
Lección 9. El campo eléctrico y la materia.

241. Un cilindro dieléctrico de radio a y altura l (l >> a) tiene una polarización ~P0 ‖ ~ux,
perpendicular al eje del cilindro. Calcular el campo eléctrico en el centro del cilindro y a
distancias grandes comparadas con las dimensiones del mismo.

242. La sección de un hilo coaxial es la que se muestra en la figura. El radio del hilo es
a = 0.5 mm y el radio de la malla es b = 5 mm. Las permitividades dieléctricas relativas
son ε1 = 100 y ε2 = 200. Demostrar que la capacidad del hilo es

C = π(ε1 + ε2)l/ ln(b/a),

siendo l la longitud de hilo. ¿Cuál es la capacidad de un hilo de estas caracterı́sticas, de
100 m de longitud?

1
2

243. Sea P el vector densidad de polarización de un medio lineal, homogéneo e isótropo.
Contestar a las siguientes preguntas, razonando las respuestas y discutiendo los posibles
casos. (a) ¿Cuánto vale el ∇× P ? (b) ¿Cuándo la ∇ · P será nula?

244. Se tiene una esfera dieléctrica de radio a y permitividad dieléctrica

ε(r) = ε0

(
1 +

r

a

)

y en su centro una carga puntual Q, siendo r la coordenada radial en esféricas. ¿Qué
ecuación diferencial ha de satisfacer el potencial φ(r) para r < a y r > a?

245. Un cilindro dieléctrico muy largo, de radio a y permitividad ε1, tiene en su interior un
agujero, también cilı́ndrico y coaxial, de radio b (b < a). En el eje de ambos cilindros hay
una densidad lineal de carga λ uniforme. Hallar el campo eléctrico en todo el espacio, la
polarización del dieléctrico y las cargas equivalentes de polarización.

246. El campo eléctrico lı́mite a partir del cual el aire puede conducir es de 3 × 10−3 V/m.
¿Cuál es el máximo potencial posible de un conductor aislado de 5 cm de radio? ¿Cuál
deberı́a ser el radio de un conductor esférico en el que se quiere almacenar una carga de
3× 10−3 C?

247. En un dieléctrico (εr = 3) el desplazamiento eléctrico D vale 3/
√

2 f/m y forma un
ángulo de 45◦ con la superficie de separación del dieléctrico con el aire. Obtener el
valor del campo eléctrico en el aire y calcular la densidad de cargas de polarización en el
dieléctrico.
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248. (a) Hacer un dibujo esquemático representando la constante dieléctrica κ frente a la den-
sidad atómica n. (b) De acuerdo con la fórmula de Langevin, la polarizabilidad de una
molécula polar a una temperatura T , para pE ¿ kT , es α = p2/(3kT ), donde p es el
momento dipolar permanente. De una medida se deduce que κ = 80 para el agua. Cal-
cular el momento dipolar de una molécula de agua. Expresar el resultado en unidades de
eaB.

249. Una carga puntual Q está situada en el interior de un medio dieléctrico de constante
κ. (a) ¿Cuál es la carga libre encerrada por una esfera de radio R centrada en Q? (b)
¿Cuál es la carga de polarización encerrada en la esfera? ¿Cómo varı́a este resultado con
R? (c) ¿Cuál es la carga total encerrada en la esfera? (d) Explicar el resultado de (b)
microscópicamente, suponiendo que un átomo consiste en un par de minúsculas cargas
de signo opuesto ±e con momento dipolar p = αE (Ayuda: para densidades atómicas n
pequeñas, aproximar χe = nα/ε0).

250. Sea una carga puntual q cerca de la superficie de un medio dieléctrico semiinfinito. Dibu-
jar esquemáticamente las lı́neas de campo eléctrico en las distintas direcciones del espa-
cio, a partir de la carga q. Utilizar las condiciones de frontera del campo eléctrico para
dibujar cómo las lı́neas atraviesan la superficie (suponer que no hay cargas superficiales).

251. Un objeto dieléctrico que tiene una polarización cuasipermanente en ausencia de campo
eléctrico se denomina “electrete”. Considerar un electrete polarizado uniformemente en
forma de cilindro de altura h y radio 10h. La polarización el el dieléctrico es Puz, siendo
uz el vector paralelo al eje del cilindro. (a) Dibujar esquemáticamente las lı́neas de campo
eléctrico. (b) Calcular el campo eléctrico en el centro del cilindro. Dado que el radio es
grande comparada con la altura, podemos despreciar los efectos de borde. (c) Calcular
el campo eléctrico E en el plano medio del cilindro, a una distancia 100h del centro.
Dado que la distancia es grande comparada con el radio, el dipolo domina el desarrollo
multipolar.

252. Muchos micrófonos manufacturados hoy en dı́a están basados en el diseño de hojas de
electrete. Obtener información sobre hojas de electrete (foil electret) en internet. ¿Qué es
una hoja de electrete y cómo se usa en un micrófono?
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Lección 10. El campo magnético y la materia.

