
Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferen-
tes términos y su significado fı́sico. Deducir las condiciones que deben de satisfacer los
campos ~E y ~H en la interfase de separación entre dos medios dieléctricos de constantes
ε1 y ε2.

202. El campo eléctrico de una onda armónica plana viene dado por la expresión

e = E0uxe
−j(ωt−k·r) , k =

ω

c

1√
2
(uy − uz),

donde E0 es una constante, ω la frecuencia angular, c la velocidad de la luz en el vacı́o y r
el vector posición de un punto cualquiera. La onda incide sobre una superficie conductora
situada en el plano z = 0. Escribir las ecuaciones de los campos eléctrico y magnético de
la onda reflejada en un punto cualquiera del espacio y en un instante cualquiera. Suponer
que se trata de un conductor perfecto.

203. Una onda electromagnética plana y monocromática de 300 MHz se propaga en el vacı́o a
lo largo de eje z. El campo eléctrico es paralelo al eje x y alcanza su valor máximo de 350
V/m en el punto (0,0,1) y en el instante t = 0. Expresar el campo eléctrico y magnético
en función de la posición y el tiempo.

204. Una onda electromagnética plana y monocromática de 300 Mhz se propaga en el vacı́o
a lo largo del eje z. El campo eléctrico es paralelo al eje x y alcanza su valor máximo
de 350 V/m en el punto (0,0,1) y en el instante t = 0. Expresar el campo eléctrico y
magnético en función de la posición y el tiempo.

205. Escribir el campo eléctrico E de una onda plana circularmente polarizada que se propaga
en la dirección x. Definir cada uno de los parámetros que aparecen. Hallar el vector H
correspondiente a partir de E.

206. En un sistema situado en el vacı́o se tiene que el campo eléctrico E(z, t) es la parte real
del campo complejo

E(z, t) = E0e
j(αz−ωt),

donde E0 es un vector constante. Se pide: (a) ¿qué relación existe entre α y ω?, (b) ¿qué
dirección tiene el vector constante E0? y (c) ¿cuál será el valor máximo del campo H
asociado?

207. (a) ¿Cómo demostrarı́as que, en el caso electrostático se cumple ∇×E = 0? (b) ¿Cómo
demostrarı́as que la ecuación ∇ ·B = 0 se cumple para cualquier valor de B?

208. Proponer la expresión del campo eléctrico de una onda electromagnética plana, armónica,
de frecuencia angular ω = 3 × 106 rad/s, que se propaga en el vacı́o en la dirección del
vector (1, 1, 1) y cuyo vector campo eléctrico es 10 V/m. Obtener la expresión del campo
magnético asociado.
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209. Una onda electromagnética plana, armónica y linealmente polarizada se propaga en el
vacı́o en la dirección del vector (1, 1, 1). La amplitud del campo eléctrico de dicha onda
es de 10 V/m y su frecuencia de 200 MHz. En el instante t = 5 s el campo eléctrico
de dicha onda vale

√
2(1,−1, 0) en el origen de coordenadas. Encontrar una expresión

para el campo eléctrico ya para el campo magnético de dicha onda en cualquier punto del
espacio y cualquier instante de tiempo.

210. Escribe en coordenadas cartesianas el campo eléctrico y el campo magnético (en un punto
P cualquiera del espacio) de una onda electromagnética plana y armónica, que se propaga
en el vacı́o con la dirección y el sentido del vector v = (0, 1, 1). La onda está linealmente
polarizada y el campo eléctrico vale en el origen de coordenadas y el instante t = 0
E = E0ux, siendo E0 la amplitud del campo eléctrico.

211. Escribir los campos E y B, en un instante cualquiera t y en un punto cualquiera de
coordenadas (x, y, z), de una onda plana y armónica, de frecuencia angular ω, que se
propaga en el vacı́o con la dirección y el sentido del vector (0,1,0), cuyo campo eléctrico
tiene la dirección del eje z y su amplitud es de 30 V/m.

212. En 1929, M. R. Van Cauwenberghe, de la Universidad Libre de Bruselas, midió de forma
directa el campo magnético producido por la corriente de desplazamiento entre las placas
de un condensador plano-paralelo. En el experimento real las placas tenı́an una forma
especial, pero eran aproximadamente discos paralelos de 1,5 m de diámetro separados
0,4 m. Él aplicó a los discos una tensión alterna de 174 KV de amplitud y 50 Hz de fre-
cuencia. Calcular el campo magnético entre las placas a una distancia de 0,4 m del centro
de los discos suponiendo aire entre las placas.
Para medir un campo tan pequeño, Van Cauwenberghe diseñó un magnetómetro que con-
sistı́a en un solenoide toroidal con núcleo de hierro, suspendido paralelo a los planos del
condensador en el semiplano del mismo. Utilizando un núcleo de hierro aumentó la sen-
sibilidad en un factor mayor que 103. Por otra parte el solenoide tenı́a 813 vueltas, lo
cual aumentaba nuevamente la sensibilidad otro factor de 103. Finalmente, midió fuerzas
electromotrices inducidas en el solenoide del orden de 0,1 mV. Sus medidas concuerdan
con la teorı́a de Maxwell que proporciona el campo magnético inducido por la corriente
de desplazamiento en el interior del condensador.

