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Susan Orbe Mandaluniz

University of the Basque Country

Academic Year 2019 - 2021



.

1 Introduction
Systemic risk has become a focal point for regulatory institutions and economic
research after the last financial crisis. The large negative impact it had, especially
in terms of social welfare and confidence on the financial system, made necessary
to identify systemic risk in advance in order to prevent it or, at least, mitigate
its side-effects. Moreover, although its comprehension has significantly grown last
years, it is not yet fully understood and it can be interpreted in many ways due to
its multifaceted nature. Regardless, most of the definitions include the instability
of the financial system, and the interconnections of its institutions.

Hollo et al. (2012) defined systemic risk as an instability “so widespread that it
impairs the functioning of a financial system to the point where economic growth and
welfare suffer materially”. Billio et al. (2012) describe it as “any set of circumstances
that threatens the stability of or public confidence in the financial system”, being the
system a set of interconnected institutions that have beneficial relationships through
which illiquidity, insolvency or losses can quickly propagate. Likewise, Giglio et al.
(2016) defend that financial distress not necessarily triggers a crisis but, rather, it
is the consequence of simultaneous leading factors. Therefore, systemic risk would
be any event simultaneously affecting many market participants by severe losses,
triggers a strong propagation of failures among institutions, markets or systems and
impacts the real economy.

In the European case, systemic risk has been more widely studied after the fi-
nancial and sovereign debt crises, especially considering systemic risk spillovers and
correlations in the European banking system. Not only the financial system could be
a source of systemic risk, but it is usually the first considered and it seems to be the
main one. Roncoroni et al. (2019) show evidence of a European bank-bias related
to a higher systemic risk and lower economic growth, particularly during times of
large drops in asset prices. Acharya et al. (2017) think in systemic risk as the con-
tribution of financial entities to the capital shortfall of the financial system expected
in a crisis. Billio et al. (2012) and Allen et al. (2012) agree in the specialness of the
banking sector in transmitting shocks to the real economy. According to Brownlees
and Engle (2012), negative externalities on the real economy are imposed by finan-
cial undercapitalization that cannot be absorbed by any other competitors. Thus,
systemic risk ongoing enquiries concern financial entities ‘too-big-to-fail’ and ‘too-
interconnected-to-fail’. The nature of individual risks and financial interconnections
have been gaining importance up to become regulators’ main center of attention.
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They focus on how individual institutions can accumulate a distressful quantity of
risk and how direct and indirect spillovers can be quantitatively more important
than individual failures.

However, Bisias et al. (2012) comment the difficulty of measuring systemic risk
since there is still not a global consensus in which factors condition it. We find com-
mon points in the economic literature. Considering two of the main classifications,
made by Giglio et al. (2016) and Benoit et al. (2017), we can presume the existence
of three main sources of systemic risk: individual risk taking, when an individual
institution assumes large and correlated positions; contagion, which occurs when
losses spillover among different institutions as a result of being too interconnected;
and finally, amplification mechanisms, instability factors that make small shocks
end up in large impacts. Furthermore, systemic risk as an inherently asymmetric
and nonlinear phenomenon is also a commonality in much of the research work.
Giglio et al. (2016) show how systemic risk measures are more informative about
the left tail of macroeconomic shocks than about their central or right tendency.
For Acemoglu et al. (2015), the nonlinear nature of financial interactions is essential
to determine the importance of the financial entities due to contagion and spillover
effects. Lopez-Espinosa et al. (2015) prove how asymmetric models for measuring
systemic risk produce much better fitting. Ignoring tail asymmetries leads to risk
underestimation.

Consequently, most of the systemic measures deal with the left-tail of returns’
distribution. Adrian and Brunnermeier (2016) develop CoVaR and ∆ CoVaR sys-
temic risk measures to highlight the importance of gauging tail co-movements among
financial institutions’ assets. It also does Acharya et al. (2017) with the Marginal
Expected Shortfall for measuring stocks tail-dependencies. In this framework, Ascor-
bebeitia Bilbatua et al. (2021) demonstrate that multivariate dependencies can be
itself considered a risk factor for the financial system, especially with heavy-tailed
and non-Gaussian distributions. They show that stronger asset dependence is re-
lated to bearish scenarios and prove evidence in favor of causality in the case of
the Euros Stoxx market index. Cappiello et al. (2006) also support the existence
of asymmetries in correlations since they increase in bearish scenarios and decrease
when stocks rebound. Other studies like Pollet and Wilson (2010) and Longin and
Solnik (1995) also document asymmetric and dynamic stock correlations which vary
over time. The latter illustrates how correlation rises in periods of high volatility
as well as some economic variables, like dividend yields or interest rates, contain
valuable information about future dependencies. Connections between non-linear
correlations and systemic risk allow to analyze non-linear dependencies’ effects on
low-tail risk.

Interestingly, there is also a recent area of research which goes beyond financial
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variables and which relates economic policy uncertainty with drops on stock market
returns and higher volatility. For some years now, Economic Policy Uncertainty
(EPU) indexes, based on policy economic news, have been developed across many
countries and they have gained international attention. Baker et al. (2016) find EPU
associations with greater stock volatility and reduced investment or employment in
some policy-sensitive sectors, like finance. Likewise, EPU innovations foreshadow
declines in investment, output or employment in the United States and in other
12 major economies. Liu and Zhang (2015) evidence that higher EPU values leads
to significant increases in market volatility and its inclusion in predictive models
improves volatility forecast. Similarly, Mei et al. (2018) corroborate EPU usefulness
for predicting volatility impacts during recessions, more than during expansions.
They also prove stronger impacts of the US EPU on European stock market data
than any of the European EPU indexes. Ko and Lee (2015) also find that stock
prices decrease after an EPU increase, but only during limited periods and which
cannot be diversified away, even in global markets.

Furthermore, evidence of causal relationships between EPU indexes and stock
markets have been proved but they differ across countries. Considering the European
framework, Wu et al. (2016) demonstrate negative impacts of policy uncertainty on
stock returns but only in some countries. It is the case for Spain or Italy, where
an optimal policy choice should be made to prevent it. By contrast, Škrinjarić and
Orlović (2020) show little evidence of causality from EPU to stock prices in the
Eastern European countries. However, it is proved from stock prices to the EPU
indexes for the Czech, Slovakian, Estonian and Slovenian markets. Then, shocks
of an individual country’s risk series could also affect total economic uncertainty
in Europe. In the US case, Pástor and Veronesi (2013) find a larger magnitude of
the risk premia commanded by the EPU under weak economic conditions, although
causality is not evidenced.

The more the macroeconomic environment is uncertain, more difficult is to eval-
uate asset prices and to make investment decisions. The phenomenon of globalized
and highly interconnected economies has been directly linked with a higher uncer-
tainty. We will see whether such uncertainty and multivariate dependencies have
any impact on our systemic risk European aggregates by analyzing forecasting abil-
ities and Granger causality relationships. In addition, although many systemic risk
measures have been developed for some years now, Giglio et al. (2016) demonstrate
how their predictive capacity seem to be still limited while current regulation falls
short in capturing and preventing macroeconomic downturns. Benoit et al. (2017)
reaffirm the need of improving our macro-prudential tools and policies since, despite
the fact of having a better understanding where the risk can lie, we fail in regulating
optimally the market deficiencies.
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Hence, the need to measure, prevent and discern what is behind European sys-
temic risk is what motivates our study. We focus on 3 principal aspects: what are
capturing our systemic risk measures, what could be driving or can be causing them,
and whether they have any macroeconomic predictive capability. Concerning the
first one, we try to figure out what individual estimates explain and we show how
global measures of systemic risk can be constructed from them. We consider that
a global measure is more useful than a set of individuals to improve our macro-
prudential tools and comprehension. Afterwards, a causality fact-finding analysis is
implemented to ascertain any causal relationship to our global measures. We ana-
lyze the effects of the US Economic Policy Uncertainty (EPU) index and the average
pairwise Kendall’s τ of Ascorbebeitia Bilbatua et al. (2021) on global systemic risk
following the recent literature insights. Lastly, we try to discern whether such global
systemic risk measures can forecast macroeconomic downturns and which can have
the highest predictive power.

