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Abstract

In this master’s thesis we consider a shot-noise jump-diffusion process to model
the risky asset’s price. This framework gives rise to an infinite set of equivalent
martingale measures, which implies market incompleteness and non-uniqueness
of arbitrage-free prices. We characterize this set and study several pricing rules
based on constant jump risk premia. In particular, we derive the Radon–Nikodym
density defining Merton’s measure and find numerically that it coincides with the
minimal entropy martingale measure. We also establish non-trivial bounds for
European-style claims in terms of the Black–Scholes price, and compute indif-
ference prices under exponential utility preferences for fixed hedging strategies.
Finally, we illustrate these results through numerical experiments.

Keywords: contingent claim, incomplete markets, equivalent martingale mea-
sure, minimum martingale measure, minimum entropy measure, exponential util-
ity.
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1 Introduction

Brownian motion has played a central role in financial mathematics since its early de-
velopment, first proposed by Bachelier in [2] to model the price dynamics of Parisian
stocks. Its multiplicative version leads to the well-known Black–Scholes model [5],
also referred to as geometric Brownian motion, in which the logarithm of the asset
price follows a Brownian path. This process exhibits two features that are particu-
larly relevant to this work: first, it has continuous sample paths, and second, it is
scale-invariant—meaning that its statistical properties remain unchanged under time
rescaling. While real financial price series may appear continuous over long time hori-
zons, high-frequency intraday data often reveals the presence of abrupt jumps. This
discrepancy highlights one of the limitations of the Black–Scholes model: although it
may reproduce the correct volatility of log-returns at a given time scale, it fails to adapt
appropriately when the scale changes.

Several extensions of the Black–Scholes model have been proposed to address these
limitations. Local volatility models, for example, introduce a non-constant diffusion
coefficient that depends explicitly on time and the asset price (see [15, 13]), while
stochastic volatility models assume that the instantaneous volatility follows its own Itô
process (see [26]). These approaches improve upon the statistical realism of the model,
allowing for heavier tails in return distributions (see, e.g., [36]), but they rely on non-
stationary diffusion coefficients—as in the local volatility case—or on fine tuning of
the volatility-of-volatility parameter in stochastic volatility models. Moreover, none of
these models can capture the jump-like discontinuities that are empirically observed in
asset prices. Such properties, however, arise naturally in jump processes.

Jump-diffusion models were first applied to option pricing by Merton [31], who intro-
duced a framework in which the asset price incorporates a compound Poisson process
with i.i.d. Gaussian-distributed jump sizes. This seminal work marked the beginning of
a large body of literature on jump processes in financial modeling (see, e.g., [6, 17, 30]).
However, Merton’s assumption that the effect of each jump is permanent is not entirely
realistic. For example, announcements may cause abrupt changes in asset prices, but
their effect typically diminishes over time. To account for this feature, jump processes
with transient effects—originally introduced in the physical sciences by Campbell [7]
and Schottky [34]—have been adapted to financial modeling. The first such application
in this context was proposed by Samorodnitsky [33].

In this work, we focus on the shot-noise model introduced by Altmann et al. [1], where
the risky asset’s price consists of a geometric Brownian motion component and a jump
component whose impact decays over time. Specifically, the size of each jump is mod-
ulated by a time-decaying factor, so that the effect of past jumps gradually vanishes.

In particular, we show that under this model there is no unique equivalent martingale
measure (EMM), but rather infinitely many. We provide an explicit characterization of
the set of EMMs and show that this infinite cardinality implies market incompleteness.
That is, options are not redundant assets that can be perfectly replicated through self-
financing strategies involving only the risk-free asset and the underlying, and moreover,
there exist infinitely many arbitrage-free prices, each associated with a different EMM.
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In incomplete markets, several pricing methods have been proposed to select a spe-
cific price among the infinitely many arbitrage-free candidates. Common approaches
include: ignoring the jump risk premium, as proposed by Merton [31]; determining the
cheapest portfolio whose terminal value is greater than the payoff almost surely [18, 29];
selecting the minimal martingale measure associated with a strategy that minimizes
local quadratic risk [20, 1]; finding the EMM that minimizes the relative entropy with
respect to the natural probability measure [22, 24]; or computing utility indifference
prices based on exponential preferences [27, 12, 3].

These methods have been developed in a variety of settings, including purely discon-
tinuous processes [16] and continuous models with stochastic volatility [21]. However,
aside from the minimal martingale approach, they have not yet been applied in the
context of shot-noise processes.

In addition to the findings mentioned above, throughout this work we extend these
methods to the shot-noise setting, with the dual objective of pricing and hedging.
Specifically, we derive the closed-form expression of the Radon–Nikodym density in
Merton’s approach and compute the corresponding terminal hedging error; stablish
non-trivial bounds for the prices of European-style contingent claims in terms of the
Black–Scholes price; characterize the minimal entropy martingale measure; and com-
pute utility indifference prices under different hedging strategies. An additional con-
tribution is the observation that if the jump intensity under a given EMM is constant,
then the shot-noise component loses its transient character—effectively eliminating the
shot-noise effect from the price dynamics under that EMM.

The rest of this thesis is organized as follows. Section 2 introduces the market model
driven by a shot-noise process and discusses some fundamental properties of the process
itself, including its representation as a product of Doléans–Dade exponentials, the non-
stationarity of its increments, and its non-Markovian nature. Section 3 motivates the
construction of arbitrage-free pricing rules as expectations under an equivalent martin-
gale measure, and characterizes the full set of such measures induced by the shot-noise
process. Section 4 studies the application of the incomplete-market pricing and hedging
methods previously discussed to the shot-noise model, and presents the corresponding
results. Finally, Section 5 illustrates the theoretical findings with numerical examples.
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2 The Model

Let (Ω,F ,F = (Ft)t≥0,P) be a filtered probability space equipped with the usual filtra-
tion assumptions: the filtration F is right-continuous (i.e., Ft = Ft+), and complete,
meaning that F0 contains all P-null sets. For simplicity, we assume that the initial
σ-algebra F0 is trivial, in the sense that it contains only events of probability zero or
one.

The market consists of two assets: a risk-free asset, with a deterministic return rate r,
and a risky asset, both traded up to a finite time horizon T > 0.

The risk-free asset evolves deterministically according to

dB(t) = r B(t) dt, B(0) = 1.

We define the discount factor by setting R := B−1. Given any process X, we denote
its discounted version by X̂ := RX.

The dynamics of the risky asset’s price S are given by the following stochastic differ-
ential equation

dSt

St−
= µ dt+ σ dWt +

∫
R
yM(dt dy) +

∂

∂t

∫ t−

0

∫
R
ln(1 + y d(t− s))M(ds dy)dt. (2.1)

In this equation, W = (Wt)t∈[0,T ] denotes a standard P-Brownian motion. The term M
is a Poisson random measure on [0, T ]×R with P-intensity λFU(dy) dt, where U is an
independent random variable representing the size of the jumps in M , and FU denotes
its law.

The function d : R+ → [0, 1] is deterministic, nonnegative, and nonincreasing. It sat-
isfies d(0) = 1 and models the decay of jump effects over time. A typical choice is
d(x) = exp(−cx), for x ≥ 0 and c ≥ 0.

If we define the compensated Poisson random measure by M̃(dt dy) := M(dt dy) −
λFU(dy) dt, then the stochastic differential equation (2.1) can be rewritten as

dSt

St−
=

(
µ+ θ(t−) + λE[U1]

)
dt+ σ dWt +

∫
R
y M̃(dt, dy), (2.2)

where the process θ is defined as

θ(t−) :=
∂

∂t

Nt−∑
i=1

ln(1 + Ui d(t− τi)) =
∂

∂t

∫ t−

0

∫
R
ln(1 + y d(t− s))M(ds dy). (2.3)

Here, N = (Nt)t∈[0,T ] denotes a Poisson process with constant P-intensity λ > 0,
and (τi)i∈N its jump times. The random variables (Ui)i∈N represent the proportional
jump sizes of the asset price process S, occurring at the corresponding jump times τi.
They are assumed to be independent and identically distributed, with common law FU ,
independent of the Brownian motion W , and to have finite second moment.
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The equality in equation (2.3) follows directly from the definition of the stochastic
integral with respect to the Poisson random measure M , which corresponds to the sum
of the integrand evaluated at the jump sizes and their respective jump times.

An explicit solution to the stochastic differential equation (2.1), or equivalently to its
rewritten form (2.2), is given in the following proposition.

Proposition 2.1. The unique càdlàg1 solution S = (St)t∈[0,T ] to the stochastic differ-
ential equation (2.1) is given by

St = S0 exp

{(
µ− 1

2
σ2

)
t+ σWt

} Nt∏
i=1

(1 + Ui d(t− τi)) . (2.4)

Proof. It is enough to verify that expression (2.4) satisfies the SDE given in (2.1). To
this end, let us define SBS

t Jt := SBS
t eLt := St, where

SBS
t := S0 exp

(
(µ− 1

2
σ2)t+ σWt

)
=⇒ dSBS

t = SBS
t (µ dt+ σ dWt),

Lt :=
Nt∑
i=1

ln(1 + Ui d(t− τi)) =⇒ dLt =
∂

∂t

Nt−∑
i=1

ln(1 + Ui d(t− τi)) dt+∆Lt,

where ∆Lt = ln(1+UNt)dNt, since d(0) = 1. Applying Itô’s formula for semimartingales
(see, e.g., prop 8.19 in [9]), we compute:

dJt = eLt−
(
θ(t−) dt+ (e∆Lt − 1)

)
.

Using the product differentiation rule for semimartingales (see, e.g., prop 8.11 in [9]),
we obtain:

dSt = St−
[
(µ+ θ(t−)) dt+ σ dWt + (e∆Lt − 1)

]
.

Since ∆Lt = ln(1 + UNt)dNt, we may write e∆Lt − 1 as UNt dNt. Finally, note that
UNt dNt can be expressed as an integral with respect to the Poisson random measure
M , that is,

UNt dNt =

∫
R
yM(dt dy).

The model described by equation (2.4) is designed to capture three specific features:
(i) standard geometric Brownian motion dynamics in the absence of jumps, (ii) abrupt,
proportional jumps in the asset price occurring at random times, and (iii) a “fade-away”
effect that causes the impact of each jump to decay over time.

If no jump has occurred up to time t (i.e., t < τ1), the asset price evolves according to
the geometric Brownian motion (GBM) used in the Black–Scholes model. At the first
jump time t = τ1, the price can be expressed as St = St−(1 + U1), where St− is just
the GBM evaluated just before the jump. In this case, the jump size U1 reflects the
relative percentage change caused by the jump.

1 A function f : [0, T ] → R is said to be càdlàg if it is right-continuous with left limits.
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To incorporate a more realistic post-jump behavior, the model introduces a decay
function d, which modulates the jump size over time. Then, if no further jumps occur
(i.e., τ1 < t < τ2), we have

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)
(1 + U1 d(t− τ1)).

Proceeding in this way, the final expression for the price process—accounting for the
successive jumps of the Poisson process—takes the form shown in equation (2.4).

