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Electromagnetismo

Andrés Cantarero. Curso 
2005-2006.

El campo de las 
cargas en reposo: el 
campo electrostático

Introducción.
Propiedades diferenciales del campo 
electrostático.
Propiedades integrales del campo 
electrostático. Teorema de Gauss.
El potencial electrostático. Ecuaciones del 
potencial.
La condición de equilibrio para 
conductores homogéneos y sus 
consecuencias.

Campo eléctrico

Interpretación de la ley de Coulomb: 
acción a distancia: influencia local: 
concepto de campo
Pero en cargas puntuales: problema del 
autocampo
La definición de campo eléctrico debido a 
una distribución de carga es:
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Campo eléctrico
Reinterpretación de la ley de Coulomb en términos de un nuevo 
concepto: el campo eléctrico. La carga 1 crea una “influencia” en 
el espacio que siente la carga 2, la cual sufre una fuerza

F2 = q2E1

Al situar la carga 2 en un punto P del espacio, ¿modifica la 
carga 2 el campo creado por la carga 1? 

E = lim
q→0

F

q

¿Se soluciona el problema definiendo el campo como la fuerza 
sobre una carga prueba cuando el valor de ésta tiende a cero?

Campo debido a cargas
El campo eléctrico debido a una carga puntual en el orign es, 
a partir de la  ley de Coulomb,
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E(r) =
1

4πε0

q

|r − r0|2u|r−r0| =
1

4πε0

q(r − r0)
|r − r0|3

Si la carga no está en el origen sino en r’,

Generalizando para una distribución de carga,

E(r) =
1

4πε0

Z Z Z
V

ρ(r0)(r − r0)
|r − r0|3 d3r0



2

Líneas de campo

Líneas de campo en un 
condensador plano

Líneas de campo entre dos 
conductores de distinta forma

Las líneas de campo se definen como tangentes al vector campo 
en cada punto del espacio
El número de líneas es proporcional a la intensidad del campo

Líneas de campo de 
una carga puntual

La evaluación del campo eléctrico parece 
complicada incluso en problema sencillos
Si hay simetría puede aprovecharse ésta para la 
determinación del campo eléctrico mediante el 
teorema de Gauss, que en su forma integral nos 
dice que:

S es una superficie cerrada (real o imaginaria) y 
q la carga total encerrada

Teorema de Gauss

I
E(r) · dS(r) = qenc

ε0

Johann Carl Friedrich Gauss
(1777-1855)

Uno de los matemáticos más
importantes de la historia
Publicó sus trabajos más
importantes en las áreas:

Geometría no euclidiana y 
diferencial
Estadística
Teoría del potencial
Magnetismo terrestre

Uno de los pocos científicos con su nombre en un billete

Flujo del campo eléctrico

El flujo es proporcional al número de líneas 
de campo que atraviesa una superficie 
determinada

En forma vectorial,

La integral sobre una superficie cerrada es:

ΦE =
X

∆AE cos θ

ΦE =
X

∆A ·E

ΦE =

I
E · dA

Ángulo plano y ángulo sólido
circunferencia

de radio r=1
superficie esférica

de radio r=1

α
Ω

α =
l

r
Ω =

S

r2
αT = 2π ΩT = 4π

Ángulo sólido

∆Ω =
∆A cos θ

r2
=
∆An · r
r2
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Demostración del T. Gauss

Intercambiando la integral de superficie por la de volumen,

ΦE =

I
E(r) · dS = 1

4πε0

I ∙Z Z Z
ρ(r0)(r − r0)
|r − r0|3 d3r0

¸
dS

ΦE =
1

4πε0

Z Z Z ∙I
(r − r0) · dS(r)
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¸
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ΦE =
1

4πε0
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Si no hay cargas ΦE=0

¿Cuál es el flujo a 
través de cada 
superficie cerrada?
S1?
S2?
S3?
S4?