The remainder of the study proceeds as follows. Section 2 describes the method-
ology applied in our three points of analysis: the nature of the systemic risk measures
selected; causality and predictive relationships on global systemic risk and scrutiny
of systemic risk measures’ predictive power. Section 3 describes the data employed
and Section 4 presents the empirical results and new insights obtained for each one
of our objectives. Finally, Section 5 concludes. Additional results can be found in
the Annex.

2 Methodology Implemented

2.1 Measuring Systemic Risk

Among all the systemic risk measures developed during the last years, Conditional
Value-at-Risk (CoVaR) and ∆ CoVaR (Adrian and Brunnermeier (2016)), as well
as the Marginal Expected Shortfall (Acharya et al. (2017)) have been some of the
most widely-accepted and implemented when measuring conditional left-tail risk.
All of them are considered individual measures that try to prevent institutions from
taking high exposures to risk since their default can lead to the instability of the
whole financial system. More precisely, these measures enable us to identify and
rank Systemically Important Financial Institutions (SIFI’s) which, formerly, were
considered ‘too-big-to-fail’.

Adrian and Brunnermeier (2016) propose the Conditional Value-at-Risk (Co-
VaR) to measure the empirical relationship between two series’ Value-at-Risk (VaR),
i.e. the tail of their joint distribution. There, we use it to estimate the global system
CoVaR, conditional on individual financial institutions that are in a state of distress.
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In other words, the CoVaR provides the VaR of the whole system when one of the
financial institutions is at its lower tail. Following the general risk approach, we es-
timate system’s dynamic CoVaR at a low quantile (θ = 0.05) when each individual
firm is at its VaR threshold for the same quantile1. We obtain as many CoVaR time
series as individual financial institutions and a window of three months (63 days) is
considered for each one.

We call CoV aRS|Ri=V aRiθ
θ to the VaR of the system conditioned to institution i

being at its θ-quantile or, implicitly, the θ-quantile of the conditional probability
distribution:

Pr(RS ≤ CoV aR
S|Ri=V aRiθ
θ |Ri = V aRi

θ) = θ, (1)

where S refers to the system, R to the logarithmic returns, θ to the quantile of the
logarithmic returns’ distribution and V aRi

θ to the Value-at-Risk of an institution i
or, equivalently, the θ-quantile of the institution’s return distribution.

Analogously, the above equation can be restated as follows:

CoV aR
S|Ri=V aRiθ
θ = V aRS

θ |V aRi
θ = αiθ + βiθV aR

i
θ. (2)

After estimating firm’s Value-at-Risk, V aRi
θ, we use quantile regression to esti-

mate the CoVaR of the system conditioned to each individual firm.
From the latter approach, Adrian and Brunnermeier (2016) also develop the

∆ CoVaR as the contribution of an individual firm to systemic risk when it falls
in financial distress. It is measured through the difference between the CoVaR
evaluated in a low quantile (θ = 0.05) and the CoVaR evaluated at the median of
the distribution. As previously mentioned, we follow a similar approach as for the
CoVaR and we estimate individual ∆ CoVaR for each individual financial institution
using a rolling window of three months daily data.

The ∆ CoVaR of the system conditioned to an institution i is defined as the
relative difference between its VaR when the institution i is at its θ-quantile and its
median:

∆CoV aR
S|i
θ = CoV aR

S|Ri=V aRiθ
θ − CoV aRS|Ri=Mediani

θ = βiθ(V aR
i
θ − V aRi

0.5), (3)

where CoV aRS|Ri=V aRiθ
θ represents the Conditional Value-at-Risk when firm i is at

its θ-quantile and, CoV aRS|Ri=Mediani

θ , at its median.
The Marginal Expected Shortfall (MES) studied by Acharya et al. (2017) corre-

sponds to the expected firm’s equity loss when market falls below a certain threshold
over a given horizon. Therefore, MES is defined as the average return of each firm

1We consider the profit and loss distribution.
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equity during the 5% worst days for the overall market return. However, as it hap-
pens to the CoVaR, the MES is directional, i.e. the MES for a firm i conditional
on the system is not the same as the MES for the system conditional on the i in-
stitution. Then, for the sake of comparison, we propose to estimate the Systemic
Marginal Expected Shortfall (SMES), the dynamic average return of the market
during the 5% worst days of each financial entity.

The Systemic MES, conditioned to an individual institution i, is defined as:

SMESi = E[RS|Ri < θ] =
1

nd

∑
d:Ri < θ

RS
d , (4)

where S represents the market or system, R are the logarithmic returns, θ is the 0.05
quantile of returns’ distribution and nd is the number of days at which institution i
returns are under its threshold, θ. The threshold would be the Value at Risk of an
individual institution i under a 5% probability, V aRi

0.05. The SMES is estimated
using a rolling window of three months daily data.

Finally, we construct aggregated systemic risk measures as an equally-weighted
average of the individual ones due to the higher interest that global systemic risk
has for policy regulators.

2.2 Causality and Predictive Effects on Systemic Risk Mea-
sures

Once we have estimated the aggregated systemic risk measures, we try to ascertain
what could be causing them. To do so, we implement the Linear Granger-Causality
analysis of Granger (1980) to test whether an explanatory variable X causes global
systemic risk. Assuming that the cause is prior to the effect and it has unique
information about the future value of its effects, we assess whether such X variable
provides statistically significant information to future values of Y. It is said that X
Granger-causes Y when predictions of Y based on its own past and X are better
than predictions based only on Y’s own past values.

Granger causality is statistically tested through the following regression model:

Yt =
p∑
j=1

A1,jYt−j +
p∑
j=1

A2,jXt−j + et, (5)

where Y is the variable of interest that we want to predict through the information of
an individual variable X, p is the number of lags included in the series involved, and
Ai for i = 1, 2 are the vectors containing the contributions of each lagged observation
to the predicted value of Y . Finally, e represents the error term.
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The null hypothesis is that A2,j = 0 given the assumptions of covariance station-
arity on X and Y . In other words, it states that the second time series, X, does not
cause the first one, Y . Moreover, we check for a specific level of confidence whether
the null hypothesis is rejected considering different number of lags.

After analyzing possible causal relationships on global systemic risk, we try to
discern any predictive effects on our measures. First, we implement a pre-whitening
process on our predictable variables where we only keep the non-autoregressive part
of the series we want to forecast. This way, we avoid their own-predictive effects.

More concretely, we keep the non-own-predictive part of our systemic risk mea-
sures like the residuals of an auto-regression of the following form:

YASR,t = c+
d∑
l=1

αlYASR,t−l + εASR,t = cd + αd(L)YASR,t + εASR,t, (6)

where YASR represents the estimated daily aggregated systemic risk measures at
time t and d is the autoregressive order that minimizes the Akaike Information
Criterion. Likewise, εASR represents the non-auto-predictive part of our measures
that we would try to explain. The method is implemented using an expanding
window of three months length where the information is updated for every time t.

Thereafter, any predictive effects on the non-auto-predictive part of our mea-
sures, i.e. the residuals of Equation (6), are evaluated through a simple linear
regression:

ε̂ASR,t = ct + β′tXt−d + εt, (7)

where d is the number of lags in days considered, βt is a vector containing the re-
gression coefficients at time t and Xt the vector containing the explanatory variables
at time t whose predictive power on systemic risk we want to evaluate.

The goodness of fit is examined through the adjusted R2, which is a modified
version of the classical R2 for linear regression. It penalizes for predictors that are
not significant in the model. Consequently, the adjusted R2 is always lower than the
classical R2 and it can be, even, negative. Unlike the classical R2, an increase in the
adjusted R2 with the addition of a new exogenous variable implies an improvement
in the regression model, and vice versa.

