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Abstract

This thesis carries out an extended investigation of the modeling of conditional volatil-
ity by score-driven models, with a particular focus on the Autoregressive Conditional
Beta framework developed in Blasques et al. (2024). We also consider several other
models and fit them to multiple return data using factor regressors. We filter volatil-
ities that we then use to build a set of models that are statistically similar in predic-
tive ability. We find that Autoregressive Conditional Beta models excel at conditional
volatility modeling: while other models can be considered equal in predictive ability,
Autoregressive Conditional Beta models are systematically ranked first.

Keywords: conditional volatility, factor models, score-driven models, Autoregressive
Conditional Beta; predictive ability comparison; Model Confidence Set; Fama-French.
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1 INTRODUCTION

1 Introduction

Statistical modeling in finance has advanced significantly in the incorporation of vari-
able dynamics, for example, with the use of Score-Driven or Quasi-Score-Driven models.
These models establish the notion of not only score-driven time-varying volatilites but as
of recently also take into consideration time-dynamic slope coefficients (betas). The use of
these betas has been evaluated mostly for the conditional means of data, overlooking the
dynamics and effects regarding conditional variances or volatilities. A high-frequency
analysis of realized volatility can capture rapid market movements and potentially en-
hance the precision of models such as the Autoregressive Conditional Beta (ACB) model.
However, the ACB model entails higher computational costs than alternative models. In
this thesis, we aim to expand on the ACB model by studying its predictive ability for real-
ized volatilities and comparing it to that of other models by use of the Model Confidence
Set procedure for predictive ability. We find that the ACB model outperforms alternative
models, for standard confidence levels, in terms of predictive ability.

The building of statistical models serves as a way to bring out the intricate inner-workings
of the markets in a way that is understandable, quantifiable and useful for certain pur-
poses and decision making. Improvements in these aspects of statistical models coming
from fields like econometrics are especially useful in these times of technological growth,
computing and artificial intelligence. We have come a long way in the analysis of time se-
ries from AR models (Box et al., 2013) to established frameworks like GARCH (Bollerslev,
1986; Engle, 1982; Francq and Zakoian, 2019; Francq and Zakoı̈an, 2012, 2015), etc. How-
ever, all these share a common weakness, that is, the assumption that model parameters
themselves remain constant over time. This is why recent advances in financial modeling
(Creal et al., 2013) revolve around time-varying parameters (Koopman, 2012; Durbin and
Koopman, 2012; Harvey, 2002; Cipra, 2020), as such variation is consistent with what one
sees in the real world. One example of such advancements is Blasques’ ACB framework.

Blasques’ recent work (Blasques et al., 2024) is a great step in the incorporation of vari-
able dynamics. In this work, this is done via the use of a Score-Driven model (Creal
et al., 2013), making use of an updating gradient equation to adjust parameters over time.
More specifically, to create time-varying slope coefficients, referred to as betas (Sharpe,
1964; Fama and MacBeth, 1973; Fama and French, 1993, 2015) for a regression to reflect
the evolving sensibility of an asset’s returns to several risk factors. Blasques’ betas are
part of the conditional mean, the expected value of a regression model given the data and
Blasques’ work is mostly centered on establishing the ACB model itself and its properties,
as well as on the modeling and practical applications of the ACB model, as well as how it
performs against other models.

The problem that we want to tackle is that the matter of conditional volatility has not
been properly looked into within this framework. Blasques’ paper delves into detail in
all matters regarding the conditional mean but there are barely any results for the con-
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2 DATA

ditional variance, which is just as central to financial analysis and on which we plan on
expanding. Our contribution to solving this shortcoming of Blasques’ work is to replicate
Blasques’ analysis to then extend it to predict realized volatility (Andersen and Teräsvirta,
2009; Da and Xiu, 2021; Zhang et al., 2005). We then test the predictive ability (Giaco-
mini and White, 2006; Diebold and Mariano, 2002; Hansen et al., 2011) of the ACB model
against alternative models, highlighting the better fit of the ACB model as measured by
favorable log-likelihood ratios.

Solving this problem is significant since the ACB model (as well as score-driven models
in general) are not as straightforward as existing alternative models. By expanding on
the limited existing results regarding ACB models with results on volatility, we hope to
yield a deeper understanding of ACB models, with the ultimate goal of identifying short-
comings and weaknesses of ACB models. Another goal is to contribute to the spread of
ACB models, considering that the models’ benefits have already been hinted at (Blasques
et al., 2024). Failing to consider the dynamics in ACB models could result in less effective
hedging strategies and risk management.

The value of this thesis is thus the additional investigation of the use of Score-Driven
models for predicting 5-min. realized volatility with tests for predictive ability between
models. Furthermore, we emphasize that ACB models might lead to significant improve-
ments in log-likelihood when compared to models that keep betas constant.

2 Data

2.1 Assets

2.1.1 S&P 500

Blasques in his paper takes 16 US stocks (randomly selected among the most liquid ones)
from the S&P 500, we have chosen a selection based on the ones that appear in his paper,
though it is not entirely irrelevant since like we will explain later, not all of the stocks
in his article were chosen in the same time window. The ones we have selected for our
paper include ExxonMobil Corporation (XOM) American Express Company (AXP), The
Boeing Company (BA), Microsoft Corporation (MSFT), McDonald’s Corporation (MCD),
and Pfizer (PFE). Like in standard practice, the actual values we will use in the empirical
process will be the logarithmic returns.
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2.1 Assets 2 DATA

Figure 1: XOM logarithmic returns

2.1.2 Factors

Factor models are widely used in finance to price an asset’s returns. The beginnings of
factor models go back to the Capital Asset Pricing Model (CAPM) by Sharpe (1964) who
proposed a single factor model, this being the market risk, represented as a single beta
that drives the asset’s expected return. Over the years, new factors have been studied to
improve the single beta model, most famously the theory developed by Fama and French
(Fama and MacBeth, 1973; Fama and French, 1993), which led to the creation of multifac-
tor models. In particular, the three-factor model (Fama and French, 1993), which expands
on the risk factors that explain asset returns. Over time, more factors such as momentum
(Carhart, 1997) are included in these types of models.

We will be taking six factors for the betas, the exact same ones Blasques uses in his paper,
the risk factors of the three-factor model of Fama and French (1993), i.e., the market factor
represented by the log-returns on the S&P500 index, the standard Fama-French size, the
(Small Minus Big) and (High Minus Low) value factors. The other three factors are the
(Robust Minus Weak) and (Conservative Minus Aggressive) factors initially proposed
by Fama and French (2015) as well as (Momentum) as in Carhart (1997), we obtain the
data for these factors, from Dacheng’s website1, these factors come in arithmetic returns
formed from portfolios that replicate each of these factors in 5 minute intervals from 9:30
to 16:00 hours, turning these into log returns and adding them by making use of the log
properties we are able to obtain the daily log returns for all 6 factors that we will be using
as our regressors, we can see this in figure 2.

