forward price and the PPA price. In other words, if c is negative, it means that the
price correction is subtracted from the forward price decreasing the PPA price and the other way round.
In addition, the equation is very similar to the one of model 1 but adding the volumetric and correlation
risk correction on the price. First, defining the profit obtained with a PPA contract as:

tn∑
t=t1

Qt(St − (F + c)) (33)
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Here, Qt and St represent the power production and price at time t (It is necessary to assume that
Qt = Et−1[Qt], i.e., assuming no balancing risk). F denotes the futures price as explained in a previous
section, i.e, the forward price at t0 for the delivery period from t1 to tn ( F = F (t0, t1, tn) ). Last, c
denotes the compensation due to the uncertainty due to power generation and the negative correlation
between prices and production interpreted as the volumetric and correlation risks.

Then, to obtain the value of c, the discounted conditional expectation of the payoff from the previous
equation is equaled to zero:

EQ
t0

[
tn∑
t=t1

Qt(St − (F + c))

]
= 0 (34)

*Assuming an interest rate of 0 to simplify (considering it a non-strong assumption).

And isolating c:

c =
EQ
t0

[∑tn
t=t1

QtSt

]
EQ
t0

[∑tn
t=t1

Qt

] − F (35)

Therefore, simulating the chosen copula, the value can be obtained by substituting the values of the
prices and production in the above equation. In particular, in reference to the risks, the denominator
is the correlation risk (it reflects the relationship between renewable generation and prices), and the
numerator is the volumetric risk.

At this point, a key remark is necessary. Being the model fitted to historical data means that the price
correction calculated above would correspond to the objective measure P. Nevertheless, the expectations
are taken under the risk-neutral measure Q for what is necessary a measure for the market price of
risk. In this regard, the particularity of electricity assets and their non-storability implies that a hedging
strategy cannot be used in the usual way. The market price of risk of the prices becomes very difficult
to obtain. Furthermore, that measure does not even exist for production. The solution widely used in
the literature is to set an assumption that the market price of risk is zero, and thus, the risk-neutral
measure and the real-measure are the same.

6.3 Results
The methodology widely explained above is applied to the series. First of all, the previous statistics
of the series are presented in table 24. The Pearson correlation coefficients have been tested with the
t-test, confirming that solar production and wind production have negative covariation with the prices.
In both cases, the null hypothesis is rejected with p-values of 0.0000015 and 0.0000011, respectively, for
solar and wind series.

Prices Solar Generation Wind Generation
Mean 37.8235 0.2719 0.2895

Standard Deviation 28.4790 0.0871 0.1555
Pearson Correlation -0.1457 -0.1472
Kendal Correlation -0.2827 -0.2827

Spearman Correlation -0.4294 -0.4294

Table 24: Main statistics of the CAISO spot prices and solar/wind infeed generation.

The coefficients and details of the model can be seen in tables 25, 26 and 27. A brief description of
the specific treatments to the series. The price series is fitted with linear regression with the long-term
and short-term seasonal components. On the one hand, all the sinusoidal parameters are statistically

57



6.3 RESULTS Óscar Bernardos Yagüe

relevant, and on the other hand, the dummies with the days of the weeks, not all of them are significant.
Fridays and Saturdays reflect a negative value and relatively low p-values. Mondays and Wednesdays
have a coefficient around 2.5-3 and p-values higher than 0.15 but lower than 0.25. Tuesday seems to be
significant with a coefficient of 4. Lastly, the less significant dummies are the Thursdays and Sundays,
having coefficients next to zero and p-values of 0.87 and 0.48, respectively.

At this point, the ARMA-GARCH model is fitted to the residuals of the previous adjustment. Different
combinations of AR, MA lags are proved as well as different GARCH or GJR-GARCH models. In this
case, the model that seems to result in a better fit is an ARMA(1,2) (only with the second term of
the MA). To correct the heteroscedasticity, a GJR-GARCH(1,1) seems to fit well. Finally, the stan-
dardized residuals are suited to a generalized Student-t distribution with a mu parameter of -0.0016,
a sigma parameter of 0.1807, and a nu parameter of 4.05. Attending to the Kolmogorov-Smirnov and
Cramer-von-Mises tests, both series can be considered as the same one. Furthermore, transforming the
standardized residuals into uniform numbers using the cumulative distribution function of the mentioned
student t, these tests are computed another time but for the uniform distribution this time. The results
still confirm the proper fitting. Last, the LR statistic mentioned above is computed, showing that the
null hypothesis of the PIT (probability integral transform) series being a uniform distribution cannot be
rejected.

Next, for the marginal model of the solar infeed data, a logistic transformation is computed as explained
above. After that, a long-term component is fitted with linear regression. Similar to the case for the
prices, all the parameters of the sinusoidal appear to be significant. The ARMA-GARCH model chosen
in this instance is an AR(1) to model the mean (without constant) and a GJR-GARCH(1,1) to model the
variance. Thanks to that, there is no sign of autocorrelation and heteroscedasticity on the standardized
residuals. These are fitted to a Stable distribution since the Student t fit results in a nu lower than 4,
meaning that the third and fourth moments of the distribution are not defined. The Stable distribution
has four parameters: α (∈ (0, 2]) called the stability parameter that determines the rate at which the
tails of the distribution decline, β (∈ [−1, 1]) the skewness parameter, γ the scale parameter determining
the dispersion of the probability density function and δ the location parameter defining the peak of the
distribution. It is a more general distribution, and for example, it includes the Gaussian distribution
when the alpha parameter is equal to 2. In particular, for this data the parameters are α = 1.4802,
β = −0.4631, γ = 2.5198 and δ = 0.9836. As seen in the test computed, the fitting can be considered to
be good as any of them can reject the null hypothesis of a bad fitting

Last and similarly to the previous treatment, the wind infeed data have a logistic transformation. After
that, the long-term component is adjusted, revealing statistically significant values. The ARMA-GARCH
chosen comprises the first and second moving average terms for the mean model. And for the variance
model, the second term of a GARCH and the second and third of an ARCH. Finally, the standardized
residuals are fitted to a generalized Student-t distribution with a mu parameter of 0.0211, a sigma pa-
rameter of 1.6017, and a nu parameter of 9.10, reflecting good values of the goodness of fit tests. Indeed,
these standardized residuals seem to be the ones with the best fitting.