Remark 2.1. By representing the jump term in equation (2.4) as an exponential of a
stochastic integral with respect to the Poisson random measure M , the price process
can be rewritten in terms of a product of Doléans-Dade exponentials, each of which is
a martingale. In particular,

S(t) = S(0) exp

(∫ t

0

(
µ+

∫
R
d(t− s) y λFU(dy)

)
ds

)
E(σW )(t) E(d y M̃)(t), (2.5)

where

E(σW )(t) := exp

{∫ t

0

σ dWs −
1

2

∫ t

0

σ2 ds

}
,

E(d y M̃)(t) := exp

{∫ t

0

∫
R
ln (1 + d(t− s) y) M(ds dy)−

∫ t

0

∫
R
d(t− s) y λFU(dy) ds

}
.

Under this representation, it is easy to check that all moments of S are finite if the
moment generating function of U exists.

Remark 2.2. Although the "continuous" random part of S evolves with constant volatil-
ity σ, the total “volatility” of the process is not constant. The intuition behind this
lies in the fact that the quadratic variation of jump processes is generally random.
For instance, in the case of a Poisson process N , one has [N,N ]t = Nt (see e.g., Ex-
ample 8.4 in [9]), which highlights that the variability accumulated through jumps is
path-dependent.

One of the defining properties of a Lévy process is having stationary increments, mean-
ing that the unconditional law of the increment over [t, t+h] depends only on the length
h, not on the initial time t. This does not generally hold in our setting due to the de-
cay function d. To illustrate this, consider a compound Poisson process Xt :=

∑Nt

i=1 Ui,
where the Ui are i.i.d. and independent of the Poisson process N . The increment over
[t, t+h] isXt+h−Xt =

∑Nt+h−Nt

j=1 UNt+j. Since Nt+h−Nt
d
= Nh and the Ui are i.i.d.—i.e.,

(UNt+j)j=1,...,Nt+h−Nt

d
= (Uj)j=1,...,Nh

—it follows that Xt+h −Xt
d
= Xh.

In contrast, if jump sizes are weighted by a time-dependent decay function—that is,
Xt :=

∑Nt

i=1 d(t − τi)Ui—, the increment over [t, t + h] is no longer distributed as Xh,
since the weights depend on the interval. The process thus lacks stationary increments
and is not a Lévy process.

Moreover, S is not Markovian in general (see Lemma 2.2 in [1]). Intuitively, as seen in
Equation (2.1), the dynamics depend not only on the value St− , but also on the process
θ(t−), which incorporates the entire past trajectory through the history of jumps. As a
result, the evolution of S cannot be fully characterized by its current state alone, and
the Markov property fails in general, i.e., E[f(ST ) | Ft] ̸= E[f(ST ) | St].
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3 About Market Incompleteness

This section introduces the concepts of pricing rules, arbitrage, and market complete-
ness, and explores their connection to equivalent martingale measures, drawing primar-
ily from [9] and, for technical details, from [25, 10, 11]. In Subsection 3.3, we character-
ize the set of equivalent martingale measures for the price process given by (2.1), and
show that, since this set is not a singleton2, it gives rise to infinitely many arbitrage-free
prices. This motivates the need to explore alternative pricing methods.

3.1 Arbitrage-Free Pricing Rules

Let H be the generic space of European contingent claims with maturity at time T > 0.
Formally, we require that any H ∈ H be non-negative and belong to L2(Ω,FT ,P), that
is, H must be FT -measurable and P-square integrable. Further specifications of the
set H will be provided in later sections if needed. Typical examples of these claims
include the terminal value of the asset H = ST , indicator functions H = 1A for A ∈ FT ,
standard European options, as well as more general terminal payoffs depending on the
entire path, e.g., H = f((St)t≤T ).

The central problem in this context is how to assign a price to contingent claimsH ∈ H.
A pricing rule is defined as an operator that assigns a price Vt(H) at time t to each
claim H ∈ H for every t ∈ [0, T ]. Typically, the minimal requirements for a pricing
rule are the following: that Vt(H) can be computed using the information available at
time t (i.e., the process (Vt(H))t∈[0,T ] is adapted to the filtration F); that it satisfies
positivity, i.e.,

∀ω ∈ Ω, H(ω) ≥ 0 ⇒ Vt(H) ≥ 0, ∀ t ≤ T ;

and that it is linear in the claims, i.e., Vt(ΣiHi) = ΣiVt(Hi), although this assumption
will be relaxed in Subsection 4.5 on Rational Pricing and Hedging.
Relying on linearity, we motivate now that our pricing rule can be expressed as an
expectation under some probability measure. To this end, we define a disjoint family
of sets (Ai)i≥1 as the states of nature (i.e., ∪i≥1Ai = Ω). In this way, any claim
H ∈ H can be expressed as the sum of the amounts αi it pays in each state Ai, that
is, H = Σiαi1Ai

. Since this is nothing but the sum of digital options, we can apply
linearity and write V0(H) = Σi≥1αiV0(1Ai

).
Note that the price at t = 0 of a claim H = 1 is simply the price of the risk-free asset
at time 0, R(T ). We now define a probability measure 3 as follows:

Q(A) =
V0(1A)

V0(1)
= V0(1A)R(T )

−1, ∀A ∈ FT .

2 A set is a singleton if and only if its cardinality is 1, i.e., it is a set with exactly one element.
3 Note that Q is a probability measure on (Ω,F) since 0 ≤ 1A ≤ 1 implies 0 ≤ Q(A) ≤ 1 for

all A ∈ FT = F , and setting A = Ω yields Q(Ω) = 1. Moreover, if we assume that impossible
claims worth nothing, then Q is an absolutely continuous measure with respect to the natural
probability P, i.e., ∀A ∈ F : P(A) = 0 =⇒ Q(A) = 0. Conversely, it makes sense as well to
assume that Q(A)=0 only for impossible claims. Therefore the artificial measure Q is in fact
absolutely continuous with respect to P, meaning that they agree in what are sure events and
impossible events.
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Using the linearity of the pricing rule and the identity V0(1A) = R(T )Q(A), it follows
that the price of the claim H can be computed as an expectation under Q:

V0(H) =
∑
i≥1

αiR(T )Q(Ai) =
∑
i≥1

αiR(T )EQ[1Ai
] = EQ[R(T )H].

If we additionally require time consistency—that is, the value at time t = 0 of a claim
with payoff H coincides with the value at time t = 0 of a claim whose payoff is Vt(H) at
time t—then any pricing rule satisfying these properties can be expressed at time t as
the discounted expected value of the claim under a risk-neutral measure Q, conditinonal
on Ft. Namely:

Vt(H) = R(t)−1EQ[R(T )H | Ft], (3.1)

where Q is the so-called risk-neutral or pricing measure (this is a well know result, se e.g.
[9]). A more formal treatment of this result will be presented later in Proposition 3.1.

Another fundamental requirement for any pricing rule is the absence of arbitrage op-
portunities. Arbitrage is inherently linked to self-financing strategies involving trading
the underlying asset with price process S. Therefore, in order to properly understand
this concept— and later apply it to hedging arguments— we must temporarily step
away from the topic of linear pricing rules and focus on investment strategies involving
direct trading in S. Indeed, when modeling a risky asset whose price follows a stochas-
tic process S, it is not only derivative products written on S that are of interest, but
also strategies involving dynamic trading of the asset itself.

In our setting, we consider dynamic portfolios resulting from buying or selling units of
the underlying asset whose price is given by S. Specifically, suppose an investor trades
at discrete times τ0 = 0 < τ1 < · · · < τn = T , selecting a position ϕi in the underlying
during the interval (τi, τi+1]. Then, the terminal gain from the investment strategy is
given by:

n∑
i=1

ϕi−1

(
Sτi − Sτi−1

)
. (3.2)

This simple example allows us to introduce an investment strategy defined by a simple
predictable process, and the associated stochastic integral

∫ t

0
ϕ dS. In practice, the

trading times τ are not deterministic, since the investor adjusts the composition of the
portfolio depending on the evolution of S. Moreover, the investor does not know in
advance the future composition of the portfolio; instead, they must wait until time τi
to decide their position for the interval (τi, τi+1]. That is, ϕi is a random variable mea-
surable with respect to Fτi−. In addition, when the portfolio composition is updated at
time t = τi, the position remains ϕi−1 at that instant, and it is only immediately after
the transaction (i.e., for t > τi) that the new position ϕi becomes effective. Therefore,
the process ϕ defining the investment strategy is càglàd4, and hence predictable.

We now present a formal definition of a simple predictable process:

4 An stochastic process (Xt)t∈[0,T ] is said to be càglàd if its sample paths are left-continuous with
right limits.
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Definition 3.1. A stochastic process (ϕt)t∈[0,T ] is called a simple predictable process
if it can be written in the form

ϕt = ϕ01{t=0} +
n∑

i=1

ϕi−1 1(τi−1,τi](t). (3.3)

Here, 0 = τ0 < τ1 < · · · < τn = T are stopping times, and each ϕi is a bounded
Fτ−i

-measurable random variable.

For now, we denote by Φ the generic space of admissible investment strategies. For-
mally, we require that any ϕ ∈ Φ belongs to L(Ŝ), that is, ϕ must be an F-predictable
and Ŝ-integrable process. In this way, the associated discounted gains process

(∫ t

0
ϕ dŜ

)
t∈[0,T ]

is well-defined. Moreover, we require that every process ϕ ∈ Φ can be approximated
(uniformly in time) by a sequence (ϕn)n∈N of simple predictable processes of the form
given in equation (3.3), so that the gains associated with ϕ can also be approximated
by those of simple strategies. This condition is imposed in order to take advantage of
the fact that the processes S and Ŝ are semimartingales.

Definition 3.2. A càdlàg, non-anticipative process S is a semimartingale if the stochas-
tic integral of simple predictable processes (as defined in equation (3.2)) satisfies the
following continuity property: for every ϕn, ϕ ∈ Φ, if

sup
(t,ω)∈[0,T ]×Ω

|ϕn
t (ω)− ϕt(ω)| −−−→

n→∞
0 then

∫ T

0

ϕndS
P−−−→

n→∞

∫ T

0

ϕ dS.

Furtheremore, by the semimartingale property, the associated gains process will also
be a semimartingale.

We now introduce the notion of a self-financing strategy and its associated gains and
cost processes. Consider a portfolio that allocates ϕB units in the risk-free asset and
ϕS units in the risky asset with price process S. The associated investment strategy is
denoted by ϕ := (ϕB

t , ϕ
S
t ), and we define the price process of the traded assets by the

R2-valued semimartingale X := (B, S) = (R−1, S).

The cumulative gains process associated with the risky strategy ϕS is given by: Gt(ϕ) :=∫ t

0
ϕ ·dX. The value or worth of the portfolio at time t is defined as: Πt(ϕ) := ϕt ·Xt =

ϕB
t R

−1
t +ϕS

t St. We then define the cost process C = (Ct)t∈[0,T ] as the difference between
the portfolio value and the gains accumulated up to time t: Ct := Πt(ϕ)−Gt(ϕ).

A strategy ϕ is said to be self-financing if the cost process is null P-a.s., that is, Ct = 0
for all t ∈ [0, T ] almost surely. In this case, the portfolio value can be expressed as:

Πt(ϕ) =

∫ t

0

ϕ · dX = ϕ0 ·X0 +

∫ t

0+

ϕ · dX = Π0(ϕ) +

∫ t

0+

ϕBdR−1 +

∫ t

0+

ϕSdS. (3.4)

Recall that the discounted value of any process Y with respect to the risk-free asset
was defined as Ŷt := Rt Yt. Applying Itô’s lemma to Π̂(ϕ) and noting that ϕB

t =
R(t) (Πt(ϕ)− ϕS

t St), we can express the discounted portfolio value as:

Π̂t(ϕ) = Π̂0(ϕ) +

∫ t

0

ϕSdŜ. (3.5)
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Now that the notion of a self-financing strategy has been introduced, we proceed to
formally define the concept of an arbitrage opportunity in this setting.