1https://dachxiu.chicagobooth.edu/
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2.2 Realized Volatility 2 DATA

Figure 2: Factor returns over time

2.2 Realized Volatility

Realized volatility is a financial metric that measures the price fluctuations of an as-
set over a specific time interval, since the underlying latent time-continuous variance
is unobservable (Andersen and Bollerslev, 1998). Introduced in Andersen and Bollerslev
(1998), the most basic measure for realized volatility as a non-parametric measure is the
sum of squared returns. This estimator however, is subject to the market’s microstruc-
ture noise (Andersen and Teräsvirta, 2009; Zhang et al., 2005), thus over time more re-
search has gone into developing noise-robust estimators. Inference through parametric
approaches have been used to improve upon the modeling of realized volatility like the
use of ARCH, stochastic volatility models, etc.(Andersen and Teräsvirta, 2009). More
recently a paper by Da and Xiu (2021) builds a robust likelihood-based approach for real-
ized volatility that serves as the focus for our work.

One of the cornerstones of this thesis is the combined use of Blasques’ model for time-
varying conditional betas, with Dacheng’s work on realized volatility (Da and Xiu, 2021).
The concept of realized volatility appears when looking into higher frequencies of trad-
ing. It is defined as the changes in price of an asset over a particular amount of time and
taking it into account can be very important since it measures the intraday volatility of a
market day in which even if the price of the stock started and ended on the same price,
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2.2 Realized Volatility 2 DATA

heavy fluctuations could have happened in-between. This is useful for many reasons,
including volatility forecasting and forecast evaluation, which is what we will be doing.

That said, Dacheng’s work contributes a way to measure this type of volatility in such
a way that helps remove noise from the estimations. They assume that the observed
transaction price follows a time-continuous Itô-semimartingale and estimate volatility,
defined as the integrated variance of said semimartingale, by maximizing the likelihood
of a moving-average model whose order is based on an information criterion (Da and
Xiu, 2021).

Unlike the standard non-parametric ways of obtaining realized volatility, which like we
said is usually just the addition of squared log returns over the desired period of time,
their approach consists on using a quasi-maximum-likelihood estimator by fitting a mis-
specified parametric Gaussian moving average model MA(q) to the vector of high-frequency
returns; pretending that the logarithm of the efficient price is a Brownian motion with
constant volatility but no drift (Da and Xiu, 2021), with the noise following said Gaussian
MA(q) model of q order to be determined using information criteria.

Their work on realized volatility is extremely helpful since the data is readily available in
Dacheng Xiu’s website as well, that is where we obtain our time series data for realized
volatility that we will use in the forecasting process. We download the realized volatility
series for the same selected stocks under the same time window we specify below. We
obtained the realized volatilty series for our selected stocks with the added 5-min. real-
ized volatility figures which do not need any extra work done on our part before being
used for our purposes.

8



2.3 Time Windows 3 METHODOLOGY

Figure 3: Realized Volatility time series for XOM, MSFT, BA and PFE

We see that generally XOM seems to have higher realized volatility peaks in the time frame around the
2008 financial crisis, while the other stocks remain generally and steadily below this, with MSFT appearing
the least volatile. We must also note that there is small discrepancy in terms of scale between RV and our
filtered results.

2.3 Time Windows

We have obtained data in a similar manner to Blasques’ paper, since much of our work
consists on replicating his work and extending it, so we have data for the period starting
in January 1999 to December 2017, in Blasques’ article he mentioned a reduced time win-
dow for a few of the stocks but since we are not using the complete list of 16 stocks we will
keep to just this particular window which would come at 4780 observations, 4779 since
we account for losing one data point when building the log returns (like we mentioned
previously, we aggregated the 5-minute log-returns on both the stocks and the factors).

3 Methodology

The estimation process for the ACB model is mainly carried out by a multistep QML
method with the following steps:

• First, fit and estimate by standard Quasi-Maximum Likelihood (QML) the univari-
ate GARCH (1,1) parameters (µ0i, ω0i, α0i, β0i), for xi,t, so that we can obtain the con-
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3.1 Models 3 METHODOLOGY

ditional mean µi,t and variance g2i,t. Requiring an initial value [g̃2i1 = g̃2 ≥ 0] starting
the sum at t = 2.

• The next step is to estimate the remaining parameters of the ACB model, specifically
for the betas. Again, by minimizing a function for all its parameters via QML, we
use the Nelder-Mead algorithm for the optimization process. For the starting values,
we use those that bring the model closer to a constant beta, that is, ξi ≈ 0, ci = 1, and
ϖi ≈ 0. For the betas’ starting values we use the ones obtained from the GARCH
model with factors, specifically the ’mxreg’ values for the betas and the ’mu’ for the
intercept. We say the model is complex because the optimization process is heavy
on computer resources, since it requires fitting 32 parameters for each stock, it is
very time consuming. This is why we want to compare this model with others in
terms of performance to see if we can achieve similar results to avoid the heavy
computational costs.

• In terms of code, this implementation in R is run with the packages ”rugarch” for
the GARCH fitting process, the packages ”gas” or ”gasmodel” provide the tools and
algorithms for working with score-driven models though we found it really hard to
use those for the ACB model, since we could not exactly specify the distribution of
the mean and variance needed for the ACB model within those packages, so instead
we run an optimization function built just for optimizing the ACB parameters via
the QML objective.

3.1 Models

3.1.1 Generalized Autoregressive Score

Our work in this paper and all results stem from an interest in the Score-Driven models, a
framework initially developed and published by (Creal et al., 2013) who wanted to extend
the research into the modelling of multivariate time-varying volatilities and parameters,
from their study we obtain the most basic form of the score-driven, time-varying updat-
ing equation for the factor from which all other papers, including ACB, base their work
on:

ft+1 = ω +

p∑
i=1

Aist−i+1 +

q∑
j=1

Bjft−j+1,

Here ω is a vector of constants, Ai and Bj are coefficient matrices with appropriate di-
mensions i=1,...p and j=1,...q respectively. st is the scale function of current and past
data, which is formed as a derivative of the density function at time t with respect to the
parameter vector ft. We can see below that the scaling function of the Generalized Au-
toregressive Score (GAS) model is formed by two components, a scaling matrix St and a
∇t derivative of the log-conditional density with respect to the parameter. Given the data
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3.1 Models 3 METHODOLOGY

up to time t, ft+1 is known since it is a deterministic function (Creal et al., 2011).

st = St · ∇t, ∇t =
∂ ln p(νt|ft,Ft; θ)

∂ft
, St = S(t, ft,Ft; θ)

The choice of St scaling matrix can come from several options and will all lead to different
GAS models, for example the most usual option is to set St as the inverse of the Fisher
information matrix which leads the GAS model to a closer, more familiar, GARCH speci-
fication; different specifications of this function lead to different models like for example
using the square Inverse information of Fisher (Creal et al., 2011). It is relevant to men-
tion how Creal’s GAS model framework is a more general expression of other models, for
example if p=q=1 and the p density is Normal, with mean 0 and the f time-varying factor
is the variance, then it causes the GAS recursion to become the standard GARCH(1,1)
model.

ft+1 = ω + A1(y
2
t − ft) +B1ft,

The methodology for estimating the GAS model is relatively simple, since it is an ob-
servation driven model a convenient property of them is the straightforward estimation
of the parameters via maximum likelihood, by putting the log-likelihood contribution in
a maximizing algorithm and adding the sum. The GAS specification of the parameters
adapts naturally to different configurations of the density and parameters. If instead of
making a model on dynamic volatility we want to use one to measure betas of a regres-
sion, the GARCH dynamics will automatically adapt (Creal et al., 2011).