Finally, we should add that, additionally to the exogenous variables considered
to forecast the non-explanatory part of the systemic risk, we take into account the
pairwise Kendall’s τ correlation as a measure of systemic interconnectivity among
institutions. The pairwise dependence between two financial institutions’ log re-
turns (R1 and R2) is estimated through the nonparametric time varying Kendall’s
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τ estimator proposed by Ascorbebeitia Bilbatua et al. (2021):

τ̂t =
4

1−∑T
r=1w

2
b,tr

T∑
r,s=1

wb,trwb,tsI
{
R1
r < R1

s, R
2
r < R2

s

}
− 1 (8)

for t = 1, . . . , T , where wb,tr = (Tb)−1k ((t− r) / (Tb)) is the kernel weight that
smooths over the time space, b > 0 is the bandwidth that regulates the degree of
smoothness, and I {·} is the indicator function. In all our calculations we consider the
Epanechnikov kernel, k (v) = 3

4
(1− v2) I {|v| < 1}, which assigns a higher weight

to the closer values in time and the other way round. The smoothing parameter b is
selected minimizing the mean squared error of the Kendall’s τ estimator in Equation
(8) (for more details see Ascorbebeitia Bilbatua et al. (2021)).

2.3 Evaluation of Macroeconomic Predictive Capabilities

Once we have analyzed in depth our individual and aggregated systemic risk mea-
sures, we try to capture the forecasting ability of the latter when macroeconomic
downturns happen. In other words, whether global systemic risk measures could
predict European negative shocks on real economy in advance.

Similarly to the process followed in Section 2.2, we also implement the pre-
whitening method of Equation (6) to some macroeconomic European variables se-
lected. In this case, we use a dynamic window of three years instead of three
months due to the observations’ monthly frequency. As previously exposed, this
approach purges each macroeconomic variable of their own-predictable variations
and the residuals representing the non-auto-predictive part is what we try to ex-
plain. Specifically, we try to predict the left-tail distribution of the macroeconomic
variables with the daily aggregated systemic risk measures. Then, unlike the pre-
vious subsection, the frequency among variables differs since the macroeconomic
variables have a lower frequency than the systemic risk estimates. Consequently, we
implement a Mixed-data Sampling (MIDAS) quantile regression in our forecasting
analysis.

MIDAS quantile regression models, first proposed by Ghysels et al. (2016), have
two principal advantages over other methods: they allow to use all the richness
of the high-frequency (daily) data as well as to quantify the dependence between
variables at various distribution quantiles. Consequently, we can focus on extreme
regions of the macroeconomic variables avoiding the need to aggregate high fre-
quency conditioning variables to match the low frequency ones. In short, the use
of high-frequency data increases the precision of the quantile estimates, overall, in
extreme regions characterized by high variances and few observations.
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The MIDAS quantile regression model is expressed as follows:

Qθ,t(Zt+h; δθ,h) = αθ,h + βθ,hWt(κθ,h), (9)

Wt(κθ,h) =
D∑
d=0

λd(κθ,h)L
dYt, (10)

where Qθ,t(Zt+h; δθ,h) represents the estimation of the low frequency variable θ-
quantile at time t for the macroeconomic variable Zt+h that we pretend to predict at
a horizon of h = 21 days. δθ,h = (αθ,h, βθ,h, κθ,h) are the unknown parameters to es-
timate, Yt the high-frequency conditioning explanatory variable, Ld the lag operator
of order d, and λd(κθ,h) the MIDAS weighting scheme.

Regarding MIDAS weighting scheme λd(κθ,h), we implement the Exponential
Almong lag approach which guarantees positive weights on the high frequency esti-
mates and it is flexible enough to take various shapes like increasing, decreasing or
hump-shaped patterns. Its expression considering two parameters is the following
one:

λd(κθ,h) =
exp(κ1d+ κ2d

2)∑D
d=0 exp(κ1d+ κ2d2)

. (11)

Finally, we calculate quantile regression’s pseudo − R2 to evaluate the predic-
tive power of our aggregated systemic risk measures when forecasting the negative
impacts in macroeconomic series. The pseudo − R2 captures the relative loss in
forecasting the θ-quantile of the low frequency variable, where θ = 0.05, using con-
ditioning information as in Equation (9), relative to the loss using the historical
unconditional quantile estimate, θ̂.

MIDAS pseudo−R2 is expressed as follows:

pseudo−R2
θ = 1− RASWθ

TASWθ

, (12)

where RASWθ is the Residual Absolute Sum of Weighted differences and TASWθ

the Total Absolute Sum of Weighted differences for the θ-quantile.
RASWθ and TASWθ expressions are:

RASWθ =
∑

Zt≥Q̂θ,t(Zt+h;δθ,h)

θ |Zt − Q̂θ,t(Zt+h; δθ,h)| +

∑
Zt<Q̂θ,t(Zt+h;δθ,h)

(1− θ)|Zt − Q̂θ,t(Zt+h; δθ,h)| (13)
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TASWθ =
∑
Zt≥θ̂

θ |Zt − θ̂|+
∑
Zt<θ̂

(1− θ)|Zt − θ̂| (14)

where θ = 0.05, Zt our variable of interest whose θ-quantile we want to forecast,
Q̂θ,t(Zt+h; δθ,h) the conditioned estimated θ-quantile, and θ̂ its unconditional esti-
mated value.

As we can appreciate in Equation (12), pseudo − R2 ranges between 0 and 1
only in case that the Residual Absolute Sum of Weighted differences is lower than
the Total Absolute Sum of Weighted differences. Otherwise, the pseudo − R2 re-
turns a negative value indicating that historical unconditional quantile θ̂ for the
low frequency variable offers a better forecast or at least is more informative than
conditioning to the high frequency variable estimates. We must stand out that the
pseudo − R2 cannot be considered as a measure of goodness of fit for the whole
model because it is specific for a given θ-quantile.

3 Data Employed
Financial institutions interconnect all sectors in an economy thanks to its funding
and saving functions. Their fall can be transmitted through the whole system and
this fact, along with their relative importance in the European economy, are the
reasons why we are going to focus our analysis on them. More concretely, we put
our attention on publicly traded financial institutions from four financial sectors:
commercial banks, security broker-dealers (including the investment banks), insur-
ance companies, and real estate companies. Publicly listed entities’ data allows to
incorporate the most current available information to our analysis so that market
returns reflect new information sooner than any other variables.

Moreover, with the aim of representing a comprehensive sample of the European
financial system, we select the 20 most important European financial institutions
in terms of market capitalization that are included in the S&P Europe 350 index.
Regarding the latter, the S&P index encompasses 363 of the main European com-
panies2 considering only the 16th most developed European stock markets. It is
our benchmark representing the European system. The data employed are the daily
closing prices for the sample period between the 1st of January 2010 and the 31st
of October 2020. Then, we calculate their respective logarithmic returns and con-
struct the systemic risk measures presented in Section 2.1. All market data has
been obtained from MorningStar ’s database. Table 1 shows the 20 European finan-

2The number of components can vary over time.
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cial institutions selected. Their descriptive statistics are exhibited in Table 8 of the
Annex.

Table 1: Principal financial entities in terms of market capitalization within the
S&P Europe 350 Index

Name Ticker Name Ticker

1 HSBC Holdings PLC HSBA 11 Münchener Rück AG MUV2
2 Allianz SE ALV 12 London SE Group PLC LSE
3 BNP Paribas BNP 13 ING Groep NV ING
4 Zurich Insurance Gr. AG ZUR 14 Nordea Bank Abp NDA FI
5 AXA SA CS 15 Lloyds Banking Gr. LLOY
6 Investor AB B INV B 16 Barclays PLC BARC
7 UBS Group AG UBSG 17 Credit Agricole SA ACA
8 Banco Santander SA SAN 18 Credit Suisse Group AG CSGN
9 Prudential PLC PRU 19 Deutsche Boerse AG DB1
10 Intesa Sanpaolo ISP 20 BBVA BBVA

Note: Evaluated at the 31st October 2020.