Definition 3.3. An arbitrage opportunity is a self-financing strategy ϕ that can gen-
erate a strictly positive final gain without any possibility of immediate loss. Therefore,
ϕ satisfies: (1) P(∀t ∈ [0, T ], Πt(ϕ) ≥ 0) = 1, (2) P(ΠT (ϕ) > Π0(ϕ)) ̸= 0.

Recall that linearity implied that the pricing rule could be written as an expectation
under some measure Q (see equation (3.1)). We now examine how the absence of arbi-
trage restricts the choice of Q. Specifically, Q must be a probability measure equivalent
to P, denoted Q ∼ P, under which the discounted price process is a martingale.

Two probability measures P and Q defined on a filtered probability space (Ω,F , (Ft)t∈[0,T ])
are said to be equivalent if they are mutually absolutely continuous, that is, for every
t ∈ [0, T ] and every A ∈ Ft,

Q(A) = 0 ⇐⇒ P(A) = 0.

This condition ensures that both measures agree on which events are null at every time
t. Suppose, without loss of generality (w.l.o.g.), that r = 0, and that Q ̸∼ P. Then,
there exists a set A ∈ FT such that P(A) > 0 but Q(A) = 0. Consider the contingent
claim H = 1A. Under Q, its price would be

V0(H) = EQ[1A] = Q(A) = 0,

while the payoff is non-negative with strictly positive P-probability. This would consti-
tute an arbitrage opportunity. A symmetric argument shows that absolute continuity
must also hold in the other direction. Therefore, the pricing measure Q must be equiv-
alent to P.

To motivate the condition that the discounted price process must be a Q-martingale
under arbitrage-free pricing rules, consider two alternative strategies: the first consists
in buying the risky asset at time t at price St, and simply holding it until maturity,
thereby receiving ST at time T ; the second strategy invests the same amount St in the
risk-free asset, yielding a terminal payoff of (R(t)/R(T ))St at T . Supose r constant
w.l.o.g. Since both strategies require the same initial cost at time t, the absence of
arbitrage—together with the pricing rule given in equation (3.1)—implies that the
expected discounted payoff of both positions must coincide under Q:

EQ [
e−r(T−t)ST | Ft

]
= EQ [

e−r(T−t) · er(T−t)St | Ft

]
.

Where the RHS is just St. By multiplying both sides by R(t) ≡ e−rt, we obtain the
Q−martingale property for Ŝ.

This intuition is formalized in the following proposition.

Proposition 3.1. In a market described by a probability measure P on scenarios, any
arbitrage-free linear pricing rule V can be represented as

Vt(H) = R(t)−1EQ[R(T )H | Ft],

where Q is an equivalent martingale measure: a probability measure on the market
scenarios such that P ∼ Q and EQ[ŜT | Ft] = Ŝt.
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So far, we have developed the intuition that an arbitrage-free pricing rule can be con-
structed if an equivalent martingale measure exists. Proving the converse implication is
more subtle (see, e.g., [25]). The result in both directions is known as the Fundamental
Theorem of Asset Pricing.

Proposition 3.2. Fundamental Theorem of Asset Pricing. The financial market
described by the filtered probability space (Ω,F ,F,P), with a risky asset whose price
process is (St)t∈[0,T ], is arbitrage-free if and only if there exists a probability measure
Q ∼ P such that the discounted price process (Ŝt)t∈[0,T ] is a Q-martingale.

Remark 3.1. To be more precise, when dealing with price processes modeled as bounded
semimartingales, one should replace the notion of arbitrage opportunity in the funda-
mental theorem with the concept of Free Lunch with Vanishing Risk (see Theorem
1.1 in [10]). Furthermore, in the general setting of unbounded semimartingales, the
notion of equivalent martingale measure must also be replaced by that of an equivalent
sigma-martingale measure5 (see Main Theorem in [11]).

3.2 Completeness of the Market

The assumption of market completeness is frequently made, often implicitly, in many
classical models of financial mathematics. It originates from the Black–Scholes frame-
work, where every contingent claim can be perfectly replicated by a dynamic self-
financing trading strategy. However, this property is far from universal and depends
heavily on the chosen model for the asset price. In what follows, we formalize the notion
of completeness and examine its implications within the general theory of no-arbitrage
pricing.

Definition 3.4. Let X := (S,R−1). The financial market described by the filtered
probability space (Ω,F ,F,P), with a risky asset whose price process is (St)t∈[0,T ], is
said to be complete if, for every contingent claim H ∈ H, there exists a self-financing
strategy ϕ := (ϕB, ϕS), with ϕS ∈ Φ, that perfectly hedges H. That is,

H = ϕ0 ·X0 +

∫ T

0

ϕt · dXt P-a.s. (3.6)

Recall that if Q is an equivalent martingale measure (EMM), then, since Q ∼ P, any P-
null set where perfect replication fails is also Q-null. Moreover, using the representation
of the discounted portfolio in equation (3.5), the condition (3.6) in the definition of
market completeness is equivalent to:

Ĥ = Π0 +

∫ T

0

ϕS
t dŜt Q-a.s. (3.7)

5 A process X = (Xt)t≥0 taking values in Rd is called a sigma-martingale if there exists a Rd-valued
martingale M and a non-negative, predictable, M -integrable process φ, such that X = φ ·M .

13



Now, taking expectations under Q, and assuming ϕS is such that
∫ T

0
ϕS
t dŜt ∈ L2(Q),

we obtain that, since Ŝ is a Q-martingale, it holds:

EQ[Ĥ] = Π0.

In the absence of arbitrage, any strategy that perfectly hedges the claim H—that is,
satisfies either (3.6) or (3.7)—must have the same initial cost Π0. Therefore, the time-
zero value of the contingent claim H, computed under any EMM using the market
completeness condition, must coincide and equal Π0. This requires that all equivalent
martingale measures are equal; that is, there exists a unique equivalent martingale
measure. These ideas are formalized in the following theorem.

Proposition 3.3. Second Fundamental Theorem of Asset Pricing. A market
defined by the asset (St)t∈[0,T ], described as a stochastic processes on (Ω,F ,F,P), is
complete if and only if there exists a unique martingale measure Q equivalent to P.

Remark 3.2. As in the previous fundamental theorem, a fully rigorous formulation
in a general setting turns out to be significantly more difficult (see Theorem 1.17 in
[8]). In order to keep the problem analytically more tractable, we adopt the standard
formulation of the fundamental theorems of asset pricing, and rely on the classical
notions of arbitrage and equivalent martingale measure.

3.3 Equivalent Martingale Measures Set

The previous theorem shows that a structural property of the market—namely, the
ability to hedge any contingent claim using only cash and the underlying risky as-
set—depends on a statistical property of the model used to describe the risky asset’s
price, specifically the uniqueness of the equivalent martingale measure. In general,
models involving jump-diffusion dynamics do not admit a unique EMM, and hence the
corresponding markets are incomplete.

In the following proposition, we characterize the set of equivalent martingale measures
for the shot-noise process.

Proposition 3.4. The set of equivalent martingale measures with P-square integrable
density for the shot-noise process, Q, is the set of measures Qγ whose Radon–Nikodym
derivative, Lγ(t), is given by

Lγ(t) = E(γcW )(t) E(γJ M̃)(t) .

where

E(γcW )(t) = exp
{∫ t

0

γc(s) dWs −
1

2

∫ t

0

γc(s)
2 ds

}
, (3.8)

E(γJ M̃)(t) = exp
{∫ t

0

∫
R
ln
(
1 + γJ(s, y)

)
M̃(ds, dy)

−
∫ t

0

∫
R

[
γJ(s, y)− ln

(
1 + γJ(s, y)

)]
λFU(dy) ds

}
. (3.9)
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Here the processes γc and γJ are predictable and satisfy

µ+ θ(t−) + σ γc(t) + λ

∫
R
y (1 + γJ(t, y))FU(dy) = r P⊗ dt-a.s., (3.10)

where θ(t−) is given by equation (2.3). We further assume that 1+γJ(t, y) > 0, P⊗dt-
a.s., so that Lγ is strictly positive.

Proof. Note that the process Lγ is the Radon–Nikodym derivative dQγ

dP , and is therefore,
by construction, a strictly positive P-martingale. Thus, we can apply the predictable
representation theorem, which ensures the existence of a unique pair of predictable
processes (γc, γJ) such that Lγ admits the following representation (see, e.g., [4]):

dLγ
t = Lγ

t−

(
γc(t) dWt +

∫
R
γJ(t, y) M̃(dt, dy)

)
. (3.11)

Define Yt := lnLγ
t . By applying Itô’s formula for semimartingales to Y, we obtain

that the solution to the equation (3.11) is the product of Doléans–Dade exponentials
expressed in equations (3.8) and (3.8).

By Girsanov’s theorem for semimartingales (see, e.g., Theorem 3.24 in [28]), under the
probability measure Qγ given by the density process Lγ, the following hold:

(i) The process W γ defined as W γ
t := Wt −

∫ t

0
γc(s) ds is a Qγ-Brownian motion.

(ii) The Qγ-compensator (or intensity measure) of the Poisson random measure M
is given by

λ(1 + γJ(t, y))FU(dy) dt.

Therefore, the Qγ-compensated random measure takes the form

M̃γ(dt, dy) = M̃(dt, dy)− λ γJ(t, y)FU(dy) dt.

Applying these results to equation (2.2), the dynamics of S under Qγ can be expressed
as:

dSt

St−
=

(
µ+ θ(t−) + λE[U1] + σ γc(t) + λ

∫
R
y γJ(t, y)FU(dy)

)
dt

+ σ dW γ
t +

∫
R
y M̃γ(dt, dy).

Where the drift term can be rewritten as:

µ+ θ(t−) + σ γc(t) + λ

∫
R
y (1 + γJ(t, y))FU(dy). (3.12)

Finally, in order for the discounted asset price to be a Qγ-martingale, the processes γc
and γJ must be such that the Qγ-drift term of the price process, shown in equation
(3.12), equals r, P⊗ dt-a.s.

15



Remark 3.3. An interesting implication of this proposition is that, under any martin-
gale measure Qγ ∈ Q, the dynamics of the price process no longer depend directly6 on
the decay function d, as it is eliminated by the density Lγ. Therefore, the shot-noise
price process, given in equation (2.4), can be represented under Qγ as a product of
Doléans-Dade exponentials, which are themselves martingales. In particular,

S(t) = S(0)R(t)−1E(σW γ)(t) E(y M̃γ)(t),

where

E(σW γ)(t) = exp

{∫ t

0

σ dW γ
s − 1

2

∫ t

0

σ2 ds

}
,

E(y M̃γ)(t) = exp

{∫ t

0

∫
R
ln(1 + y)Mγ(ds, dy)−

∫ t

0

∫
R
y λ (1 + γJ(s, y))FU(dy) ds

}
.

When γJ is a deterministic function, the Qγ-intensity of the Poisson process N is given
by λ (1 + γJ) (see [4]). Since the intensity corresponds to the expected number of
jumps per unit of time, the function γJ can be interpreted as the relative change in
the jump intensity under the risk-neutral measure. In this sense, the processes γc and
γJ represent the risk premium associated with the continuous diffusion and the jump
components, respectively.