As well, for the three marginal models, the PITs histograms are presented in figure 38. As already seen
in the table’s results, the wind generation series has the better fit. However, the three series do not reject
that each probability integral transform can be considered a uniform series.
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Prices marginal model

Model / Distribution Parameter Coefficient P-value

Long-term
Component

A0 37.73 0.000
A1 -9.17 0.000
A2 3.95 0.0008

Short-term
Component

Monday 3.0604 0.1659
Tuesday 4.0291 0.0682

Wednesday 2.5815 0.2425
Thursday 0.3566 0.87167
Friday -3.3116 0.1338

Saturday -5.2127 0.0187
Sunday -1.5673 0.4821

ARMA(1,[2])

k -0.6580 0.000
φ1 0.8602 0.000
θ1 -0.1018 0.0008

Ljung-Box (6) 0.000
Ljung-Box (10) 0.000

GJR-GARCH(1,1)

ω 6.2849 0.000
β 0.37186 0.000
α 1.0 0.000
γ -0.9674 0.000

Ljung-Box (6) 0.0622
Ljung-Box (10) 0.0628

Generalized
Student-t

µ -0.0016
σ 0.1807
ν 4.0457

K-S test 0.1674
CvM test 0.1204

Uniform numbers K-S test 0.1983
CvM test 0.1215

LR statistic (critical value = 5.9915) Statistic 0.0166

Table 25: Prices marginal model parameters and associated coefficients.
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Solar generation marginal model

Model / Distribution Parameter Coefficient P-value

Long-term
Component

A0 -1.043 0.000
A1 0.0274 0.0304
A2 -0.5826 0.000

AR(1)
φ1 0.75718 0.000

Ljung-Box (6) 0.1408
Ljung-Box (10) 0.2522

GJR-GARCH(1,0)

ω 0.0028 0.000
α1 0.7610 0.000
γ1 0.3940 0.000

Ljung-Box (6) 0.8055
Ljung-Box (10) 0.9368

Stable
Distribution

α 1.4802
β -0.4631
γ 2.5198
δ 0.9836

K-S test 0.0761
CvM test 0.2039

Uniform numbers K-S test 0.1053
CvM test 0.2244

LR statistic (critical value = 5.9915) Statistic 0.5845

Table 26: Solar generation marginal model parameters and associated coefficients.

Wind generation marginal model

Model / Distribution Parameter Coefficient P-value

Long-term
Component

A0 -1.0567 0.000
A1 0.2574 0.000
A2 -0.6239 0.000

MA(1,2)

θ1 0.7122 0.000
θ2 0.2054 0.000

Ljung-Box (6) 0.1777
Ljung-Box (10) 0.2967

GARCH([2],[2,3])

ω 0.0066 0.0670
β2 0.8663 0.000
α2 0.0487 0.01485
α3 0.0694 0.0003

Ljung-Box (6) 0.0000
Ljung-Box (10) 0.0000

Generalized
Student-t

µ 0.0211
σ 1.6017
ν 9.1063

K-S test 0.6155
CvM test 0.6329

Uniform numbers K-S test 0.6458
CvM test 0.6320

LR statistic (critical value = 5.9915) Statistic 0.0116

Table 27: Wind generation marginal model parameters and associated coefficients.
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Figure 38: Probability integral transformation histograms

After the solar modelling, the price and solar-generation series reflect a Pearson correlation of -0.0167
(with a p-value of the t-test of 0.55, showing statistical evidence of the lack of a linear relationship of
both transformed variables). Likewise, 0.0143 and 0.0207 values for the Kendall and Spearman correla-
tion, respectively. This result shows that in the solar case, when the model is deseasonalized and fitted
to an ARMA-GARCH, the residuals have an insignificant correlation. For the case of wind generation,
the negative correlation has increased to -0.2188 for the Pearson correlation coefficient (confirming the
existence of a linear relationship with the t-test that returns a p-value next to zero). The Kendall and
Spearman correlation has not increased, but their values are still negative, being -0.1502 for the Kendall
correlation and -0.2235 for the Spearman correlation. So, that confirms the fact about the wind series
reflecting a negative correlation after adjustments and the solar not (or lower).

Having the marginal models fitted to a specific distribution allows transforming both series of standard-
ized residuals into uniform numbers using the cumulative distribution function of the specific distribution
chosen. Then, different copulas are calibrated to the data in order to model the dependence between
both variables. Bearing in mind the goodness of fit measures, the best copula is chosen. As shown in
table 288, the best results for the solar data correspond to the Student-t copula with ρ = 0.0148 and
21.9275 degrees of freedom. Wind data, attending to table 299, seems to fit better with the Gaussian
copula (considering that the Student-t converges to the Gaussian as the degrees of freedom are high and
the Archimedean copulas converge to the independence copula). Thus, these two copulas are used for
the simulations of both dependent relationships. For that purpose, the procedure is backward to the one
conducted for the marginal models.

Copula Parameter(s) logL AIC BIC K-S Test Statistic
(critical value = 0.0414)

CvM Test Statistic
(critical value = 0.220)

Gaussian ρ = 0.0125 0.0799 1.8401 6.8258 0.0337 0.0882

Student-t ρ = 0.0148
ν = 21.9275 0.9282 0.1436 5.1292 0.0328 0.0829

Gumbel θ = 1.0140 0.3110 1.3779 6.3636 0.0321 0.0825
Clayton α = 0.000 0.0000 - - 0.0814 0.2514

Table 28: Copula solar generation vs price estimates.
8The t-stat is computed returning a p-value of 0.6814 for the Gaussian ρ and 0.6278, meaning that the correlation

coefficient cannot be considered to be different from zero.
9In this case the t-stat returns values of 0.000 for both Gaussian and Student-t correlation which means that a linear

relationship can be considered to exist
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Copula Parameter(s) logL AIC BIC K-S Test Statistic
(critical value = 0.0414)

CvM Test Statistic
(critical value = 0.220)

Gaussian ρ = -0.2232 27.61 -53.23 -48.24 0.0198 0.0362

Student-t ρ = -0.2232
ν = 52.43 27.69 -53.59 -48.60 0.0195 0.0349

Gumbel θ = 1 0.000 - - 0.0336 0.4555
Clayton α = 0.000 0.000 - - 0.0924 4.3456

Table 29: Copula wind generation vs price estimates.

Explained with detail, first, extractions simulated from the copula chosen are obtained. Specifically, the
number of extractions needed is equal to the number of days each PPA has between the first day where
the exchange of power starts and the last day plus the timeout time. Later, these uniform simulations
are converted with the inverse of the distributions fitted to the standardized residuals of the marginal
models. In this way, the result is a series of simulated standardized residuals later introduced in the
models applied before. Namely, the series are re-transformed into prices and solar-generation values
using the ARMA-GARCH of each case and the models for the short and long-term seasonal components.
Following this procedure, the resulting series can be interpreted as a simulation/forecast of both series
imposing the dependence on the data with the copula approach.

The last step is to quantify the risk correction using both series obtained. Here, to do more accurate
pricing, the specific characteristics of each PPA contract will be considered. That means three main
things:

• The execution date of the PPA is the date when the historical prices are observed in order to give
them as an input to the re-transforming procedure. Specifically, the parameter A0 of the marginal
model for the prices is substituted with the average of the previous two years. In this way, each
PPA is particularized with their specific characteristics. In the generation series, this cannot be
applied as there is no information available. So, the initialize values will be the last values of the
solar-generation series (after the LTSC model is applied), acting as this sample ends the previous
date of the PPA execution date. That is not true, but there is no other option better to apply.
As the generation-solar data is first standardized between 0 and 1, the production values of out-
of-sample observations are not expected to differ significantly from the available sample.
Likewise, the execution date is considered to determine at what point of the season will start each
particular case. The sinusoidal model will start on the specific day of the year and the week-day
model on the specific day of the week when the contract is signed.

• The term determines when the exchanges will end. Knowing the end date, the days between the
PPA execution date and the end date are the number of extractions needed for each case.

• As well, the F (t0, t1, tn) estimates of each PPA are needed to compute the formula shown in the
methodology.