Regarding the data employed to implement Section 2.2, we evaluate two specific
causal relationships and predictive effects on our daily systemic risk measures. On
the one hand, we try to ascertain how policy uncertainty perception could impact on
global systemic risk. Particularly, we evaluate the effect of the daily US news-based
Economic Policy Uncertainty (EPU) index. It is obtained from the Federal Reserve
Bank of Saint Louis ’s database. The index is composed by newspaper archives from
NewsBank Access World News database that contains archives of thousands of news-
papers and other news sources from different countries across the globe. In the US
case, there are around 1000 newspapers considered. Regarding the index construc-
tion, the primary measure is the number of articles that contain at least one term
from each of the three following sets of terms: ‘economic’ or ‘economy’; ‘uncertain’
or ‘uncertainty’, and ‘legislation’, ‘deficit’, ‘regulation’, ‘congress’, ‘federal reserve’
or ‘white house’. As the number of newspapers has drastically increased from 18 in
1985 to over 1800 by 2008, EPU values are normalized by the number of articles.

On the other hand, the other effect taken into account is the interconnectivity of
European financial institutions. To evaluate it, we calculate the dynamic pairwise
Kendall’s τ from Equation (8) for the logarithmic returns of the 20 financial entities
showed in Table 1.

Moreover, as described in Section 2.3, we want to test our measures’ capabil-
ity in forecasting macroeconomic negative impacts. In order to do that, two series
representing the European economic activity are considered: the monthly Normal-
ized Gross Domestic Product (GDP) and the Total Industry Production exclud-
ing construction (IP) for the European countries belonging to the Organization for

11



Economic Co-operation and Development (OECD)3. Both series are seasonally ad-
justed. The GDP and IP indexes are obtained from the Federal Reserve Bank of
Saint Louis ’s database. Three additional years are included to have the same data
length after the implementation of the pre-whitening process in Equation (6).

4 Principal Results and Stylized Facts

4.1 Systemic Risk Measures’ Insights

CoVaR, ∆ CoVaR and SMES measures indicate how the financial system is affected
by an individual firm being at distress. One of the main concerns is up to what point
are they capturing the same facet of systemic risk or are they interchangeable. It is
clear that they are computed in different ways and, although they try to quantify
the same risk, we obtain different results for each one of them. Then, they are used
to identify SIFI’s so that we can rank the companies that contribute the most to
the overall risk. We could think that their rankings should be similar, considering
that they take the same conditioning direction, but their results are disparate.

Table 2: Systemically Important Financial Institutions’ ranking (Jan 2010 - Oct
2020)

CoVaR ∆ CoVaR SMES

Ticker Value Ticker Value Ticker Value

ISP -0.0263 INVE B -0.0163 INVE B -0.0234
DB1 -0.0259 ALV -0.0152 ALV -0.0218

BBVA -0.0255 CS -0.0147 PRU -0.0217
INVE B -0.0255 CSGN -0.0138 BARC -0.0214

CSGN -0.0254 HSBA -0.0136 INGA -0.0214
LLOY -0.0254 ISP -0.0136 CS -0.0210
ALV -0.0252 ZURN -0.0136 BNP -0.0207
ACA -0.0252 INGA -0.0136 LSE -0.0205
UBSG -0.0251 BNP -0.0135 UBSG -0.0204
MUV2 -0.0252 NDA FI -0.0135 ZURN -0.0199

Note: We consider profit and loss distribution. Then, negative signs indicate losses. Fi-
nancial institutions considered as SIFI’s by all the measures are signaled in bold.

Table 2 shows that SIFI’s resulting rankings for the three measures are unequal.
∆ CoVaR and the SMES agree in the two principal firms assuming higher systemic
risk, Investor AB and Allianz, for the sample period studied. Additionally, they
are the only ones present in all the rankings. It stands outs the differences between

3Countries whose stock markets are included in the S&P Europe 350 index belong to the OECD.
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CoVaR and ∆ CoVaR. Although the second one is constructed from the first one, ∆
CoVaR measures the contribution to systemic risk considering the difference from
the median situation. In fact, ∆ CoVaR and SMES ranking are more similar among
themselves than CoVaR and ∆ CoVaR. They coincide in 5 out of 10 of the most
risky entities.

Thus, rankings’ differences encourage us to think that each measure captures
different facets of systemic risk. We implement a Principal Component Analysis
(PCA) to individual systemic risk measures to examine the relationships among
institutions and general patterns that could be driving systemic risk. Specifically,
whether they capture the same nature of systemic risk or a different one. Hence,
we implement PCA on the 20 individual series estimated for the three systemic risk
measures. Additionally, we also apply PCA to the set of the 60 estimated variables
(20 for each of the risk measures). We call such proceeding the ‘joint PCA’. In order
to do so, we have orthogonalized the correlation matrix instead of the covariance
matrix with the aim of discerning possible co-movements4. It is also important
to highlight that series’ stationarity has been verified using the Augmented Dickey
Fuller unit root test.

Our main finding has been that for all measures studied (CoVaR, ∆ CoVaR and
SMES), their first Principal Component is the weighted average of the individual
estimates. The same result is found in the ‘joint PCA’ proceeding where we consider
the three measures’ estimates. More concretely, the first component explains 92.73
%, 82.99 % and 91.12 % of the total variance for the CoVaR, ∆ CoVaR and SMES
measures, respectively. Moreover, it explains the 87.08 % in the ‘joint PCA’ case.

Considering the importance of such component, we construct aggregated mea-
sures from the conditioned individual series. These are calculated as an equally-
weighted average of the individual variables and we call them aggregated CoVaR,
aggregated ∆ CoVaR, aggregated SMES and ‘Global’ (for the weighted average of
the 60 ‘joint PCA’ estimates), respectively5. Through the aggregation of individual
effects, it is expected to capture not only financial entities’ interconnections, but
also the joint contribution of the European financial system to the global market.
Then, such aggregated measures are intended to represent a good benchmark of
global systemic risk and the distress suffered by the whole financial system.

The second principal component reduces notably its relative importance when
explaining the total variance of the system. It explains 1.36%, 2.96% and 1.35 %
of the variance for the CoVaR, ∆ CoVaR and SMES . For the ‘Global’ measure

4We remind that orthogonalizing the covariance matrix in PCA implies to give higher impor-
tance to variables with bigger variance.

5We must clarify to the lector that we will also call them CoVaR, ∆ CoVaR, SMES and ‘Global’,
indistinctly, without referring to their aggregated nature along the rest of the study.
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the second component is the 2.43% of the variance. Although it seems to show a
geographical pattern in some measures, robust evidence has not been found in all of
them. The other principal components relative importance is not relevant enough.

Thereof, from Principal Component results, we can interpret the importance of
the first principal component as a new insight for measuring global systemic risk.
The aggregation of the individual financial estimates would allow to evaluate a joint
effect of the European financial system in the whole European market. Hence, we
are interested in a better understanding of what can be causing and driving global
systemic focusing us on such aggregated measures. Their predictive capabilities are
also analyzed in next subsections. Aggregated measures’ descriptive statistics are
exhibited in the Table 9 of the Annex.

Figure 1: Aggregated systemic risk measures comparative (April 2010 - Oct 2020)

As we can see in Figure 1, the four aggregated measures seem to co-move almost
during the whole sample period from April 2010 to October 2020. In general, they
present similar patterns with the exemption of certain specific moments. In addition,
we appreciate that measures’ most important falls coincide with critical economic
moments like the Flash Crash in May 2010, the European sovereign debt crisis
between mid-2011 and February 2012, the Greek debt default in June 2015, an
important fall in petroleum prices in January 2016, Brexit outbreak in June 2016,
Trump election in November 2016, and the COVID-19 health crisis in March 2020.
Consequently, global measures seem to correctly capture systemic risk, i.e. distress
in the European financial market transmitted to the real economy.
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Regarding each measure individually, we see how the CoVaR stands out for
having the most negative values during almost all the sample period while ∆ CoVaR
presents the highest (less negative) ones. Concerning the other two variables, SMES
is usually between CoVaR and∆ CoVaRmeasures, and oscillates around the ‘Global’
one. This latter, as an average of CoVaR, ∆ CoVaR, and SMES indivual estimates,
presents a smoother pattern whose differences with the SMES at some points do not
seem to be important enough.