In the sequel, we consider a family G of predictable processes γJ such that the associated
density process Lγ defines a measure in the set Q of equivalent martingale measures.
We then focus on a subset Γ ⊂ Q, consisting of those measures whose density process Lγ

is associated with a constant value of γJ . This restriction is imposed for consistency: in
Section 2, we assumed that the P-intensity of the Poisson process N is constant; hence,
to preserve constant intensity under Q, the corresponding γJ must also be constant.

It is clear that the shot-noise process does not admit a unique equivalent martingale
measure, since infinitely many predictable pairs (γc, γJ) satisfy equation (3.10). There-
fore, the market generated by the asset S is incomplete: contingent claims are not
redundant assets that can be perfectly replicated using only cash and the underlying,
and under the linear pricing rule given in Proposition 3.1, there are infinitely many
arbitrage-free prices for a given claim H ∈ H. Each of these corresponds to a viable
price process V γ, defined by

R(t)V γ(t) = Eγ [R(T )H(ST ) | Ft] ,

7 where different choices of γ := (γc, γJ) generate different pricing rules. In this setting,
we now explore possible pricing and hedging approaches.

6 The processes γc and γJ must satisfy equation (3.10), which allows for infinitely many measures
under which the entire drift component induced by the decay function d, captured by θ, is
absorbed into γc. As a result, γJ does not depend on d, and neither does the price process under
Qγ . There also exist many other measures in which γJ does depend indirectly on d—by absorbing
part of θ—, but this will not be the focus of this work.

7 Actually, the notation should be EQγ

, but we use Eγ since it’s too heavy.
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4 Derivative Pricing and Hedging Methods

This section reviews several pricing methods in incomplete markets, and apply them
to the shot noise model of Section 2. We examine valuation rules arising from specific
choices of the parameter γJ in Proposition 3.4, including the Merton and minimal en-
tropy cases. We also derive non trivial arbitrage-free bounds based on the Black–Scholes
function and consider pricing via hedging strategies, such as the minimal martingale
measure. Lastly, we study exponential utility pricing and its dependence on the agent’s
risk aversion, as well as its connections with the other pricing methods discussed.

Throughout this section, we work with contingent claims H ∈ H, recalling that each
H ∈ H is assumed to be non-negative and to belong to L2(Ω,FT ,P). Additional
conditions on H will be introduced depending on the chosen pricing method.

4.1 Merton’s Aproach

The first application of jump-diffusion processes to option pricing was introduced by
Merton in [31]. Although his model considers a relatively simple jump structure for the
underlying asset—specifically, a compound Poisson process with Gaussian jumps—we
adopt the same method for constructing the equivalent martingale measure. This mea-
sure is constructed analogously to the Black-Scholes model (and, more generally, to any
one-dimensional continuous diffusion model): by adjusting the drift of the Brownian
motion while keeping the jump component unchanged in distribution. In doing so, the
risk-neutral measure preserves the original jump intensity and distribution.

Theorem 4.1. Let S follow the dynamics given in equation (2.1), corresponding to
a shot-noise process. The Merton martingale measure Q0 is the unique element of Q
whose Radon–Nikodym density L0(t) with respect to P is given by L0(t) = E(ψ0W )(t),
where

E(ψ0W )(t) = exp

{∫ t

0

ψ0(s) dWs −
1

2

∫ t

0

(ψ0(s))2 ds

}
,

and the process ψ0 is defined by

ψ0(t) =
r − µ− θ(t−)− λE[U1]

σ
, with θ(t−) :=

∂

∂t

Nt−∑
i=1

ln (1 + Ui d(t− τi)) .

Proof. The method follows the same structure as in Proposition 3.4. In this case, we
apply Girsanov’s theorem for Brownian motion, (see e.g., Theorem 5.2.3 in [35]). Under
this result, we can represent the Brownian motionW under P as dWt = dWQ0

t +ψ0(t) dt,
and express the dynamics of the discounted asset price process Ŝt := R(t)St under Q0

as
dŜt

Ŝt−
=

(
µ+ θ(t−) + λE[U1]− r + σψ0(t)

)
dt+ σ dW 0

t +

∫
R
y M̃(dt, dy).

Therefore, to ensure that Ŝ is a Q0-martingale, ψ0 is choosen such that the drift vanishes
i.e.,

µ+ θ(t−) + λE[U1]− r + σψ0(t) = 0 P⊗ dt− a.s.,

Solving for ψ0(t) yields the expression given in the theorem.
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While jumps are present in the dynamics of the underlying asset and thus influence
the option price, they do not affect the pricing rule through a change in the jump
distribution under the risk-neutral measure, as this measure preserves their original
intensity and distribution. In this sense, the pricing rule effectively disregards jump risk
as a source of systematic risk, even though jumps remain part of the asset’s behaviour.
The corresponding Radon–Nikodym density is precisely the one in Proposition 3.4
with γJ ≡ 0, where γJ was interpreted as the risk premium introduced by jumps. This
implicitly assumes that jump risk is fully diversifiable. Merton justifies this by assuming
that the jump-diffusion components of different assets are uncorrelated, which allows
jump risk to be interpreted as idiosyncratic. However, this assumption does not hold
in practice: highly diversified portfolios—such as broad market indices—often exhibit
large price jumps, particularly downward movements, resulting from highly correlated
jumps across their constituent assets. This suggests that jump risk in real markets
often contains a significant systematic component, which this approach ignores.

Define Merton’s price process V 0 as R(t)V 0(t) = E0 [R(T )H(ST ) | Ft]. The hedging
strategy proposed by Merton is the self-financing portfolio (ϕ0,B, ϕ0,S) defined by

ϕ0,S =
∂V 0

∂S
, ϕ0,B =

∫
ϕ0,S dŜ − ϕ0,SŜ.

This strategy hedges only the risk associated with the diffusion part of the underly-
ing process—namely, the component driven by Brownian motion, as captured by the
stochastic integral with respect to W in equation (4.3) below.

The initial value of this strategy, denoted Π0
0, equals the expected discounted payoff

under Q0. By the absence of arbitrage and the martingale property of V̂ 0 under Q0,
we have Π0

0 = V 0
0 .

While this strategy captures the average effect of jumps—since the delta incorporates
all jumps up to time t—it provides no protection against the realization of individual
jumps. As a result, the portfolio remains fully exposed to jump risk.

Consider the operators L and Λ defined on C1,2 functions by

L [f ](t, x) =
∂f

∂t
(t, x) + rx

∂f

∂x
(t, x) +

1

2
x2σ2∂

2f

∂x2
(t, x),

Λ[f ](t, x, y) = f(t, (1 + y)x)− f(t, x)− yx
∂f

∂x
(t, x).

We now use these operators to formulate the hedging error associated with Merton’s
strategy.

Proposition 4.1. Let Q0 ∈ Q be the Merton measure given in Theorem 4.1, and let V 0

denote the corresponding viable price process, defined by R(t)V 0(t) = E0 [R(T )H(ST ) | Ft]
for some H ∈ H. Define the hedging error at maturity as H − Π0

T (H). If the decay
function d is such that the asset price process S, given by equation (2.1), is Markovian,
and H is such that the first and second spatial derivatives of V 0 are bounded, then the
hedging error associated with Merton’s strategy takes the form:∫ T

0

∫ ∞

R
R(T )−1R(t) Λ[V 0](t, St−, y) M̃(dt, dy).
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Proof. Recall that since Q0 ∈ Q, the dynamics of S under Q0 are given by

dSt

St−
= r dt+ σ dW 0

t +

∫
R
y M̃(dt, dy),

where the compensated Poisson random measure M̃ is defined as M̃(dt, dy) :=M(dt, dy)−
λFU(dy)dt. Supose that H is such that V 0 is a smooth, C1,2 function, then we can
apply Itô’s lemma for semimartingales to the discounted price process RV ◦ =: V̂ 0.
(Otherwise, apply Itô’s lemma for convex functions, see e.g. [32]).

V̂ 0
T − V̂ 0

0 =

∫ T

0

∂

∂t
V̂ 0(t, St) dt

+

∫ T

0

∂

∂x
V̂ 0(t, St−)St−

(
r dt+ σ dW γ

t +

∫
R
y M̃(dt, dy)

)
+

1

2

∫ T

0

∂2

∂x2
V̂ 0(t, St−)S

2
t−σ

2 dt

+

∫ T

0

∫
R
R(t) Λ[V 0](t, y, St−)M(dt, dy).

By collecting the terms with respect to the Lebesgue measure dt, applying the operator
L , and rewriting the last integral using the definition of the compensated Poisson
random measure, the above expression becomes:

V̂ 0
T − V̂ 0

0 =

∫ T

0

(
L [V̂ 0](t, St−) +

∫
R
R(t)Λ

[
V 0

]
(t, St−, y)λFU(dy)

)
dt (4.1)

+

∫ T

0

∫
R
R(t)Λ

[
V 0

]
(t, St−, y) M̃(dt, dy) (4.2)

+

∫ T

0

St−
∂

∂x
V̂ 0(t, St−)

[
σ dW 0

t +

∫
R
y M̃(dt, dy)

]
. (4.3)

From the boundedness of Delta and Gamma, and the fact that S ∈ L2(Ω,F,Qγ), the
stochastic integrals on the right-hand side are Q0-martingales.

Recall that under any arbitrage-free pricing rule, the price of the claim at maturity
must coincide with the payoff, that is, V 0

T = H(ST ). This condition implies that V̂ 0 is
a Q0-martingale by construction:

V̂ 0(t, St) = E0 [R(T )H(ST ) | Ft] = E0
[
V̂ 0(T, ST ) | Ft

]
.

Therefore, V̂ 0
T − V̂ 0

0 is equal to its martingale component (i.e., the integral given by
(4.1) is equal to 0). Note that the integral in equation (4.3) matches the integral of
the partial derivative of V 0 with respect to x with respect to the process Ŝ under Q0.
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Finally, since Merton’s hedging portfolio is self-financing, we can express the discounted
hedging error R(T )[H(ST )− Π0

T (H)] = R(T )[V γ
T (ST )− Π0

T (H)] as follows:

Ĥ(ST )− Π̂0
T (H) = Ĥ(ST )−

(
V̂ 0
0 +

∫ T

0

∂

∂x
V 0(t, St−) dŜt

)
= V̂ 0

T − V̂ 0
0 −

∫ T

0

∂

∂x
V 0(t, St−) dŜt

=

∫ T

0

∫
R
R(t)Λ

[
V 0

]
(t, St−, y) M̃(dt, dy).

Multiplying both sides by R(T )−1 yields the error stated in the proposition.

This result is to be expected. In the hedging portfolio proposed by Merton, only the
changes in the derivative’s price caused by the continuous part of the underlying are
hedged—implicitly assuming a complete market. Consequently, the hedging error re-
sults from the accumulation of mismatches driven by jumps in the underlying, that is,
by the jump compensation term that arises when applying Itô’s lemma for semimartin-
gales, instead of its continuous version.

Furthermore, the hedging error is a Q0-martingale, and since Merton’s Radon–Nikodym
density does not modify the compensator of the jump measure, it remains a martingale
under P as well. Consequently, it is a random variable with zero P-expectation, which
implies that in some trajectories the strategy will over-hedge the contingent claim
(resulting in a negative hedging error), while in others it will under-hedge it (yielding
a positive error), depending on the size and frequency of the jumps along each path of
the process S.