With all this information, the values of the volumetric-risk and correlation-risk price correction are
obtained and presented on figures 39 and 40.
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Figure 39: Actual prices, volumetric and correlation risk correction, and model 1 and 2 pricing

Figure 40: Actual prices, volumetric and correlation risk correction, and pricing models 1 and 2
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Off the bat, it is necessary to make explicit that the forecasts of F (t0, t1, tn) used in both cases correspond
to the pricing 4.

The results show that the pricing obtained on the first model influences the risk price correction in some
sense. This fact makes sense, as the forward pricing appears in the formula. Furthermore, the model 2
pricing seems to fit the actual prices worse and underestimates the majority of the contracts. The results
for wind data are similar to solar data. In both cases, the price correction is lowest between the years
2011 and 2012. In recent years, this correction has decreased his importance, with values next to zero.

As in model one, now the forecast error measures of this models are presented in order to have a deeper
comprehension of the results.

As expected, table 30 shows that the forecast errors have increased compared with the pricings of model
1. In particular, both MSER and MAE are higher, as well as the BIC and AIC statistics. The correla-
tion is much lower to the one of the pricing 4 in model 1. The DM statistics continue to reject the null
hypothesis (shown in table 31).

Error measure \Model Pricing Model 2
Mean Squared Error Root 123.36

Mean Absolute Error 102.95
BIC 507.32
AIC 504.54

Correlation 0.4922

Table 30: Measures of the errors on the solar data with the pricing model 2

Loss Function \DM p-value Pricing Model 2
First Loss Function 0.0000
Second Loss Function 0.0026
Third Loss Function 0.0000

Table 31: Solar Diebold Mariano test p-values of pricing model 2

Now, in table 32 the worse performance of the extension can be confirmed. The trend has a similar
behavior but in general, the forecast errors are higher. Regarding the correlations, the results are very
similar to the ones of model 1. The significant correlations are the same except for the year 2011 that in
this case, the size has not a significant correlation with the forecast errors under the level of confidence
of 1%.

All 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
1 102.95 240.3 178.9 161.2 110.9 89.0 62.4 55.8 31.9 32.5 33.2 20.4

2 0.0849
(0.36)

-0.317
(0.44)

-0.034
(0.89)

-0.724
(0.02)

0.2623
(0.38)

-0.482
(0.05)

-0.090
(0.71)

-0.373
(0.12)

0.6051
(0.39)

0.6510
(0.11)

-0.481
(0.52) -

3 0.2783
(.00)**

-0.0306
(0.94)

0.6666
(.00)**

0.5503
(0.010)

0.6268
(0.02)

0.5079
(0.04)

0.7433
(.00)**

0.1857
(0.46)

-0.912
(0.09)

0.0022
(0.99)

0.4410
(0.56) -

Table 32: Analysis of the Solar forecast errors (model 2) by years in CAISO. 1: Average forecast error.
2: Correlation between forecast error and size. 3: Correlation between forecast error and term.

Tables 33 and 34 shows the forecast error measures and DM p values for the case of wind data. The error
measures show that the model has lower MSER and MAE too. However, the BIC and AIC statistics
are lower or equal to the ones of model 1. Furthermore, in this case, the correlation reflects a higher
value than the pricing of models 1. Compared with the solar case, it could be interpreted as a better
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performance model for wind data than for solar data. Going deeper, solar data will probably capture
better the solar volume and correlation risk if the analysis is done with intra-day data as the profile
generation of solar power is more characteristic. Similarly, the DM test in this case, returns rejections
in the three cases.

Error measure \Model Pricing Model 2
Mean Squared Error Root 126.29

Mean Absolute Error 118.95
BIC 120.15
AIC 118.71

Correlation 0.7390

Table 33: Measures of the errors on the wind data with the pricing model 2

Loss Function \DM p-value Pricing Model 2
First Loss Function 0.0000
Second Loss Function 0.0001
Third Loss Function 0.0002

Table 34: Wind Diebold Mariano test p-values of pricing model 2

Table 35 shows as in the solar case the worse performance. As well the results are close to the ones of
model 1, with strong relationships for both variables. Therefore, the results are still in favor of the pos-
sible influence of the variables in the PPA pricing. Including this extension of model 2, has not changed
at all the correlations, and that strengthens the idea. In particular, in CAISO the evidence observed
reflects a positive relationship between the forecast errors and the terms or the size, and for the solar
data only with the term.

All 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
1 118.9 150.0 149.1 116.2 123.0 73.3 72.1 - 52.3 31.3 36.3

2 0.6057
(.00)**

0.6145
(0.19)

0.7493
(.00)**

0.7805
(0.12) - - - - 0.6821

(0.52) - -

3 0.6610
(.00)**

0.9550
(.00)**

0.7236
(0.01)**

0.7079
(0.18) - - - - 0.8117

(0.40)

Table 35: Analysis of the Wind forecast errors (model 2) by years in CAISO. 1: Average forecast error.
2: Correlation between forecast error and size. 3: Correlation between forecast error and term.
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7 Extension of model 2: Intra-day solar
volumetric and correlation risk price
correction

7.1 Context and methodology
To finish the study, an extension of the previous model is computed. This extension seeks to capture
better the risk price correction due to correlation and volumetric risk. In particular, the modification
is to use intra-day data for the solar case rather than daily data. As already seen, solar generation has
a very strong pattern along the different hours of the day. Likewise, the prices of power differ at each
hour observed. That is why the model is extended for the solar data since it seems very relevant to see if
intra-day information improves the results of the model. Attending to the arguments explained it seems
crucial to account for the intra-day data as when solar generation is at its maximum the prices could be
at its minimum, which would mean a higher price correction.

The sample used is the same as the other one, but this time there are 24 series of prices as well as of
production. Similarly, the methodology followed is the same as in the previous chapter for each hour. So,
in this case, there are going to be 24 marginal models of prices, 24 models of generation, and 24 copulas
to capture the dependence of each pair of variables. The steps are the same and the test to evaluate
the quality of the adjustments too. The unique difference is that this time the procedure is repeated 24
times (actually, 15 times as some of the series are not needed to be modeled as will be explained below).
As this approach has never been emulated in the financial literature it appears to be very interesting and
original. Furthermore, having computed before the price correction with daily data will allow compare
the results and appreciate the utility of this extension.

The extension expressed formally is:

c =
EQ
t0

[∑tn
t=t1

∑24
h=1Qt,hSt,h

]
EQ
t0

[∑tn
t=t1

∑24
h=1Qt,h

] − F (36)

In particular, the differences with the previous model are mainly two. First, the long-term component of
some of the series includes a fourth parameter (A3). The parameter is employed to account for periods
where the production is zero. As this is difficult for the previous model to be captured, a dummy with
ones in the days of the year when each time frame reflects the almost nonexistence of production (caused
in non-sun hours). Attending to the data, the time frame between 06-07, 17-18, 18-19, and 19-20 are
the unique ones where there are some periods of the year without regular sun hours10. Second, as in the
previous case, the value of A0 in the prices is changed with the value of the last two years previous to the
execution date. The sample of the prices of the 24 time-frames is smaller than the other one. Specifically
it starts in 2009. That is why 2 years are used instead of 8, to being able to price the majority of the

10The time frame 20-21 has a very low average generation, so, the difference between the normal values and the ones
in periods of almost no production seem to not differ.

66



7.2 RESULTS Óscar Bernardos Yagüe

PPA. Nevertheless, the PPA with a execution date before april 2011 cannot use the average. So, in these
cases the value is not modified.