However, we must emphasize the behavior of the SMES measure at two periods.
The first period coincides with the distress generated by the Brexit crisis in the
United Kingdom and the second one with the outbreak of the COVID-19 health
crisis. In both cases, the measure falls exceeding the negative values of the CoVaR.
Moreover, during the second period, the SMES overcomes the ‘Global’ aggregated
measure and even the CoVaR at the end of March 2020.

The aggregated CoVaR indicates the V aRS
θ of the system when the financial

sector6 is in a situation of distress (θ=0.05). Normally, it is not overcome by the
SMES because the aggregated CoVaR implies that both, the European market and
the financial system are in its 0.05 quantile, while the SMES represents the average
of market returns when only the financial sector is at this low quantile. Then,
the SMES averages S&P Europe 350 index’s profits and losses since the market is
not conditioned to be in a situation of distress. When the SMES is more negative
than the CoVaR, we can presume that the financial sector affects the European
market more intensely than other sectors included in the European index. That
is, we can say that the dependence between the financial sector and the European
market strengthens. Following this reasoning, it is surprising to note how such
dependence has been more affected by Brexit than by other economic crises such
as the European sovereign debt. The same appears to happen at the beginning of
the COVID-19 crisis when, because of the halt in the economic activity, financial
support became essential.

4.2 Causes of and Effects on Global Systemic Risk

Interconnectivity among financial institutions and their returns’ lower tail dependen-
cies are considered as intrinsic characteristics of systemic risk so that their correct
measurement becomes essential. Thus, any systemic risk measure should ensure, at
least, to be capturing such dependencies as well as any reliable connectivity mea-
sure should entail systemic risk. In that sense, we prove causality of the pairwise

6We consider as the financial sector the conglomerate of the 20 financial European institutions
selected.
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Kendall’s τ developed by Ascorbebeitia Bilbatua et al. (2021) on all our global
systemic risk measures.

Furthermore, recent economic literature, like the studies of Baker et al. (2016)
and Liu and Zhang (2015), show that economic policy uncertainty has an important
effect on stock returns and volatility. We prove that the US EPU index explains
and helps to forecast our European global risk measures. Since systemic risk is not
fully understood and its nature is unclear, economic policy uncertainty could be an
important driving factor. Although it does not seem important enough to trigger a
systemic event, it can be understood as an amplifying factor whose effects must be
considered in advance.

Table 3 presents empirical evidence of Granger-causality from the US EPU index
to all global systemic risk measures. Results for the Granger-causality of the pairwise
Kendall’s τ are not exhibited since p-value estimates are lower than 1e-3 for all
lags and measures studied. We must outline that all our measures and variables
accomplish the stationarity causality requirements7 for the sample period studied.
However, we cannot reject the fact that they can be local stationary stochastic
processes whose statistical properties change gradually or slowly over time. Despite
that, such changes should not alter our results notoriously.

Regarding the results obtained, the dynamic rank correlation measure Granger-
causes all our aggregated systemic risk variables, considering even a three-month
lag with a significance level of 5%. Actually, we can state that it has an important
impact on global risk. With respect to causality of the US EPU index, its effects
depend on the autoregressive order and the level of confidence. For a significance
level of 5%, only the CoVaR is immediately caused by the US news index. Nonethe-
less, for a 10% significance level, we find a causality effect over the SMES and the
‘Global’ measure while the US uncertainty seems to not have statistically significant
effects on ∆ CoVaR, at least, instantly. However, considering an autoregressive or-
der between 20 and 75 lags, causality is evidenced in all aggregated measures under
a 10% significance level. The predictive effects of both variables, the US EPU index
and the pairwise Kendall’s τ , cease to be important after three months, descending
more gradually for the latter.

Consequently, dynamic interconnectivity shows to be an important driver of
systemic risk and the economic uncertainty news coming from the United States
cannot be either disregarded. While pairwise Kendall’s τ causality remains highly
significant during a whole quarter, the US EPU index is characterized by its lack of
immediate effect. However, it appears after 10 days and lasts up to three months.
One plausible explanation is that such news do not impact European returns short

7Augmented Dickey-Fuller unit root test has been implemented and the null hypothesis rejected
in all cases.
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after but that their effects become persistent after some days of assimilation.

Table 3: Linear Granger-causality (Apr 2010 - Oct 2020)

p-value EPU Causality on :

lags Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

1 0.0425 0.1909 0.0747 0.0875
5 0.2645 0.4820 0.2308 0.3523
10 0.2669 0.3776 0.2232 0.3056
20 0.0205 0.0288 0.0381 0.0230
30 0.0372 0.0855 0.0488 0.0442
45 0.0889 0.0672 0.1060 0.0847
60 0.0105 0.0178 0.0028 0.0056
75 0.0213 0.0415 0.0156 0.0245
90 0.0808 0.1132 0.0391 0.0835

As mentioned in Section 2.2, we evaluate the average forecasting power of both
series, the US EPU index and the pairwise Kendall’s τ correlation over the non-
auto-predictive part of our global systemic risk measures. First, we consider the
effect of both variables jointly and, after, individually.

Following the model in Equation (7), the respective predictive models estimated
are:

ε̂ASR,t = ct + βE,tEPUt−d + βτ,tτt−d + εt (15)

ε̂ASR,t = ct + βτ,tτt−d + εt (16)

ε̂ASR,t = ct + βE,tEPUt−d + εt (17)

Table 4 shows the results for model in Equation (15). In those, it is observed
that the US EPU index and the non-parametric Kendall’s τ forecasts the residuals of
global systemic risk long in advance. The highest capacity in terms of the adjusted
R2 is found on predicting CoVaR, ∆ CoVaR, and ‘Global’ aggregated measures
between 10 and 20 days before. The predictive capacity of the model over the
SMES is also notorious during this forecast length. After two months, we see how
such capacities start to diminish. In fact, βE,t begins to be statistically equal to zero
for some measures at d = 45.

Comparing individual effects of both explanatory variables, the adjusted R2 for
the individual model with pairwise Kendall’s τ are larger than those of the US
EPU individual model for all the forecast lengths. Table 5 shows that the pairwise
Kendall’s τ forecasts systemic risk even 60 days in advance while, as Table 6 presents,
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Table 4: Linear regression estimates for model in (15) (July 2010 - Oct 2020)

Adj R2 ε̂ASR,t / US EPU index, pairwise Kendall’s τ

lags in days(d) Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

1 0.5437 0.5220 0.4720 0.5440
5 0.5739 0.5549 0.5025 0.5691
10 0.5931 0.5786 0.5185 0.5888
20 0.5854 0.5820 0.5060 0.5845
30 0.5176 0.5263 0.4380 0.5179
45 0.3452 0.3724 0.2869(2) 0.3481
60 0.1591(1) 0.1902(2) 0.1381 0.1637(2)

75 0.0441(2) 0.0649(1) 0.0439 0.0477(1)

90 0.0067(1) 0.0163 0.0156 0.0098

Note: All the parameters of the regression are statistically different from zero for a con-
fidence level of 95%, except for the following cases: (1) βE,t is different from zero for a
confidence level of 90%; (2)βE,t is statistically equal to zero.

the US EPU index only does it up to 30 days. In addition, pairwise Kendall’s τ
higher predictive effect is noticed at 20 lags and the US EPU index presents it during
the first 10 days. Regarding which European global measure is more influenced by
pairwise Kendall’s τ , the latter individually explains more about CoVaR and ∆
CoVaR measures. In fact, its forecasting ability in the ∆ CoVaR seems to be more
long-lasting. In the case of the US EPU, it presents the same pattern as the pairwise
Kendall’s τ in a short-time horizon. However, its effects remain more persistent in
the SMES measure. We should add that the ‘Global’ measure presents the second
highest pseudo− R2 values for the three linear models constructed and all the lags
considered. As it encompasses CoVaR, ∆ CoVaR and SMES effects, it would be
creating synergies among the three measures so that it always has a higher predictive
ability than two of them. Whether a measure diminishes its predictive ability, it is
offset by measures with higher forecasting power.