All this being said, the GAS model provides us with a unified likelihood-based frame-
work for designing many different time series models. By using the score of the density
it leads to efficient and robusts time-varying dynamic updates, and it is able to handle
varied recursions like heavy tails, asymmetry, skewness, etc. And since the likelihood is
closed form the estimation via quasi-maximum likelihood is straightforward. However
the shortcomings of this framework comes when working in high-dimensional multi-
variate settings, since this implies having to estimate an exponentially growing number
of parameters which takes a toll on computational resources, a limitation shared by simi-
lar observation-driven approaches.

3.1.1.1 Autoregressive Conditional Betas

The model that this paper is mostly centered around is Blasques’ particular case for GAS,
based on a structure to form time-varying betas for a regression of six factors. The updat-
ing equations are the key aspect of the GAS for Autoregressive Conditional Betas model
and are closely related to the scaling function for each of these betas which are composed
of an intercept, a score-driven function formed by scale and score, the derivative of the
log-likelihood contribution which in this case it is obtained from a Gaussian distribution,
multiplied by a parameter of magnitude, and finally an autoregressive component. All of
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3.1 Models 3 METHODOLOGY

these parameters are estimated at the same time by a QML estimator, in our work.

The model is a regression model with score-driven time-varying betas. The model ac-
counts for heteroskedastic errors and stochastic regressors which display GARCH dy-
namics, these are assumed to be formed by a conditional mean and a conditional variance
affected by an i.i.d. random innovation with mean 0 and variance of 1, we can apply this
structure to filter said innovations out after estimating the mean and variance of each of
the regressors.

If we look at the model’s structure we see several components, the first is the equation
for the stock return yt, this being the sum of betas times their factors plus the error term,
secondly there is the structure of the equation for the beta itself for a given stock i and
time t: the ϖi intercept followed by the score function νt(φ)xi,t

µ2
i+g2i,t(φ)

this is the key element that
updates the dynamic beta over time, this comes from a derivative of the log-likelihood
contribution given by lt = −1

2
{ ν2t

g2t
+ log

(
g2t
)
} such that the score function obtained is

S
(
βi,t

)
∂lt
∂βi,t

=
νi,t xi,t

µ2
i + σ2

i,t
the final component is the autoregressive element of the equation

multiplied by the ci parameter for the magnitude of effect of the previous beta.

yt = β1,t x1,t + · · · + βp,t xp,t + νt, νt = gt nt, (1)

βi,t+1 = ϖi + ξi
νt xi,t

µ2
i + g2i,t

+ ci βi,t + γ1,i z1,t + · · · + γQ,i zQ,t, (2)

g2t+1 = ω + α ν2
t + β g2i,t, (3)

xi,t = µi + gi,t εi,t. (4)
g2i,t+1 = ωi + αi(xi,t − µi)

2 + βig
2
i,t. (5)

The final equations (3) and (5) represent GARCH models, however these are not the
same and represent different volatilities , the one in equation (5) represents individual
GARCH(1,1) models for each of the i factors, this difference is important since this one
uses a mean value in the process while the model in equation (3) does not, it is this mean
value that appears in the score function of the beta as well as the equation for modeling
the factor, which can serve to filter the i.i.d. innovations, so it is not redundant and that
mean value will vary for each of the factors. The GARCH model in equation (3) is more
standard and only changes between stocks, only lacking a mean value as opposed to the
previous model, this GARCH serves us as a way to have an equation to filter the volatili-
ties obtained by the beta process.

In Blasques et al. (2024) the practical applications of this model in hedging and risk man-
agement are also explored, wanting to find a strategy to track US stocks using the six-
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3.1 Models 3 METHODOLOGY

factor model. In the context asset pricing, expected returns on any asset are linear in
the betas and only depend upon the risk premiums in the factors (Blasques et al., 2024).
Blasques performs a tracking exercise consisting of taking a position at time t in each of
the 6 considered factors coming from a step-ahead forecast of the corresponding condi-
tional beta, using each model of each stock to build a different hedging portfolio.

Like we can see and as we mentioned before here, Blasques only explores the implica-
tions of this model for conditional means, since the tracking value of each stock at time t
is formed only by the aggregate values of the betas times their regressor at time t which,
like betas in a regression, are basically the mean of the effect of said factor on the price
of the stock. We can see this in the equation below, what Blasques finds in his hedging
exercise is that his ACB model is the best model solely based on daily data, much better
in function of the tracking errors.

Zt+1|t = βMKT,t+1|tMKTt+1 + βSMB,t+1|tSMBt+1 + βHML,t+1|tHMLt+1

+ βRMW,t+1|tRMWt+1 + βCMA,t+1|tCMAt+1 + βMOM,t+1|tMOMt+1

The updating equation is derived from the conditional density of the assumed distribu-
tion that the model follows, these equations are made up of a scaling function S(ft) and
an st(ft) partial derivative of the log-likelihood of the conditional density for the score-
driven model. For the ACB model, this can be seen as a quasi-score-driven model where
the update comes from a loss function of a Gaussian log-likelihood, this is regardless of
the distribution for the regression error/innovation, which is i.i.d. N(0,1). The basic func-
tionality of this update comes from checking if the beta is either under or overvalued, if
the first case occurs then the update will tend to make βi,t+1 increase.

The scaling function represents the score of the predictive likelihood with respect to the
parameter, in this case, the beta. In the literature it is noted that this scaling function
should be greater than 0 for the optimal results to hold up, however this is not the case
for the current multivariate configuration (Blasques et al., 2024) . Aside from the one
mentioned already, several different scaling functions can be used for the same objective,
these being identity scaling, inverse information scaling, square root inverse information,
etc.

In his paper, Blasques establishes the stationarity of the data the ACB model generates as
well as the invertibility of the filters for both the time-varying conditional betas and the
conditional volatilities. They note that the conditional volatilities of the regressors do not
depend on other filtered parameters, the conditonal betas depend on the filtered condi-
tional volatilities of the regressor only, and the conditional volatility of the observation
equation’s error depends on all the other filters (Blasques et al., 2024). So they showcase
that there exists a solution to the time series such that the error term of the regressors and
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3.1 Models 3 METHODOLOGY

their univariate volatilities are stationary and ergodic.