Another important aspect is that in spite of having 24 series, only 15 are used. The argument is linked
with the previous one. In the hours 00 to 06 and 21 to 24, there is no period of the year when the radia-
tion is significant. Indeed, this is confirmed doubly. First, looking at the generation data, the generation
in these nine time-frames have residual values or zero values. Additionally, the average generation of
these time frames is lower than 0.001, verifying that this series would not affect significantly the result
of the equation 36. Second, that fact can be proved with meteorological information about the hours
of sunrise and sunset at each different period of the year. So, it does not seem a strong assumption to
forget these nine time-frames as the justification is consistent with the evidence and the implications do
not make the model significantly less robust.

7.2 Results
Thus, with all that previous clarifications, the procedure is computed and the results are below. First,
the marginal models fitted parameters and goodness of fit measures are in the Annex 4 in tables 38 and
39. Similarly, the copulas fitted are in table 40. The Gumbel and Clayton copula results are not shown
as in the majority of the cases they tend to the independence copula, and as in any case they reflect the
best goodness of fit measures. As seen in the table, the Student-t copula has the best performance in all
the cases.

Now, in figure 41 the results can be seen. The first thing that is evidenced, is that the PPA between
2009 and 2011 are influenced by the different procedure applied (due to the smaller sample for the 24
time-frames as explained above). Furthermore, despite the more demanding model, the price correction
has not changed significantly. However, the price correction reflects positive low values in some of the
periods.

Figure 41: Actual prices, volumetric and correlation intra-day risk correction, and model 1 and exten-
sion of model 2 pricing
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To see the differences between the model with diary prices and intra-day prices, figure 42 is presented as
well. It can be observed that after the first two years, where the average of the historical prices is not
used, the model presents better results in some sense. The price corrections are lower and in the last
years of the sample very similar between them.

Figure 42: Actual prices and model 2 with daily and intra-day series

As well as in all the previous models, the measures of the forecast errors are presented. In table 36
the results are slightly worse than in the daily model. The MSER, MAE and the information criteria
reflect better values with the daily model. Nonetheless, the results seem to be better if only the sample
between 20011-2021 is considered. Besides, the most relevant fact is that the correlation has changed a
lot. However, the change seems to be justified by the success observed in the first two years of the PPA
sample. Indeed, if the correlation is computed with only the sample after april 2011, the correlation is
positive. Table 37 indicates that with the second loss function de DM test is more nearer to not reject the
null hypothesis. Nonetheless, the main conclusion is a slightly worse or equal performance of the model
with intra-day series due to the lack of longer price series, whose availability could allow comparing more
accurately the two models.

Error measure \Model Pricing Model 2
Mean Squared Error Root 125.37

Mean Absolute Error 101.56
BIC 516.67
AIC 513.88

Correlation -0.3326

Table 36: Measures of the errors on the solar data with the pricing intra-day model 2

Loss Function \DM p-value Pricing Model 2
First Loss Function 0.0000
Second Loss Function 0.0157
Third Loss Function 0.0000

Table 37: Solar Diebold Mariano test p-values of pricing intra-day model 2
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From the literature review, it has been clearly seen that most of the works analyze PPA from a theo-
retical approach or individual PPA. So, the innovation of this work is to present a PPA study applying
those analyses for a group of PPA contracts. This approach has allowed evaluating the factors that
influence the pricing and exhibiting other ones not analyzed yet. Thanks to the research, some of the
main aspects have been evaluated. For example, a copula approach to model the dependence between
prices and production has been applied as in other literature articles but in this case for more than 150
PPA contracts. What is more, that approach only had been tested in wind data, and in this research,
the results are available about both technologies, wind and solar.

This work has investigated Power Purchase Agreements. First, presenting the information needed to
understand well how PPA work and what factors have a significant role in their functioning. As can
be seen before, PPA varies in terms and structures, offering flexible possibilities to ease the agreements
between two agents. Its utility has increased along the last decade, helped by the characteristics seen,
making this instrument rather appealing for renewable energy projects. However, information is not so
transparent yet, which makes more complex and limited the possible analysis. Despite that fact, data has
been found and described for the United States. In particular, analyzing the data, the evidence showed
that different treatment of the electricity regions of the U.S would be more appropriate. In the same way,
the available data has information about solar and wind PPA, which also have exhibited that a separate
analysis seems more adequate. Likewise, the importance of the generation mix and the structure of the
market of each region has been highlighted. Additionally, the different particularities of power have been
explained and connected with implications for the study.

The analysis has focused on the pricing of this instrument with particular attention to the variables with
stronger effects. First of all, with the analysis of the PPA terms and PPA capacities agreed upon, the
conclusions are not straightforward. The results confirm that different treatment for regions is better as
the relationships depend on the sample. Then, model 1 has been proposed resulting in underestimations
of the PPA prices. That could demonstrate that PPA are not the same as a usual SWAP since the
comparisons evidence other relevant factors influencing the pricing. Last, the model has been extended
to account for other risks that arise with the signing of a PPA. In this sense, the process of quantification
of the volumetric and correlation risk could be seen for both CAISO solar and wind PPA. The results
reflected a negative price correction to compensate the buyer of the energy for that risk. Moreover, the
underestimation is still very strong. Actually, the performance is worse than model 1. That fact can
be surprising as the second model could be considered more complete. Nevertheless, the argument that
explains the negative correction is clear and lies in the negative correlation between prices and produc-
tion. So, despite the worse performance, that correction is necessary for fair pricing. Additionally, it
would be useful to know if this price correction have been applied in the market for all the PPA along
with the sample. Maybe, at the beginning, with a less significant renewable power penetration in the
market, the price correction due to these risks was not considered in the pricing. Additionally, based on
the evidence, it was considered more adequate to compute the price correction with intra-day series for
the solar case. Therefore, the second model extension uses the 24 hourly series of generation and prices
in order to price the volumetric and correlation risk correction more accurately. The results do not have
an easy interpretation. Some difficulties have arisen because of the data that do not allow to price the
correction along with the whole sample, turning more complex the comparison. Even so, the model has
changed confirming that the approach used influences the pricing in solar data, although it is not easy
to determine, based on the evidence, which model has a better performance over the other. Despite that
fact, the procedure has enabled to see how to employ each approach and opens a line of research for
future investigations.

The outcome of the analysis has made clear an underestimation with the factors taken into account.
In greater detail, the differences between the estimates and the market prices are not homogeneous
along with the full sample but with very similar behaviours in solar data and wind data. In general, the
farther is the PPA contract evaluated, the higher differences are observed. On the one hand, this could be
interpreted as a factor or various factors related to the dates or changes as time progresses. However, on
the other hand, the similarities between solar and wind data indicate that the missing factors are related
to both technologies. Indeed, after 2012-2013, the estimations differences can be considered moderate
compared to 2009-2011, where the estimations are no more than half or a quarter of the market prices.
Furthermore, in the most recent dates, better performance is noticeable. For example, in solar CAISO,
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the differences are minor, and the trend is very well captured (when the market prices rise a little, the
estimates also and vice versa). Similarly, West-non-ISO captures much better the trend in recent dates,
and even some overestimations are observed.