Furthermore, looking at Tables 4 and 5, the inclusion of the US EPU in the model
improves the adjusted R2 estimates only up to a 45-day prediction. For a higher
order lag, it is preferable to consider pairwise dynamic correlation individually. Such
result reaffirms the higher importance of the comovements between financial entitites
over the US EPU index, although the US EPU effect should not be disregarded.

Finally, above results coincide with the results obtained for causality presented
in Table 3. As previously stated, interconnection among financial institutions is
once again more important than the US policiy uncertainty when measuring Euro-
pean systemic risk. The major predictive capacity of the joint model in Equation
(7) coincides with the range where both explanatory variables Granger-cause more
European systemic risk. However, the high R2 values in the first 10 days for the US
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Table 5: Linear regression estimates for model in (16) (July 2010 - Oct 2020)

Adj R2 ε̂ASR,t / pairwise Kendall’s τ

lags in days (d) Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

1 0.3968 0.3763 0.3497 0.3868
5 0.4319 0.4172 0.3883 0.4267
10 0.4610 0.4539 0.4214 0.4608
20 0.4875 0.4952 0.4502 0.4946
30 0.4568 0.4770 0.4165 0.4660
45 0.3266 0.3603 0.2869 0.3353
60 0.1583 0.1904 0.1272 0.1640
75 0.0443 0.0640 0.0284 0.0468
90 0.0057 0.0128 0.0026 0.0070

Table 6: Linear regression estimates for model in (17) (July 2010 - Oct 2020)

Adj R2 ε̂ASR,t/ US EPU index

lags in days (d) Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

1 0.2455 0.2410 0.2073 0.2484
5 0.2441 0.2364 0.2021 0.2439
10 0.2350 0.2245 0.1835 0.2297
20 0.1932 0.1786 0.1288 0.1828
30 0.1375 0.1222 0.0714 0.1251
45 0.0597 0.0504 0.0139 0.0499
60 0.0120 0.0088 0.0007 0.0072(1)

75 0.0004(2) -0.0002(2) 0.0078 -0.0003(2)

90 9.5e-5(2) 0.0012(1) 0.0104 0.0012(1)

Note: βE,t is statistically different from zero for a confidence level of 95%, except for the
following cases: (1) it is for a 90% level; (2) it is statistically equal to zero.
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EPU individual model contrast with its null causality for this period. Although the
US news would not Granger-cause global systemic risk in the short-term, an imme-
diate effect should not be rejected. We should remind that the US EPU’s effects
also remain less over time than the pairwise Kendall’s τ one. One hypothesis to
evaluate is that only persistent news with high impact could Granger-cause global
systemic risk, although they can be helpful to explain short-term risk dynamics.

4.3 Predictive Capacity of the Aggregated Systemic Risk Mea-
sures

Giglio et al. (2016) prove that 19 selected individual systemic risk measures have
little, if any, macroeconomic predictive power among the three different country
regions analyzed: the USA, UK, and Europe8. Regarding Europe, they demonstrate
that measures like the aggregated CoVaR, ∆ CoVaR, and MES9 are relevant for the
lower quantiles of the European GDP distribution. Then, our objective is to develop
a similar macroeconomic analysis considering the 16 OECD European countries to
construct our European estimates as well as some new aggregated systemic risk
measures.

Given the frequencies of the data employed, first, we make an approximation of
the predictive power analysis converting our daily systemic measures into monthly
data. The reason is that MIDAS quantile regression is a harder process to implement
and, this way, we can narrow down the distribution regions where our aggregated
systemic measures could forecast the most. Following the methodology explained in
Section 2.3, we de-trend our macroeconomic series using the procedure in Equation
(6). It is the low-tail distribution of the non-auto-predictive part of the series what
we try to predict through quantile regression.

Contrary to Giglio et al. (2016)’s research, we obtain that the European aggre-
gated CoVaR and ∆ CoVaR do not predict the lowest quantiles of the European
GDP de-trended series. In fact, considering the first two quartiles of the GDP non-
autoregressive residuals’ distribution, the pseudo−R2 for the CoVaR and ∆ CoVaR
are nearly zero. On their side, the SMES cannot be rejected for not being signif-
icant, regarding 0.02-0.03 quantiles, but its pseudo − R2 are lower than 1%. The
results for the ‘Global’ measure, as a weighted average of the other three measures,
are not better than for the CoVaR, ∆ CoVaR and SMES. Then, individually, our
four aggregated systemic risk measures would lack of a robust statistical association

8The European region is constructed considering only some core European economies: Germany,
France, Spain, and Italy.

9Systemic risk measure described in Acharya et al. (2017) from which we develop our SMES
measure.
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with macroeconomic downside risk for the European GDP. On the other hand, when
we evaluate their predictive ability on the European Production Index, pseudo−R2

values for all measures improve so that they are significant in the lowest part of the
index distribution, i.e. in the 0.015 quantile. Such pseudo− R2 values are between
25% and 33%, but we must outline that it is in an extreme region of the distribution
where the variance is high and realizations are few, so results must be taken with
care (results are shown in Table 10 of the Annex).

Thanks to the previous results, where we have matched data frequencies, we can
narrow down the left-tail distribution of the de-trended macroeconomic series to
implement our MIDAS quantile regression analysis. In order to compare our results
to the ones obtained by Giglio et al. (2016), we also implement the MIDAS quantile
regression in the first 20% percentile of both macroeconomic series’ distribution.

Table 7: Systemic risk measures’ forecasting power for one month length (July 2010
- Oct 2020)

pseudo-R2 Prediction on European ε̂Prod

Quantile Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

0.015 0.4375 0.4582 0.5102 0.3539
0.05 0.0744 0.1035 0.1626 0.1268
0.10 0.0194 0.0230 0.0284 0.0054
0.20 0.0034 0.0021 0.0025 0.0029

Note: The methodology implemented has been MIDAS quantile regression. Results for
the GDP are not significant (see Table 11 in the Annex).

Table 7 presents the low predictive capacity of our aggregated systemic risk mea-
sures for one period ahead macroeconomic data. Regarding the non-auto-predictive
part of the European GDP, any of the conditioning variables offers any forecast im-
provement in comparison with the unconditional quantile. However, all of them are
helpful when trying to guess negative shocks in the European Industrial Production
(IP) index. Considering the lowest left-tail region of the European IP distribution,
aggregated measures present high pseudo−R2 for θ = 0.015 and non-negligible val-
ues for θ = 0.05. In fact, it stands out the forecasting ability of the aggregated SMES
for the 5% percentile which could be a good predictor but not robust enough. The
problem with the most extreme regions, as previously stated, is that such estimates
are driven by high variances. For the 10% percentile, all the R2 are different from
zero although we would be barely explaining 2% of the model. For the 0.2 quantile,
the one studied by Giglio et al. (2016), we cannot state that our aggregated measures
are statistically significant.

Looking at each aggregated measure individually, the SMES results to be the
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best one for forecasting downside macroeconomic risk in the European Industrial
Production Index. The SMES is followed by the ‘Global’ measure that, similarly to
what happened in Section 4.2, offsets the individual forecasting abilities of the other
aggregated measures. Consequently, the ‘Global’ measure predicts better a negative
shock in the European IP index than CoVaR or ∆ CoVaR did.

Finally, considering MIDAS results and the ones obtained by the monthly ap-
proximation of our systemic risk measures, both coincide in indicating a low macroe-
conomic predictive capacity. Nonetheless, MIDAS pseudo − R2 almost double the
ones for the simple quantile regression where we have matched data frequencies. We
can guess that better accuracy of the estimations is obtained when using high fre-
quency data instead of matching frequencies. Predictive power for a three-months
length analysis has been also tested to contrast the robustness of our results. Mea-
sures predictive ability has been notably reduced (for more details see results in
Tables 12 and 13 of the Annex).