Remark 4.1. In the proof of Proposition (4.1), we used the fact that the discounted
price process is a Q0-martingale. Consequently, its representation is given solely by
its martingale component. Therefore, the integral in (4.1) vanishes. This provides a
way to determine the price of the derivative by solving an integro-differential equation
(IDE): L [V̂ 0](t, St−) +

∫
R
R(t)Λ

[
V 0

]
(t, St−, y)λFU(dy) = 0, for t < T,

V 0(T, ST ) = H(ST ).

This IDE extends immediately to any measure Qγ by replacing λ with λ(1 + γJ).
Moreover, if γJ is constant, the IDE reduces to a PDE.

4.2 Super-Hedging

As seen in Merton’s hedging portfolio, a strategy covering only the continuous diffusion
component leads to a systematic hedging error for a given contingent claim H ∈ H.
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In fact, any strategy that ignores the jump risk will typically fail to replicate it. In
contrast, the approach developed in this section adopts a different perspective: we focus
on self-financing strategies ϕ := (ϕB, ϕS) that super-replicate the claimH, meaning that
their terminal value, given by ΠT (ϕ) as in (3.4), is greater than or equal to H P-a.s.
Strategies satisfying this inequality are referred to as superhedging strategies for the
contingent claim H.

We define the super-hedging cost at time t = 0 as the minimal initial capital among
all superhedging strategies for H. That is,

V SUP
0 (H) := inf

ϕ∈Φ
{Π0(ϕ) : P (ΠT (ϕ) ≥ H) = 1} . (4.4)

V SUP can then be interpreted as the cost of fully hedging the claim. It represents the
selling price in the case where the seller does not wish to bear any risk. If some risk is
accepted, the price would lie below V SUP, so this quantity serves as an upper bound.

We now take the perspective of a buyer of the claim to derive a lower bound using the
superhedging cost introduced in (4.4). A buyer will receive the payoff H at maturity
T , and, under this aproach, will choose a hedging portfolio with terminal value ΠT (ϕ)
such that the total payoff at maturity is almost surely non-negative:

H +ΠT (ϕ) ≥ 0 P-a.s. =⇒ ΠT (ϕ) ≥ −H P-a.s.

The minimal cost at time t = 0 of such a hedging strategy is given by V SUP
0 (−H). Let

p denote the purchase price of the claim. The total cost of the position (claim + hedge)
is then p+V SUP

0 (−H), which must be non-negative in order to prevent arbitrage, since
the terminal payoff is almost surely non-negative:

p+ V SUP
0 (−H) ≥ 0 =⇒ p ≥ −V SUP

0 (−H).

Therefore, in the absence of arbitrage, the price of the claim must lie within the no-
arbitrage bounds: p ∈

[
−V SUP

0 (−H), V SUP
0 (H)

]
.

Recall that we denote X := (R−1, S). For t > 0, we express the superhedging cost as
follows:

V SUP
t (H) := inf

ϕ∈Φ

{
Π̂t(ϕ) : P

(
ΠT (ϕ) = Πt(ϕ) +

∫ T

t

ϕ · dX ≥ H

)
= 1

}
. (4.5)

The no-arbitrage bounds derived at time t = 0 still apply in this setting, replacing
V SUP(H) by V SUP

t (H), and analogously for −H.

Solving the optimization problem given in (4.5) is non-trivial, and in addition, it would
require providing an explicit characterization of the set of predictable admissible strate-
gies Φ. To overcome this difficulty, a well-known duality approach is often applied, orig-
inally proposed by [18] and later generalized by Kramkov (see Theorem 3.2 in [29]).
This result allows the superhedging cost to be expressed as the essential supremum,
over the set QL

a of absolutely continuous local martingale measures, of the expected
discounted payoff. Mathematically, expression (4.4) coincides with:

ess sup
Qγ∈QL

a

Eγ[Ĥ]. (4.6)
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However, this representation is not entirely suitable for our framework either, since we
do not have an explicit description of the full set QL

a . Since every equivalent measure
is also absolutely continuous, and every martingale is also a local martingale, it follows
that the set of equivalent martingale measures Q, provided in Proposition 3.4, is con-
tained in the set of absolutely continuous local martingale measures, that is, Q ⊆ QL

a .
Therefore, using the subset Q would only yield a lower bound for the true superhedging
cost. Moreover, the measure Qγ that solves the dual problem depends on the claim H,
meaning it would have to be recomputed for each specific payoff.

In order to obtain analytical expressions for the bounds arising from the superhedging
approach, we adopt the idea introduced by Bellamy and Jeanblanc in [4], which consists
in bounding the prices of a claim H using the convexity of the Black–Scholes function
with respect to the stock price (i.e., the spatial variable).

Definition 4.1. Let H ∈ H be a convex function. The Black–Scholes function V BS(t, x)
associated with H is defined as

R(t)V BS(t, x) := E [R(T )H(XT ) | Xt = x] ,

with terminal condition
V BS(T, x) = H(x),

where X denotes a geometric Brownian motion with constant drift r, i.e.,

dXt = Xt (r dt+ σ dWt).

Given that the volatility σ is constant in our model, if the payoff function H is convex
and has bounded one-sided derivatives, then the associated Black–Scholes function
V BS(t, x) belongs to the class C1,2, is convex in the spatial variable x, and has bounded
first and second spatial derivatives (Delta and Gamma); see [19].

We define HC ⊂ H as the subset of claims H that satisfy the following properties: H
is convex, having bounded one-sided derivatives, fulfills H(x) ≤ x , ∀x ≥ 0, satisfies
H(0) = 0, and the function g(x) := x−H(x) is bounded. For instance, the payoff of a
European call option, given by H(x) = (x−K)+ for some K ≥ 0, belongs to HC .

Similarly, we define HP ⊂ H as the subset of convex and bounded claims H having
bounded one-sided derivatives and satisfy H(x) ≤ H(0) ,∀x ≥ 0. The payoff of a
European put option, given by H(x) = (K − x)+ for some K ≥ 0, belongs to HP .

In the following theorem, we present explicit bounds for the prices of convex European-
style contingent claims, expressed in terms of the Black–Scholes function.

Theorem 4.2. Let Qγ ∈ Q be the equivalent martingale measure given by Lγ, and let
V γ be the associated viable price process such that R(t)V γ(t) = Eγ [R(T )H(ST ) | Ft],
for some H ∈ HC ∪ HP . If the asset price process S follows the dynamics given in
(2.1), then:
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1. The error with respect to the Black–Scholes price is given by Λ[V BS]. Specifically,

R(t)V γ(t) = R(t)V BS(t, St) + ϵγ(t)

where

ϵγ(t) := Eγ

[∫ T

t

∫
R
R(s) Λ[V BS](s, y, Ss−)λ (1 + γJ(s, y) )FU(dy) ds

∣∣∣∣Ft

]
.

2. The lower bound of any viable price is given by the Black–Scholes function eval-
uated at St:

V BS(t, St) ≤ V γ(t), ∀γJ ∈ G

3. If H ∈ HC, then the upper bound is St, i.e., V γ(t) ∈ [V BS(t, St), St], ∀γJ ∈ G

4. If H ∈ HP , then the upper bound is H(0), i.e., V γ(t) ∈
[
V BS(t, St), H(0)

]
,∀γJ ∈

G

Proof. Recall that, under any Qγ ∈ Q, the dynamics of S take the form

dSt

St−
= r dt+ σ dW γ

t +

∫
R
y M̃γ(dt dy).

Since H ∈ HC ∪ HP , V BS is smooth and C1,2. We may then apply Itô’s formula
for semimartingales to the process RV BS. Substituting the dynamics dSt and the
quadratic variation [Sc, Sc]t under the measure Qγ, we obtain:

R(T )V BS(T, ST ) = R(t)V BS(t, St)

+

∫ T

t

∂

∂s
RV BS(s, Ss) ds

+

∫ T

t

∂

∂x
RV BS(s, Ss−)Ss−

(
r ds+ σ dW γ

s +

∫
R
y M̃γ(ds, dy)

)
+

1

2

∫ T

t

∂2

∂x2
RV BS(s, Ss−)S

2
s−σ

2 ds

+

∫ T

t

∫
R
R(s) Λ[V BS](s, y, Ss−)M

γ(ds, dy).

By grouping the terms with respect to the Lebesgue measure ds, applying the operator
L to the integrand, and using the decomposition of the Poisson random measure
Mγ(ds dy) = M̂γ(ds dy) + λ(1 + γJ)FU(dy) ds, we can rewrite the expression above as
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follows:

R(T )V BS(T, ST ) = R(t)V BS(t, St)

+

∫ T

t

L
[
RV BS

]
(s, Ss−) ds

+

∫ T

t

∫
R
R(s) Λ[V BS](s, y, Ss−)λ (1 + γJ(s, y) )FU(dy) ds

+

∫ T

t

∂

∂x
RV BS(s, Ss−)Ss−

(
σ dW γ

s +

∫
R
y M̃γ(ds, dy)

)
+

∫ T

t

∫
R
R(s) Λ[V BS](s, y, Ss−) M̃

γ(ds, dy).

Note that the integrand of the first integral on the right-hand side, L [RV BS], corre-
sponds to the well-known Black–Scholes PDE (that holds for the geometric Brownian
motion in complete markets), and hence vanishes.

Thanks to the boundedness of the Delta and Gamma of the Black–Scholes function,
and to the fact that S has finite second moment, each of the stochastic integrals ap-
pearing on the right-hand side, when taken from time 0 up to any t ≤ T , belongs to
L2(Ω,Ft,Qγ) and therefore defines a Qγ-martingale. It follows that their increments
over the interval [t, T ]—that is, the integrals from t to T that appear on the right-hand
side of the equation above—have zero Qγ-conditional expectation with respect to Ft.

Taking conditional expectations under Qγ, we deduce that:

Eγ
[
R(T )V BS(T, ST ) | Ft

]
= R(t)V BS(t, St)

+ Eγ

[∫ T

t

∫
R
R(s) Λ[V BS](s, y, Ss−)λ (1 + γ(s, y))FU(dy)ds | Ft

]
≡ R(t)V BS(t, St) + ϵγ(t). (4.7)

Finally, note that the left-hand side of equation (4.7), after applying the terminal
condition V BS(T, ST ) = H(ST ), coincides with the definition of R(t)V γ(t) given in the
statement of the theorem.

To prove point (2), it suffices to verify the non-negativity of ϵγ(t) for all t ∈ [0, T ]. By
construction, R(t) is strictly positive, and λ (1+γJ(t, y)) is non-negative P⊗dt-a.s., as
shown in Proposition 3.4. It is therefore enough to show that Λ[V BS] is non-negative.
To do so, we expand V BS via a second-order Taylor expansion in the spatial variable.
Specifically, we obtain:

Λ[V BS](s, y, Ss−) =
1

2
y2S2

s−
∂2

∂x2
V BS(s, Ss−) + o

(
(ySs−)

2
)
.

Since V BS is convex in x, its gamma is non-negative, and therefore so is Λ[V BS].

To prove (3), we use that H(x) ≤ x. Specifically, we have:

R(t)V γ(t) ≡ Eγ [R(T )H(ST ) | Ft] ≤ Eγ [R(T )ST | Ft] = R(t)St,

where the last equality follows from the fact that the discounted price process RS is a
Qγ-martingale. Dividing both sides by R(t), we obtain the upper bound.
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For (4), apply the same argument, now using that H(x) ≤ H(0).