Their proof of the model’s invertibility is important since it ensures that the model is uni-
formly invertible, meaning that the filter of the time-varying parameters converge almost
surely and exponentially fast to a unique limit solution regardless of the initialization of
the filter, and that this result holds uniformly over the parameter space (Blasques et al.,
2024), a property that is essential to find a consistent estimator for the parameters.

3.1.1.2 Beta t E-GARCH

We have also decided to include the Beta-Skew-t-EGARCH model, proposed by (Harvey
and Chakravarty, 2008), like its name indicates, it is a way to take into account volatility
clustering, since it is typical for episodes of high volatility to be followed by equally high
volatilities, and the opposite for the episodes of low volatilities; thus this model, which
also contains a score-driven updating component is a good way to incorporate this skew-
ness. The model presents several helpful characteristics, like robustness to jumps as well
as outliers, in addition, it also accounts for heavy tails and skewness in the conditional
return and for a leverage and a time-varying long-term component in the volatility speci-
fication (Sucarrat, 2013). In our case we will be using a regular Beta t E-GARCH estimated
using only the stock data, but also one that is estimated on the residuals of a linear regres-
sion using all the six factors, that way we incorporate all the data to observe whether it is
significant when predicting realized volatility.

Like with the ACB model, which we base much of our work on, the Beta-t-EGARCH
model can be viewed as an unrestricted version of the Generalised Autoregressive Score
model of Creal, which means there is a score-driven updating component in the model’s
framework, ut represents said conditional score, the derivative of the log-likelihood of yt
with respect to λt.

yt = exp(λt)εt = σεεt, εt ∼ st(0, σ2
ε , ν, γ), ν > 2, γ ∈ (0,∞),

λt = ω + λ†
t ,

λ†
t = ϕ1λ

†
t−1 + κ1ut−1 + κ∗sgn(−yt−1)(ut−1 + 1), |ϕ1| < 1.

This equation forms the structure for the single component Beta t E-GARCH, the yt is
formed by an exponential of the lambda component times a εt i.i.d. innovation that fol-
lows a t-student distribution with ν degrees of freedom, a mean µ component may be
included but in much of the literature plus our own work it will appear as 0 (Harvey and
Sucarrat, 2014). The λt parameter inside the exponential is formed by a ω constant plus a
λ† parameter which contains an autoregressive component, the ut conditional score com-
ponent; leverage is introduced into the equation with the multiplied κ∗ times sgn function
which turns into +1 or -1 according to de sign of the resulting value inside the function or
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0 if it results in 0. All model parameters are estimated by maximizing the log-likelihood of
the observed data under the Student-t density (Harvey and Sucarrat, 2014). In our work
we use the R package ’betategarch’ for the model estimation, both regular and with the
factor regressors(Sucarrat, 2013).

The conditional score function of the Beta t E-GARCH model takes the following form,
and it comes from the conditional derivative of the log-likelihood under the t-student’s
distribution. ut is bounded in between [-1, ν] and has mean 0, with the ν number of de-
grees of freedom being positive (Harvey and Sucarrat, 2014). Another aspect to note is
the fact that adding the leverage term or not does not change the score function, since it
is only one extra piece in the dynamic equation and has no effect on the likelihood from
which the score is derived from, the leverage term only affects how λt is updated.

ut =
(ν + 1)(yt − µ)2

ν exp(2λt,t−1) + (yt − µ)2
− 1

3.1.2 GARCH

3.1.2.1 Standard

A standard GARCH (1,1) model estimated via the ’rugarch’ package, though simple, it
will serve as a baseline for estimating volatility compared to other models. One thing
to keep in mind is that in the process of estimating the ACB model we also make use
of two GARCH(1,1) models, these however are not correlated to just using a standard
GARCH model for filtering and predicting the realized volatility, which is what we do
here, in this case we simply run the standard structure of the generalized autoregressive
heteroskedasticity. This model also lends itself to be estimated by Quasi-Maximum Like-
lihood in a Gaussian structure.

σ2
t = ω + α1(εt−1 − µ)2 + β1σ

2
t−1

3.1.2.2 Factors

A GARCH(1,1) model estimated with the six factors taken into account by including them
as external regressors in the algorithm of the model. This way we are taking into account
the five Fama-French factors as well as the momentum for a new model, which since it
includes the same amount of data as the ACB model we have been working on, it should
reflect dynamics that represent the realized volatility more accurately when we run it
through the contrasts for equal predictive ability. This would provide similar results as
estimating a linear regression with all six factors and then using the residuals to estimate
the GARCH (1,1) model to then filter the volatilities from it, as we will see next the process
for OLS will be slightly different.

σ2
t = ω + α1(εt−1 − µ)2 + β1σ

2
t−1
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where
µ = β1 x1,t + · · · + β6 x6,t

3.1.3 OLS

A standard linear regression via ordinary least squares, the standard error of this linear
regression is estimated after this, like we mentioned previously filtering volatilities from a
GARCH(1,1) trained on the residuals of this regressions would yield similar results to the
GARCH(1,1) estimated on the six factors so what we are doing here differently is obtain
the singular standard error value after estimating the model and then assign said error as
a constant sigma derived from this process. This result seems unrealistic and contrary to
what we want to study, which is the dynamics of volatility over time, but it still works as
the most basic form of estimation for volatility, and as we will see in the results, is not too
out of the question when comparing the predictive ability.

yt = β1 x1,t + · · · + β6 x6,t

σt =

√
1

n− 2
·
∑

(yi − ŷi)2∑
(xi − x̄)2

4 Results

Here we will begin displaying the results obtained from our endeavors, the main results
come in the form of the filtered volatilities from the diverse range of models we have
considered, in the case of the ACB model, this also includes the results of the filtered
time-varying betas for several stocks in a similar way to how Blasques presented them in
his paper. The other main kind of results are those derived from the Model Confidence
Set for predictive ability contrast, whose details will be extended further below.

4.1 Filtering

4.1.1 Betas

The first objective of our work was to successfully replicate the betas that appear in
Blasques’ ACB paper, in his paper, he presents the results for all 6 factor betas plus an
intercept component, since Blasques in his paper provided results for the parameters of
1 stock, it was straightforward to build a function that filtered the betas and volatility
according to the structure of the equation which we see below, following an observation-
based structure. Here are the betas for EXXON obtained by Blasques followed by our
replication:

β̂i,t+1 = ϖ̂i + ξ̂i
ν̂t xi,t

µ̂2
i + ĝ2i,t

+ ĉi β̂i,t
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The challenge was obtaining the same results for other stocks since his paper does not
provide results for all of them, we need not only betas that behave similarly but also a
comparable log-likelihood value, like we mentioned previously, no R package provided
us with a clear way to estimate Blasques’ model so we created a minimizing function by
hand that would optimize all 32 parameters of a model for 1 stock, which would also
compile the log-likelihood contributions as a way to estimate how close we were to the
actual results.