5 Conclusions
Systemic risk comprehension is still limited. Its multifaceted nature makes it unclear
and difficult to identify what exactly is driving it. Therefore, discerning what is
behind systemic risk has been the main goal of this study.

First, we have tried to identify what facet individual systemic risk measures
capture. In that sense, we have verified that different measures of systemic risk,
although conditioning in the same direction, present different SIFI’s rankings. In-
dividual estimates of CoVaR, ∆ CoVaR, and SMES quantify different aspects of
the individual risk contribution to the European market. However, we find that
aggregated measures, calculated as weighted averages from the individual measures,
can gather almost the same information provided by individual estimates and are
more helpful for regulators. Systemic events result from a strong propagation of fail-
ures and, less often, from an individual one. Then, although individual risk taking
can trigger a crisis and must be controlled, it is the global risk impact on the real
economy what must be prevented in advance.

Moreover, our four aggregated measures would represent financial sector risk
contribution to the whole European system. Due to financial sector’s essential role
in the well-functioning of the real economy and other economic sectors, external
dependencies with the system would be good predictors of systemic events. In that
sense, we have showed that an increase in the negative values of the aggregated
SMES measure overcome other global measures in signaling strong influences from
the financial sector to the whole system.
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Causal and predictive relationships have also been studied to discern driving fac-
tors of systemic risk. Internal dependencies among financial institutions are related
to possible failures’ propagation among individual entities. We have proved that all
our aggregated global risk measures are not only Granger-caused but also predicted
long in advance by the non-parametric dynamic pairwise Kendall’s τ of Ascorbe-
beitia Bilbatua et al. (2021). We interpret it as one of the main drivers of global
systemic risk that helps to forecast European market distress even three months
ahead. Robust evidence is demonstrated. Moreover, its high predictive power elu-
cidates the importance of multivariate dependencies when measuring systemic risk,
which has been contrasted in many economic research works, but few emphasis has
been given to time varying rank correlations for measuring it. The non-parametric
dynamic pairwise Kendall’s τ could be a value-added measure for policy regulators.

Interestingly, the results also show that the US Economic Policy Uncertainty
index, which it is not constructed from financial or economic data but for news,
also Granger-causes and improves the prediction of all our systemic risk measures.
The US news gathering the economic uncertainty perception have a significant im-
pact, although only temporarily, in the European systemic risk which cannot be
disregarded. Relevant information generated in the United States could not be
important enough to trigger a crisis, but it could be an amplification mechanism
transforming small shocks in large impacts. What it is clear is that its increase
induces financial distress in the European market affecting, this way, systemic risk.

Additionally, it is important to outline that all those effects vary across our ag-
gregated systemic risk measures. Then, the computation of the ’Global’ measure,
as the average of the 60 individual systemic measure estimates, offsets the differen-
tiated effects while gathering the different facets that CoVaR, ∆ CoVaR, and SMES
capture.

For preventing and avoiding systemic risk it is not only necessary to measure
it correctly, but also to contrast whether our measures capture the real impact on
the economy. Consequently, we have tested our aggregated systemic risk measures
forecasting power on the European economy. Although the results have not been
encouraging, we can appreciate certain predictive ability in the lowest tail of the
macroeconomic shocks in the European Industrial Production index for a forecasting
horizon of one month. The aggregated SMES performs the best in that sense,
followed by the ’Global’ measure.

Finally, regarding these findings, further research could be conducted considering
expectiles instead of quantiles. Evidence of their better performance in extreme
regions has been shown and they consider the whole distribution instead of being
only focused on the left-tail. Moreover, it would also be interesting to contrast
whether the US EPU index influences in the European system also happen in the
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domestic country or if it affects more to specific European countries or regions. Last
but not least, a sectorial analysis could be also conducted to test sector dependencies
and contributions to the European market system.

Acknowledgments

This work was supported by the Spanish Ministry of the Economy and Competitive-
ness under grant ECO2014-51914-P; the UPV/EHU under grants BETS-UFI11/46,
MACLAB-IT93-13 and PES20/44; and the Basque Government under BiRTE-IT1336-
19.

References
Acemoglu, D., Ozdaglar, A., and Tahbaz-Salehi, A. (2015),“Systemic Risk and Sta-
bility in Financial Networks,” American Economic Review, 105(2), 564–608.

Acharya, V. V., Pedersen, L. H., Philippon, T., and Richardson, M. (2017),“Mea-
suring Systemic Risk,” The Review of Financial Studies, 30(1), 2–47.

Adrian, T. and Brunnermeier, M. K. (2016),“CoVaR,” American Economic Review,
106, 1705–1741.

Allen, L., Bali, T. G., and Tang, Y. (2012),“Does Systemic Risk in the Financial
Sector Predict Future Economic Downturns?,” The Review of Financial Studies,
25, 3000–3036.

Ascorbebeitia Bilbatua, J., García, E. F., and Orbe Mandaluniz, S. (2021),“The
Effect of Dependence on European Market Risk. A Nonparametric Time Varying
Approach,” Journal of Business & Economic Statistics.

Baker, S. R., Bloom, N., and Davis, S. J. (2016),“Measuring Economic Policy Un-
certainty,” The Quarterly Journal of Economics, 131(4), 1593–1636.

Benoit, S., Colliard, J.-E., Hurlin, C., and Pérignon, C. (2017),“Where the Risks
Lie: A Survey on Systemic Risk, ” Review of Finance, 21(1), 109–152.

Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012),“Econometric Mea-
sures of Connectedness and Systemic Risk in the Finance and Insurance Sectors,”
Journal of Financial Economics, 104, 535–559.

24



Bisias, D., Flood, M., Lo, A. W., and Valavanis, S. (2012),. “A Survey of Sys-
temic Risk Analytics”. Working Paper 0001, Office of Financial Research, U.S.
Department of the Treasury.

Brownlees, C. T. and Engle, R. (2012),“Volatility, Correlation and Tails for Systemic
Risk Measurement,” Available at SSRN, 1611229.

Cappiello, L., Engle, R. F., and Sheppard, K. (2006),“Asymmetric Dynamics in the
Correlations of Global Equity and Bond Returns,” Journal of Financial Econo-
metrics, 4(4), 537–572.

Ghysels, E., Plazzi, A., and Valkanov, R. (2016),“Why Invest in Emerging Markets?
The Role of Conditional Return Asymmetry,” The Journal of Finance, 71(5),
2145–2192.

Giglio, S., Kelly, B., and Pruitt, S. (2016),“Systemic Risk and the Macroeconomy:
An Empirical Evaluation,” Journal of Financial Economics, 119, 457–471.

Granger, C. W. (1980),“Testing for Causality: A Personal Viewpoint,” Journal of
Economic Dynamics and Control, 2, 329–352.

Hollo, D., Kremer, M., and Lo Duca, M. (2012),“Ciss-a Composite Indicator of
Systemic Stress in the Financial System,” .

Ko, J.-H. and Lee, C.-M. (2015),“International Economic Policy Uncertainty and
Stock Prices: Wavelet Approach,” Economics Letters, 134, 118–122.

Liu, L. and Zhang, T. (2015),“Economic Policy Uncertainty and Stock Market
Volatility,” Finance Research Letters, 15, 99–105.

Longin, F. and Solnik, B. (1995),“Is the Correlation in International Equity Returns
Constant: 1960–1990?,” Journal of International Money and Finance, 14(1), 3–26.

Lopez-Espinosa, G., Moreno, A., Rubia, A., and Valderrama, L. (2015),“Systemic
Risk and Asymmetric Responses in the Financial Industry,” Journal of Banking
& Finance, 58, 471–485.

Mei, D., Zeng, Q., Zhang, Y., and Hou, W. (2018),“Does US Economic Policy Un-
certainty Matter for European Stock Markets Volatility?,” Physica A: Statistical
Mechanics and its Applications, 512, 215–221.

Pástor, L. and Veronesi, P. (2013),“Political Uncertainty and Risk Premia,” Journal
of financial Economics, 110(3), 520–545.

25



Pollet, J. M. and Wilson, M. (2010),“Average Correlation and Stock Market Re-
turns,” Journal of Financial Economics, 96(3), 364–380.