261. En el plano de separación entre dos medios materiales de permeabilidades magnéticas
µ1 y µ2 circula una corriente I por un hilo rectilı́neo indefinido de sección despreciable.
Calcular el campo magnético en todo el espacio.

262. Una lámina plana de material magnético, de espesor d, se sitúa sobre el plano z = 0. La
lámina tiene una imanación uniforme M = Muz. ¿Qué valor tendrán los campos B y
H , tanto en el interior como en el exterior de la lámina? Razonar la respuesta.

263. Sea un paralelepı́pedo de material magnético con una densidad Muz constante. La super-
ficie de las caras lı́mite es muy amplia de forma que los efectos de los extremos pueden
ser despreciados. La distancia entre las superficies lı́mite es de d. Calcular el campo
magnético que crea esta distribución de dipolos.

264. El promediado espacial de las ecuaciones de Maxwell para los campos microscópicos en
un medio material nos conduce al siguiente resultado:

∇ ·E =
ρ−∇ · P

ε0

, ∇ ·B = 0 , ∇×E = −∂B

∂t

∇×B = µ0J + µ0∇×M + µ0
∂P

∂t
+ µ0ε0

∂E

∂t

(a) ¿Cuáles son los términos nuevos que aparecen respecto a las ecuaciones de Maxwell
en el vacı́o? ¿Qué significado fı́sico tienen? (b) Definir el vector desplazamiento D y el
vector excitación magnética H transformando las ecuaciones anteriores en las ecuaciones
de Maxwell en los medios materiales. (c) Las ecuaciones de Maxwell en los medios
materiales deducidas en el apartado anterior, ¿se modifican si el medio es no lineal?

265. Considérese una esfera constituida por un material magnético, cuya imanación es M =
M0uz. (a) Determinar las cargas y corrientes de imanación. (b) Dibujar, cualitativamente,
las lı́neas de campo magnético B. (c) Escribir el campo magnético producido por dicha
esfera, a grandes distacias.

266. Analizar si pueden realizarse las siguientes afirmaciones para el campo H en el seno
de un medio material. (a) El campo magnético H es solenoidal (∇ · H = 0). (b) El
rotacional del campo magnético H es nulo (∇×H = 0).

267. En el plano de separación entre dos medios materiales de permeabilidades magnéticas
µ1 y µ2 existe una corriente filiforme rectilı́nea e indefinida de intensidad I . Calcular el
campo magnético B y el vector excitación magnética H en todo el espacio.

268. Se tiene un imán cilı́ndrico de altura h y radio a, uniformemente imanado (o magneti-
zado), cuyo vector imanación (densidad de dipolos magnéticos por unidad de volumen)
es M = Muz, siendo a la dirección axial del imán. Deducir el valor de las cargas
magnéticas equivalentes (M es una constante).
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269. Un toroide de radio promedio R y sección S está formado por dos medios toroides con
permeabilidades µ1 y µ2. Bobinado entorno a él se encuentra una bobina de N vueltas.
Calcular el coeficiente de autoinducción de dicho toroide.

270. Se tiene un cilindro de radio a y altura h uniformemente imanado con densidad M =
M0uz, siendo el eje z el eje de simetrı́a de revolución del cilindro. Calcular las corrientes
equivalentes a la imanación.

271. Justificar por qué son ciertas o falsas las siguientes afirmaciones:
(a) Si ∇ ·B = 0 ⇒ ∇ ·M = 0.
(b) En un medio magnético en el que no hay corrientes verdaderas, ∇×B es proporcional
a ∇×M .
(c) En un medio magnético con µ constante, si no hay densidad de corriente verdadera,
no hay densidad de corriente de imanación.
(d) En el vacı́o, si

∮
H · dl = 0 ⇒ ∇×H = 0.

272. Las susceptibilidades magnéticas de los tres primeros gases nobles son χm(He) = −1, 1×
10−9, χm(Ne) = −3, 9 × 10−9 y χm(Ar) = −1, 1 × 10−8. Las susceptibilidades
magnéticas de los tres primeras tierras raras son χm(La) = 5, 33 × 10−5, χm(Ce) =
1, 50× 10−3 y χm(Pr) = 3, 34× 10−3. Explicar estos resultados.

273. Estimar el máximo valor de M del Fe. Suponer que el momento dipolar atómico es
debido al spin desapareado de dos electrones. La densidad másica del Fe es de 7, 87×103

kg/m3 y la masa atómica es de 55,85 unidades.

274. En el modelo de Bohr de un átomo, un electrón da vueltas a velocidad v alrededor del
núcleo describiendo un cı́rculo de radio r, siendo su momento angular L = mvr =
h/2π, siendo h la constante de Planck. Calcular el momento magnético en unidades del
sistema internacional. Como modelo simple de dominios ferromagnéticos, suponer que
los momentos atómicos (justo los que hemos calculado) están alineados y situados en los
vértices de una red cúbica de espaciado 3 Å. Calcular la imanación.
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