III WORKSHOP EN EVALUACIÓN DE POLÍTICAS PÚBLICAS

Experiencias de evaluación de políticas públicas

La evaluación de políticas públicas mediante la técnica de controles sintéticos

JAVIER MARTÍN ROMÁN

Universidad Nacional de Educación a Distancia (UNED)

Dpto. Economía Aplicada y Gestión Pública

jmartin@cee.uned.es

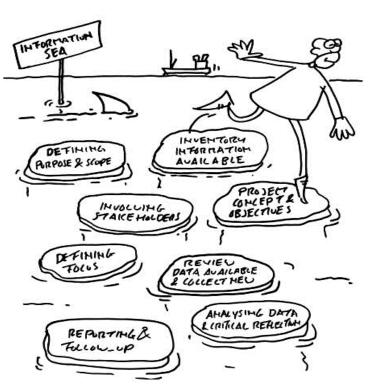
Universitat de València Facultat d'Economia 4 de febrero de 2022

ÍNDICE

- 1: Motivación inicial
- 2: Controles sintéticos (synthetic control methods)
- 3: Aplicación 1: "shocks" de desempleo y privación material
- 4: Aplicación 2: subsidio agrario en Andalucía
- → 5: Recapitulación y extensiones

- [3] APLICACIÓN 1: SD & PRIVACIÓN
- [4] APLICACIÓN 2: SUBSIDIO AGRARIO
- [5] RECAPITULACIÓN Y EXTENSIONES

ÍNDICE

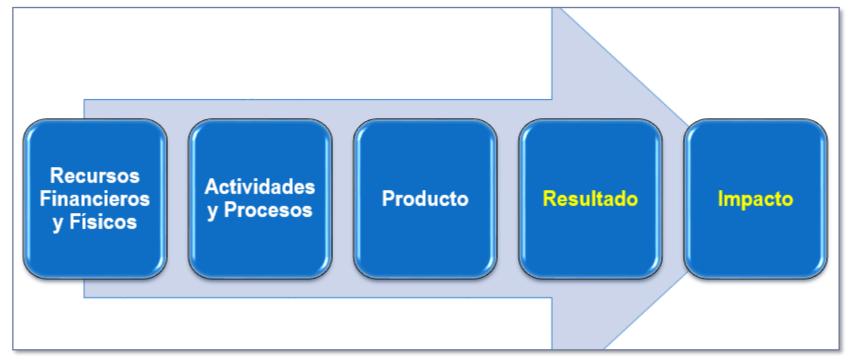

- 1: Motivación inicial
- 2: Controles sintéticos (synthetic control method)
- 3: Aplicación 1: "shocks" de desempleo y privación material
- 4: Aplicación 2: subsidio agrario en Andalucía
- 5: Recapitulación y extensiones

[3] APLICACIÓN 1: SD & PRIVACIÓN[4] APLICACIÓN 2: SUBSIDIO AGRARIO[5] RECAPITULACIÓN Y EXTENSIONES

[1.1] ¿Por qué evaluar?

WHAT AND HOW TO EVALUATE

Búsqueda de evidencia:


- ¿Ha funcionado la intervención pública implementada?
- ¿Es correcto el diseño de los programas llevados a cabo?
- ¿Se podría mejorar?

- [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN [1] MOTIVACIÓN INICIAL [4] APLICACIÓN 2: SUBSIDIO AGRARIO
 - [5] RECAPITULACIÓN Y EXTENSIONES

[1.2] Evaluación teórica del programa

Marco Lógico de una política pública:

Fuente: Moral Arce & Pérez López (2015).

Diapositiva | 04 de 60

- [] ÍNDICE [**1] MOTIVACIÓN INICIAL** [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN[4] APLICACIÓN 2: SUBSIDIO AGRARIO[5] RECAPITULACIÓN Y EXTENSIONES

[1.3] Evaluación de impacto

- Principales objetivos:
 - 1) Definir si un programa produjo los efectos deseados en las personas, hogares o instituciones sobre los que recae.
 - Obtener una estimación cuantitativa de los efectos (beneficios potenciales) de la política.
 - 3) Determinar o establecer si puede atribuirse o no (y en qué grado) la causa del cambio al programa o a la intervención pública llevada a cabo.

