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ABSTRACT
The main features of a three-dimensional, high-resolution special relativistic hydro code based on rela-

tivistic Riemann solvers are described. The capabilities and performance of the code are discussed. In
particular, we present the results of extensive test calculations that demonstrate that the code can accu-
rately and efficiently handle strong shocks in three spatial dimensions. Results of the performance of the
code on single and multiprocessor machines are given. Simulations (in double precision) with ¹7 ] 106
computational cells require less than 1 Gbyte of RAM memory and B7 ] 10~5 CPU s per zone and
time step (on a SCI CrayÈOrigin 2000 with a R10000 processor). Currently, a version of the numerical
code is under development, which is suited for massively parallel computers with distributed memory
architecture (such as, e.g., Cray T3E).
Subject headings : galaxies : jets È hydrodynamics È methods : numerical È relativity

1. INTRODUCTION

Numerical relativistic hydrodynamics (RHD) has experi-
enced an important step forward in recent years when
modern high-resolution shock-capturing (HRSC) tech-
niques began to be applied to solve the equations of RHD.
These methods are based on the solution of local Riemann
problems and take advantage of the hyperbolic character of
the equations of RHD written in conservation form. Using
modern HRSC techniques seems to be the right strategy of
overcoming numerical difficulties raising in the multidimen-
sional and ultrarelativistic regime (see, e.g., Donat et al.
1998), allowing one to simulate challenging relativistic
astrophysical phenomena such as, e.g., relativistic jets or
gamma-ray bursts (GRB hereafter).

In astrophysical jets, Ñow velocities as large as 99.5% of
the speed of light (Lorentz factors [ 10) are requiredÈ
according to the currently accepted standard modelÈto
explain the apparent superluminal motion observed at
parsec scales in many jets of extragalactic radio sources
associated with active galactic nuclei. Similar arguments
applied to the galactic superluminal sources GRS
1915]105 (Mirabel & Rodriguez 1994) and GRO
J1655[40 (Tingay et al. 1995) allow one to infer intrinsic
velocities of B0.9c in the jets of these sources. Further inde-
pendent indication of highly relativistic speeds can be
inferred from the intraday variability occurring in more
than a quarter of all compact extragalactic radio sources
(Kirchbaum, Quirrenbach, & Witzel 1992). If the observed
intraday radio variability is intrinsic and results from inco-
herent synchrotron radiation (according to Begelman, Rees,
& Sikora 1994), the associated jets must have bulk Lorentz
factors in the range D30È100.

With exception of the remarkable work of van Putten
(1993, 1996), who used pseudo-spectral techniques to solve
the equations of relativistic magnetohydrodynamics,
numerical simulations of relativistic jets started soon after
the Ðrst multidimensional relativistic HRSC codes had been

developed & 1994 ; Duncan &(Mart•! , Mu" ller, Iba! n8 ez
Hughes 1994 ; et al. 1995). Since then, many di†erentMart•!
aspects of relativistic jets have been investigated (see, e.g.,

1997 for a recent review). The morphology, dynamics,Mart•!
and propagation properties of relativistic jets have been
analyzed in et al. (1997). Komissarov & Falle (1997)Mart•!
investigated the long-term evolution of relativistic jets. First
simulations of superluminal sources combining relativistic
hydrodynamics and synchrotron radiation transfer at
parsec scales have been performed by et al. (1995,Go! mez
1997) and by Mioduszewski, Hughes, & Duncan (1997) and
Komissarov & Falle (1997). From their simulations, these
authors inferred that the observations of such sources can
be explained in terms of travelling perturbations in steady
relativistic jets.

In the last 2 yr, further progress was achieved by simulat-
ing relativistic jets in three spatial dimensions and by
incorporating magnetic Ðelds (Koide, Nishikawa, & Mutel
1996 ; Nishikawa et al. 1998 ; Koide 1997). However, instead
of using Ñuxes obtained by solving Riemann problems at
zone interfaces, the code of Koide and collaborators relies
on the addition of nonlinear dissipation terms to their Lax-
Wendro† scheme to stabilize the code across discontin-
uities. This stabilization method was originally proposed by
Davis (1984), who applied it successfully to the equations of
classical hydrodynamics. The method is robust and simple
as no detailed characteristic information is needed. Koide
and collaborators did simulate the evolution of the jet for
only a very brief period of time. This fact and the coarse grid
zoning used in their simulations, however, prevented them
from studying genuine three-dimensional e†ects in rela-
tivistic jets in any detail. On the other hand, the relative
smallness of the beam Ñow Lorentz factor (4.56 ; beam
speed B 0.98) assumed in their simulations does not allow
for a comparison with Riemann-solverÈbased HRSC
methods in the ultrarelativistic limit.

An astrophysical phenomenon that also involves Ñows
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with velocities very close to the speed of light is the gamma-
ray burst (GRB). Although known observationally for over
30 yr, their nature and their distance (““ local ÏÏ or
““ cosmological ÏÏ) is still a matter of controversial debate
(Fishman & Meegan 1995 ; 1995 ; Piran 1997). InMe! za! ros
order to explain the energies released in a GRB, various
catastrophic collapse events have been proposed including
neutron star/neutron star mergers 1986 ;(Pacyn! ski
Goodman 1986 ; Eichler et al. 1989), neutron star/black hole
mergers (Mochkovitch et al. 1993), collapsars (Woosley
1993), and hypernovae 1998). These models all(Pacyn! ski
rely on a common engine, namely a stellar mass black hole
which accretes several solar masses of matter from a disk
(formed during a merger or by a nonspherical collapse) at a
rate of D1 s~1 (Popham, Woosley, & Fryer 1998). AM

_fraction of the gravitational binding energy released by acc-
retion is converted into neutrino and antineutrino pairs,
which in turn annihilate into electron-positron pairs. This
creates a pair Ðreball, which will also include baryons
present in the environment surrounding the black hole.
Provided the baryon load of the Ðreball is not too large, the
baryons are accelerated together with the e`e~ pairs to
ultrarelativistic speeds with Lorentz factors [ 102 (Cavallo
& Rees 1978 ; Piran, Shemi, & Narayan 1993). The bulk
kinetic energy of the Ðreball then is thought to be converted
into gamma rays via cyclotron radiation and/or inverse
Compton processes (see, e.g., 1995).Me! sza! ros

In the following we describe the main features of a special
relativistic three-dimensional hydrodynamic code, which is
based on explicit HRSC methods and which is a consider-
ably extended version of the special relativistic two-
dimensional hydrodynamic code developed by et al.Mart•!
(1994) and by et al. (1995). The code has beenMart•!
designed modularly, which allows one to use di†erent
reconstruction algorithms and Riemann solvers.

As it is the Ðnal goal of our work to simulate relativistic
jets and GRBs in three spatial dimensions, the code has
successfully been subjected to an intensive testing in the
ultrarelativistic regime (see ° 4). In particular, GENESIS
has successfully passed the spherical shock reÑection test
(simulated in three-dimensional Cartesian coordinates)
involving Ñow Lorentz factors larger than 700 (see ° 4.3).

The paper is organized as follows. In ° 2, we introduce the
three-dimensional equations of RHD in Cartesian coordi-
nates in di†erential and discretized forms. The latter have
been implemented into our three-dimensional RHD code
GENESIS. Detailed information about the structure and
the main features of the code is given in ° 3. Several one-,
two-, and three-dimensional relativistic test problems com-
puted with GENESIS are described in ° 4. The performance
of GENESIS on scalar and multiprocessor computers is
analyzed in ° 5, and a realistic simulation of a three-
dimensional relativistic astrophysical jet is presented in ° 6.
A summary of the paper containing our main conclusions
and a discussion of present and future applications of the
code in di†erent astrophysical areas can be found in ° 7. In
Appendix A, we give the spectral decomposition of the three
dimensional system of RHD equations with explicit expres-
sions for the eigenvalues and the right- and left-
eigenvectors. Appendix B contains the explicit formulae for
the numerical viscosity for MarquinaÏs (Donat & Marquina
1996) Riemann solver, and Appendix C describes the
explicit algorithm to recover the primitive variables form
the conserved ones.