Figure 4: Original betas obtained for Exxon by Blasques
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Figure 5: Betas for XOM replicated by our optimizing function

The intercept and SMB betas remain constant just as per Blasques’ results, the intercept ϖi is used as the
constant instead of letting it vary in time.
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Figure 6: Betas for MCD replicated by our optimizing function

In this other example for MCD we can see that we have left the intercept and SMB vary in time since we did
not have the reference results from Blasques. The rest of the time-varying betas we estimated are present in
the appendix section.
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As we can see if we look at the graphs, our function succesfully replicates the time-
dynamic betas very closely to Blasques, we coroborate this by looking at the log-likelihood
values, Blasques obtains a log-likelihood for his estimated ACB on XOM of -6107.4 while
we obtain a value of -6140.19 using his provided parameters, the the difference may seem
significant but we were limited by the amount of starting values we could try in our pro-
cess so, with more computing resources we are confident this value would be much closer
to that of his paper.

However, when we used our own optimizing function (where we did not let any beta be
constant and allowed everything to vary over time unlike in Blasques’ article), we find a
log-likelihood of -6117.095. The purpose of this is to see that we can successfully repli-
cate Blasques’ work so that we can use the same procedure with different stocks for which
we do not have previous results, knowing that the methodology is correct for more assets.

However, in addition to this, these log-likelihoods serve as a way to start looking at the
performance of models, we can compare the log-likelihood from the ACB model with the
ones obtained from the GARCH factor model, which keeps betas constant. An approach
that Blasques also briefly mentions in his article.

Table 1: Likelihood Comparison: ACB vs GARCH factors Models

Stock ACB Model GARCH factors Model
XOM -6117.095 -6626.135
MSFT -7749.92 -7873.703

BA -8214.728 -8261.78
AXP -7588.296 -7703.226
MCD -7290.248 -7324.708
PFE -7219.209 -7387.017

We see that for all of the stocks, the ACB log-likelihood is larger than the one from the GARCH factors
model, according to the Xi2 distribution, for the difference in-between the two models to be significant at
a 95% level of confidence the difference should be equal or higher than 8.67, which all stocks achieve, this
is strong evidence in favor of the ACB model when compared to a model that keeps betas constant.

We can take a look at all of our parameters results in table 11 and 12 in the appendix,
where we see the results obtained when we let everything vary in time.

4.1.2 Volatility

Figure 7 contains the filtered volatilities for EXXON in all of the six considered models
expressed in percentages, we can use this graph to analyze how each model behaves dur-
ing the same time windows, OLS uses just a constant volatility so there are no episodes
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of volatility clustering or any variation over time. The ACB model uses the following
equation to filter out volatilities.

ĝ2t+1 = ω̂ + α̂ ν̂2
t + β̂ ĝ2i,t

Figure 7: Filtered volatilities for XOM

For the non-constant models there seems to be a shared episode of high volatility at the start of the time
series around the year 2000 as well as a high peak before the year 2010 which would coincide with the
start of the 2008 financial crisis. The GARCH(1,1) standard model seems to reach the highest peak in this
latter episode compared to the other ones, whereas the regular Beta t E-GARCH seems to be the highest
in the beginning episode, these both have in common the fact that they just use the standard log returns
time series data in its estimation, for the other models the values during these sections appear to be more
balanced, it is ACB and both the GARCH and Beta t E-GARCH using all factors that show the most steady
volatility values and appear to be quite similar overall.

We can verify the points mentioned in the caption further with a statistical summary
for the filtered volatilities, in table 2, indeed, the ACB, GARCH factor, and Beta t E-
GARCH factor models have lower mean and median volatilities than the rest, with the
GARCH(1,1) and Beta t E-GARCH standard models reaching the highest values like we
see in the plots.
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Table 2: Summary Statistics for Different Model Specifications

Model Min. 1st Qu. Median Mean 3rd Qu. Max.
OLS 1.108 1.108 1.108 1.108 1.108 1.108
GARCH st 0.612 1.013 1.259 1.395 1.592 7.458
GARCH factors 0.467 0.745 0.913 1.037 1.222 3.927
ACB 0.4536 0.6946 0.8215 0.9488 1.056 3.2645
Betategarch 0.600 1.126 1.429 1.673 2.016 5.610
Betategarch factors 0.420 0.761 0.932 1.040 1.237 3.568

To finalize, we have also grouped all filtered volatilities for both XOM individually and
all other stocks together, giving a better view of the filtered results. We can see these in
figures 8 and 9 in the appendix.

4.2 Model Confidence Set

Evaluating a model’s performance is something tricky and many authors have developed
their own methodology. Diebold and Mariano (2002) develop a broadly applicable test
for the null hypothesis of no difference in the accuracy of two competing forecasts even
with forecast errors that follow different distributions. Loss functions can take on many
forms, including squared error, absolute error, etc. Later, Giacomini and White (2006)
innovated by implementing conditional evaluation of forecasts, meaning which forecast
will be more accurate in the next period given all previous information (instead of which
model forecasts better on average like the previous literature). Finally, Hansen et al. (2011)
establish the framework for the Model Confidence Set (MCS), which allows multiple fore-
casts to be compared at the same time, thus creating a set of models that have statistically
the same predictive ability.

For our thesis, we will use the Model Confidence Set criteria established by (Hansen et al.,
2011). They introduce this process as a way to compare candidate models of forecasting
without assuming none of them are the ”true” best one, since choosing a particular model
is an onerous task. So, the key factor is to create a set of models that contains the statis-
tically best ones under a specified confidence level meaning that at that level it can be
said that their predictions are all equally good, similar to a confidence interval used for
measuring the ”true” value of an estimated parameter.

The way the MCS procedure evaluates this predicting ability and this statistic is with the
Loss function, this is the loss of accuracy of the model when forecasting. It is obtained
by comparing the forecasted value of the model at time t and comparing it to its time-
adjacent value on the data we wish to predict, in this case it would compare a volatility
value predicted by the ACB model with the realized volatility value at time t. The loss
function is what determines the criteria for obtaining this accuracy loss.
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There are several ways to obtain said loss, first one and the most common method is the
mean squared error, we will be using this and comparing it with the absolute error in our
analysis to study whether the changing of the loss function has significant changes in the
construction of the superior set of models with equal predictive ability and the ranking
system for the models within this SSM.