Nevertheless, apart from that, analyzing the PPA contracts database, PPA with the same characteristics
and very similar dates have relevant differences in market prices. That turns more difficult the exercise of
pricing since the market could be working in a non-efficient way. Likewise, in all the research, it is assumed
that the database and all the information are accurate but could be false or better information could be
used. In fact, as already seen, this field has very poor information yet, so, as the information available
would increase and become more accurate, the analysis in that direction would have better performances.

Subsequent works could develop further this analysis as it still underestimates the pricing observed on
the market. As seen, the underestimations are not uniform along with the sample, so the successive
extensions should look for elements that could fix this. The approach should be to search the missing
components that could help to explain the differences between the models and the market prices. Apart
from the studied variables size and term, other ideas are exposed for future researches.

One factor that could be very interesting to consider would be the Renewable Energy Certificates (RECs)
as the PPA database only includes bundled PPA. Likewise, hypothesizing about other factors, one could
be the credit risk, which may explain the greater underestimations as the farther is the PPA (maybe
because the instruments used to eliminate the credit risk have changed along with the sample). The
first contact with this topic has been presented in Edge [2015]. Another factor could be negotiation
power since the prices are from the market, and maybe these are not formed in a completely competi-
tive market at the beginning of the sample. In the same way, the analysis could be improved with the
use of more information. For instance, in the second model, the lack of a larger production series has
determined to assume the same sample and copula fitting for all the PPA contracts, which could be
improved. Other factors to be considered could be those related to political measures or legal issues. In
other words, different measures or laws may have existed in specific periods along with the sample. For
example, a political measure to encourage the use of renewable energy could increase the PPA prices
as these become more attractive. Also, legal issues can put obstacles to developing renewable energy
projects, implying that energy generators would expect a higher price in the PPA to compensate for
these issues. Last, from the point of view of the expenses, the technologies have improved over the years,
meaning a remarkable decrease in the costs and increasing the efficiency of solar PV and wind plants.
Similarly, some of the steps could be improved too. For example, for the extrapolation method a more
sophisticated one can be considered as in Leoni et al. [2018], where the authors employ a multivariate
constrained robust M-regression method to refine the forward curve in electricity markets. Moreover,
the method is based on arbitrage arguments.

What is clear is the necessity of fair pricing in Power Purchase Agreements, and the more investigations
in that field, the more spread could experiment these financial instrument. Furthermore, that will imply
the production of more clean energy that, as already seen, is a process that presents some difficulties
and should be considered for correct development.
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Annex 1: Review of the literature
models

After a deep review of the existent models related to power purchase agreements, the most important
ones are presented in the following pages:

Article Model Description

Edge
[2015] PPA =

∑s+l
t=s

(P (t)−Pc)
(1+i)t

Model equation which the authors start the arti-
cle. Pc is the price agreed for the exchanges and
the spot price is P(t). It is similar to a standard
valuation of a SWAP.

Edge
[2015] PPAy(t) =

(Py(t∨s)−P )al,i+α+(P−Pc)al,i
(1+i)s

Introducing in the previous equation the price pro-
cess (an Ornsetin-Uhlenbeck mean reverting pro-
cess) and using the fact that a geometric series of
payments can be expressed as an annuity al,i. P is
the long term average market price (the level where
the prices are supposed to revert)

Tranberg
et al.
[2020],
Pircal-
abu et al.
[2017]

EQ
t0

[∑T2

t=T1
Qt(St − (F − c))

]
Where Qt is the quantity of power produced, St is
the spot price of the electricity, F the forward price
at each instant Ti and c the compensation due to
the price-production correlation. The exchange of
power starts at T1 and ends at T2. This equation
is also very similar to the standard one but on the
one hand it does not discount the cash-flows and
has a new term to reflect a volumetric and correla-
tion risk correction.

Kaufmann
et al.
[2020]

The authors propose a very detailed
method to model Day Ahead power
prices (PDAt ) decomposing the vari-
able price in three components: a
short term component, a long term
and a stochastic component each one
with its model equations (Page 6 of
the article). After that, the equa-
tion to obtain the price of the PPA

is: P fixedt0 =
EQ
t0

[∑h0+23

t=h0
QtP

DA
t

]
EQ
t0[Qt]

h0 accounts for each hour of the day. Q is the risk-
neutral measure that under the rational expecta-
tion hypothesis it can be set equal to the physical
measure P that takes into account the uncertainty
of using historical data.

Cuervo
et al.
[2021]

PPAt = Cet−1(1 + gCe)(1− PPADF )

Ce is the retailing price of electricity, gCe the
growth rate in the cost of electricity calculated
with historical data and PPADF is the PPA dis-
counted factor. The authors also apply a Real
Option Analisys to see the value of the timing of
the project (to see when is better to develop the
project). Actually, it is not a pricing of a PPA.
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Article Model Description
Ghiassi-
Farrokhfal
et al.
[2021]

There is no model in itself, but from pages
3 to 7 the authors present as a method to
calculate the fair price of a PPA.

The fair price is considered the one
that improves the situation of both
parties, and it is usually a range of
prices not a unique price.

Peña
et al.
[2020]

PPAt =
∑m
i=1 e

−r(Ti−t)(F (t, Ti)+RECi−K)

F (t, Ti) is the forward electricity price
in Ti observed at time t. RECi is the
renewable energy certificates prices
at time i. And K is the fixed price
agreed in the PPA. Therefore, this
is a equation of valuation of a PPA
(some previous equations are pricing
models of the PPA) but it could be
used for pricing too. As shown, this
equation takes into account the certifi-
cates of renewable energy. However, to
use them it would be needed to have
historical REC prices.

In addition to these pure PPA valuation models, it can also be reviewed the literature models developed
to calculate the LCOE. The reason is justified since the PPA price can be calculated as the one that
covers the cost of producing the energy plus a margin for the generator. That is why the following table
presents some models for LCOE valuation too.

Article Model Description

Bruck
et al.
[2018]

LCOE =
∑n
i=1

TLCC
Ei

(1+WACC)i

Where TLCC is the total life cycle cost of
the wind plant. WACC is referred to the
average weighted cost of the capital and
Ei is the energy generated each year.

Bruck
et al.
[2018],
Men-
dicino
et al.
[2019]

LCOE =

∑n
i=0

CPEi
(1+WACC)i∑n

i=0
Ei

(1+WACC)i

CPEi is the cost of production of the
energy in the year i. This is only a model
expanding the previous equation. It is the
model used in the software SAM, System
Advisory Model, from NREL.

Bruck
et al.
[2018],
Men-
dicino
et al.
[2019]

LCOE =

∑n
i=0

Ii+OMi+Fi−PTCi−Di−Ti+Ri
(1+WACC)i∑n

i=1
Ei

(1+WACC)i

The authors make reference of another
model of the literature more complete.
In this one is taken into account the cost
of fuel of each year (Fi), the depreciation
(Di), the credit taxes (PTCi), the general
taxes (Ti) and some royalties (Ri). Fur-
thermore OMi are the operational costs
and Ii the cost of the inversion.

Bruck
et al.
[2018]

LCOE =

∑n
i=0

Ii+OMi+Fi−TCi−Peni
(1+WACC)i∑n

i=1
Ei

(1+WACC)i

In TCi some of the taxes are encom-
passed and Peni is a variable where the
possible maximum or minimum limits
of the energy delivered can be included.
That is the model that the authors pro-
pose to reflect the possible limits that a
PPA contract can have.