2. EQUATIONS OF RHD IN CONSERVATION FORM

The evolution of a relativistic perfect Ñuid is described by
Ðve conserved quantities : rest-mass density, D, momentum
density, S, and energy density, q (all of them measured in the
laboratory frame and in natural units, i.e., the speed of light
c \ 1) :

D \ oW (1)

Sj \ ohW 2vj ( j \ 1, 2, 3) (2)

q \ ohW 2 [ p [ oW , (3)

where the Lorentz factor W \ (1 [ v2)~1@2 and v2 \ d
ij

vivj
(the Einstein summation convention is used here, and isd

ijthe Kronecker symbol). Furthermore, o is the rest-mass
density, p is the pressure, and h is the speciÐc enthalpy given
by h \ 1 ] e ] p/o with e being the speciÐc internal energy.
The components of the vector of variables w 4 (o, vi, e)T are
called primitive or physical variables.

The relativistic Euler equations form a system of conser-
vation laws (see, e.g., Font et al. 1994), which can be written
in Cartesian coordinates as

LD
Lt

] ;
j/1

3 L
Lxj

(Dvj) \ 0 (4)

LSi

Lt
] ;

j/1

3 L
Lxj

(Sivj ] dijp) \ 0 (i \ 1, 2, 3) (5)

Lq
Lt

] ;
j/1

3 L
Lxj

(Sj [ Dvj) \ 0 (6)

or, equivalently, as

LU
Lt

] ;
j/1

3 LFj

Lxj
\ 0 , (7)

where the vector of unknowns U (i.e., the conserved
variables) is given by

U \ (D, S1, S2, S3, q)T , (8)

and the Ñuxes are deÐned by

Fi \ (Dvi, S1vi ] pd1i, S2vi ] pd2i, S3vi ] pd3i, Si [ Dvi)T .

(9)

The system (eq. [7]) of partial di†erential equations is
closed with an equation of state p \ p(o, e). Anile (1989) has
shown that system (eq. [7]) is hyperbolic for causal equa-
tions of state, i.e., for those where the local sound speed, c

s
,

deÐned by

hc
s
2 \ Lp

Lo ]A p
o2
B Lp

Lv , (10)

satisÐes c
s
\ 1.

The structure of the characteristic Ðelds corresponding to
the nonlinear system of conservation laws (eq. [7]) has
explicitly been derived in Donat et al. (1998) and is sum-
marized in Appendix A.

In order to evolve system (7) numerically, one has to
discretize the state vector U within computational cells. The
temporal evolution of the state vector is determined by the
Ñux balance across the zone interfaces of each cell and the
contribution of source terms. Using a method of lines (see,
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e.g., LeVeque 1991), our discretization reads

dU
i,j,k

dt
\ [ 1

*x
(F3

i`(1@2),j,kx [ F3
i~(1@2),j,kx )

[ 1
*y

(F3
i,j`(1@2),ky [ F3

i,j~(1@2),ky )

[ 1
*z

(F3
i,j,k`(1@2)z [ F3

i,j,k~(1@2)z )

] S
i,j,k 4 L (U) , (11)

where latin subscripts i, j, and k refer to the x, y, and z
coordinate directions, respectively. and are theU

i,j,k S
i,j,kmean values of the state and source vector (if nonzero) in

the corresponding three-dimensional cell, while F3
iB1@2,j,kx ,

and are the numerical Ñuxes at theF3
i,jB1@2,ky F3

i,j,kB1@2z
respective cell interface.

Finally, L (U) is a shorthand notation for the spatial oper-
ator in our method.

At this stage, our system of conservation laws is a system
of ordinary di†erential equations that can be integrated
with a large number of algorithms. We have chosen a multi-
step Runge-Kutta (RK) method developed by Shu & Osher
(1988) that can provide second (RK2) and third (RK3) order
in time. The explicit form of the algorithms is (subindexes
[i, j, k] are omitted to clarify the notation) :

1. Prediction step (common for both RK2 and RK3) :

U(1) \ U(n) ] *tL (U(n)) . (12)

2. Depending on the order do :
RK2:

Un`1 \ 1
a [bUn ] U(1) ] *tL (U(1))] , (13)

being a \ 2 and b \ 1.
RK3:

U(2) \ 1
a [bU(2n) ] U(1) ] *tL (U(1))] (14)

Un`1 \ 1
b [bU(2n) ] 2U(2) ] 2*tL (U(2))] , (15)

in this case, a \ 4 and b \ 3.

3. THE RELATIVISTIC HYDRODYNAMIC CODE GENESIS

3.1. Code Structure
The special relativistic multidimensional hydrodynamic

code GENESIS described in detail in the following is a
three-dimensional extension of the two-dimensional HRSC
hydrodynamic code developed by some of the authors. The
two-dimensional code has been successfully used for the
simulation of relativistic jets et al. 1994, 1995, 1997 ;(Mart•!

et al. 1995, 1997). The main structural features of theGo! mez
code of et al. have been kept, but there are importantMart•!
changes in the computational part. Besides the addition of
the third spatial dimension, a large e†ort has been made to
minimize memory requirements and to optimize the per-
formance of the code as well as to enhance its portability.

Like its predecessor, GENESIS evolves the equations of
RHD in conservation form using a Ðnite volume approach

in Cartesian coordinates. In accordance with the method of
lines, we split the discretization process in two parts. First,
we discretize only the di†erential equations in space, i.e., the
problem remains continuous in time. This leads to a system
of ordinary di†erential equations (ODEs) in time (eq. [11]).
The numerical Ñuxes between adjacent cells required for the
time integration are obtained by solving the appropriate
one-dimensional Riemann problems along the coordinate
directions (spatial sweeps). High-order spatial accuracy is
achieved by applying a high-order interpolation procedure
in space, while high-order accuracy in time is obtained by
using high-order ODE solvers.

GENESIS integrates the three-dimensional RHD equa-
tions on uniform grids in each spatial direction. In order to
have a Ñexible code GENESIS is programmed to allow for
di†erent boundary conditions, spatial reconstruction algo-
rithms, Riemann solvers, ODE solvers for the time integra-
tion, and external forces. The user selects these options
at the preprocessor level, which reduces the number of
if-clauses inside the nested three-dimensional loops to a
minimum and thereby maximizes the codeÏs efficiency.

Making the selection at the preprocessing stage has
allowed us to obtain a code, which is independent of a
speciÐc (shared memory) machine architecture. Hence, it
runs on di†erent types of machines and processors. Up to
now, we have tested GENESIS on SGI platforms (INDY
workstations, Power Challenge, and CrayÈOrigin 2000
arrays), on HP machines (712 workstations and J280
computers), and on a CRAY-JEDI multiprocessor system.
As a next step we plan to port GENESIS on a CRAY-T3E
massively parallel computer.

The Ñow diagram of GENESIS is shown in Figure 1.
Details of the major components of GENESIS are dis-
cussed in the following subsections.

3.2. Memory Requirements
The current version of GENESIS, which is written in

FORTRAN 90, has the capability of allocating memory
dynamically, i.e., the number of computational cells can be
chosen at run time. Reducing the RAM requirements of a
three-dimensional hydrodynamic code is obviously crucial.
In GENESIS, multidimensional variables are responsible
for about 99% of the codeÏs memory requirement. Thus, the
number of these three-dimensional arrays has to be kept at
the absolute minimum possible. In its present version,
GENESIS only requires three sets of Ðve three-dimensional
arrays each, consisting of one set of conserved variables at
the beginning of each time level (Un), another set of primi-
tive variables, and a third set of scratch variables (U3 ).

The time integration scheme (eqs. [12]È[14]) that results
in the updated values of the conserved variables at the next
time level (Un ` 1) then reads :

1. Prediction step (common for RK2 and RK3) :

U3 \ Un ] *tL (Un) . (16)

2. Depending on the order of accuracy of the time inte-
gration scheme do:

RK2:

U3 \ U3 ] *tL (U3 ) , (17)

Un`1 \ 1
a (bUn ] U3 ) , (18)

with a \ 2 and b \ 1, or
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FIG. 1.ÈFlow diagram of GENESIS

RK3:

U3 \ U3 ] *tL (U3 ) , (19)

U3 \ 1
a (bUn ] U3 ) , (20)

U3 \ U3 ] *tL (U3 ) , (21)

Un`1 \ 1
b (bUn`1 ] 2U3 ) , (22)

with a \ 4 and b \ 3.