[3] APLICACIÓN 1: SD & PRIVACIÓN[4] APLICACIÓN 2: SUBSIDIO AGRARIO[5] RECAPITULACIÓN Y EXTENSIONES

[1.3] Evaluación de impacto

- Metodologías y técnicas de evaluación de impacto:
 - 1) Diseños experimentales.
 - 2) Diseños cuasi-experimentales:
 - a) Diferencias en diferencias (diff-in-diff)
 - b) Controles sintéticos (synthetic control methods) 🗸
 - c) Variables instrumentales
 - d) Regresión en discontinuidad / discontinua
 - e) Matching / Propensity score matching
 - 3) Diseños antes-después.
- Diapositiva | 06 de 60

- [] ÍNDICE [1] MOTIVACIÓN INICIAL [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN
- [4] APLICACIÓN 2: SUBSIDIO AGRARIO
- [5] RECAPITULACIÓN Y EXTENSIONES

ÍNDICE

- 1: Motivación inicial
- 2: Controles sintéticos (synthetic control methods)
- 3: Aplicación 1: "shocks" de desempleo y privación material
- 4: Aplicación 2: subsidio agrario en Andalucía
- → 5: Recapitulación y extensiones

- [] ÍNDICE [1] MOTIVACIÓN INICIAL [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN[4] APLICACIÓN 2: SUBSIDIO AGRARIO[5] RECAPITULACIÓN Y EXTENSIONES

[2.1] Controles sintéticos ▶ presentación

- SCM is arguably the most important innovation in the policy evaluation literature in the last 15 years" (Athey & Imbens, 2017).
- En este contexto de evaluación cuantitativa de políticas públicas, la correcta generación del "contrafactual" constituye la piedra angular.
- A fin de corregir la discrecionalidad que caracteriza la elección de las unidades de control en numerosos estudios (muy habitual en diff-in-diff), SCM nace con la sugerente propuesta de <u>Abadie & Gardeazabal (2003)</u>.
- Desde entonces, la aplicación y difusión de esta técnica no ha dejado de crecer, y se ha extendido ya a intervenciones sociales, económicas o de salud pública, entre otros ámbitos.

[2.2] Controles sintéticos > revisión de literatura

Tipo de estudio	Ámbito nacional	Ámbito regional / subnacional
Eventos naturales	Cavallo et al. (2013) Lépine et al. (2021)	Coffman & Noy (2012) Barone & Mocetti (2014)
Eventos políticos	Horiuchi & Mayerson (2015) Abadie et al. (2015)	Abadie & Gardeazabal (2003) Dorsett (2013)
Política económica	Nannicini & Billmeier (2011) Lee (2011) Acemoglu et al. (2016)	Abadie et al. (2010) Bohn et al. (2014) Pinotti (2015)
Metodológicos / otros	<u>Chan et al. (2014)</u> ; <u>Firpo & P</u>	Possebom (2018); <u>Abadie (2021)</u>

Fuente: Craig (2015) y elaboración propia.

Diapositiva | 09 de 60

III Workshop en Evaluación de Políticas Públicas

			ÍNDICE	
	1]	MOTIVACIÓN	NICIAL
ſ	2	1	SCM	

[3] APLICACIÓN 1: SD & PRIVACIÓN[4] APLICACIÓN 2: SUBSIDIO AGRARIO[5] RECAPITULACIÓN Y EXTENSIONES

[2.2] Controles sintéticos ▶ intuición

- Un gran número de intervenciones de política económica se implementan a nivel agregado, y afectan a un reducido número de entidades grandes, tales como ciudades, regiones o países.
- Supongamos que únicamente contamos con una unidad tratada con este nivel de agregación. ¿Cómo seleccionamos el grupo de control?
- SCM sugiere que, en algunas ocasiones, una combinación de unidades "donantes" se aproxima más fielmente a las características de la unidad tratada que un único control.
- Por ello, propone utilizar como unidad de comparación (control sintético) el promedio ponderado de las unidades sin tratar que mejor reproduce las características de la unidad tratada (en el periodo pre-tratamiento).