Mendicino
et al.
[2019]

LCOE =

∑n
i=1

I0+Mi+Fi
(1+r)i∑n

i=1
Ei

(1+r)i

Similar notation as the previous models.
In this case I0 are the initial cost and Mi

the operational costs.



Article Model Description

Mendicino
et al.
[2019]

LCOEvcppa =∑n
i=1

I+GTi+GMi+GEXi+OMi+EMCi+CI(p)i+CN(p)i+CM(p)i
(1+r)i∑n

i=1
Ei

(1+r)i

The authors propose this
very complete model.
They use the figure of
a intermediary to ex-
plain all the cost that
should be accounted for
the LCOE. Between them
there are some cost of
guarantee due to different
reasons, costs of mainte-
nance, costs of disequilib-
rium, costs of congestion,
cost of dis-adjustments
etc...

Miller
et al.
[2017]

LCOE = (FRC·ICC)AOE
AEPnet

FRC is the flat rate of
collection , ICC is the
cost of the installed cap-
ital, AOE the annual
costs of operation and
AEPnet the annual net
energy production. This
equation is the one that
NREL (the National Re-
newable Energy Labora-
tory) uses.

Hernandez
et al.
[2016]

Levelized−Revenue/Cost =
∑N
n=1

Pn·Qn
(1+d)n∑N

n=1
Qn

(1+d)d

It is not an equation to
obtain the LCOE. Qn is
the energy in KWh per
hour, Pn the price per
KWh per hour (both in
each year n) and d is the
annual rate of discount.
It is a useful link between
PPA and LCOE because
the authors obtain the
LCOE from PPA prices.



Annex 2: Processing of the PPA
database

The following paragraphs explain the prices available in the database and the procedure applied to obtain
them. On the available database, the PPA prices are expressed as levelized prices. That means two main
things: the values are calculated considering the level of the prices and expressed as the actual value of
the expected cash flows. Specifically, the prices are in constant 2019 dollars as an average of the expected
discounted cash flows.

To formalize this, first, some variables or concepts are defined:

• Plev: Levelized price. As defined above, is the price in constant 2019 dollars and as an average of
the expected discounted cash flows.

• PPPA: PPA price agreed in the contract. It is supposed as a fixed price for the exchanges of
electricity of one MWh each month during all the contract length.

• DFi: Discount factor for a logarithmic interest rate of i years (i does not need to be an integer
because it also includes months)

• DEFi,2019: Deflator applied to each i year to convert the nominal prices into constant (real) 2019
prices. In this case, the same deflator for all the months of each year is assumed.

• GDP −DEFi: GDP Deflator value of the year i.

• CFi: Discounted and real cash-flow of the period i

• T : Duration or term of the PPA contract.

• ti: time from the initial date of signing the contract to the i date

• rreal: Real interest rate.

• N : Number of cash-flows in the PPA contract.

After defining the primary variables, it is now necessary to explain how the levelized prices are obtained.
For better comprehension figure 43 represents a scheme of the transformation done. The starting point is
the monthly series of the nominal prices (assuming that the PPA of the database are monthly base-load).
These series are in current dollars, so a conversion to constant dollars is done using the GDP deflator
(historical or projected). Then, these cash flows are discounted with the real interest, and the average
of the resulting series is obtained. Applying this method results in a price that permits comparisons
between different PPA of different periods or countries (applying each country deflator and each country
real interest rate).
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Figure 43: Transformation done in the database to obtain the levelized prices

With this in mind, it is easy to show the reverse process (obtaining the PPA price of the contract from
the levelized 2019 prices database). In the database, it is only available the Execution Date and not the
Commercial date. Therefore, it is needed to make some assumptions about the average length between
these two dates. Attending to the scheme, this is going to be called as “timeout”. For that purpose, brief
research on this topic has been done. The conclusion is to use an average difference between t0 and t1
of 18 months11.

As it is easy to show, from the levelized price can be computed the total sum of the constant (2019
dollars) and discounted prices of all the contract term. This is because the value is used to obtain the
average of this cash flows: Plev = 1

N

∑N
n=1 CashF lowsn. So multiplying N and the levelized price results

in the total sum. So, with the database available, the exact cash-flows of each PPA are not possible
to be obtained. However, with the total sum mentioned and the total equivalent sum using the PPPA
(explained below), it can be computed the desired price.

To compute the total sum of the cash flows starting from PPPA, a similar process can be done. First,
PPPA will be the nominal price and cash flow for each period.

NominalCF = (NominalCF1 = PPPA, ..., NominalCFN = PPPA)

The correction of prices is then applied to these nominal cash flows, converting them into 2019 real dollar
prices.

DEFi,2019 =
GDP −DEF2019

GDP −DEFi
, for i = 1, ..., N

RealCFi = DEFi,2019 ·NominalCFi , for i = 1, ..., N

Similarly, the present value of this cash flows is computed.
11Based on the PPA tracker of the PexaPark website. In particular, the average of the United States PPA contracts

(available with that source) where the Execution and Commercial date were specified



DFi =
1

erreal·ti
, for i = 1, ..., N

CFi = DFi ·RealCFi , for i = 1, ..., N

Then, summing all these cash flows, the equivalent total sum of the cash-flows that should be equal to the
other can be obtained. So that, the P ∗PPA is obtained from this equivalence. Expressed mathematically,
the P ∗PPA value is the one that equals the right part of the equation below with the left part.

Plev ·N =

N∑
i=1

CFi

Expanding the expression and isolating P ∗PPA:

Plev ·N∑N
i=1

1
erreal·ti

· GDP−DEF2019

GDP−DEFi

=
Plev ·N∑N

i=1DFi ·DEFi,2019

= P ∗PPA

That is the procedure applied to every PPA to obtain its PPA price agreed in the contract.



Annex 3: Measurement of forecast
errors

To evaluate the forecasts obtained with the different models there are going to be used the following
measures:

• Mean squared error root:

MSER =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (37)

• Mean absolute error:
MAE =

1

N
|ŷi − yi| (38)

*Where yi is the actual price on the database, ŷi the forecasted price with each model and N the number
of observations. The variable to forecast does not oscillate around a non-zero average, so it is preferable
to use these measures and not their percentage versions.

Likewise, information criteria statistics are also computed to complement the testing of the models. The
statistics used are:

• The Akaike information criterion from Akaike [1985]:

AIC = 2k − 2 · ln(L) (39)

* Where k are the degrees of freedom (number of parameters to be estimated) and L the maximum
value of the likelihood function of the model.

• The Schwarz information criterion from Schwarz et al. [1978] (also known as the Bayesian infor-
mation criterion).

SIC/BIC = k · ln(N)− 2 · ln(L) (40)

* Where N is the length of the sample used and the other variables follow the same notation as in
the AIC.

That can be simplified under the assumption that the forecasted errors are identically, indepen-
dently, and normally distributed (and other conditions).

SIC/BIC = k · ln(N) +N · ln(σ̂2
ε ) (41)

*Where σ̂2
ε is the variance of the forecasted errors. This assumption is also made to compute the

AIC.

These statistics can be interpreted as a measure of the relative quality of a model for the data available.
They are used as criterion model selection choosing the lower ones. Both are closely related since the
two statistics use the maximum likelihood as a criterion of the goodness of fit. Nevertheless, as can be
seen, the BIC statistic penalizes free parameters more than the AIC as long as N is greater than e2,
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which is expected in most cases. Consequently, the inclusion of the two of them allows a better evaluation.