Quantities such as entropy, internal energy, sound speed, or
Lorentz factor are implemented as FORTRAN scalars.
Consequently, GENESIS needs about 1 Gbyte of RAM
memory to handle a grid of 100 ] 100 ] 720 (in double
precision).

3.3. Domain Decomposition
The technique of domain decomposition is used to opti-

mize the parallelization of the code and to guarantee its
performance in real applications, as well. It is also the Ðrst
step toward the development of a parallel version of
GENESIS that runs efficiently on parallel computers with
distributed memory.

The physical domain is split along one arbitrary spatial
direction (z, in the present version) in a set of subdomains
(i.e., slices ; see Fig. 2a) of similar computational load. The
subdomains are then distributed across processors.
Numerical Ñuxes at subdomain boundaries are calculated
by providing the appropriate internal and external bound-
ary conditions (see Figs. 2b and 2c, respectively, and ° 3.4).

FIG. 2.È(a) Complete three-dimensional computational domain,
showing a typical subdomain (in gray). (b) Zoom of the previous sub-
domain including its internal boundaries. These regions overlap with con-
tiguous subdomains. (c) Cut through the computational grid along the
X-Y plane displaying the external boundaries.

3.4. Boundary Conditions
The computational grid is extended in each coordinate in

positive and negative direction by four so-called ghost
zones, which provide a convenient way to implement di†er-
ent types of boundary conditions. These boundary condi-
tions have to be provided in each spatial sweep for all
primitive variables. In GENESIS several types of boundary
conditions are available including reÑecting, inÑow,
outÑow, time-dependent, and analytically prescribed
boundary conditions.

Flow conditions at subdomain boundaries must be pro-
vided, too, in order to calculate numerical Ñuxes at sub-
domain interfaces. Hence, subdomains are also enlarged
by four ghost zones in each coordinate direction.
Note that these ghost zones do overlap with adjacent sub-
domains (see Fig. 2). The internal boundary conditions in
these overlapping regions are deÐned by copying the corre-
sponding values of the respective adjacent subdomain. For
NS subdomains and NX ] NY ] NZ computational
zones, the number of overlapping cells is
(4 ] 4) ] (NS [ 1) ] NX ] NY , i.e., the fraction of over-
lapping cells is 8 ] (NS [ 1)/NZ. Hence, for NS \ 16 and
NZ \ 1000 (typical of a jet simulation), the fraction of over-
lapping cells is about 12%.

3.5. Spatial Reconstruction
In order to improve the spatial accuracy of the code, we

interpolate the values of the pressure, the proper rest-mass
density, and the spatial components of the four-velocity
(W vi) within computational cells. These reconstructed vari-
ables are afterwards used to compute the numerical Ñuxes.
Because of the monotonicity of the reconstruction pro-
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cedures (see below) used in GENESIS, the occurrence of
unphysical (i.e., negative) values in the reconstructed pro-
Ðles of pressure and density is avoided. In addition, recon-
structing the spatial components of the four-velocity with
monotonic schemes also prevents the occurrence of
unphysical values of the Ñow velocity, i.e., the Ñow velocity
always remains smaller than the speed of light even in
multidimensional calculations.

GENESIS provides, at the preprocessing level, four dif-
ferent types of reconstruction schemes : piecewise constant ;
linear using the minmod function of Van Leer (1979) ; para-
bolic using the piecewise parabolic method, PPM, of
Colella & Woodward (1984 ; see also & 1996) ;Mart•! Mu" ller
or hyperbolic using the piecewise hyperbolic method,
PHM, of Marquina (1994).

3.6. Source Terms
Gravity, local radiative processes, etc., are coupled with

hydrodynamics through terms on the right-hand side of the
RHD equations (i.e., via the source terms, in eq. [11]).S

i,j,k,GENESIS integrates such terms assuming piecewise con-
stant proÐles for the source functions.

3.7. Computation of the Numerical Fluxes
In this paper we use a variant of MarquinaÏs Ñux formula

(see Donat & Marquina 1996), which has already been
shown to work properly in the simulation of relativistic jets
in two dimensions et al. 1997).(Mart•!

The approach followed by Donat & Marquina (1996)
relies on the extension of the entropy-satisfying scalar
numerical Ñux of Shu & Osher (1989) to hyperbolic systems
of conservation laws. Given the spectral decomposition of
the RHD equations (see Appendix A), the implementation
of MarquinaÏs scheme is straightforward.

The original MarquinaÏs algorithm computes the contri-
bution to the numerical viscosity of each characteristic Ðeld
in a di†erent way depending on whether the corresponding
eigenvalue (characteristic speed) does change its sign
between the left and right states or whether it does not.
However, instead of using the original algorithm, we con-
sider only that part that corresponds to characteristic
speeds changing their signs between the left and right states
of every numerical interface. The modiÐed algorithm has a
larger numerical viscosity, but it is more stable and does not
involve any if-clause. Hence, it can easily be vectorized.

In the two-dimensional version used in et al.Mart•!
(1997), the left-eigenvectors of the Jacobians are calculated
numerically by inverting the matrix of right-eigenvectors. In
GENESIS we use the analytical expressions for the left-
eigenvectors, which allow one to simplify the computation
of the numerical viscosity terms.

The explicit expressions for the numerical Ñuxes
i \ x, y, z, in eq. [11]) as a function of the local(F3 i,

(reconstructed) primitive and conserved variables are given
in Appendix B. Besides its inÑuence on the efficiency of the
code, the use of explicit expressions for the left-eigenvectors
also leads to analytical cancellations in the computation of
the numerical viscosity causing a damping of the growth of
round-o† errors and an improvement of the overall accu-
racy of the code. Previous versions of GENESIS, in which
numerical Ñuxes were calculated without the use of analyti-
cal expressions, su†ered from a growth of round-o† errors
owing to the large number of operations involved and the
Ðnite precision of Ñoating point arithmetics. This growth of

errors manifests itself in a gradual loss of symmetry in ini-
tially perfectly symmetric problems. Our experience shows
that the analytical manipulation of the expressions of the
numerical Ñux together with their appropriate symmetriza-
tion (i.e., using commutating formulae for the components
of the velocity parallel to cell interfaces) allows one to
achieve a perfect numerical symmetry (see °° 3.10 and 4.2).

3.8. T ime Advance and T ime Step Computation
Time integration is carried out by two di†erent total

variation diminishing RK methods developed in Shu &
Osher (1988). The user can choose, at preprocessing level,
between the RK2 and RK3 algorithm (see eqs. [12]È[14]).
Results of similar quality can be obtained either with the
RK3 algorithm or with RK2 using smaller time steps.
Nevertheless, for a given time step, the computational cost
of RK3 is about a factor 1.5 larger than that of RK2.

As in any explicit hydrodynamic code, time steps are
limited for stability reasons by the Courant-Friedrichs-
Levy (CFL) condition, which is computed using the charac-
teristic speeds. At the end of each time step, the size of the
new time step is determined as the minimum of the time
steps of all subdomains. This requires a global operation
across all subdomains. Experience has shown that accept-
able CFL numbers lie in the interval [0.1,0.8]. CFL
numbers larger than 0.8 can lead to postshock oscillations.

3.9. Recovering Primitive Variables
The solution of the Riemann problem requires know-

ledge of the value of the pressure and its thermodynamic
derivatives. Given the functional dependence between con-
served and primitive variables (see eq. [2]), the recovering
procedure cannot be formulated in closed form. Instead, a
kind of iterative method must be used, which is very time
consuming. Hence, usage of the recovering procedure
should be reduced to the absolute minimum. Therefore,
primitive variables are consistently updated from the mean
values of the conserved variables after each Runge-Kutta
step, and their values are stored in a set of three-
dimensional arrays.

Our approach is the same as that of &Mart•! , Iba! n8 ez,
Miralles (1991) and that of et al. (1997). Its explicitMart•!
form can be found in Appendix C (see also &Mart•! Mu" ller
1996). The iterative recovering procedure is based on a
second-orderÈaccurate Newton-Raphson method to solve
an implicit equation for the pressure.

In zones in which the Ñow conditions change smoothly,
the typical number of iterations ranges from 1 to 3 when a
relative accuracy of 10~10 is requested. There exist zones,
however, inside shocks or near strong gradients, in which
the number of iterations required is larger depending on the
strength of the shock or the steepness of the gradient. For
example, in the shock reÑection test in three dimensions, the
shock zone needs about four to eight iterations.