[2.3] Controles sintéticos > formalización

- ightharpoonup Supongamos que observamos I+1 unidades, siendo la primera de ellas la única expuesta y las I restantes controles potenciales ("donor pool", grupo de control o unidad sintética).
- Imaginemos, asimismo, que T_0 representa el periodo (año o trimestre) de comienzo del tratamiento o de inicio de la intervención.
- En el caso de la unidad tratada, tenemos datos disponibles sobre la evolución real del "outcome" (Y_{1t}^I) , pero desconocemos qué habría sucedido si no hubiese estado expuesta (Y_{1t}^N) para $t > T_0$).
- En consecuencia, lo que necesitamos es una estimación de Y_{1t}^N :

$$\alpha_{1t} = Y_{1t}^I - Y_{1t}^N = Y_{1t} - Y_{1t}^N$$

[2.3] Controles sintéticos ▶ formalización

En $t \leq T_0$ se determina el vector de pesos óptimo: $W^*(V^*)$. Es el que, sujeto a $w_j \geq 0$ y $\sum_{i=2}^J w_i^* = 1$, minimiza el siguiente problema:

$$\parallel X_{1}-X_{0}W\parallel_{v}=\sqrt{(X_{1}-X_{0}W)'V(X_{1}-X_{0}W)}$$

- Constituye un proceso iterativo de optimización similar al método Newton-Raphson o al algoritmo de Broyden-Fletcher-Goldfarb-Shanno (BFGS).
- Calculadas $W^*(V^*)$ y V^* , un estimador insesgado de $lpha_{1t}$, que nos determinaría un impacto causal válido y fiable $\forall \ t > T_0$ sería el siguiente:

$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

			ÍNDICE	
	1		MOTIVACIÓN	INICIAL
ſ	2	1	SCM	

[3] APLICACIÓN 1: SD & PRIVACIÓN[4] APLICACIÓN 2: SUBSIDIO AGRARIO[5] RECAPITULACIÓN Y EXTENSIONES

[2.4] Controles sintéticos > inferencia estadística

- El análisis de sensibilidad y robustez en SCM se basa en test de "falsificación" o permutación, esto es, en ejercicios de simulación:
 - 1) "In-space" / "In-place" $placebos \Rightarrow$ ¿Qué habría sucedido si la política hubiese afectado a las diferentes unidades de control?
 - a) Método gráfico: visualizando las distribuciones de placebos.
 - b) Método analítico: calculando RMSPE y $p-valores\ std$.

- [] ÍNDICE [1] MOTIVACIÓN INICIAL [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN
- [4] APLICACIÓN 2: SUBSIDIO AGRARIO
- [5] RECAPITULACIÓN Y EXTENSIONES

ÍNDICE

- 1: Motivación inicial
- 2: Controles sintéticos (synthetic control methods)
- 3: Aplicación 1: "shocks" de desempleo y privación material
- 4: Aplicación 2: subsidio agrario en Andalucía
- 5: Recapitulación y extensiones

[3] APLICACIÓN 1: SD & PRIVACIÓN

[4] APLICACIÓN 2: SUBSIDIO AGRARIO

[5] RECAPITULACIÓN Y EXTENSIONES

[3.1] Aplicación 1 ▶ outline

EQUALITAS WP N° 70 ECINEQ WP 2022-XXX

C

Unemployment Shocks and Material Deprivation in the European Union: A Synthetic Control Approach

Luis Ayala

Universidad Nacional de Educación a Distancia (UNED) layala@cee.uned.es

Javier Martín-Román

Universidad Nacional de Educación a Distancia (UNED) <u>jmartin@cee.uned.es</u>

Carolina Navarro-Ruiz

Universidad Nacional de Educación a Distancia (UNED) cnavarro@cee.uned.es

[3] APLICACIÓN 1: SD & PRIVACIÓN [4] APLICACIÓN 2: SUBSIDIO AGRARIO

1 5 1 RECAPITULACIÓN Y EXTENSIONES

[3.1] Aplicación 1 ▶ outline

RESEARCH QUESTION:

¿Son las medidas de privación material tan sensibles a cambios drásticos en las condiciones macroeconómicas (shocks de desempleo) como las medidas de pobreza monetaria?

DATOS:

- ▶ Unidades tratadas → España (ejercicio A) y Grecia (ejercicio B)
- Donor pool → resto de países UE-27 (excepto Chipre)
- Dutcome → tasa de privación material estándar (%)
- ▶ Base de datos → EU-SILC & Eurostat, datos anuales
- Periodo de estudio → 2004 2019 ▶ pre-tratamiento: 2004 2008

