PRÁCTICA 2 SIMULACIÓN DE LA DIFRACCIÓN DE RAYOS X

2.1. Simulaciones de redes planas monoatómicas. Mínimo: 2 orientaciones con familias de planos diferentes y al menos 3 de las cuatros redes planas.
2.1.1. Red plana cuadrada. Parámetros elegidos: $a = 0$, $b = 0$, $\gamma = 0$
$\underline{\mathbf{Orientación}} = 0^{\circ}, (h,k) = (0,1)$
Calcula el valor del espaciado entre planos esperado según la orientación elegida,
d _{familia} (teorica) = Difractograma
2q
d_{hk}
d _{familia} (simulación) =
$\underline{\mathbf{Orientación}} = \boxed{, (h,k) = }$
Calcula el valor del espaciado entre planos esperado según la orientación elegida,
d _{familia} (teorica) = Difractograma
$2\mathbf{q}$
$\mathbf{d_{hk}}$
d _{familia} (simulación) =
$\underline{\mathbf{Orientación}} = , (h,k) = $
Calcula el valor del espaciado entre planos esperado según la orientación elegida,
d _{familia} (teorica) = Difractograma
2q
$\mathbf{d_{hk}}$
$\mathbf{d_{familia}}$ (simulación) =
2.1.2. Red plana rectangular. Parámetros elegidos: $a = 0$, $b = 0$, $v = 0$.
$\underline{\mathbf{Orientación}} = 0^{\circ}, (h,k) = (0,1)$
Calcula el valor del espaciado entre planos esperado según la orientación elegida,
d _{familia} (teorica) = Difractograma
2q
$\mathbf{d_{hk}}$
d _{familia} (simulación) =

 $\mathbf{d_{hk}}$

d_{familia} (simulación) =

2.2. Simulaciones de redes planas con más de un átomo en la CELDA UNIDAD.	Definir al menos
una celda unidad que contenga dos o tres átomos con factores atómicos y posiciones diferer	ites.

2.2.1. Celda unidad 1. Parámetros elegidos: a = b = $\gamma =$

Posición y factores atómicos de los átomos del motivo

$$(x_1,y_1) = (0,0)$$
 $f_1 = 1$
 $(x_2,y_2) = ($,) $f_2 =$
 $(x_3,y_3) = ($,) $f_3 =$

Orientación elegida =

Difractograma esperado para la celda unidad elegida (red monoatomica):

2q			
I_{hk} (*)			

 $^{^{(}st)}$ I_{hk} es el valor de la intensidad del pico de difracción

Difractograma de la red di- o tri-atómica elegida

2q			
I _{hk}			

[¿]Existen diferencias en las intensidades del difractograma?¿Para qué vectores (h,k)?

2.2.2. Con la misma celda, elige (x_2,y_2) , (x_3,y_3) , f_2 y f_3 (mínimo dos átomos en la celda) para observar una extinción sistemática.

$$(x_1,y_1) = (0,0)$$
 $f_1 = 1$
 $(x_2,y_2) = ($,) $f_2 =$ $(x_3,y_3) = ($,) $f_3 =$

Calcular el factor de estructura F(h,k) esperado, aplicando la expresión [2,4],

$$F(h,k) = \boxed{1 +}$$

¿Existen valores de (h,k) que anulen el factor de estructura?

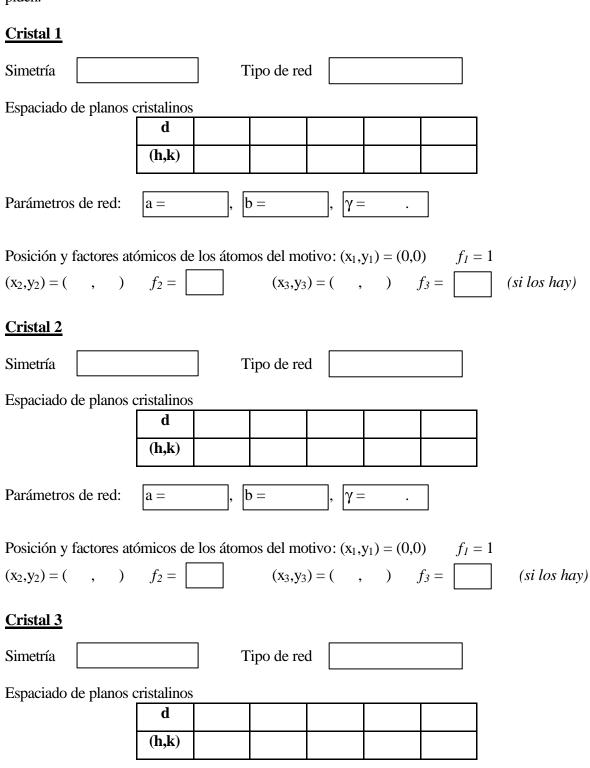
En caso contrario redefinir las posiciones y/o los factores atómicos antes de continuar

Orientación elegida =

Difractograma de la red di- o tri-atómica elegida

2q			
I _{hk}			

[¿]Observas una extinción sistemática de algunos de los picos de difracción (con respecto a los que se obtendrían en la correspondiente red monoatómica)?


Si alguna de las respuestas a estas 3 preguntas fuese NO, volver a repetir el difractograma del cristal en la orientación adecuada.

[¿]Para qué vector (h,k)?

[¿]Coincide con el obtenido del factor de estructura?

Parámetros de red:

2.3. C	rista	les	probl	lema	cristales PL	ANOS.	Aplica lo	apre	ndido en	los	dos	apartados	anterio	ores	y,
despué	s de	re	alizar	los	difractogramas	necesario	s, rellena	las	casillas	con	los	resultado	s que	se	os
piden.															

Posición y factores atómicos de los átomos del motivo: $(x_1,y_1)=(0,0)$ $f_1=1$ $(x_2,y_2)=($,) $f_2=$ $(si\ los\ hay)$

 $|\gamma|$

b =

En los casos en los que se excluya la posibilidad de que la estructura sea cúbica, construir la secuencia hexagonal

d_{max}/d_{hkl} calculando primero a y c de los dos primeros picos de difracción.

dmax/dhkl BCC

(h,kl)

 d_{max}/d_{hkl} HEXAG

(h,kl) ->					
d _{max} /d _{hkl} HEXAG					

Cristal 1.

Completar con los datos experimentales del difractograma de polvo

2q					
sinq /sinq _{min}					

Compara la secuencia con los d_{max}/d_{hkl} de las distintas estructuras:

Estructura

Parámetros de red: a =, c =

Posición del motivo: $(x_1, y_1, z_1) = (0,0,0)$

$$(x_2,y_2,z_2) = ($$
 , $)$ $(x_3,y_3,z_3) = ($, $)$ $(si los hay)$

Cristal 2.

Completar con los datos experimentales del difractograma de polvo

2q					
sinq /sinq _{min}					

Estructura

Parámetros de red: a =, c =

Posición del motivo: $(x_1,y_1,z_1) = (0,0,0)$

$$(x_2,y_2,z_2) = ($$
 , $)$ $(x_3,y_3,z_3) = ($, $)$ $(si los hay)$

Cristal 3

Completar con los datos experimentales del difractograma de polvo

2q					
sinq /sinq _{min}					

Compara la secuencia con los d_{max}/d_{hkl} de las distintas estructuras:

Estructura

Parámetros de red: a =, c =

Posición del motivo: $(x_1,y_1,z_1) = (0,0,0)$

$$(x_2,y_2,z_2) = ($$
 , $)$ $(x_3,y_3,z_3) = ($, $)$ $(si los hay)$