3.10. Some Notes on Code Structure
We have taken special care in designing a numerical code

that accurately preserves any symmetries present in the
initial data. This is an important point for a code aimed to
study, for example, the stability and long-term evolution of
initially axisymmetric jets.

There exist two potential sources of numerical asym-
metries in our code ; both of them are related to the fact that
Ñoating point arithmetics is not associative. One cause of
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asymmetries is due to the computation of numerical Ñuxes
in spatial sweeps, which violates what we call henceforth
sweep-level symmetry (SLS). In order to guarantee SLS, the
expressions by which the numerical Ñuxes are evaluated
have been symmetrized (see ° 3.7).

A second source of (numerically caused) asymmetry
arises speciÐcally in three-dimensional codes using direc-
tional splitting. It can be avoided only if the code has a
property that we call sweep-coherence symmetry (SCS). It
refers to the symmetry of the integration algorithm with
respect to the order in which the one-dimensional sweeps
are performed. This symmetry property of the algorithm
becomes crucial if an initially spherically symmetric state is
considered. We found that its initial symmetry is lost unless
special care is taken in the calculation of the Lorentz factor
(in the numerical Ñux routine), which involves the summa-
tion of the squares of the three velocity components. To
guarantee a perfect sweep-coherence symmetry of the algo-
rithm, the addition of the vector components has to be
performed in a cyclic manner, i.e., in the X-sweep the com-
ponents are summed up in x, y, z order, in the Y -sweep, in
y, z, x order, and Ðnally in the Z-sweep, in z, x, y order.
Owing to the stochastic nature of round-o† errors, a vio-
lation of the SCS manifests itself only in the last few signiÐ-
cant digits of the state variables, if the number of time steps
is not too large (less than about 3000 ; see ° 4.3).

Given that round-o† errors grow sufficiently slow and
that they do not interact with the truncation errors owing
to the Ðnite di†erence scheme (which can render the scheme
unstable), GENESIS does keep the symmetry of an initial
state at an acceptable level. We have also tried to develop a
version of GENESIS with a perfect three-dimensional sym-
metry (limited by the Cartesian discretization). For this
purpose, we applied the extended partial precision technique
in the computation of expressions in which the associative
property should be satisÐed. The procedure was successful
but increased the total computational costs by more than
30%. All the results presented in the following have been
obtained without making use of such a technique.

4. CODE TESTING

The capabilities of GENESIS to solve problems in special
relativistic hydrodynamics are checked by means of three
test calculations that involve strong shocks and a wide
range of Ñow Lorentz factors. In these test runs an ideal gas
equation of state with an adiabatic exponent c has been
used. All results presented in this section have been
obtained with the PPM reconstruction procedure and the
relativistic Riemann solver based on MarquinaÏs Ñux
formula (see previous section for details).

4.1. Mildly Relativistic Riemann Problem (MRRP)
In the Ðrst test we consider the time evolution of an initial

discontinuous state of a Ñuid at rest. The initial state is
given by o

L
\ 10, v

L
\ 2, v

L
\ 0, c

L
\ 5/3, o

R
\ 1, v

R
\

10~6, and where the subscript L (R)v
R

\ 0, c
R

\ 5/3,
denotes the state to the left (right) of the initial discontin-
uity. This test problem has been considered by several
authors in the past (in one dimension by Hawley, Smarr, &
Wilson 1984, Schneider et al. 1993, & 1996,Mart•! Mu" ller
Wen, Panaitescu, & Laguna 1997 ; in two dimensions by

et al. 1997). It involves the formation of an interme-Mart•!
diate state bounded by a shock wave propagating to the

right and a transonic rarefaction propagating to the left.
The Ñuid in the intermediate state moves at a mildly rela-
tivistic speed (v \ 0.72c) to the right. Flow particles accu-
mulate in a dense shell behind the shock wave compressing
the Ñuid by a factor of 5 and heating it up to values of the
internal energy much larger than the rest-mass energy.
Hence, the Ñuid is extremely relativistic from a thermody-
namical point of view but only mildly relativistic dynami-
cally.

To change this intrinsically one-dimensional test problem
into a multidimensional one, we have rotated the initial
discontinuity (normal to the x-axis) by an angle of 45¡
around the y-axis and then again by an angle of 45¡ around
the z-axis. Gas states L and R are placed within a cube of
major diagonal equal to 1 that constitutes the three-
dimensional numerical grid.

The analytical solution to this test problem can be found
in & (1994). Our analysis is restricted to theMart•! Mu" ller
Ñow conditions along the major diagonal of the numerical
grid, which is normal to the initial discontinuity. Figure 3
shows the solution along the major diagonal at time t \ 0.5.
The shock is captured in two to three zones in accordance
with the capabilities of HRSC methods. The transonic
rarefaction has a smooth proÐle across the sonic point
located at x \ 0.5, and exhibits sharp corners. The contact
discontinuity is spread out over roughly three zones.

The absolute global errors [in norm given byL 1 wherevabs \ £
i,j,k o w

i,j,kn [ w(x
i,j,k, t

n
) o*x

i
*y

j
*z

k
, w

i,j,kn
and are the numerical and exact solution,w(x

i,j,k, t
n
)

respectively] of pressure, density, and velocity are given in
Table 1 for di†erent grid resolutions at t \ 0.5. Table 1

FIG. 3.ÈNumerical and exact solution of the mildly relativistic
Riemann test problem (MRRP) described in the text after 0.5 time units.
The computed one-dimensional distributions of proper rest-mass density,
pressure, speciÐc internal energy, and Ñow velocity are shown, in normal-
ized units, with discrete symbols. Continuous lines depict the correspond-
ing exact solution. The simulation was performed on a grid of 1003 zones.
The CFL number was set equal to 0.6, and a second-order Runge-Kutta
was used for time integration.
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TABLE 1

ABSOLUTE GLOBAL ERRORS norm) OF THE PRIMITIVE(L 1VARIABLES FOR THE MILDLY RELATIVISTIC RIEMANN

TEST PROBLEM (MRRP) FOR DIFFERENT GRIDS

AT t \ 0.5

Cells Pressure Density Velocity

403 . . . . . . . 8.0(2.0)E[2 1.1(0.3)E[1 0.9(0.4)E[2
603 . . . . . . . 5.2(0.4)E[2 9.8(0.8)E[2 1.1(0.3)E[2
803 . . . . . . . 4.5(0.2)E[2 9.2(0.5)E[2 1.1(0.1)E[2
1003 . . . . . . 3.7(0.4)E[2 7.0(0.9)E[2 7.0(2.0)E[3
1503 . . . . . . 2.5(0.2)E[2 4.8(0.7)E[2 5.0(2.0)E[3

NOTE.ÈAs the errors are dominated by those zones located
inside the shock and as the grid resolution is still poor even on
the Ðnest grid, we have repeated every calculation 4 times
varying t within an interval t ^ dt (dt being of the order of one
Courant time) and calculated the mean errors. In parentheses
we give the standard root mean square deviation of the errors
(p

n~1).

implies a convergence rate of slightly less than 1 when com-
paring the errors obtained on the coarsest (403) and the
largest (1503) grid. This behavior is expected for multidi-
mensional problems involving discontinuities (see, e.g.,
LeVeque 1991).

4.2. Relativistic Planar Shock ReÑection (RPSR)
This one-dimensional test problem involves the propaga-

tion of a strong shock wave generated when two cold gases,
moving at relativistic speeds in opposite directions, collide.
The problem has been considered as a test for almost any
new relativistic hydrodynamic code (Centrella & Wilson
1984 ; Hawley et al. 1984 ; & 1994 ; EulderinkMart•! Mu" ller
& Mellema 1994 ; Falle & Komissarov 1996).

After the collision of the two gases, two shock waves are
created in the plane of symmetry of the physical domain
propagating in opposite directions. The inÑowing gas is
heated in the shocks and comes to a rest. The exact solution
of this Riemann problem was obtained by Blandford &
McKee (1976).