The upper bounds derived in points (3) and (4) are natural and intuitive. For instance,
in the case of a European call option, the cheapest way to superhedge the claim is to
hold one unit of the underlying asset, leading to a cost equal to St. In contrast,
the lower bound given by the Black–Scholes function is less obvious and thus more
interesting. Nonetheless, this bound is still reasonable: in the absence of jumps, our
model reduces to the classical Black–Scholes framework, under which the price process
V γ equals V BS. The presence of jumps introduces additional risk, which must be
compensated by increasing the hedging cost, thereby justifying the positive adjustment
to the Black–Scholes price.

Lemma 4.1. ∀C > 0, Qγ
(
E(y M̃γ)T ≥ C

)
−−−−→
γJ→∞

0.

Proof. By Markov’s inequality, we obtain that Qγ
(
E(y M̃γ)T ≥ C

)
≤ 1

CaEγ
[
E(y M̃γ)aT

]
for a > 0. Thus, it is enough to prove that Eγ[E(y M̃γ)aT ] −→ 0 for some a>0. To this
end, define ya := (1 + y)a − 1, and compute its stochastic exponential E(ya M̃γ):

E(ya M̃γ)T = exp

{∫ T

0

∫
R
a ln(1 + y)Mγ(ds dy)

−
∫ T

0

∫
R
[(1 + y)a − 1± ay] λ(1 + γJ)FU(dy) ds

}

= E(y M̃γ)aT exp

{
−
∫ T

0

∫
R
Z(y)λ(1 + γJ)FU(dy) ds

}
, (4.8)

where Z(y) := (1 + y)a − 1− a y ≤ 0 for 1− a > 0, with equality only at y = 0.

Since the jump size distribution is not concentrated on {0}, and since (1+γJ) > 0 P⊗
dt-a.s., the integral in the exponential on the right-hand side of equation (4.8)—which
equals λ (1 + γJ)E[Z(U1)]T—is strictly negative. Multiplying both sides of equation
equation (4.8) by exp{λ (1 + γJ)E[Z(U1)]T} gives:

E(y M̃γ)aT = E(ya M̃γ)T · exp (λ(1 + γJ)E[Z(U1)]T ) .

Moreover, taking unconditional expectation on both sides yields: Eγ[E(y M̂γ)aT ] = 1 ·
exp{λ(1 + γJ)E[Z(U1)]T}, which tends to 0 when γJ tends to infinity.

The next result confirms that the no-arbitrage prices generated by the family of equiv-
alent martingale measures associated with our shot-noise model are well spread within
the interval between the Black–Scholes price and the superhedging bound. In particu-
lar, we establish that the lower end of this interval is attained as γJ ↘ −1, and that
the upper bound is attained as γJ → ∞.
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Theorem 4.3. Let Qγ ∈ Γ ⊂ Q, and let H ∈ HC ∪HP . Then:

(1) The lower bound for the viable price process V γ is given by the Black–Scholes
price, in the sense that

V γ(t) ↘ V BS(t, St) as γJ ↘ −1.

(2) Moreover, if H ∈ HC, then the upper bound St is attained in the limit as γJ → ∞,
that is,

V γ(t) ↗ St as γJ → ∞.

Proof. Let V BS
x denote the partial derivative of V BS with respect to x. By point (1) in

Theorem 4.2, it is enough to prove that ϵγ(t) ↘ 0 P-a.s. as γJ ↘ −1. To this end, we
exploit the convexity of V BS with respect to x, which is guaranteed by the assumption
H ∈ HC ∪HP . Fix s > 0. By convexity, we have

y x V BS
x (s, x) ≤ V BS(s, (1 + y)x)− V BS(s, x) ≤ y x V BS

x (s, (1 + y)x),

for all x > 0 and y > −1. Subtracting y x V BS
x (s, x) from all sides yields

0 ≤
∣∣Λ[V BS](s, y, x)

∣∣ ≤ x|y|
∣∣V BS

x (s, (1 + y)x)− V BS
x (s, x)

∣∣ .
Since V BS

x is uniformly bounded by some constant C > 0, we get that
∣∣Λ[V BS](s, y, x)

∣∣ ≤
2C x |y|. Applying this bound for Λ[V BS], we obtain:

0 ≤ ϵγ(t) ≤ 2C λ (1 + γJ)Eγ

[∫ T

t

∫
R
R(s)Ss− |y|FU(dy) ds

∣∣∣∣Ft

]
.

Using Fubini’s theorem, and the Qγ-martingale property of RS, it follows that

ϵγ(t) ≤ 2Cλ(1 + γJ)E[|U1|]
∫ T

t

Eγ
[
R(s)Ss−

∣∣Ft

]
ds

= 2Cλ(1 + γJ)E[|U1|]R(t)St− (T − t),

which clearly tends to 0 a.s. as γJ ↘ −1.

Let us now prove point (2). Assume t = 0 without loss of generality. By the Qγ-
martingale property of the discounted price process, its representation as a product of
Doléans-Dade exponentials—that is, S(T ) = R(T )−1E(σW γ)T E(yM̃γ)T—and noting
that H ∈ HC implies H(x) = x− g(x), it follows that

V γ
0 ≡ Eγ [R(T )H(ST )] = Eγ [R(T )ST ]− Eγ [R(T )g(ST )]

= R(0)S0 − Eγ
[
R(T )g

(
R(T )−1E(σW γ)E(y M̃γ)

)]
= S0 −R(T )Eγ

[
G
(
E(y M̃γ)

)]
, (4.8)
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where G(x) = Eγ [g (x ·R(T )−1E(σW γ))] is a continuous and bounded function. By the
dominated convergence theorem, the continuity of G, and Lemma 4.1, we obtain that
Eγ[G(E(y M̃γ))] −−−−→

γJ→∞
Eγ [G(0)] = 0. Therefore, the right-hand side of equation (4.8)

converges to S0 as γJ → ∞.

The intuition behind this result is closely linked to the interpretation of λ(1+γJ) as the
jump intensity under the pricing measure Qγ—that is, the expected number of jumps
per unit of time. As γJ ↘ −1, this intensity vanishes, and under Qγ it is as if there
were no jumps. As a result, the price corresponds to the purely continuous part of the
model, and the price V γ converges to the Black–Scholes function V BS.

As the jump intensity tends to infinity, the continuous diffusion component becomes
negligible. Since the compensated Poisson random measure is a martingale, it jumps
"very fast" around its initial value. As a result, the process S remains essentially flat,
appearing not to deviate from its initial level. The upper bound limit result can also
be established for H ∈ HP .

4.3 Locally Risk-Minimizing Strategies

In contrast to the previous pricing methods, the approach considered in this section
has already been developed for the shot-noise model by Altman et al. [1], based on the
framework of Föllmer and Schweizer [20], whose exposition we follow in presenting the
method.

Working in discrete time, the aim is to construct a strategy that minimizes the local
(period-by-period) squared hedging error within the class of L2-admissible strategies.
This leads to a recursive scheme based on conditional regressions. The corresponding
value process defines a linear pricing rule under the minimal martingale measure.

In the section on Arbitrage-Free Pricing Rules, we introduced simple predictable pro-
cesses and their stochastic integrals in equations (3.3) and (3.2), following the con-
vention in [9], which is arguably more intuitive from a financial perspective. However,
from now on, we follow the convention in [20], according to which a (simple) predictable
process (ϕS

t )t=0,...,T is defined so that ϕS
t is Ft−1-measurable and denotes the number of

risky assets held during the interval (t− 1, t].

Accordingly, we define a general trading strategy as a pair ϕ := (ϕB, ϕS), where ϕB

is adapted and ϕS is predictable. The discounted gain process is then given by the
stochastic integral

Ĝ(ϕ)t :=

∫ t

0

ϕS
u dŜu =

t∑
k=1

ϕS
k (Ŝk − Ŝk−1).
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The (discounted) value of the portfolio, Π̂t(ϕ), still follows the same definition as be-
fore, namely Π̂t(ϕ) := ϕB

t + ϕS
t Ŝt. Up to this point, we have considered self-financing

strategies, for which the cost process—defined as the difference between the portfolio
value and the gains process—is almost surely zero, which implied Π̂t(ϕ) = Ĝt(ϕ) P-a.s.
However, in the present approach, we do not impose this self-financing condition, so
the portfolio value satisfies Π̂t(ϕ) = Ĝt(ϕ)+ Ĉt(ϕ), where Ct(ϕ) denotes the cumulative
cost process.

The framework of Föllmer and Schied requires that H ∈ L2(P) and Ŝt ∈ L2(Ω,Ft,P)
for all t, conditions which are satisfied in our setting, as discussed in previous sections.
Since no longer restricted to self-financing strategies, it is defined the set of admissible
generalized strategies over which we will search for one that locally minimizes the
squared hedging error. This set is referred to as the class of L2-admissible strategies.

Definition 4.2. A generalized strategy (ϕB, ϕS) is said to be L2-admissible if, given
H ∈ H, it satisfies Π̂T (ϕ) = Ĥ P-a.s., with Π̂t(ϕ), Ĝt(ϕ) ∈ L2(Ω,Ft,P) for all t.

That is, we consider strategies that replicate the claim H at maturity and whose
discounted value and gains processes have finite conditional variance.

We define the local risk of a generalized strategy (ϕB, ϕS) at time t as the conditional
mean squared increment of the discounted cost process:

Rloc
t (ϕB, ϕS) := EP

[(
Ĉt+1(ϕ)− Ĉt(ϕ)

)2 ∣∣Ft

]
= EP

[(
Π̂t+1(ϕ)− Π̂t(ϕ)− ϕS

t+1

(
Ŝt+1 − Ŝt

))2 ∣∣Ft

]
. (4.9)

The increment of the cost process represents the amount of capital that needs to be
added to the portfolio in order to compensate for the part of the change in its value
that is not covered by the gains from trading during that period. When the discounted
cost process is a P-martingale, the local risk corresponds to the conditional variance of
these capital injections.

The aim is to identify the unique strategy within the class of L2-admissible strategies
that minimizes the local risk at each time step. This leads to the following definition.

Definition 4.3. An L2-admissible strategy (ϕB∗, ϕS∗) is called a locally risk-minimizing
strategy if for all t = 0, 1, . . . , T − 1 and for every L2-admissible strategy (ϕB, ϕS) such
that

Π̂t+1(ϕ) = Π̂t+1(ϕ
∗) ≡ ϕB∗

t+1 + ϕS∗
t+1Ŝt+1,

it holds that
Rloc

t (ϕB∗, ϕS∗) ≤ Rloc
t (ϕB, ϕS), P-a.s.

The condition Π̂t+1(ϕ) = Π̂t+1(ϕ
∗) might initially seem artificial, but we will now see

that it is essential for identifying the locally risk-minimizing strategy via backward
induction.
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For t+1=T, it requires that the strategies considered finally hedge the claim H, although
at some cost. And given backward induction, it requires that given the optimal strategy
to hedge H has been set from t+1 onwards and the value of the porfolio is determined,
the portofolios considered also hedge this value. Therefore, it is just an application of
Bellman’s optimality principle.