4.2.1 MCS methodology

The MCS procedure generates a contrast for the equal predictive ability of the superior
set of models via the R package ’MCS’, the main objective of this contrast is to build a su-
perior set of models (SSM), this is achieved via a statistic of our choice, depending on the
statistic we choose the procedure will eliminate the models that fall outside of the bounds
marked by the significance degree and then restimate again with the remaining models,
this will keep on going until a SSM is created where the null hypothesis is that all of the
remaining models have the same predictive ability and the alternative is this not being
true. After the algorithm starts to work we obtain a series of columns as a result, these are:

• Rank M, represents the rank of the model, a rank closer to 1 means the model has a
lower statistic value, thus being better than the rest.

• v M, represents the value of the statistic from Tmax related to the Rank, it grows
lower with the rank, thus 1 is the lowest value with it often being negative and
higher ranks, meaning ”worse” models, make the value of the statistic grow.

• MCS M, is a measure of probability related to a model being in the confidence set
under a certain percentage of confidence, lower values will mean the model does
not belong in the set.

• R, these variations come from the TR statistic, both Rank R, v R, and MCS R mean
the same but applied to the other statistic, depending on the one we select the code
will check either this or the M columns for the elimination process.

• Tmax/TR, relates to the statistic used to estimate the Equal Predictive Ability of
the models, and correspond with Tmax,M = maxi∈M ti and TR,M = maxi,j∈M |tij|
respectively, where those t values correspond with these expressions from (Bernardi
and Catania, 2018):

tij =
d̄ij√
ˆvar

(
d̄ij

) and ti =
d̄i,.√
ˆvar

(
d̄i,.

) for i, j ∈ M

where
dij,t = ℓi,t − ℓj,t, i, j = 1, . . . ,m, t = 1, . . . , n,
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di,t = (m− 1)−1
∑
j∈M

dij,t, i = 1, . . . ,m,

• For TR, the null hypothesis is according to (Bernardi and Catania, 2018):

H0,M : cij = 0, for all i, j = 1, 2, . . . ,m

HA,M : cij ̸= 0, for some i, j = 1, . . . ,m,

Where cij = E[dij] we can see that it looks at all possible pairs of models for the
contrast. Meanwhile Tmax

H0,m : ci = 0, for all i = 1, 2, . . . ,m

HA,m : ci ̸= 0, for some i = 1, . . . ,m,

Where ci = E[di] so it checks for the mean of different models.

If we consider first a situation where the data contains little information in such a way
that the test lacks power and the elimination rule may cause a superior model to be cho-
sen before the elimination of all inferior models, this lack of power causes the procedure
to finish too early on average and thus the MCS will contain a large number of model
including several inferior ones.

We view this as a strength of the MCS procedure, since lack of power is tied to a lack of
information in the data, the Model Confidence Set should be large when there is insuffi-
cient information to distinguish good and bad models. In the opposite situation, where
data is informative, the test is powerful and will reject all false hypotheses and on top of
that the elimination rule will not stop until all inferior models have been eliminated.

The Tmax and TR statistics offer different ways to build the superior set of models, like we
can see in the equations above, both statistics have a different structure, the TR is formed
by a maximum of the absolute value of tij with it being a standard shape we see often
in other frameworks like (Diebold and Mariano, 2002) of a mean divided by the square
root of the variance, with dij being the difference between the loss of two values of data,
estimated and the true value we want to predict at time t.

The TR statistic performs a two-tail comparison on all pairs of models possible, which is
why it uses the suffixes i and j, so in order to reject the hypothesis we need the differences
to be large, regardless of which one we are in favor of, to lean towards the alternative that
there is indeed a difference.

Tmax on the other hand changes this structure for a similar looking standardization form,
but without the absolute value, here instead of just taking the value of d as just a dif-
ference of two values, it also calculates the mean of these differences. So when we are
contrasting that the mean is 0 we may find two situations, either all differences are 0, or
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one model is clearly better than others but also worse than others, in such a way that by
offsetting each other the mean becomes 0.

Tmax thus keeps more models because it does not eliminate models that are clearly be-
low the best one but that are not as clearly below the rest of the models which are also
below the best one. This is consistent with our results underneath, which shows that
Tmax keeps more models in the Superior Set than TR, and that TR eliminates more models
much quicker, since it simply compares each model with the best one instead of taking
into account how many models remain close to the best.

4.2.2 MCS results

We are going to start by displaying the MCS results in the following tables. The infor-
mation displayed contains the MCS results for six stocks each containing the models that
remain in the superior set of models along with the ones that were eliminated, the statistic
values for each model in each of the stocks and finally the p-value that the superior set of
models itself obtained:
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Table 3: Model Confidence Set (MCS) Results using Tmax Statistic and Squared Error

Stock Model Rank M v M MCS M Loss Status

XOM

ACB 1 -6.4107 1.0000 0.6799 Superior Set
OLS 2 0.8990 0.5396 0.8415 Superior Set

BETATEGARCH-Factors 3 1.5259 0.2088 0.8205 Superior Set
Factors 4 1.7888 0.1312 0.8442 Superior Set

STD - - - - Eliminated
BETATEGARCH - - - - Eliminated

MSFT

ACB 1 -2.5310 1.0000 1.2985 Superior Set
BETATEGARCH-Factors 2 -0.0883 1.0000 1.3636 Superior Set

Factors 3 0.2119 0.9686 1.3748 Superior Set
OLS 4 0.8311 0.5844 1.4352 Superior Set

AXP

BETATEGARCH-Factors 1 -4.1149 1.0000 1.2699 Superior Set
ACB 2 -0.6387 1.0000 1.4071 Superior Set
OLS 3 0.6907 0.6928 1.5061 Superior Set

Factors 4 1.6789 0.1652 1.5346 Superior Set

BA

ACB 1 -4.3030 1.0000 1.5307 Superior Set
Factors 2 -1.0841 1.0000 1.5816 Superior Set

OLS 3 0.4735 0.8208 1.6473 Superior Set
BETATEGARCH-Factors 4 1.5130 0.2038 1.6809 Superior Set

MCD

ACB 1 -3.3123 1.0000 1.1571 Superior Set
Factors 2 -1.9240 1.0000 1.1811 Superior Set

OLS 3 0.2291 0.9516 1.2431 Superior Set
BETATEGARCH-Factors 4 1.9143 0.0928 1.3193 Superior Set

PFE
BETATEGARCH-Factors 1 -0.7171 1.0000 1.1639 Superior Set

OLS 2 0.0406 0.9976 1.1925 Superior Set
ACB 3 0.5621 0.7328 1.2133 Superior Set

All the models will appear in the XOM row, but we will remove the eliminated ones in the following rows.

What we find is that all the superior sets of models we have built contain the same models for all stocks,
these being OLS, GARCH(1,1) with Factors, ACB and Beta t E-GARCH using factors except PFE which
also eliminates the GARCH(1,1) using the factors; with the standard GARCH and Beta t E-GARCH being
eliminated in all instances. Some aspects we need to keep in mind are, in this table we use the Tmax

statistic, which like we mentioned tends to favor more models even if some are inferior, this means that for
this case it seems the defining factor when modeling realized volatility is the use of the factor regressors in
the estimation, both of the models that get eliminated in all cases are the ones that were built with only the
stock data, which highlights the importance of said factors when building models.