The initial data are o
L

\ 1, v
L

\ 2.29 ] 10~5, v
L

\ v
i
,

and where is theo
R

\ 1, v
R

\ 2.29 ] 10~5, v
R

\ [v
i
, v

iinÑow velocity of the colliding gas.
Figure 4 shows the numerical solution at t \ 2.0 on the

left half of a grid having a total of 401 zones. The results
obtained in the right half of the grid are strictly symmetric
with respect to the collision point (x \ 0), i.e., the sweep-

FIG. 4.ÈNumerical and exact solution of the relativistic planar shock
reÑection problem (RPSR) described in the text after 2.0 time units. The
computed distributions of proper rest-mass density, pressure, speciÐc inter-
nal energy, and Ñow velocity are shown, in normalized units, with discrete
symbols, for an inÑow velocity of the colliding gases equal Contin-v

i
\ 0.9.

uous lines depict the corresponding exact solution. The simulation was
performed on a grid of 401 zones spanning the interval [[1, 1] with both
gases colliding in the middle of the grid at x \ 0. Only the left half of the
grid is shown. The CFL number was set equal to 0.3, and a second-order
Runge-Kutta was used for time integration.

level symmetry (SLS; see ° 3.10) is exactly fulÐlled. Near
x \ 0, the numerical solution shows small errors (of the
same order as the mean error in the postshock state, 0.3%)
that are due to the wall heating phenomenon (Noh 1987)

TABLE 2

ABSOLUTE GLOBAL ERRORS NORM) OF THE PRIMITIVE VARIABLES AND THE(L 1CORRESPONDING CONVERGENCE RATES FOR THE RELATIVISTIC PLANAR

SHOCK REFLECTION TEST PROBLEM (RPSR) FOR

DIFFERENT GRIDS AT t \ 2.0

Cells Pressure Density Velocity ro r
p

r
v

(1) (2) (3) (4) (5) (6) (7)

101 . . . . . . . 19.3(0.3)E]0 290.8(0.4)E[2 2.4(0.1)E[2
201 . . . . . . . 10.8(0.2)E]0 147.2(0.7)E[2 10.1(0.4)E[3 0.99 0.84 1.26
401 . . . . . . . 49.2(0.7)E[1 85.0(1.0)E[2 92.8(0.8)E[4 0.80 1.14 0.14
801 . . . . . . . 25.2(0.2)E[1 37.3(0.1)E[2 3.4(0.1)E[3 1.19 0.97 1.44
1601 . . . . . . 13.8(0.1)E[1 187.4(0.7)E[3 17.3(0.4)E[4 0.99 0.87 0.98

NOTE.ÈThe test runs have been performed with a Courant number equal to 0.1, and the
third-orderÈaccurate Runge-Kutta time integration method (RK3). In parenthesis we give the
standard root mean square deviation of the errors (see also Table 1). Cols. (2)È(4) : primitive
variables ; cols. (5)È(7) : corresponding convergence rates.
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characterized by an overshooting of the internal speciÐc
energy and an undershooting of the proper rest-mass
density.

In Table 2 we give the global absolute errors norm) of(L 1the primitive variables for di†erent grids at t \ 2.0 and for
an inÑow velocity We Ðnd a convergence ratev

i
\ 0.999c.

about equal to one (see cols. [5]È[7]) for all variables.
We can use this test problem to check the robustness of

GENESIS in the ultrarelativistic regime. To simplify nota-
tion, we deÐne the quantity which tends to zerol \ 1 [ v

i
,

when tends to 1. Table 3 contains the relative globalv
ierrors of the primitive variables at t \ 2.0 for a set of calcu-

lations performed on a grid of 401 zones, where we have
varied l from 10~1 to 10~11. The latter value corresponds
to a Lorentz factor W \ 2.24 ] 105. The relative error of
the primitive variables shows a weak dependence on the
inÑow velocity. It never exceeds 3.5%, and for l º 10~9 it is
smaller than 1%.

The PPM parameters (see Colella & Woodward 1984)
have been tuned to minimize the number of zones within
the shock without introducing unacceptable numerical
postshock oscillations. Figure 5 demonstrates that there are
no numerical postshock oscillations for l ¹ 10~5 when the
shock is captured by two to three zones.

4.3. Relativistic Spherical Shock ReÑection (RSSR)
The initial setup consists of a spherical inÑow at speed v

i(which might be ultrarelativistic) colliding at the center of
symmetry of a sphere of radius unity. For a hydrodynamic
code in Cartesian coordinates, this is a three-dimensional
test problem, which allows one to evaluate the directional
splitting technique as well as the symmetry properties of the
algorithm. Figure 6 shows the numerical results for v

i
\

0.9c on a grid of 1013 zones at t \ 2.0. The shock-capturing
properties of GENESIS, which we have already demon-
strated in one dimension, are retained in this genuine multi-
dimensional case. Two or three zones are required to handle
the shock wave. The pressure and proper rest-mass density
have global relative errors of about 12% and 8%, respec-
tively.

Ultrarelativistic Ñows have been explored by increasing
the inÑow Lorentz factor. Table 4 gives the growth
of the relative global errors (vrel \ vabs/[£

i,j,kon a Ðxed grid size of 813 zoneso w(x
i,j,k, t

n
) o*x

j
*y

j
*z

k
])

for in the range 0.9c to 0.999999c (the latter inÑow veloc-v
iity corresponding to a Lorentz factor W B 707). The rela-

TABLE 3

RELATIVE GLOBAL ERRORS NORM) OF THE PRIMITIVE VARIABLES(L 1
FOR THE PLANAR SHOCK REFLECTION TEST PROBLEM (RPSR)

ON A GRID OF 401 ZONES AT t \ 2.0

l Pressure Density Velocity

10~1 . . . . . . . 90.7(0.5)E[4 96.6(0.5)E[4 80.3(0.5)E[4
10~3 . . . . . . . 58.0(0.8)E[4 72.0(0.8)E[4 12.6(0.1)E[3
10~5 . . . . . . . 100.3(0.5)E[5 79.3(0.5)E[4 72.0(0.8)E[4
10~7 . . . . . . . 61.0(0.8)E[4 93.0(0.1)E[4 85.6(0.1)E[4
10~9 . . . . . . . 65.2(0.1)E[4 103.0(0.1)E[4 81.3(0.5)E[4
10~11 . . . . . . 141.0(0.1)E[5 340.1(0.1)E[4 325.7(0.5)E[5

NOTE.ÈThe quantity l is deÐned as The test runs havel \ 1 [ v
i
.

been performed with a Courant number equal to 0.1 and the third-
orderÈaccurate Runge-Kutta time integration method (RK3). In par-
entheses, we give the standard root mean square deviation of the errors
(see also Table 1).

FIG. 5.ÈDensity jump (in logarithmic scale) for di†erent inÑow veloci-
ties in the relativistic planar shock reÑection problem (RPSR), over an
equally spaced grid of 401 zones at t \ 2.0. As in the previous Ðgure, only
the left half of the grid is shown. Solid lines represent the exact solution
while symbols refer to numerical values. A third-order Runge-Kutta was
used for time integration.

tive global errors are acceptable (considering the inherent
difficulty of the test and the resolution of the experiments)
and do not grow dramatically with the Lorentz factor. The
observed growth can be explained by the fact that the errors
are dominated by the shock region and that the shock
strength increases with the Lorentz factor.