Carga puntual

Superficie esférica
de radio r que

encierra una carga
q en el origen

Generalicemos a 
cualquier
superficie

Calculemos el 
flujo a través de

la esfera
ΦE =

H
E · dS

q

ε0
= E4πr2

E =
1

4πε0

q

r2

ΦE =
H
EdS = E

H
dS

Hilo indefinido

ΦE =
q

ε0
=
λl

ε0
= E2πrl E =

1

2πε0

λ

r

Plano indefinido
Flujo a través de la 

superficie del cilindro

Campo en la superficie
del plano aislante

ΦE =
σA

ε0
= 2EA

E =
σ

2ε0

Forma diferencial del teorema de 
Gauss I

E · dS = 1

ε0

Z
ρd3r

Z
∇ ·Ed3r = 1

ε0

Z
ρd3r

∇ ·E(r) = ρ(r)

ε0
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Campo gravitatorio y electrostático

FG = −G
mM

r2
FC = K

qQ

r2

Fuerza entre dos masas Fuerza entre dos cargas

Campo gravitatorio Campo eléctrico

Trabajo como diferencia de energía potencial (gravitatoria o electrostática)

Fg =mg Fe = qE

Wif =

Z f

i

F · ds = q
Z f

i

E · ds = −∆U = Ui − Uf

Wif =

Z f

i

F · ds = m
Z f

i

g · ds = −∆U = Ui − Uf

Potencial eléctrico
Se define el potencial eléctrico como la energía
potencial por unidad de carga, i.e.

De la definición de potencial,

En forma diferencial,

Es = −
dV

ds

V =
U

q

Por lo tanto

W =
R f
i F · ds = q0

R f
i E · ds = −∆U

∆V = Vf − Vi = −
R f
i
E · ds

dV = −Eds = −Eds cos θ = −Esds

E = −∇V

Superficies equipotenciales

Dado que cuando E y ds son perpendiculares no hay variación de potencial, 
las superficies equipotenciales son perpendiculares a las líneas de campo.

El campo y el potencial
De la expresión del campo eléctrico en términos del potencial,

se deduce que el campo electrostático (el de las cargas en reposo) es
irrotacional. Esto, en términos integrales indica que la circulación del 
campo eléctrico es nula, sea cual sea la trayectoria:

El principio de superposición de aplica de forma más conveniente al potencial

E = −∇V ∇×E = 0

I
E · dl = 0

E = E1 +E2 + · · · = −∇V1 −∇V2 − . . .

E = −∇(V1 + V2 + . . . )

Expresión integral para V

Pero

Luego

Por tanto

E(r) =
1

4πε0

Z Z Z
V

ρ(r0)(r − r0)
|r − r0|3 d3r0

r − r0
|r − r0|3 =∇

0
∙

1

|r − r0|

¸
= −∇

∙
1

|r − r0|

¸

E(r) = −∇
∙
1

4πε0

Z Z Z
ρ(r0)
|r − r0|d

3r0
¸

V (r) =
1

4πε0

Z Z Z
ρ(r0)

|r − r0|d
3r0

Ecuaciones de Poisson y 
Laplace

De la ley de Gauss,

y la definición en términos del potencial

Ecuación de Poisson Ecuación de Laplace

∆V = − ρ

ε0
∆V = 0

∇ ·E =
ρ

ε0

E = −∇V
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Conductores (perfectos)
El campo es cero en el interior del 
conductor
Las cargas en un conductor están en la 
superficie
La superficie de un conductor es una
superficie equipotencial: el campo 
eléctrico es perpendicular a la superficie
de un conductor
En regiones con más curvatura hay más
acumulación de carga

Campo eléctrico en la superficie de 
un conductor

El flujo a través del cilindro de la figura es

ΦE =
σA

ε0
= EA

por el teorema de Gauss, luego el campo
en la superficie del conductor es:

E =
σ

ε0

Fuerza sobre la superficie de un 
conductor cargado

El campo sobre la superficie del conductor (fuera del 
conductor) sabemos que vale

por el teorema de Gauss, mientras que el campo en el 
interior es nulo,

La fuerza sobre un elemento de carga es
Eb = 0

Ea =
σ

ε0

fds = σdsE
El campo en a y b lo podemos escribir como

Ea = Eresto +
σ

2ε0
Eb = Eresto −

σ

2ε0

f =
σ2

2ε0

La densidad de fuerza sobre la superficie
de un conductor cargado es:

Cargas inducidas
Al introducirse una carga q dentro de una superficie
conductora hueca, debe inducirse una carga en la superficie
interna del conductor de manera que se anule el campo en el 
volumen del mismo.