The ACB model is ranked highly in each superior set, always being ranked first save for AXP and PFE
where Beta t E-GARCH with factors is favored.

It is specially interesting that this importance of the factors applies even to the OLS model that only contains
a singular value constant over time, but since it does not get eliminated from the set it is not redundant to
take it into account.
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Table 4: MCS Process Summary Statistics Squared Error - Tmax

Stock Models Eliminated Statistic P-value

XOM 2 T max 0.1312
MSFT 2 T max 0.5844
AXP 2 T max 0.0676
BA 2 T max 0.2038
MCD 2 T max 0.0928
PFE 3 T max 0.7328

By looking at the p-values for each of the superior set of models we observe that, indeed, we cannot reject
the Null hypothesis that all of the models in the set have statistically the same predictive ability. This means,
in relation to predicting realized volatility, on average it is statistically the same to predict it using an OLS
constant model or a more sophisticated ACB or Beta t E-GARCH model as long as all the factor regressors
are being used in the estimation.
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Table 5: Model Confidence Set (MCS) Results using TR Statistic and Squared Error

Stock Model Rank R v R MCS R Loss Status

XOM

ACB 1 -2.6319 1.0000 0.6799 Superior Set
OLS - - - - Eliminated

Factors - - - - Eliminated
BETATEGARCH-Factors - - - - Eliminated

STD - - - - Eliminated
BETATEGARCH - - - - Eliminated

MSFT
OLS 3 1.2968 0.3726 1.4352 Superior Set
ACB 1 -1.1287 1.0000 1.2985 Superior Set

BETATEGARCH-Factors 2 1.1287 0.4662 1.3636 Superior Set

AXP OLS 2 1.6672 0.0950 1.5061 Superior Set
BETATEGARCH-Factors 1 -1.6672 1.0000 1.2699 Superior Set

BA OLS 2 1.2405 0.2144 1.6473 Superior Set
ACB 1 -1.2405 1.0000 1.5307 Superior Set

MCD OLS 2 0.9034 0.3598 1.2431 Superior Set
ACB 1 -0.9034 1.0000 1.1571 Superior Set

PFE
OLS 2 0.2966 0.9518 1.1925 Superior Set
ACB 3 1.0979 0.4984 1.2133 Superior Set

BETATEGARCH-Factors 1 -0.2966 1.0000 1.1639 Superior Set

All the models will appear in the XOM row, but we will remove the eliminated ones in the following rows.

The next set of tables, 5 and 6 looks at the same loss stats obtained with squared error but with the TR
statistic instead, like we described earlier, this method is calculated differently so we expect to see widely
different results in the formation of the superior set of models. The difference in eliminated models is
much more varied in this case, instead of the regular 2 eliminations we were seeing earlier, for XOM all
models besides the ACB are eliminated, for the rest of the stocks the number of removed models differs
heavily.

We see here the ACB model being eliminated for the first time for AXP, for the other stocks, ACB keeps a
good ranking position in general. The presence of the OLS constant model also stands out, and in several
cases it is estimated to be just as good as the ACB model.
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Table 6: MCS Summary Statistics Squared Error - TR

Stock Models Eliminated Statistic P-value

XOM 5 TR 0.0076
MSFT 3 TR 0.3726
AXP 4 TR 0.095
BA 4 TR 0.2144
MCD 4 TR 0.3598
PFE 3 TR 0.4984

The p-values remain consistent with our previous results for the sets of models that contain more than one,
we do not reject the null hypothesis so these are statistically equal in predictive ability, however since we
now have a stock where only 1 model remains this p-value is considerably lower, which is to be expected
since only having one model makes the set pretty much redundant.
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Table 7: Model Confidence Set (MCS) Results using Tmax Statistic and Absolute Error

Stock Model Rank M v M MCS M Loss Status

XOM

ACB 1 -12.1714 1.0000 0.7524 Superior Set
OLS - - - - Eliminated

Factors - - - - Eliminated
BETATEGARCH-Factors - - - - Eliminated

STD - - - - Eliminated
BETATEGARCH - - - - Eliminated

MSFT ACB 1 -0.1097 1.0000 1.0710 Superior Set
BETATEGARCH-Factors 2 0.1097 0.9072 1.0721 Superior Set

AXP BETATEGARCH-Factors 1 -8.9878 1.0000 1.0032 Superior Set

BA ACB 1 -8.4480 1.0000 1.1779 Superior Set

MCD ACB 1 -5.3445 1.0000 0.9953 Superior Set

PFE

OLS 4 2.1814 0.0508 1.0871 Superior Set
Factors 3 0.1057 0.9954 1.0233 Superior Set

ACB 1 -3.4260 1.0000 0.9856 Superior Set
BETATEGARCH-Factors 2 -2.5901 1.0000 0.9917 Superior Set

All the models will appear in the XOM row, but we will remove the eliminated ones in the following rows.

For tables 7 and 8 we now use the absolute error to calculate the loss, we are back to using the Tmax statistic,
the results this time are outstandingly different, more models seem to get eliminated now, except for PFE;
the absolute error as the loss function seems to leave ACB as the sole best predictor for realized volatility
except for AXP which from what we have seen until now seems to favor the Beta t E-GARCH model with
factors, this is consistent with our previous results.
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Table 8: MCS Summary Statistics Absolute Error - Tmax

Stock Models Eliminated Statistic P-value

XOM 5 T max 0.00
MSFT 4 T max 0.9072
AXP 5 T max 0.00
BA 5 T max 0.00
MCD 5 T max 0.00
PFE 2 T max 0.0508

Seeing this, the p-values obtained are mostly redundant since most sets only have 1 model, for the ones
that do have more than one we still do not reject the null hypothesis of equal predictive ability. Using the
absolute error instead of the squared error seems to make the loss difference between ACB and the other
models pretty significant, where in most sets this is the sole remaining model.

Table 9: Model Confidence Set (MCS) Results using TR Statistic and Absolute Error

Stock Model Rank R v R MCS R Loss Status

XOM

ACB 1 -7.6576 1.0000 0.7524 Superior Set
OLS - - - - Eliminated

Factors - - - - Eliminated
BETATEGARCH-Factors - - - - Eliminated

STD - - - - Eliminated
BETATEGARCH - - - - Eliminated

MSFT ACB 1 -0.1066 1.0000 1.0710 Superior Set
BETATEGARCH-Factors 2 0.1066 0.9150 1.0721 Superior Set

AXP BETATEGARCH-Factors 1 -9.0534 1.0000 1.0032 Superior Set

BA ACB 1 -8.7389 1.0000 1.1779 Superior Set

MCD ACB 1 -8.6835 1.0000 0.9953 Superior Set

PFE ACB 1 -1.2430 1.0000 0.9856 Superior Set
BETATEGARCH-Factors 2 1.2430 0.2120 0.9917 Superior Set

All the models will appear in the XOM row, but we will remove the eliminated ones in the following rows.