The CFL factors used in the last two tests of this series
are unusually small (0.019 and 0.005), which is due to the

TABLE 4

GROWTH OF RELATIVE GLOBAL ERRORS OF THE

PRIMITIVE VARIABLES FOR THE RELATIVISTIC

SPHERICAL SHOCK REFLECTION TEST

PROBLEM (RSSR) FOR DIFFERENT

INFLOW VELOCITIES AT t \ 2.0

Pressure Density Velocity
l (%) (%) (%)

10~1 . . . . . . . 15.8 10.5 0.82
10~3 . . . . . . . 19.9 22.1 3.07
10~5 . . . . . . . 22.1 27.8 3.89
10~6 a . . . . . . 32.2 39.1 1.91

NOTE.ÈThe four test runs have been performed
with RK3 and Courant numbers 0.1, 0.1, 0.019, and
0.005, respectively. The quantity l has the same
meaning as in Table 3.

a The run time for this test is 1.5.
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FIG. 6.ÈIntensity plots of proper rest-mass density, pressure, speciÐc
internal energy, and Ñow velocity over the plane XY at z \ 0 in the rela-
tivistic spherical shock reÑection test problem (RSSR) described in the text,
after 2.0 time units. Shaded surfaces represent the numerical results, while
dotted surfaces are the exact solution. One-dimensional plots along the
X- and Y -axes are projected on the front sides of the pictures. Symbols
inside the one-dimensional plots are numerical values ; solid lines represent
the exact solution on the same axis. The test was run using a CFL equal to
0.2 and a third-order Runge-Kutta for time integration.

strength of the shock. The variation of physical variables
within a zone is very large, i.e., the reconstructing procedure
gives rise to unphysical values when simulating a spherical
shock on a Cartesian grid. In order to avoid this, either very
small time steps must be chosen (as in our test runs) or the
grid resolution must be enhanced (note that we have only
used 81 zones per dimension!). It is noticeable that for v

i
\

0.999999c the errors are considerably larger (last entry in
Table 4). This has two reasons. First, the global relative
errors decrease with time in the RSSR test problem. Second,
we could not continue the run with beyondv

i
\ 0.999999c

1.5 time units because interaction with the grid boundaries
became severe, causing the code to crash. Hence, v

i
\

0.999999c must be considered as the maximum inÑow
velocity in the RSSR test problem, which the present code
can handle properly (for the resolution used). The symmetry

properties of the RSSR solution are very well maintained by
GENESIS, even though the number of time steps was very
large ([30,000) in the last two test runs.

The absolute global errors norm) and the con-(L 1vergence rates of the primitive variables at t \ 2.0 are dis-
played in Table 5. Obviously, the errors are much larger in
the three-dimensional test than in the corresponding one-
dimensional one. This can be explained considering that (1)
the grids are coarser than in one dimension and that (2) the
jumps in pressure and density across the shock are nearly a
factor of 30 larger in the three-dimensional test than in the
planar case.

The preservation of the SLS (see ° 3.10) is reÑected in the
symmetry of the one dimensional proÐles in Figure 6.
Moreover, a comparison of the proÐles in the X- and Y -
direction in Figure 6 shows the capability of the code to
maintain the SCS, too.

5. CODE PERFORMANCE

We have parallelized GENESIS in order to run on multi-
processor computers with shared memory. Apart from the
initial setup of variables, the grid generation and the output,
the rest of the program is organized in a four-level nested
loop. The outermost loop runs from one to the total
number of subdomains, assigning one subdomain to each
processor. This procedure allows an almost complete paral-
lelization of the code employing the corresponding parallel-
ization directives (see Fig. 1).

The MRRP and RSSR tests have been run for di†erent
grids on an SGI CrayÈOrigin 2000 computer. Tables 6 and
7 show the total execution time for every run as a function
of the number of CPUs used. We also give the speed-up
factor, deÐned as the CPU ratio between a one-processor
run and one using several processors in parallel. This factor
is a measure of the degree of parallelization of the code and
should ideally be equal to the number of CPUs used. The
tables also contain the execution time per cell and time
iteration (TCI). The TCI for a given number of processors is
nearly independent of the number of computational cells
and can be used as a time unit to estimate the total execu-
tion time needed in a particular simulation.

According to the data shown in Tables 6 and 7 the TCI is
about 7.6 ] 10~5, 2.1 ] 10~5, and 1.3 ] 10~5 s for one,
four, and eight processors, respectively. A signiÐcant drop
of the performance is noticeable for a grid of 643 zones
owing to the phenomenon of cache trashing because in this
case, the dimensions of the three-dimensional matrices are
multiples of the size of cache lines. Hence, di†erent three-

TABLE 5

ABSOLUTE GLOBAL ERRORS NORM) AND CONVERGENCE RATES OF THE PRIMITIVE(L 1VARIABLES FOR THE RELATIVISTIC SPHERICAL SHOCK REFLECTION TEST PROBLEM

(RSSR) FOR DIFFERENT GRIDS AT t \ 2.0

Cells Pressure Density Velocity ro r
p

r
v

413 . . . . . . . 11.8(0.2)E]0 30.3(0.4)E]0 80.0(3.0)E[3
613 . . . . . . . 76.5(0.7)E[1 20.1(0.2)E]0 55.8(0.6)E[3 1.09 1.03 0.91
813 . . . . . . . 57.5(0.8)E[1 15.5(0.2)E]0 41.0(0.8)E[3 1.01 0.92 1.09
1013 . . . . . . 45.2(0.8)E[1 12.5(0.1)E]0 32.4(0.5)E[3 0.99 0.97 1.07

NOTE.ÈThe test runs have been performed with a Courant number equal to 0.1 and the
third-orderÈaccurate Runge-Kutta time integration method (RK3). In parentheses we give
the standard root mean square deviation of the errors (see also Table 1).
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TABLE 6

PERFORMANCE OF GENESIS FOR THE MILDLY RELATIVISTIC RIEMANN TEST PROBLEM (MRRP) ON DIFFERENT GRIDS

Number of Cells Number of CPUs Time Speed-Up Number of Iterations TCI MÑops

443 . . . . . . . . . . . . . . . 1 3.91E2 86 5.34E[5 64.73/. . .
4 1.13E2 3.48 1.54E[5 59.03/236.11
8 6.02E1 6.50 8.22E[6 58.58/468.65

643 . . . . . . . . . . . . . . . 1 3.85E3 118 1.24E[4 30.05/. . .
4 1.84E3 2.09 5.94E[5 16.25/65.00
8 1.49E3 2.59 4.81E[5 10.46/83.70

843 . . . . . . . . . . . . . . . 1 5.56E3 150 6.26E[5 62.04/. . .
4 1.56E3 3.57 1.75E[5 56.77/227.08
8 8.46E2 6.58 9.52E[6 53.99/431.88

1043 . . . . . . . . . . . . . . 1 1.31E4 183 6.35E[5 62.72/. . .
4 3.66E3 3.57 1.78E[5 57.02/228.08
8 2.36E3 5.54 1.15E[5 45.47/363.75

1543 . . . . . . . . . . . . . . 1 8.94E4 265 9.23E[5 45.12/. . .
4 1.84E4 4.87 1.90E[5 54.92/219.68
8 1.15E4 7.80 1.18E[5 44.74/357.91
16 7.39E3 12.09 7.64E[6 35.90/574.41

NOTE.ÈThe test runs are stopped at t \ 0.5 and are performed with a Courant number equal to 0.8 and the second-orderÈ
accurate Runge-Kutta time integration (RK2) method. Times are measured in seconds on a SGI CrayÈOrigin 2000. The last
column displays the number of MÑops per processor and the total number of MÑops. One notices that the efficiency per
processor in parallel mode (Speed Up/CPUs) multiplied by the number of MÑops in sequential mode is equal to the number of
MÑops in parallel mode. MegaÑops are calculated using SGIÏs Perfex Tool.

dimensional matrices are mapped into the same set of cache
lines, and every time the program needs to reference a new
three-dimensional matrix, all cache lines are updated.

Concerning the speed-up factor, it is noticeable from
Tables 6 and 7 that it increases with the number of grid
points because the three-dimensional nested loops consume
a larger percentage of the total CPU time when the number
of grid zones is higher. The maximum speed-up factors are
3.7 and 6.5 for four and eight CPUs, respectively. We also
notice a superlinear behavior, for the largest grid, for the
MRRP test problem. As typical three-dimensional simula-
tions are performed with zone numbers larger than the ones
used in the test runs, we expect to reach even larger speed-
up factors in these applications.

The number of MÑops (millions of Ñoating point oper-
ations per second) achieved by the code is about 60 on one
processor (R10000) of a SGI CrayÈOrigin 2000 computer.

The theoretical peak speed of such a processor is 400
MÑops. For comparison, Pen (1998) reports a performance
of 48 MÑops for his three-dimensional adaptive moving
mesh classical hydrodynamic code using a SGI Power
Challenge machine with R8000 processors (300 MÑops
theoretical peak speed).