Specifically, at time t = T − 1, the local risk takes the following form:

Rloc
T−1(ϕ

B, ϕS) = EP
[(

Π̂T (ϕ)− Π̂T−1(ϕ)− ϕS
T

(
ŜT − ŜT−1

))2 ∣∣FT−1

]
.

Due to the L2-admissibility condition, we must minimize this quantity among strategies
(ϕB, ϕS) satisfying Π̂T (ϕ) = Ĥ ≡ ϕB

T +ϕ
S
T ŜT . It is easy to see that minimizing the local

risk is equivalent to minimizing the mean squared error in a simple linear regression
of Π̂T (ϕ) on the regressor ŜT − ŜT−1, with Π̂T−1(ϕ) as intercept and ϕS

T as slope. The
solution to this problem is well-known: the ordinary least squares (OLS) estimators
provide the values of ϕS∗

T and Π̂T−1(ϕ
∗). The component ϕB∗

T is then determined from
the L2-admissibility condition Ĥ = Π̂T (ϕ

∗).

In the next step, since Π̂T−1(ϕ
∗) is now known, we minimize Rloc

T−2 among all L2-
admissible strategies satisfying Π̂T−1(ϕ

∗) = ϕB
T−1 + ϕS

T−1ŜT−1, proceeding analogously.

Following this approach, we can obtain the strategy that minimizes the local risk at
each time step. Denote ∆Xk := Xk − Xk−1. The locally risk-minimizing strategy is
thus constructed recursively, and the expressions for the optimal estimators (given by
the ordinary least squares solution) take the explicit form:

Π̂T (ϕ
∗) := Ĥ,

ϕS∗
t+1 :=

cov
(
∆Π̂t+1(ϕ

∗), ∆Ŝt+1

∣∣Ft

)
V (∆Ŝt+1

∣∣Ft)
, ϕB∗

t+1 := Π̂t+1(ϕ
∗)− ϕS∗

t+1Ŝt+1, (4.10)

Π̂t(ϕ
∗) := EP

[
Π̂t+1(ϕ

∗)
∣∣Ft

]
− ϕS∗

t+1 · EP
[
∆Ŝt+1

∣∣Ft

]
.

Remark 4.2. Note that in equation (4.10), subtracting Π̂t(ϕ
∗), which is an Ft-measurable

random variable, does not affect the conditional covariance.

Remark 4.3. The strategy defined in equation (4.10) is not always guaranteed to be
an L2-admissible strategy and, therefore, a locally risk-minimizing strategy. For this
to hold, combining Proposition 10.10 and Remark 10.12 in [20], it is sufficient that the
increments ∆Ŝt+1 are not Ft-measurable, which is indeed the case in our model for S.

By Theorem 10.9 in [20], the strategy described in (4.10) is mean self-financing, mean-
ing that its cost process is a P-martingale, i.e., it satisfies EP[Ĉt+1(ϕ

∗)−Ĉt(ϕ
∗) | Ft] = 0,

P-a.s. for all t. This implies that the strategy indeed minimizes the conditional variance
of capital contributions. Moreover, the theorem also ensures that the cost process and
the discounted price process are strongly orthogonal, that is, the conditional covariance
of their increments is null P-a.s.

29



4.3.1 Minimun Martingale Measure

An equivalent martingale measure QMM ∈ Q is called a minimal martingale measure
if its Radon–Nikodym derivative LMM is square-integrable with respect to P, and for
every square-integrable P-martingale M that is strongly orthogonal to Ŝ, the process
M is also a QMM-martingale.

Given a minimal martingale measure QMM, there exists a unique locally risk-minimizing
strategy ϕ∗ := (ϕB∗, ϕS∗) such that its discounted value process satisfies

Π̂t(ϕ
∗) = EMM[Ĥ | Ft], for all t = 0, . . . , T. (4.11)

Therefore, the value of this locally risk-minimizing strategy can be interpreted as the
linear pricing rule associated with the minimal martingale measure.

Consider the Doob decomposition of the arithmetic return of the price process, which
we denote by r. That is, we write

rt = ∆Mt + µt,

where (Mt) is a P-martingale and µt := E[rt | Ft−1] is the conditional expectation of
the return.

As shown by Dothan in [14], the density of the minimal martingale measure (in discrete
time) can be computed as:

LT =
T∏
t=1

[
1− µt ∆Mt

EP(∆2Mt | Ft−1)

]
.

The explicit values of the decomposition, and hence of the density, for the shot noise
process can be found in [1].

Taking into account the Doob decomposition and the representation result in (4.11),
the locally risk-minimizing strategy given in (4.10) can be rewritten as:

ϕt =
EP

[
∆Ŝt ·∆EMM[Ĥ | Ft]

∣∣Ft−1

]
EP[(∆Ŝt)2 | Ft−1]

.

4.4 Minimum Entropy Measure

In the case of the minimal martingale measure, we obtained a linear pricing rule derived
from a hedging strategy. In contrast, here we introduce a measure that does not
originate from any explicit hedging strategy, but rather from minimizing a notion of
distance—specifically, the relative entropy—with respect to the historical probability
measure P.

The main references for this section are [22], [9], and [24].
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Definition 4.4. Let Q be a probability measure on (Ω,F ,F). The relative entropy of
Q with respect to P is defined as

H(Q | P) =

{
EP

[
dQ
dP ln

(
dQ
dP

)]
, if Q ≪ P,

+∞, otherwise.

Relative entropy, or Kullback–Leibler divergence, is often used as a measure of prox-
imity between two equivalent probability measures. In our setting, given a specific
stochastic model for the asset price process (St)t∈[0,T ], we define the Minimal Entropy
Measure (MEM) as the element QME ∈ Q that minimizes the relative entropy with
respect to P, that is:

H(QME | P) = inf
Q∈Q

H(Q | P) = inf
Q∈Q

EP
[
dQ
dP

ln

(
dQ
dP

)]
. (4.12)

The minimal entropy measure has a natural interpretation from the perspective of
information theory: it is the martingale measure that introduces the least amount
of information relative to the historical model, while still ensuring the no-arbitrage
condition is satisfied. Therefore, QME is the martingale measure closest to the natural
probability measure P.

More generally, there exists a broad literature on the selection of equivalent martingale
measures via the minimization of functionals of the form

EP[f
(
dQ
dP

)
],

where f : (0,∞) → R is a strictly convex function8. The MEM corresponds to the
case f(x) = x lnx. Other choices, such as f(x) = x2, lead to different criteria, like
minimizing the L2-norm of the density.

Although these optimal measures provide arbitrage-free linear pricing rules, they are
not generally associated with any hedging strategy and thus lack a clear financial
interpretation. This contrasts with the minimal martingale measure, which does arise
from a well-defined hedging approach.

However, we focus on the minimal entropy measure due to its close connection with
exponential utility. As shown in the next section, the price derived from the MEM
coincides with the limit case of utility indifference pricing arising when risk aversion is
vanishing and preferences are exponential. In this context, the density of the MEM is
proportional to the marginal utility of terminal wealth [see [22]].

The structure of the MEM density, the conditions for its existence, and the distribution
of the underlying asset have been explicitly derived in the case of Lévy processes (see,
e.g., [23]). Unfortunately, extending these results to a general semimartingale frame-
work proves to be considerably more challenging from both analytical and numerical
perspectives.

8 Strict convexity ensures the existence and uniqueness of the optimal measure under suitable
integrability conditions.
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To overcome this difficulty, we restrict ourselves to the subset Γ ⊂ Q—previously intro-
duced as the class of equivalent martingale measures with constant jump risk premium
γJ . Within this family, we numerically solve the entropy minimization problem stated
in equation (4.12) by optimizing over the parameter γJ , and construct the correspond-
ing MEM density accordingly.

More precisely, in this setting, the minimal entropy measure QME is the element in Γ
whose Radon–Nikodym density is given by Proposition 3.4, corresponding to the choice
γJ ≡ γME

J , defined as

γME
J = argmin

γJ∈(−1,∞)

{
1

M

M∑
m=1

Lγ
m ln (Lγ

m)

}
,

where Lγ
m denotes the Radon–Nikodym density at time T , evaluated along the mth

simulated path under P, and M is the total number of simulated trajectories.

4.5 Rational Pricing with Exponential Utility-Based Prefer-
ences

This section is divided into two parts. In the first, we introduce the concept of in-
difference pricing, as originally proposed by [27]. In the second, we present a robust
dual representation, following [12] and [3], which transforms the pricing problem into
a selection of an equivalent martingale problem.

Unlike the superhedging approach, which treats all scenarios in Ω with positive prob-
ability equally, here we assign different weights to each outcome depending on the
losses incurred, and aim to minimize the weighted average loss. This idea is formal-
ized through the notion of expected utility. In our case, we use a utility function of
the CARA type9, specifically U(x) = − exp(−αx), where α > 0. The parameter α
represents the risk aversion coefficient and increases with the agent’s degree of risk
aversion.

4.5.1 Indifference Pricing

The indifference price, introduced by [27], is based on the economic notion of the
certainty equivalent. For an agent with initial wealth x, that is the fixed amount of
cash whose utility equals the expected utility of receiving a random payoff H.

However, in our context, the agent can invest dynamically in self-financing strategies
involving the underlying asset. As a result, a fixed initial amount does not yield a
deterministic utility, since the agent will not simply hold it, but will invest it in a
self-financing portfolio (ϕB, ϕS), ϕS ∈ Φ, with initial value x, receiving at maturity a

9 CARA stands for Constant Absolute Risk Aversion
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discounted terminal wealth given by Π̂T (ϕ) = x+
∫ T

0
ϕS dŜ. The agent will then choose

the strategy that maximizes the expected utility of their final wealth.

u(x ;α) := sup
ϕS∈Φ

EP
[
− exp

(
−α

(
x+

∫ T

0

ϕS dŜ

))]
(4.13)

If the agent now purchases a derivative with payoff H at price π, their resulting utility
is

u(x− π + Ĥ;α) := sup
ϕS∈Φ

EP
[
− exp

(
−α

(
x− π +

∫ T

0

ϕS dŜ + Ĥ

))]
(4.14)

Whenever there exists a unique solution πb(H) ≡ πb(H;α) to the equation

u(x;α) = u(x− πb(H) + Ĥ;α), (4.15)

we refer to this value πb(H) as the utility indifference price (more precisely, the buying
price) for the contingent claim H. This quantity is precisely what makes the agent
indifferent between holding the contingent claim with a random payoff and not holding
it. If, instead, the agent sells the claim, the same reasoning leads to the definition of
the indifference selling price π(H), characterized as the solution to the equation

u(x;α) = u(x+ π(H)− Ĥ;α).

In particular, we adopt the exponential utility function because, since x is F0-measurable,
this term cancels out from both sides of equation (4.15), and thus the resulting price
does not depend on it.

However, computing this price requires an explicit characterization of the set Φ, which
is which is by no means a trivial task. For this reason, we will restrict our analysis to
the indifference price associated with specific strategies seen in the previous sections.
Moreover, this difficulty motivates the robust dual representation with respect to Φ
proposed in [12], which we present below.

4.5.2 Entropic Penalty Pricing

First, note that our price process is locally bounded—because the geometric Brownian
motion has continuous paths, and in the jump component Jt the number of jumps Nt is
almost surely finite for each t > 0, while the jump sizes themselves are bounded almost
surely.

Next, let QL
e denote the family of equivalent measures under which the discounted

price process is a local martingale, and let Qf denote the family of absolutely contin-
uous measures with finite relative entropy under which the discounted price is a local
martingale as well. In previous sections we showed that there are measures on Q with
finite entropy; hence QL

e ∩Qf ̸= ∅.