213. Un condensador de placas circulares paralelas, de radio a y separación d, tiene una ddp
V (t). (a) Hallar el campo magnético en el semiplano del condensador, a una distancia r
del eje de simetrı́a, para r > a. (b) Demostrar que el valor de B es el mismo que el de un
hilo que transporte una corriente I = dQ/dt, siendo Q la carga del condensador.

214. Demostrar que la discontinuidad de B a través de las placas del condensador cuando éste
se carga con una corriente I es igual a µ0K × n, donde K viene dado por

K =
I

2π

(
1

r
− r

a2

)
ur

215. (a) Hallar el potencial vector A(r, t) y el potencial escalar φ(r, t) en el gauge de Lorentz
para una onda plana polarizada descrita por los campos

E(r, t) = E0e
j(kz−ωt)ux y B(r, t) = B0e

j(kz−ωt)uy
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con la condición de contorno de que los potenciales deben de ser cero en el infinito.
(b) Considerar el caso general de una onda plana polarizada con vector de ondas k, po-
larización en la dirección n y frecuencia angular ω = c|k|. Determinar los potenciales
vector y escalar en este caso.
(c) Si no ponemos la condición de contorno anterior, demostrar que los potenciales

A = (r, t) = −B0xej(kz−ωt)uz y φ(r, t) = −cB0xej(kz−ωt)

satisfacen la condición de Lorentz y proporciona los campos electromagnéticos dados en
el apartado (a).

216. Un medidor de campo muestra que la amplitud de las oscilaciones del campo eléctrico
de una onda de radio es de 5 milivoltios por metro. (a) ¿Cuál es la amplitud de las
oscilaciones del vector campo magnético, en T? (b) ¿Cuál es la intensidad en W/m2?
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Lección 8. Los potenciales electromagnéticos.

221. (a) A partir de las ecuaciones de Maxwell en el vacı́o, deducir las ecuaciones diferenciales
que satisfacen el potencial escalar eléctrico φ(~r) y el potencial vector magnético A(r).
(b) A partir de estas ecuaciones generales, imponer la condición de contraste (gauge)
de Lorentz, obteniendo las ecuaciones diferenciales correspondientes. ¿Cuáles son las
ventajas de imponer tal condición en los potenciales?

222. (a) A partir de las ecuaciones de Maxwell en el vacı́o, deducir las ecuaciones diferen-
ciales que satisfacen el potencial escalar eléctrico φ(r) y el potencial vector magnético
A(r). (b) Partiendo de estas ecuaciones generales, obtener las ecuaciones diferenciales
que se corresponden con la condición (gauge) de Lorentz. ¿Cuáles son las ventajas que
satisfacen las ecuaciones en la condición de Lorentz?

223. Para un dipolo eléctrico armónico el campo eléctrico de radiación es

Eθ = j sin θ
30I0βl

r
ej(ωt−βr).

(a) Explicar el significado de los sı́mbolos que aparecen en la expresión anterior. (b)
Calcular el campo magnético asociado. (c) Obtener la potencial total radiada.

224. Obtener, a partir de las ecuaciones de Maxwell, las ecuaciones diferenciales que cumple
el potencial vector magnético A y el potencial escalar eléctrico φ para un campo electro-
magnético cuando se cumple la condición (el contraste o gauge) de Lorentz.

225. El campo eléctrico de radiación de un dipolo p es

E =
(p×R)×R

4πε0c2R3
.

Calcular la dirección de máxima radiación energética y la energı́a total radiada.

226. El campo eléctrico generado por un dipolo variable con el tiempo es:

E =
(p̈×R)×R

4πε0c2R3
+

3(p ·R)R−R2p

4πε0R5
+

3(ṗ ·R)R−R2ṗ

4πε0cR4
,

donde el dipolo y sus derivadas se calculan en el tiempo retardado. Dar los campos
eléctrico y magnético de radiación. Razonar la respuesta.

227. Decir si el potencial vector

A =
µ0

4π

ejω(r/c−t)

r
uz

corresponde a un campo electromagnético en el contraste de Lorentz. ¿Podrı́as dar un
potencial escalar para este campo?

228. Obtener, a partir de las ecuaciones de Maxwell, las ecuaciones diferenciales que cumple
el potencial vector A y el potencial escalar φ para un campo electromagnético cuando se
aplica el gauge de Lorentz.
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229. Se observa con un detector la radiación emitida por un dipolo eléctrico radiante a una
distancia a del mismo en una dirección que forma un ángulo θ con la dirección del dipolo.
El valor resultante de la medida es 10 mW. Se aumenta la distancia del detector al emisor
10 m y la potencia se reduce a la mitad manteniendo el mismo ángulo. Determinar la
distancia a.

230. La Tierra recibe aproximadamente 1300 W/m2 de potencia radiada procedente del Sol.
Suponiendo la radiación de una onda plana de frecuencia ω en incidencia normal, escribir
la expresión de los campos eléctrico y magnético.

231. El campo eléctrico de radiación de un dipolo puntual es

E =
(p×R)×R

4πε0c2R3
.

Se pide: (a) calcular la potencia total radiada y (b) deducir, suponiendo que el dipolo está
orientado en la dirección del eje z, las direcciones de máxima y mı́nima radiación.
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