Finally, we compare the performance of GENESIS
achieved on the PA8000 processor of Hewlett Packard with
that obtained on the R10000 processor of Silicon Graphics.
For the comparison we used a HP J280 workstation
equipped with a PA8000 processor with a 180 MHz clock
and a cache memory of 512 Kbytes and a SGI CrayÈOrigin
2000 equipped with a R10000 processor with a 195 MHz
clock and 4 Mbytes of cache memory. The test problem
selected for the comparison was the relativistic spherical
shock reÑection test (RSSR) with an inÑow velocity of 0.9c.
Test runs were done with four di†erent grids. The resulting

TABLE 7

PERFORMANCE OF GENESIS FOR THE RELATIVISTIC SPHERICAL SHOCK REFLECTION TEST PROBLEM (RSSR)
ON DIFFERENT GRIDS

Number of Cells Number of CPUs Time Speed-Up Number of Iterations TCI MÑops

453 . . . . . . . . . . . . . . . 1 8.73E2 114 8.40E[5 62.53/. . .
4 2.53E2 3.45 2.44E[5 56.88/225.67
8 1.51E2 5.78 1.45E[5 50.15/401.21

653 . . . . . . . . . . . . . . . 1 4.94E3 198 9.08E[5 62.27/. . .
4 1.50E3 3.29 2.76E[5 52.88/211.54
8 1.10E3 4.49 2.02E[5 37.54/300.28

853 . . . . . . . . . . . . . . . 1 2.15E4 369 9.49E[5 61.76/. . .
4 6.13E3 3.51 2.71E[5 55.40/221.60
8 3.41E3 6.30 1.51E[5 51.35/410.79

1053 . . . . . . . . . . . . . . 1 9.92E4 890 9.63E[5 62.09/. . .
4 2.78E4 3.57 2.70E[5 56.41/225.65
8 1.57E3 6.31 1.53E[5 48.97/391.79

NOTE.ÈThe test runs are stopped at t \ 2.0 and are performed with a Courant number varying from 0.8 (453 grid) to 0.2
(1053 grid). The third-orderÈaccurate Runge-Kutta time integration (RK3) method has been used. Times are measured in
seconds on a SGI CrayÈOrigin 2000. The last column displays the number of MÑops per processor and the total number of
MÑops. One notices that the efficiency per processor in parallel mode (Speed Up/CPUs) multiplied by the number of MÑops in
sequential mode is equal to the number of MÑops in parallel mode. MegaÑops are calculated using SGIÏs Perfex Tool.
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execution times per zone and time step (TCI) are given in
Table 8.

We Ðnd that From Table 8 we canTCIHP B 2 ] TCISGI.infer a general trend. The TCIs obtained on both machines
tend to become similar when the number of zones increases.
Furthermore, the TCI for the HP machine is nearly inde-
pendent of the number of zones, while the TCI for the SGI
machine increases with that number. This behavior may
result from the fact that the problem size always leads to an
overÑow of the cache memory on the HP workstation,
while this does not generally happen for the larger cache
memory of the SGI machine.

6. AN ASTROPHYSICAL APPLICATION : AXISYMMETRIC

JET IN THREE DIMENSIONS

Next we discuss an astrophysical application computed
with GENESIS, namely the three-dimensional simulation
of a relativistic jet propagating through an homogeneous
atmosphere. The properties of the jet are those of model C2
in et al. (1997). The beam Ñow velocity, theMart•! v

b
\ 0.99c,

beam Mach number, and the ratio of the rest-M
b
\ 6.0,

mass density of the beam and the ambient medium
g \ 0.01. The ambient medium is assumed to Ðll a Cartesian
domain (X, Y , Z) with a size of where15R

b
] 15R

b
] 75R

b
,

is the beam radius. The jet is injected at z \ 0 in theR
bdirection of the positive z-axis through a circular nozzle

deÐned by and is in pressure equilibrium withx2 ] y2 ¹ R
b
2

the ambient medium. An ideal gas equation of state with an
adiabatic exponent c \ 5/3 is assumed to describe both the
jet matter and the ambient gas. Two di†erent spatial
resolutions with four and eight zones per beam radius were
used in our calculations (Figs. 7 and 8). Simple outÑow
boundary conditions have been imposed in all the grid
boundaries except at the injection region.

In et al. (1997) the simulation was performed inMart•!
cylindrical coordinates assuming axial symmetry. The
spatial resolution was 20 zones per beam radius both in the
axial and radial directions. It is well known that the propa-
gation of a supersonic jet is governed by the interaction of
jet matter with the ambient medium, which produces a bow
shock in the ambient medium and an envelope surrounding
the central beam (the cocoon, in the Blandford & Rees 1974
model). The cocoon contains jet material deÑected back-
ward at the head of the jet. In the case of highly supersonic
jets, discussed in et al. (1997), extensive, over-Mart•!
pressured cocoons are formed with large vortices of jet
matter propagating down the cocoon/ambient medium
interface. The vortices are the result of Kelvin-Helmholtz
instabilities at the interface between the jet and the shocked
ambient medium. The interaction of these vortices with the

central beam causes internal shocks inside the beam. These,
in turn, a†ect the advance speed of the jet making it highly
nonstationary. The propagation speed of the jet can be esti-
mated from the momentum transfer between the jet and the
ambient medium assuming a one dimensional Ñow. For
model C2, one obtains an advance speed equal to 0.42c,
whereas the two-dimensional hydrodynamic simulation
presented in et al. (1997) gives a mean jet advanceMart•!
speed of 0.37c.

The four panels in Figures 7 and 8 display, from top to
bottom, the logarithm of the proper rest-mass density, pres-
sure, and speciÐc internal energy and Ñow Lorentz factor in
the plane x \ 0 at when the jet has propagatedt \ 160R

b
/c,

about The analysis of cross sections of the grid per-75R
b
.

pendicular to the jetÏs direction of propagation (not shown
here) reveals acceptable symmetry of the numerical simula-
tion, i.e., both the SLS and the SCS properties are main-
tained (see ° 3.10).

The gross morphological and dynamical properties of
highly supersonic relativistic jets as inferred from our three-
dimensional simulations are qualitatively similar to those
established in earlier two-dimensional simulations. An
extensive, overpressured cocoon with pressure about 20
times that in the beam at the injection point is found sur-
rounding the jet. The pressure and density at the head of the
jet in the model with eight are a factor of 2 largerzones/R

band 1.3 smaller, respectively, than in the two-dimensional
calculation. For the model with four these factorszones/R

b
,

are 1 and 1.3, respectively. In contrast to the model with
four in which the propagation speed coincideszones/R

b
,

with the one-dimensional estimate, the larger pressure at
the head of the jet in the model with eight causes itzones/R

bto propagate through the ambient medium at a larger speed
in the three-dimensional calculation (0.47c instead of 0.42c
for the one-dimensional estimate and 0.37c for the two-
dimensional simulation), producing a narrower proÐle of
the bow shock near the head. In all the simulations, the
supersonic beam displays rich internal structure with
oblique shocks e†ectively decelerating the Ñow in the beam
from a Lorentz factor equal to 7 at the injection point down
to a value of about 4 near the head. Whereas gross morpho-
logical properties are qualitatively similar in all three simu-
lations, Ðner jet details (e.g., number, size, position, and
development of turbulent vortices in the cocoon) do not
agree. However, it has been pointed out before that the Ðne
structure is highly dependent on the numerical grid
resolution (see, e.g., & 1988). In the modelKo" ssl Mu" ller
with four (see Fig. 7), the material deÑected at thezones/R

bhead of the jet forms a thick, stable overpressured cocoon
surrounding the beam up to the nozzle. Owing to the small

TABLE 8

PERFORMANCE OF GENESIS FOR THE RELATIVISTIC SPHERICAL SHOCK REFLECTION

TEST (RSSR) ON DIFFERENT GRIDS AND MACHINES

Number of Cells Machine Time Number of Iterations TCI

453 . . . . . . . . . . . . . . . SGI 8.73E2 114 8.40E[5
HP 2.11E3 101 2.29E[4

653 . . . . . . . . . . . . . . . SGI 4.94E3 198 9.08E[5
HP 1.33E4 220 2.20E[4

853 . . . . . . . . . . . . . . . SGI 2.15E4 369 9.49E[5
HP 4.76E4 357 2.17E[4

1053 . . . . . . . . . . . . . . SGI 9.92E4 890 9.63E[5
HP 2.16E5 879 2.12E[4
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FIG. 7.ÈSnapshots (top to bottom) of the proper rest-mass density distribution, pressure, speciÐc internal energy (all on a logarithmic scale), and Lorentz
factor of the relativistic jet model discussed in the text g \ 0.01, c \ 5/3) after 160 units of time. The resolution is four(v

b
\ 0.99c, M

b
\ 6.0, zones/R

b

resolution, only large vortices develop in the cocoon/
external medium surface that grow slowly. A turbulent
cocoon with smaller vortices growing at a faster rate (much
more similar to the one obtained in the two-dimensional
cylindrical model) are obtained by doubling the resolution
(compare, e.g., the proper rest-mass density panels in Figs. 7
and 8).