Additionally, the correlation between the market pricing series and the pricing model output is presented.
That would help to see better which model predicts more accurate prices. Or from another point of view,
which model is more likely to be the one used in the market. The model with higher correlation could
be interpreted as the one which does the pricing in a direction more similar to the approach followed by
the market. For example, if the pricing is being done using the prices of the main node of the electricity
region, the model that replicates this will experiment changes in the same directions.

Furthermore, for a better comparison, it is possible to use the test proposed by the authors Diebold and
Mariano [2002] originally intended for comparing different forecast outputs. Related to this, one of the
authors, Diebold, has recently written a new paper where analyses the extended use of this test (see
Diebold [2015]). The author emphasizes an abuse of the test when the assumption required to compute
the test is relaxed. From his perspective, the test is being used to compare models when it was first
created to compare forecasts. He argues that if a model presents better results with a particular sample,
it does not mean that the result can be extrapolated considering this model to better performance in all
possible scenarios. Moreover, he enumerates other measures to test models created more specifically for
this purpose. These are some of the already presented below. Because of the arguments explained above,
the DM test will be used to test the null hypothesis that the losses due to forecasts error of each model
are statistically different from zero and that there is no sign of auto-correlation or heteroscedasticity.

Formally, following a similar notation as in the literature:
The purpose is to forecast the pricing of an M number of PPA contracts. Then, a loss function is needed
to evaluate the performance of each model. The ones to be used are the following:

First, quantifying the losses as the original errors:

L1(emodel,i) = yi − [Emodel(yi)] (42)

Second, quantifying the losses as the quadratic errors to avoid positive values compensate negative ones:

L2(emodel,i) = (yi − [Emodel(yi)])
2 (43)

Last, quantifying the losses as the costs that may involve these forecast errors:

L3(emodel,i) = (yi − [Emodel(yi)]) ∗ Termi ∗Quantityi (44)

*where i = 1, 2, ..., M.

The last loss function is proposed as it seems better specified for this particular research. As Christof-
fersen et al. [2001] argue, the choice of the loss-functions used to test the forecast of a model should not
be underestimated. The authors encourage choosing a function in line with the purpose of the model.
So, this final loss function evaluates a model’s performance better as it has a deep relation with the
objective of the pricing. It penalizes more the deviations from the real values of contracts with higher
terms or with higher quantities agreed for the exchanges. The loss function weights the forecast errors
giving more importance to the ones where the real money losses will be more significant.

After that, in a different way as the usual procedure used in the Diebold-Mariano test, an extension is
applied. The statistic can be calculated by computing a linear regression of the differential (applying the
loss function to the forecast error) on a constant but under a robust estimation where heteroscedasticity
and autocorrelation robust standard errors (HAC) are used. For that purpose, there is available a func-
tion in Matlab called hac. The function returns the robust estimation, the vector of corrected coefficient
standard errors, and the coefficient estimates. So, the robust estimator of the t-stat is obtained by
dividing the coefficient by the robust standard error. After that, the p-value is easily obtained assuming
a t-student distribution with N - 1 degrees of freedom (being N the number of observations) and taking



into account that the test is of two tails.

The null hypothesis is that the losses caused by the forecast errors of each model are statistically not
different from zero. On the other way, the alternative hypothesis (if the null is rejected) is that the losses
are different from zero.



Annex 4: Intra-day marginal models and fitted copulas

Model A0 A1 A2 A3 ARMA LB GARCH LB Distribution KS CvM KS2 CvM2 LR
D1H07 -4.54** 0.53** -1.76** -5.23** MA(1,2) 0.0000 GARCH(1,1) 0.9648 Stable(1.77,-0.03,0.82,-0.11) 0.07 0.07 0.07 0.07 0.32
D1H08 -1.51** 0.24** -0.96** - AR(1,3,7) 0.0763 GJR-GARCH 0.9438 Stable(1.44,-0.67,1.25,0.55) 0.10 0.26 0.11 0.26 0.52
D1H09 -0.01 0.10** -0.63** - AR(1,3) 0.5664 GARCH(1,1) 0.9628 Stable(1.58,-0.78,1.27,0.54) 0.41 0.49 0.46 0.51 0.33
D1H10 0.65** 0.01 -0.61** - AR(1,3) 0.9744 GARCH(1,1) 0.7789 Stable(1.60,-0.83,1.26,0.58) 0.19 0.16 0.18 0.16 0.59
D1H11 0.95** -0.01 -0.74** - AR(1,3) 0.8654 GJR-GARCH 0.5935 Stable(1.70,-0.98,1.33,0.50) 0.49 0.43 0.48 0.45 0.21
D1H12 1.09** -0.04 -0.87** - AR(1,3) 0.8363 GJR-GARCH 0.6609 Stable(1.73,-0.96,1.39,0.43) 0.69 0.69 0.74 0.71 0.23
D1H13 1.11** -0.06** -0.93** - AR(1,3) 0.9151 GARCH(1,1) 0.9069 Stable(1.73,-0.94,1.37,0.44) 0.17 0.45 0.19 0.47 0.25
D1H14 1.07** -0.07** -0.94** - AR(1,3) 0.9409 GARCH(1,1) 0.8911 Stable(1.74,-0.87,1.34,0.39) 0.33 0.37 0.37 0.39 0.23
D1H15 0.94** -0.06* -0.98** - AR(1,3) 0.5268 GARCH(1,1) 0.6754 Stable(1.76,-0.80,1.29,0.33) 0.23 0.14 0.25 0.16 0.22
D1H16 0.55** 0.01 -1.21** - AR(1,3) 0.1110 GJR-GARCH 0.9084 Stable(1.73,-0.85,1.28,0.36) 0.20 0.14 0.26 0.15 0.25
D1H17 -0.38** 0.24** -2.11** - ARMA(1,[2]) 0.0000 GARCH(1,1) 0.4604 Stable(1.56,-0.58,0.91,0.21) 0.48 0.38 0.61 0.42 0.39
D1H18 -1.29** 0.11* -2.41** -4.98** AR(1,3) 0.0132 GARCH(1,1) 0.9998 Stable(1.69,-0.40,0.58,0.14) 0.12 0.19 0.12 0.19 0.01
D1H19 -2.89** 0.50** -2.76** -3.39** AR(1,3) 0.0000 GARCH(1,1) 0.9989 Stable(1.38,-0.22,0.96,-0.07) 0.13 0.09 0.17 0.08 0.79
D1H20 -5.58** 0.59** -2.94** -2.09** ARMA(1,1) 0.0000 GJR-GARCH 0.9851 Stable(1.25,-0.08,0.68,-0.29) 0.17 0.21 0.18 0.20 0.61
D1H21 -7.37** 0.74** -0.39** - AR(1) 0.0000 GJR-GARCH 0.2567 Stable(1.58,0.26,0.41,0.04) 0.26 0.29 0.47 0.29 0.73

Table 38: Generation marginal models coefficients and goodness of fit measures

*The statistic significance of the parameters is denoted with ** when the parameter is significant at a 1% level of confidence and with * at a 5%. Additionally,
in all the marginal models the coefficients of the parameters for the mean and variance models are not shown due to the lack of space, but in all the cases the
parameters included are significant at a 1% level.