Roncoroni, A., Battiston, S., D’Errico, M., Halaj, G., and Kok, C. (2019),. “In-
terconnected Banks and Systemically Important Exposures”. Working Paper No
2331, European Central Bank.

Škrinjarić, T. and Orlović, Z. (2020),“Economic Policy Uncertainty and Stock Mar-
ket Spillovers: Case of Selected CEE Markets,” Mathematics, 8(7), 1077.

Wu, T.-P., Liu, S.-B., and Hsueh, S.-J. (2016),“The Causal Relationship between
Economic Policy Uncertainty and Stock Market: A Panel Data Analysis,” Inter-
national Economic Journal, 30(1), 109–122.

26



6 Annex

6.1 Descriptive Statistics

Table 8: Descriptive statistics of the variables employed
Variables min max mean θ=0.05 median θ=0.95 SD var skw kurt

HSBA -0.0975 0.0937 -0.0003 -0.0239 0.0000 0.0232 0.0152 0.0002 -0.2723 4.2963
ALV -0.1369 0.1074 0.0002 -0.0249 0.0006 0.0226 0.0162 0.0003 -0.6178 9.0425
BNP -0.1912 0.1592 -0.0002 -0.036 0.0000 0.0340 0.0233 0.0005 -0.2544 7.2417
ZURN -0.1472 0.1234 0.0002 -0.0195 0.0004 0.0189 0.0137 0.0002 -1.0999 15.219
CS -0.1682 0.1618 -0.0001 -0.0333 0.0005 0.0295 0.0210 0.0004 -0.3355 8.9778
INVE B -0.1410 0.1031 0.0005 -0.0247 0.0008 0.0238 0.0152 0.0002 -0.5294 5.3651
UBSG -0.1404 0.1160 0.0000 -0.0274 -0.0001 0.0278 0.0183 0.0003 -0.3921 5.7849
SAN -0.2217 0.2088 -0.0007 -0.0345 0.0000 0.0338 0.0224 0.0005 -0.4064 10.309
PRU -0.1920 0.1652 0.0002 -0.0295 0.0003 0.0305 0.0210 0.0004 -0.5055 9.4540
ISP -0.2606 0.1796 -0.0003 -0.0402 0.0000 0.0396 0.0259 0.0007 -0.5838 8.1379
MUV2 -0.1574 0.1566 0.0002 -0.0214 0.0006 0.0201 0.0145 0.0002 -0.2332 15.849
LSE -0.1520 0.1295 0.0009 -0.0263 0.0008 0.0283 0.0180 0.0003 0.1271 7.3518
INGA -0.2153 0.2198 -0.0001 -0.0378 0.0000 0.0369 0.0246 0.0006 -0.1749 8.9193
NDA FI -0.1500 0.1220 0.0000 -0.0285 0.0000 0.0269 0.0184 0.0003 -0.3765 5.8483
LLOY -0.2979 0.2077 -0.0002 -0.0362 -0.0005 0.0370 0.0252 0.0006 -1.0291 19.670
BARC -0.2567 0.1556 -0.0003 -0.0358 -0.0003 0.0384 0.0254 0.0006 -0.6968 10.833
ACA -0.1847 0.1985 -0.0002 -0.0385 0.0000 0.0382 0.0251 0.0006 -0.2335 6.3411
CSGN -0.1735 0.1372 -0.0005 -0.0316 -0.0002 0.0295 0.0204 0.0004 -0.5034 6.9407
DB1 -0.1242 0.0943 0.0003 -0.0247 0.0002 0.0259 0.0160 0.0003 -0.4169 5.2905
BBVA -0.1765 0.1991 -0.0006 -0.0358 -0.0005 0.0330 0.0223 0.0005 -0.1817 7.1546
SP EUR 350 -0.1225 0.0817 0.0002 -0.0174 0.0007 0.0163 0.0110 0.0001 -0.8372 10.241

Kendall’s τ 0.1734 0.6332 0.3944 0.2550 0.3805 0.5678 0.0934 0.0087 0.3209 -0.3926
US EPU 3.3200 807.66 119.13 36.233 93.805 286.66 86.602 7450.4 2.5024 8.8719

GDP 86.210 100.92 99.641 98.935 100.05 100.86 2.2303 4.9744 -4.3754 19.531
Ind. Prod. -19.799 12.104 0.1418 -1.2223 0.2350 1.6354 2.5953 6.7357 -2.7026 32.082

Table 9: Descriptive statistics of the systemic risk measures (Apr 2010 - Oct 2020)

Systemic Measures Min Max Mean Median SD Variance Skewness Kurtosis

Agg. CoVaR -0.0746 -0.0074 -0.0225 -0.0194 0.0116 0.0001 -2.0894 5.8247
Agg. ∆ CoVaR -0.0488 -0.0017 -0.0117 -0.0096 0.0079 6.2e-5 -2.1680 6.2584
Agg. SMES -0.0715 -0.0014 -0.0151 -0.0118 0.0114 0.0001 -2.5754 8.9728
Global -0.0636 -0.0036 -0.0151 -0.0118 0.0102 0.0001 -2.2964 7.1512
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6.2 Other Macroeconomic Results

Table 10: Systemic risk measures forecasting power for one month length (July 2010
- Oct 2020)

pseudo−R2 Prediction on ε̂GDP Prediction on ε̂Prod

Quantile Agg. SMES Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

0.015 0.0032 0.2718 0.3015 0.3387 0.2718
0.020 0.0027 0.1860 0.2158 0.2672 0.1861
0.025 0.0021
0.030 0.0016

Note: pseudo − R2 is only shown for significant variables. Differences between series’
frequency have been solved adding daily systemic measures into monthly estimates. ε̂GDP
and ε̂Prod represent the non-auto-predictive part of the macroeconomic series.

Table 11: Systemic risk measures forecasting power on the European Gross Domestic
Product for one month length (July 2010 - Oct 2020)

pseudo−R2 Prediction on ε̂GDP

Quantile Agg. CoVaR Agg. ∆ CoVaR Agg. SMES Global

0.015 -0.0219 0.0022 -0.0165 -0.0550
0.05 -2.4e-5 -0.1275 -0.0001 -0.0012
0.10 -3.4e-5 6.6e-5 -0.0557 -0.0001
0.20 0.0002 -0.1932 -0.0015 -0.0040

Note: The methodology implemented has been MIDAS quantile regression.

Table 12: Systemic risk measures forecasting power on European Gross Domestic
Product for three months length (July 2010 - Oct 2020)

pseudo−R2 Prediction on ε̂GDP

Quantile Agg. CoVaR Agg. Delta CoVaR Agg. SMES Global

0.015 -0.0045 -0.0038 -0.0049 -0.0044
0.05 0.0008 0.0013 0.0015 0.0013
0.10 8.4e-5 0.0003 0.0003 0.0003
0.20 -0.0021 -0.0006 -0.0022 -0.0001

Note: The methodology implemented has been MIDAS quantile regression.
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Table 13: Systemic risk measures forecasting power on European Industrial Produc-
tion for three months length (July 2010 - Oct 2020)

pseudo−R2 Prediction on ε̂Prod

Quantile Agg. CoVaR Agg. Delta CoVaR Agg. SMES Global

0.015 0.1567 0.1360 -0.0918 0.0067
0.05 -0.1369 -0.1616 -0.1785 -0.1531
0.10 -0.1086 -0.0404 -0.0644 -0.0353
0.20 0.0003 0.0002 4.7e-5 0.0002

Note: The methodology implemented has been MIDAS quantile regression.

6.3 Graphs

Figure 2: Dynamics of the causality variables (Apr 2010 - Oct 2020)

(a) Pairwise Kendall’s τ Aggregated Correlation (b) US Economic Policy Uncertainty Index

Figure 3: Dynamics of the macroeconomic variables (Apr 2010 - Oct 2020)

(a) OECD European Countries Gross Domestic
Product

(b) OECD European Countries Industrial Produc-
tion (excluding construction) Index
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