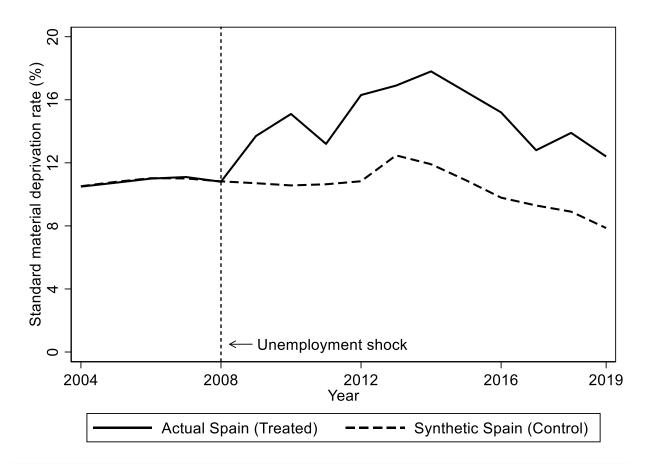
[3] APLICACIÓN 1: SD & PRIVACIÓN [4] APLICACIÓN 2: SUBSIDIO AGRARIO

[4] APLICACION 2: SUBSIDIO AGRARIC [5] RECAPITULACIÓN Y EXTENSIONES

[3.1] Aplicación 1 ▶ outline

DBJETIVO:

Estimar los efectos de shocks de desempleo sobre las tasas de privación material en Europa.


> ¿"SHOCK DE DESEMPLEO"?

- Encontramos propuestas concretas (<u>Burda & Hamermesh, 2010</u>), pero no existe consenso en la literatura; no hay una definición estándar.
- En este trabajo presentamos una definición "ad hoc", y asumimos que un país sufrió un shock de desempleo en 2008 si, conjuntamente:
 - a) la tasa de desempleo creció más del 200 % en 2007-2014;
 - b) la tasa de desempleo fue superior al 20 % en 2014.

5] RECAPITULACIÓN Y EXTENSIONES

5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E1 / ESPAÑA: promedio de los predictores

Dradiatora	Sr	pain
Predictors	Actual	Synthetic
Gini index	0.319	0.283
Work intensity (%)	59.73	60.29
Ln (GDP per capita)	10.02	10.38
Social protection benefits (% GDP)	19.98	25.49
Stand. material deprivation rate 2008	10.79	10.83
Stand. material deprivation rate 2007	11.10	11.01
Stand. material deprivation rate 2005	10.74	10.80

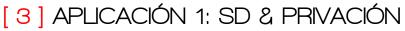
Note: Gini index and In (GDP per capita) are averaged for the 2004-2008 period. Work intensity, between 2006-2008; social protection benefits in 2005-2008.

Diapositiva | 19 de 60

III Workshop en Evaluación de Políticas Públicas

1] MOTIVACIÓN INICIAL 2 | SCM

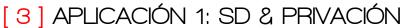
[3] APLICACIÓN 1: SD & PRIVACIÓN


[4] APLICACIÓN 2: SUBSIDIO AGRARIO

Í 5 1 RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E1 / ESPAÑA: pesos de los donantes (W*)

Country	Weight	Country	Weight	Country	Weight
Austria	0.000	Greece	_	Portugal	0.226
Belgium	0.000	Hungary	0.000	Romania	0.000
Bulgaria	0.000	Ireland	0.000	Slovakia	0.000
Cyprus	_	Italy	0.000	Slovenia	0.000
Czech Rep.	0.000	Latvia	0.000	Sweden	0.100
Denmark	0.336	Lithuania	0.000	UK	0.000
Estonia	0.000	Luxembourg	0.118		
Finland	0.000	Malta	0.000		
France	0.000	Netherlands	0.000		
Germany	0.220	Poland	0.000		

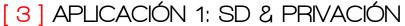


[4] APLICACIÓN 2: SUBSIDIO AGRARIO [5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E1 / ESPAÑA: pesos de los donantes (W*)

Country	Weight	Country	Weight	Country	Weight
Austria	0.000	Greece	_	Portugal	0.226
Belgium	0.000	Hungary	0.000	Romania	0.000
Bulgaria	0.000	Ireland	0.000	Slovakia	0.000
Cyprus	_	Italy	0.000	Slovenia	0.000
Czech Rep.	0.000	Latvia	0.000	Sweden	0.100
Denmark	0.336	Lithuania	0.000	UK	0.000
Estonia	0.000	Luxembourg	0.118		
Finland	0.000	Malta	0.000		
France	0.000	Netherlands	0.000		
Germany	0.220	Poland	0.000		

1 | MOTIVACIÓN INICIAL [2] SCM



[3.2] Aplicación 1 \blacktriangleright E1 / ESPAÑA: estimación del impacto $(\hat{\alpha}_{1t})$