Finally, tables 9 and 10 have the same loss function with the absolute error but use the TR statistic again,
the trend is similar to what we saw in the previous tables, ACB or Beta t E-GARCH with factors being the
most favored models with ACB often being ranked first, the superior sets are formed by the same models
as table 7 except for the stock PFE which loses two models in this procedure.
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Table 10: MCS Summary Statistics Absolute Error - TR

Stock Models Eliminated Statistic P-value

XOM 5 TR 0.00
MSFT 4 TR 0.915
AXP 5 TR 0.00
BA 5 TR 0.00
MCD 5 TR 0.00
PFE 4 TR 0.212

These results remain consistent, for the 2 sets with more than 1 model, ACB and Beta t E-GARCH with
factors have, statistically, the same predictive ability.

What we gather in general after these results is that ACB and Beta t E-GARCH with fac-
tors are favored heavily in the MCS process, for basically all stocks ACB is always present
in the superior set of models and ranked first, this highlights the importance of score-
driven models when predicting parameters and makes ACB potentially the best model
for predicting realized volatility. It is also worth mentioning the fact that OLS, even as
just a constant over time, also appears to form part of the superior set in some ocations,
meaning a simpler model is sometimes also a correct choice.

4.3 Future lines of work

We were limited by time constraints and computing resources, so this work has some
limitations, and in the future we would like to study, aside from more models estimated
for more stocks, risk management and hedging performance based on the conditional
volatility of the models, VaR backtesting, portfolio building, etc. We are satisfied with
our work and results for the time being and we prove that the ACB model is a very com-
plete framework whose use we hope to spread with these results, as the model’s practical
benefits were also explored by Blasques himself (Blasques et al., 2024).

5 Conclusion

In this thesis, we talk about score-driven models, and a recent one like Blasques’ ACB
model, along with others like Beta t E-GARCH. We describe the realized volatility struc-
ture and explore how these models perform in terms of conditional volatility (something
that was missing in the original literature) by forecasting realized volatility values; we
then compare these using the model confidence set framework.
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5 CONCLUSION

Score-driven models are a big step in modeling parameters that are not constant over
time, since what we see in the real world is that parameters are constantly changing.
What we found in our results is that letting parameters vary over time combined with
the use of good-quality relevant data, such as the Fama-French factors, is very useful in
making a good model.

We also find empirical evidence of the ACB framework being a very strong model based
on the log-likelihood compared to that of a model with constant betas, proving that time-
varying parameters offer better modeling potential. Furthermore, we find strong evi-
dence in favor of score-driven models, with the model confidence set procedure often
having ACB and Beta t E-GARCH with factors as equal in terms of predictive ability. As
a final addition, seeing the OLS constant in some superior sets gives reason to using sim-
pler models in certain situations if the circumstances demand for it.

Future research could expand these results with more models across more stocks, while
studying more practical applications based on conditional volatility for risk management,
hedging, etc.
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Table 11: Parameter Estimates for Six Stocks

Parameter XOM MSFT AXP BA MCD PFE
ϖ1 -0.000107 0.000032 0.000140 0.000038 0.000041 -0.000517
ϖ2 0.011376 0.017049 0.011912 0.019267 0.009718 0.005084
ϖ3 -0.014418 -0.007159 -0.010549 -0.002981 -0.003485 -0.002348
ϖ4 0.003878 -0.001377 0.004142 0.000071 0.000168 0.000214
ϖ5 0.000033 0.000262 0.000605 0.001406 0.002973 0.008886
ϖ6 0.001203 -0.002761 0.003252 0.000747 0.001472 0.001787
ϖ7 -0.000024 -0.000561 -0.000558 -0.000035 0.000771 0.000474
ξ1 -0.006963 0.001232 -0.007924 0.001568 0.000156 -0.015120
ξ2 0.022620 0.016760 0.013041 0.011043 0.011242 0.001757
ξ3 0.002969 0.007745 -0.011008 0.005888 0.007486 0.000774
ξ4 0.033501 0.003639 0.003282 0.005716 -0.002496 0.005356
ξ5 0.006768 0.015440 -0.008857 -0.002721 0.000602 0.026354
ξ6 0.017521 0.012840 -0.008288 -0.004907 0.008844 0.014863
ξ7 0.016495 0.009239 0.021017 0.010842 0.010407 0.004421
c1 0.996012 1.001895 0.985138 0.999974 0.997724 0.968779
c2 0.988366 0.983906 0.990308 0.982008 0.986392 0.994450
c3 0.957145 0.974450 0.926177 0.976263 0.975938 0.992525
c4 0.984773 0.997679 0.989739 0.999867 1.000075 0.999795
c5 0.999231 0.996925 0.996467 0.994952 0.990241 0.949662
c6 0.992522 0.997569 0.968941 0.999586 0.990905 0.995489
c7 0.997005 0.996360 0.994954 0.988569 0.991573 0.996424
βi1,1 0.006202 -0.070565 0.319697 -0.077377 0.006473 -0.265634
βi1,2 0.978278 -0.169524 2.963808 0.389640 0.434627 0.487712
βi1,3 -0.370277 -2.294882 2.618651 0.246316 0.244469 -1.507927
βi1,4 0.456871 -0.117999 0.151144 -0.050980 -0.195328 -0.799677
βi1,5 -0.133053 -0.110459 0.046418 -0.418503 0.139686 1.734629
βi1,6 0.785243 -2.811756 2.712229 0.501350 1.275382 -0.091866
βi1,7 -0.251906 0.223239 0.003453 -0.058431 -0.115093 0.455388
g1 1.312000 1.312000 1.312000 1.312000 1.312000 1.312000
ω 0.008584 0.009380 0.033440 0.020861 0.003130 0.030968
α 0.063796 0.019415 0.110218 0.036017 0.017592 0.124314
β 0.930123 0.975302 0.880945 0.953911 0.979964 0.868604
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Table 12: Shared µ Parameters from Factor GARCH(1,1) models (Same For All Stocks)

Parameter Value
µINT 1.000000
µMKT 0.059815
µSMB 0.017875
µHML 0.002508
µRMW 0.001169
µCMA -0.000461
µMOM 0.017010

Figure 8: Filtered volatilities for XOM combined
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Figure 10: Betas for MSFT replicated by our optimizing function
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Figure 11: Betas for BA replicated by our optimizing function
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Figure 12: Betas for AXP replicated by our optimizing function
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Figure 13: Betas for PFE replicated by our optimizing function
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Figure 14: Betas for XOM replicated by our optimizing function
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