** The GJR-GARCH off the series 16, does not have an ARCH parameter.
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Model D1H07 D1H08 D1H09 D1H10 D1H11 D1H12 D1H13 D1H14 D1H15 D1H16 D1H17 D1H18 D1H19 D1H20 D1H21
A0 42.4** 36.5** 27.6** 23.7** 22.6** 22.6** 23.6** 25.5** 29.1** 34.5** 42.6** 58.5** 74.1** 74.6** 58.18**
A1 -0.51 -2.43** -3.47** -5.02** -6.89** -9.06** -11.5** -13.6** -16.3** -18.0** -20.1** -25.0** -32.7** -20.7** -5.1
A2 14.69** 15.23** 11.92** 8.28** 5.16** 2.26** -1.01 -2.92** -4.11* -1.51 3.42 10.38** -6.3 -19.0** -5.11*
L 2.3 3.2* 2.4* 2.6** 3.0** 3.2** 3.9** 4.2* 3.4 6.7 7.8 8.7 8.1 9.2 7.1
M 3.8 4.1** 3.0** 3.1** 2.9** 3.1** 2.9 3.1 7.7* 6.9 9.6* 10.1 9.9 11.9 8.7
X 6.4** 4.8** 3.1** 3.2** 3.0** 2.7* 2.4 2.3 1.5 0.6 0.2 3.3 5.0 5.2 3.3
J 2.3 2.0 1.8 1.6 1.7 1.9 1.5 1.4 0.7 -0.3 -0.3 -1.0 -0.6 -2.2 -3.2
V -4.7* -4.7** -3.1** -2.7** -2.9** -3.3** -3.5* -3.7* -4.5 -5.0 -5.9 -6.0 -7.4 -9.0 -6.0
S -7.7** -7.4** -5.6** -6.0** -5.9** -6.1** -6.3** -6.1** -6.7* -6.9 -9.2* -11.7 -11.3 -11.2 -7.4
D -2.2 -2.0 -1.6 -1.7 -1.7 -1.5 -0.8 -1.1 -1.9 -1.8 -2.0 -3.1 -3.5 -3.6 -2.3

ARMA ARMA([1,7],[1]) ARMA(1,[7]) ARMA(1,[7]) ARMA([1,7],[7]) ARMA([1,7],[7]) ARMA([1,7],[7]) AR(1,7) AR(1,7) ARMA([1],[7]) ARMA([1,7],[2]) AR(1,7) ARMA([1,7],[1]) AR(1,7) ARMA([1],[4,7]) AR(1,7)
LB 0.0000 0.0000 0.0001 0.0019 0.0175 0.0651 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH GJR-GARCH
LB 0.0635 0.0000 0.0012 0.0004 0.0009 0.0000 0.0002 0.0003 0.0502 0.2493 0.6394 0.0446 0.4196 0.2660 0.0550

Distribution
Stable

(1.57,-0.02,
0.10,-0.01)

Stable
(1.60,0.08,
0.10,-0.01)

Stable
(1.67,0.01,
0.11,-0.01)

Stable
(1.73,0.00,
0.11,-0.01)

Stable
(1.63,-0.01,
0.10,-0.01)

Student-t
(-0.01,0.12,4.04)

Stable
(1.63,-0.06,
0.09,-0.01)

Stable
(1.62,-0.08,
0.09,0.00)

Stable
(1.61,-0.13,
0.07,0.00)

Stable
(1.60,-0.19,
0.07,0.00)

Stable
(1.75,0.04,
0.06,-0.01)

Stable
(1.64,0.01,
0.05,0.00)

Stable
(1.57,0.14,
0.05,-0.01)

Stable
(1.58,0.13,
0.05,-0.01)

Stable
(1.59,-0.02,
0.08,-0.01)

KS 0.18 0.07 0.23 0.65 0.35 0.22 0.20 0.09 0.18 0.09 0.05 0.11 0.19 0.11 0.18
CvM 0.13 0.08 0.30 0.45 0.25 0.37 0.16 0.07 0.13 0.09 0.15 0.12 0.13 0.11 0.11
KS2 0.20 0.07 0.28 0.81 0.47 0.27 0.29 0.14 0.21 0.13 0.06 0.16 0.20 0.15 0.18
CvM2 0.14 0.08 0.34 0.52 0.26 0.37 0.17 0.08 0.14 0.10 0.15 0.13 0.14 0.12 0.12
LR 0.94 0.94 0.57 0.53 0.70 0.03 0.79 1.02 0.64 0.81 0.01 0.58 0.73 0.84 1.23

Table 39: Price marginal models coefficients and goodness of fit measures

Student-t Copula Gaussian Copula

ρ ν LogL AIC BIC KS-test
(statistic)

CvM-test
(statistic) ρ LogL AIC BIC KS-test

(statistic)
CvM-test
(statistic)

07 0.0250 204 20.78 -39.56 -34.59 0.0229 0.0556 0.0212 0.24 1.50 6.47 0.0227 0.0583
08 -0.0725 67.4 2.66 -3.32 1.65 0.0231 0.0612 -0.0713 2.55 -3.09 1.87 0.0234 0.0633
09 -0.1437 27.2 10.96 -19.92 -14.95 0.0232 0.0341 -0.1418 10.32 -18.64 -13.67 0.0241 0.0383
10 -0.1329 13.7 10.15 -18.30 -13.33 0.0234 0.0478 -0.1281 8.26 -14.51 -9.54 0.0250 0.0587
11 -0.0866 15.0 5.70 -9.38 -4.42 0.0240 0.0421 -0.0817 3.44 -4.87 0.10 0.0244 0.0416
12 -0.0516 24.0 2.04 -2.08 2.88 0.0233 0.0342 -0.0481 1.19 -0.37 4.59 0.0240 0.0395
13 -0.0364 13.8 2.87 -3.75 1.22 0.0212 0.0349 -0.0349 0.63 0.75 5.72 0.0218 0.0415
14 -0.0394 20.8 1.76 -1.53 3.44 0.0236 0.0697 -0.0381 0.75 0.51 5.48 0.0238 0.0758
15 -0.0461 17.8 2.42 -2.84 2.13 0.0278 0.0783 -0.0340 0.95 0.10 5.08 0.0283 0.0876
16 -0.0864 44.3 4.02 -6.05 -1.08 0.0249 0.0877 -0.0857 3.76 -5.52 -0.55 0.0254 0.0911
17 -0.5860 29.6 2.28 -2.55 2.42 0.0219 0.0355 -0.0613 1.92 -1.83 3.13 0.0255 0.0382
18 -0.0771 19.4 4.14 -6.28 -1.31 0.0266 0.0317 -0.0725 2.83 -3.66 1.31 0.0255 0.0349
19 -0.0081 20.0 0.86 0.26 5.23 0.0228 0.0850 -0.0074 0.03 1.95 6.92 0.0237 0.0899
20 0.0093 12.5 2.11 -2.22 2.74 0.0236 0.0577 0.0041 0.01 1.98 6.95 0.0242 0.0624
21 -0.0587 204.2 56.44 -110.9 -105.9 0.0289 0.1022 -0.0596 1.76 -1.52 3.44 0.0290 0.1026

Table 40: Fitted copula parameters and goodness of fit measures of the intra-day solar model.
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