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

We have described the main features of a novel three-
dimensional, high-resolution special relativistic hydrody-

namic code GENESIS based on relativistic Riemann
solvers. We have discussed several test problems involving
strong shocks in three dimensions that GENESIS has
passed successfully. The performance of GENESIS on
single and multiprocessor machines (HP J280 and SGI
CrayÈOrigin 2000) has been investigated. Typical simula-
tions (in double precision) with up to 7 ] 106 computa-
tional cells can be performed with 1 Gbyte of RAM memory
with a performance of B7 ] 10~5 s of CPU time per zone
and time step (on a SCI CrayÈOrigin 2000 with a R10000
processor). Currently we are working on a version of
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FIG. 8.ÈSame as Fig. 7 but with a resolution of eight zones/R
b

GENESIS suited for massively parallel computers with dis-
tributed memory (like, e.g., Cray T3E).

GENESIS has been designed to handle highly relativistic
Ñows. Hence, it is well suited for three-dimensional simula-
tions of relativistic jets. First results will be presented in a
separate paper (Aloy et al. 1999). Further applications
envisaged are the simulation of relativistic outÑows from
merging compact objects (see, e.g., Ru†ert et al. 1997), from
hypernovae 1998), or collapsars (MacFadyen &(Paczyn! ski
Woosley 1998). In all these models ultrarelativistic outÑow
is thought to occur and to play a crucial role in the gener-
ation of gamma-ray bursts.
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acknowledge the collaboration of the UserÏs Support
Service of the Centre Europeu de Paral5 lelisme de Barcelona
(CEPBA). The calculations were carried out on a HP J280
and on two SGI Origin 2000, at CEPBA and at the Centre
de de la Universitat deInforma! tica València.
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APPENDIX A

CHARACTERISTIC FIELDS OF THE RHD EQUATIONS

Analytical expressions for the spectral decomposition of the three 5 ] 5 (in three dimensions) Jacobian matrices Bi(U)
associated with the Ñuxes Fi(U) of system (7),

Bi(U) \ LFi(U)
LU

(A1)

have been given by Donat et al. (1998).
In this Appendix, we explicitly show the eigenvalues and the right- and left-eigenvectors corresponding to matrix Bx,

whereas the cases y and z easily follows from symmetry. The eigenvalues are

j
B

\ 1
1 [ v2c

s
2 Mvx(1 [ c

s
2) ^ c

s
J(1 [ v2)[1 [ vxvx [ (v2 [ vxvx)c

s
2]N (A2)

j0 \ vx(triple) . (A3)

The following expressions deÐne auxiliary quantities :

K 4
i8

i8 [ c
s
2 , i8 \ 1

o
K Lp
Le
K
o
, A

B
4

1 [ vxvx

1 [ vxj
B

. (A4)

A complete set of right-eigenvectors is

r0,1 \AK

hW
, vx, vy, vz, 1 [ K

hW
B

(A5)

r0,2 \ [W vy, 2hW 2vxvy, h(1 ] 2W 2vyvy), 2hW 2vyvz, 2hW 2vy [ W vy] (A6)

r0,3 \ [W vz, 2hW 2vxvz, 2hW 2vyvz, h(1 ] 2W 2vzvz), 2hW 2vz [ W vz] (A7)

r
B

\ (1, hW A
B

j
B

, hW vy, hW vz, hW A
B

[ 1) . (A8)

The corresponding complete set of left-eigenvectors is

l0,1 \ W
K [ 1

(h [ W , W vx, W vy, W vz, [W )

l0,2 \ 1
h(1 [ vxvx)

([vy, vxvy, 1 [ vxvx, 0, [ vy)
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,

where * is the determinant of the matrix of right-eigenvectors :

* \ h3W (K [ 1)(1 [ vxvx)(A
`

j
`

[ A~ j~) . (A9)

For an ideal gas equation of state, it can be proved that K is always greater than 1 (in fact K \ h), and * is di†erent from
zero (Â vx Â \ 1).

APPENDIX B

NUMERICAL FLUXES AND DISSIPATION TERMS IN MARQUINAÏS FLUX FORMULA

Given a cell interface, the numerical Ñuxes across such interface are given, in our modiÐed version of MarquinaÏs Ñux
formula, by

F3 \ 12 (FL ] FR ] Q) . (B1)
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In the above expression, FL and FR are the Ñuxes at the left and right side of the interface and Q is a Ðve-vector containing the
numerical viscosity terms that is calculated according to Q \ QR [ QL.

Quantities QS (S \ L , R) are written as a sum involving the projectors onto each eigenspace (i.e., direct products of left- and
right-eigenvectors) and the eigenvalues of the corresponding Jacobian matrix

Q
j
S \ ;

i,k/1

5
o j

i
omax(L,R) rjiS l

ik
S U

k
S , ( j \ 1, . . . , 5) . (B2)

Quantities (i \ 1, . . . , 5) are the maximum of the modulus of the two corresponding eigenvalues at the left ando j
i
omax(L,R)right side of the interface, whereas with i, j \ 1, . . . , 5, refer to the i ( j) component of the right- (left-) eigenvector j (i). Inr

ij
S (l

ij
S )

this expression, subscripts 1, . . . , 5 correspond to [, 0, 0, 0, ] as deÐned in Appendix A. are the components of theU
k
S

vector of unknowns. The superscript S indicates that the various quantities are calculated at each side of the interface in terms
of the reconstructed variables.

Omitting the superscript S (the expressions are identical for the left and right side of the interface), one derives the following
analytical formulae for Q

j
S :

Q1 \ h2
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`
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`
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with M \ ohW 2(K [ 1), and)
B

\ j8
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[ j

Y
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[ 1, j8

`
\ o j5 omax(L,R), j8 0 \ o j2 omax(L,R) j8 ~ \ o j1 omax(L,R).Quantities y denote the velocities normal and parallel to the interface at which the numerical Ñux is to be computed,v
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ttand are quantities proportional to the Ðfth component of the left-eigenvectors and given byl8
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APPENDIX C

EXPLICIT ALGORITHM TO RECOVER PRIMITIVE VARIABLES

In any RHD code evolving the conserved quantities equation (8) in time, the variables Mp, v1, v2, v3, o, eN have to be
computed from the conserved quantities at least once per time step. In GENESIS this is achieved using equations (1)È(3) and
the equation of state. For an ideal gas equation of state with constant c, this implies Ðnding the root of the function

f (p) \ (c [ 1)o* e* [ p (C1)

with and given byo* e*

o* \ D
W*

(C2)

and

e* \ q ] D(1 [ W*) ] p(1 [ W *2)
DW*

, (C3)

where

W* \ 1

J1 [ ¿* Æ ¿*
, (C4)

and

¿* \ S
q ] D ] p

. (C5)
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The zero of f (p) in the physically allowed domain determines the pressure. The monotonicity of f (p) in thatp ½ ]pmin,O[
domain ensures the uniqueness of the solution. The lower bound of the physically allowed domain, deÐned bypmin,

pmin \ o S o [ q [ D , (C6)

is obtained from equation (C5) taking into account that (in our units) Knowing p, equation (C5) then directly giveso ¿ o ¹ 1. ¿,
while the remaining state quantities are straightforwardly computed from equations (1)È(3) and the deÐnition of the Lorentz
factor.

In GENESIS, the solution of f (p) \ 0 is obtained by means of a Newton-Raphson iteration in which the derivative of f, f @, is
approximated by

f @ \ o ¿* o2c
s*2 [ 1 , (C7)

where is the sound speed given byc
sp

c
s* \S(c [ 1)ce*

1 ] ce*
. (C8)

This approximation tends to the exact derivative when the solution is approached. On the other hand, it easily allows one to
extend the present algorithm to general equations of state.
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