Year	Impact (gap in pp)	Year	Impact (gap in pp)				
2009	2.99***	2015	5.61***				
2010	4.53***	2016	5.41***				
2011	2.56*	2017	3.51***				
2012	5.47***	2018	5.00***				
2013	4.43***	2019	4.54***				
2014	5.89***	_	_				
	Average impact (2009 - 2019): 4.54***						

Average impact (2009 – 2019): 4.54

$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

[5] RECAPITULACIÓN Y EXTENSIONES

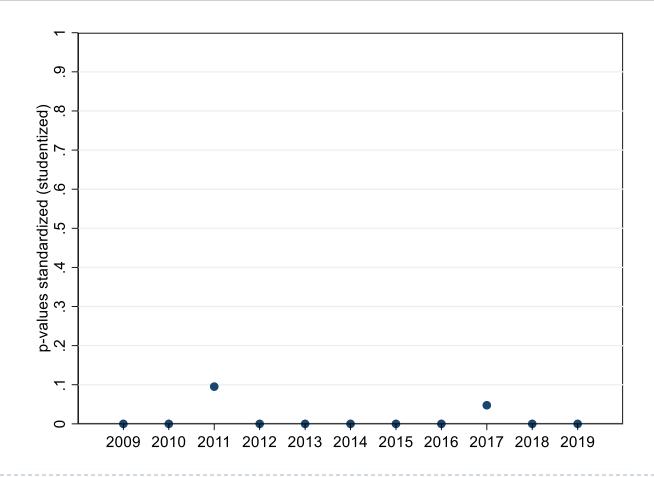
[3.2] Aplicación 1 \blacktriangleright E1 / ESPAÑA: estimación del impacto $(\hat{\alpha}_{1t})$

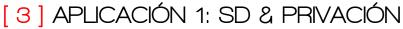
Year	Impact (gap in pp)	Year	Impact (gap in pp)
2009	2.99***	2015	5.61***
2010	4.53***	2016	5.41***
2011	2.56*	2017	3.51***
2012	5.47***	2018	5.00***
2013	4.43***	2019	4.54***
2014	5.89***	_	_

Average impact (2009 - 2019): 4.54***

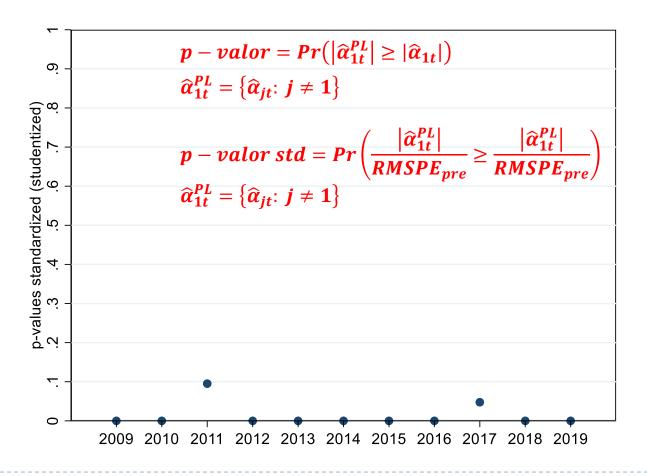

$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

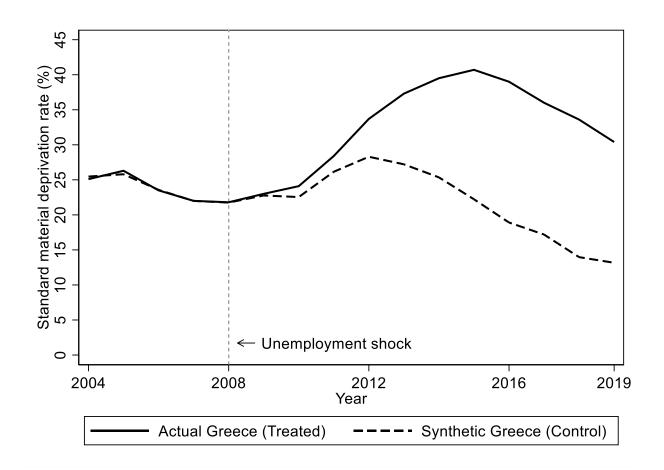
[3.2] Aplicación 1 ▶ E1 / ESPAÑA: inferencia → "in-place" placebos