33



If we impose the additional condition on the claim H:

E
[
e(α+ε)H

]
<∞ and E

[
e−εH

]
<∞ for some ε > 0,

then all the hypotheses needed to apply the robust duality result of [12] are satisfied,
and the result takes the form

sup
ϕS∈Φ

E
[
− exp

(
−α

(∫ T

0

ϕS
t dŜt − Ĥ

))]
= − exp

(
sup
Q∈Qf

{
EQ[αĤ]−H(Q | P)

})
.

Applying the dual representation to the definition of the indifference price, we obtain
(see (4.6) in [12]):

π(H;α) = sup
Q∈Qf

{
EQ[Ĥ]− 1

α

(
H(Q | P)−H(QME | P)

)}
. (4.16)

This price admits a natural interpretation: it corresponds to selecting the measure
that maximizes the expected value of the claim, while penalizing deviations from the
measure P via an entropy-based correction term. This formulation also leads to a
well-known result connecting the indifference price to the superhedging price and the
minimal entropy price (see [3], [12], [9]).

Specifically, as the risk aversion parameter α tends to infinity, the correction term
vanishes, and the optimization problem in equation (4.16) reduces to the superhedging
problem described in equation (4.6). Consequently, the indifference price converges to
the superhedging price.

On the other hand, as α → 0, the influence of the expected payoff in the objective
function becomes negligible, and the optimization favors the choice of the measure
closest to P in the sense of relative entropy. That is, the optimizer converges to the
minimal entropy martingale measure QME. In this sense, the minimal entropy price
can be viewed as the price resulting from a risk-neutral agent with exponential utility
preferences.

While the theoretical results above are insightful due to their connection with alterna-
tive pricing approaches, they are of limited practical use in full generality. In practice,
we only have explicit access to the set Q, and not to the entire class of local martingale
measures with finite entropy. As a result, we can only compute a lower bound for the
indifference price.
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5 Numerical Experiments and Simulations

This section is divided into two parts. In the first part, we focus on the case where
the risky asset price is Markovian. Relying on the result established in Remark 4.1, we
compute the price of a European call option with strike K = 20, as well as its spatial
derivatives—delta and gamma—for different values of the jump risk premium γJ , by
numerically solving a PDE. In the second part, the analysis turns to the non-Markovian
setting. A single sample path of the asset price is considered, and the option price
for this path is computed for various values of γJ using Monte Carlo methods, with
comparisons to the closed-form Black–Scholes solution. Indifference prices based on
exponential utility preferences are also computed under different hedging strategies.

Throughout this section, the parameter configuration proposed by Altmann et al. [1]
is adopted, with a slight modification to the jump-size distribution. Specifically, the
jump sizes are initially assumed to be i.i.d. and uniformly distributed on the interval
[−0.25,−0.05], although this distribution will be modified later in the section.

Numerically, we find that the minimal entropy martingale measure is the EMM given
by the Radon–Nikodym density obtained when the jump risk premium is zero, i.e.,
γJ ≡ 0. Therefore, the Merton measure and the minimal entropy measure are the
same.

In the Markovian setting, Figure 1 displays the numerical solution of the pricing PDE
for three option structures: a European call option with strike price K = 20, a bull
spread with lower and upper strikes K1 = 15 and K2 = 20, and a straddle centered at
K = 20.

As predicted by the theoretical results, we observe that the option price increases with
the jump risk premium γJ , and that the Black–Scholes price (obtained for γJ → −1)
serves as a lower bound. Some numerical instabilities, however, arise in the straddle
case to the left of the strike.

European Call Option Bull Spread Straddle

Figure 1: Prices for a European call option (left), bull spread (center), and straddle (right), computed at time t = 0 for
different values of the jump risk premium γJ .

Moreover, we compute the delta and gamma of the call option using the PDE approach.
As shown in Figure 2, the delta increases with the jump risk premium γJ . To under-
stand this behavior, consider the limiting case γJ → ∞: in this limit, as established in
Theorem 4.3, the option price converges to St, whose spatial derivative is identically
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one for all S > 0.10 As for the gamma, we observe that the entire curve shifts to the
left as γJ increases. This is consistent with the fact that a higher jump risk premium
causes the delta to reach the value one more rapidly, and thus the gamma—being the
spatial derivative of the delta—drops to zero sooner.

Figure 2: Call-option delta (left) and gamma (right) at t = 0 for different values of the jump risk premium γJ .

We now turn to the non-Markovian setting. The shot-noise model is capable of generat-
ing arbitrarily heavy tails and pronounced skewness in the distribution of the log-price
under Qγ. In particular, Figure 3 displays the log-return density under Qγ for two rep-
resentative values of the jump risk premium: γJ → −1, and γJ → ∞, using the same
jump-size distribution as in the previous experiments. As γJ increases, the left tail of
the distribution becomes significantly heavier, illustrating how the jump risk premium
affects both the kurtosis and the skewness of returns under the pricing measure.

Figure 3: Density of the shot-noise model log-returns under Qγ for γJ → −1 (left) and γJ → ∞ (right).

Since the theoretical framework developed in this work allows for jump sizes that are
unbounded almost surely, we now consider a distribution consistent with this feature.
Specifically, we assume that the jump sizes are i.i.d. and follow a lognormal distribution
shifted one unit to the left, that is,

1 + Ui ∼ logN
(
µU , σ

2
U

)
,

where we set µU ≡ −σ2
U

2
to ensure that E[U1] = 0. With this specification, the jump

sizes lie in the interval (−1,∞), P-almost surely.

10 In the plots, the case γJ → ∞ is approximated by a large but finite value of γJ that avoids
numerical instabilities. As a result, some deviations from the exact theoretical limit are observed.
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Figure 4 illustrates one simulated trajectory of the shot-noise process (left), together
with the corresponding jump component (right). It is worth noting that, unlike a
Poisson process, the effect of each jump gradually fades over time due to the decay
function d, instead of remaining flat.

Figure 4: Sample path of the shot-noise price process under the natural probability measure (left), and its corresponding
jump component (right).

Figure 5 shows the price of a European call option with strike K = 20 for the trajectory
displayed above, computed via Monte Carlo simulation under Qγ for various values of
the jump risk premium γJ . Following the first jump, the underlying price recovers
rapidly—partly due to the effect of the decay function d—whereas the option price
remains nearly flat for a longer period. This contrast clearly illustrates the result
stated in Remark 3.3: for fixed γJ , the underlying price process under Qγ does not
depend on the decay function d, and hence, the option price—computed through an
expectation under Qγ—does not depend on it either.

The right-hand panel of Figure 5 shows the difference between the option price com-
puted under Qγ for various values of the jump risk premium γJ , and the closed-form
Black–Scholes price. Consistent with the theoretical results, the Black–Scholes value is
obtained in the limit as γJ → −1, and as γJ increases, the option price rises, making
the difference positive and increasingly larger. All price curves eventually coincide at
maturity, as expected from the fact that arbitrage-free pricing rules must match the
payoff of the contingent claim at the terminal date.

Figure 5: Left: evolution of the European call price along the sample path in Figure 4, computed for different values of
the jump risk premium γJ . Right: difference between these prices and the Black–Scholes closed-form solution.
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Finally, Table 1 reports the buyer and seller indifference prices at time t = 0 for the same
call option, computed under various hedging strategies, since explicitly characterizing
the full admissible set Φ and taking the supremum was not practically attainable, as
previously discussed. The risk aversion parameter α is fixed at 6.5% throughout the
computations.

Specifically, we consider two types of strategies. The first consists of self-financing
portfolios that hedge only the variation in the option price caused by the continuous
part of the underlying’s diffusion, using sensitivities computed under different values
of the jump risk premium. That is, we evaluate the indifference price associated with
the strategy

ϕS,γ =
∂V γ

∂x
,

for γJ = 0, γJ = 1, and for the limiting cases γJ → −1 and γJ → ∞.

Secondly, we consider the locally risk-minimizing strategy associated with the minimal
martingale measure (MMM), as discussed in Section 4.3. In this setting, to ensure that
the Radon–Nikodym density of the MMM remains non-negative and does not lead to
arbitrage opportunities, the jump sizes must be restricted to have a constant sign (see
Proposition 3.5 in [1]). For this reason, we return to the case in which jump sizes follow
a uniform distribution, as assumed at the beginning of this section.

Strategy Buying Price Selling Price Mean Hedging Error
γJ → −1 4.05 7.06 1.32
γJ = 0 4.02 7.02 0.83
γJ = 1 3.99 6.98 0.33
γJ → ∞ 3.85 6.77 -3.02
MMM 4.52 6.95 0.00

Table 1: Buying and selling indifference prices and mean hedging error under different hedging strategies.

We observe that, as the jump risk premium γJ increases, the indifference prices decrease.
The intuition behind this result appears to be that a higher value of γJ implies that
the chosen strategy hedges a greater portion of the option’s risk. Consequently, the
indifference price for a risk-averse agent is lower, as the associated strategy carries less
risk. A similar effect seems to occur in the case of the minimal martingale measure,
since the corresponding strategy replicates the option’s terminal payoff almost surely.

It is also worth highlighting the mean hedging error at maturity, which, as previously
defined, is given by H(ST )− Πγ

T . In particular, we observe that as the jump risk pre-
mium increases, the error decreases in magnitude, yet remains positive—indicating that
the strategy is underhedging. In the limiting case γJ → ∞, the error becomes nega-
tive, meaning that the strategy is super-hedging the claim. For the minimal martingale
measure, the hedging error is identically zero by construction.
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6 Conclusion

This master’s thesis has studied contingent claim valuation and hedging in incomplete
markets driven by shot-noise jump-diffusion processes. These models capture more
realistically the dynamics of financial asset prices, where announcements or unexpected
events may induce abrupt jumps whose effects gradually vanish over time, instead of
having a permanent impact. A key feature of this framework is that it does not yield a
unique equivalent martingale measure (EMM). As a result, the market is incomplete: in
general, contingent claims cannot be perfectly replicated using self-financing strategies
composed solely of cash and the underlying asset, and arbitrage-free prices are no longer
unique.

Within this setting, we have characterized the full set of equivalent martingale measures
and developed several arbitrage-free pricing rules associated with particular choices
within this family—most notably by assuming a constant jump risk premium.

In particular, we have derived an explicit expression for the Radon–Nikodym density
defining Merton’s measure, corresponding to the case where the jump risk premium
vanishes, and we have found numerically that this measure coincides with the minimal
entropy martingale measure. Furthermore, we have shown that the indifference price
based on exponential utility preferences converges to this value in the limit as the
agent’s risk aversion tends to zero.

Additionally, we have established non-trivial bounds for European-style contingent
claims, with the Black–Scholes price emerging as the lower bound. We have also
computed indifference prices under exponential utility preferences for fixed hedging
strategies. Furthermore, we have shown that when the jump risk premium is constant,
the resulting price under the corresponding EMM loses the vanishing effect, as it no
longer depends on the decay function.

A possible extension of this work would be to explicitly characterize the sets of ab-
solutely continuous measures and equivalent measures under which the price process
is a local martingale. Such a characterization would allow for the application of the
robust duality approach in [12], enabling the computation of true utility indifference
prices—rather than lower bounds or approximations based on fixed strategies, as done
in this thesis.
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