## SRJ SCHEME
Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the below specified tolerances. The in the reduction of the residual increases with the number levels employed in the algorithm. Applying original methodology to compute the algorithm parameters with more 5 levels notably hinders obtaining SRJ schemes, as the mixed (non-linear) algebraic-differential from which they result become stiff. Here we present a new methodology for obtaining the of SRJ schemes that overcomes the limitations of the original algorithm and provide parameters for SRJ with up to 15 levels and resolutions of up to 2 |