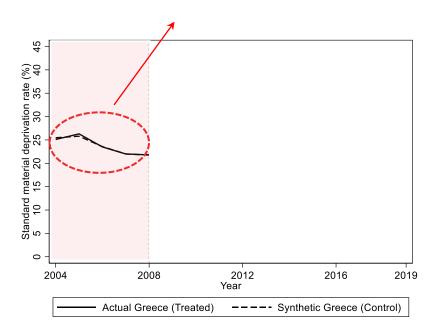


[3.2] Aplicación 1 ▶ E1 / ESPAÑA: inferencia → p-valores estándar




[3.2] Aplicación 1 ▶ E1 / ESPAÑA: inferencia → p-valores estándar

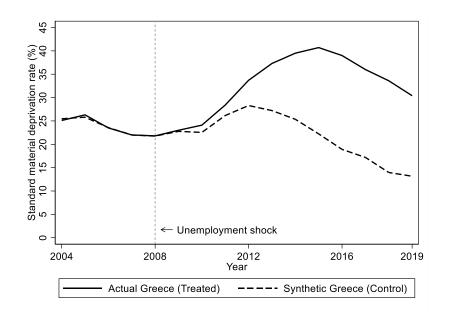
5] RECAPITULACIÓN Y EXTENSIONES

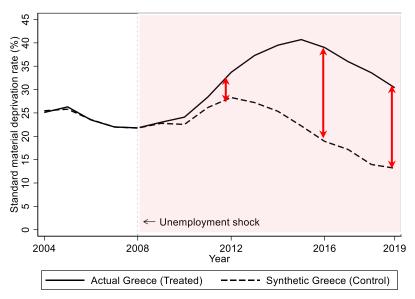

[3.2] Aplicación 1 ▶ E2 / GRECIA: "eyeball test"

- [3] APLICACIÓN 1: SD & PRIVACIÓN
- [4] APLICACIÓN 2: SUBSIDIO AGRARIC
- 5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E2 / GRECIA: "eyeball test"

$$\| X_1 - X_0 W \|_{v} = \sqrt{(X_1 - X_0 W)' V (X_1 - X_0 W)}$$



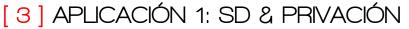


[4] APLICACIÓN 2: SUBSIDIO AGRARIO [5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E2 / GRECIA: "eyeball test"

$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

5 | RECAPITULACIÓN Y EXTENSIONES

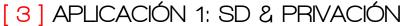

[3.2] Aplicación 1 > E2 / GRECIA: promedio de los predictores

Dradiatora	Gre	eece
Predictors	Actual	Synthetic
Gini index	0.336	0.318
Work intensity (%)	58.60	62.66
Ln (GDP per capita)	9.88	9.87
Social protection benefits (% GDP)	23.55	19.75
Stand. material deprivation rate 2008	21.80	21.76
Stand. material deprivation rate 2007	22.00	21.99
Stand. material deprivation rate 2005	26.30	25.80

Note: Gini index and In (GDP per capita) are averaged for the 2004-2008 period. Work intensity, between 2006-2008; social protection benefits in 2005-2008.

Diapositiva | 30 de 60

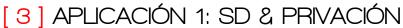
III Workshop en Evaluación de Políticas Públicas



[4] APLICACIÓN 2: SUBSIDIO AGRARIO [5] RECAPITULACIÓN Y EXTENSIONES

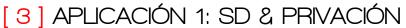
[3.2] Aplicación 1 ▶ E2 / GRECIA: pesos de los donantes (W*)

Country	Weight	Country	Weight	Country	Weight
Austria	0.000	Hungary	0.112	Romania	0.000
Belgium	0.000	Ireland	0.355	Slovakia	0.000
Bulgaria	0.000	Italy	0.264	Slovenia	0.000
Cyprus	_	Latvia	0.000	Spain	_
Czech Rep.	0.000	Lithuania	0.025	Sweden	0.000
Denmark	0.000	Luxembourg	0.000	UK	0.000
Estonia	0.000	Malta	0.000		
Finland	0.000	Netherlands	0.000		
France	0.000	Poland	0.233		
Germany	0.000	Portugal	0.000		



[3.2] Aplicación 1 ▶ E2 / GRECIA: pesos de los donantes (W*)

Country	Weight	Country	Weight	Country	Weight
Austria	0.000	Hungary	0.112	Romania	0.000
Belgium	0.000	Ireland	0.355	Slovakia	0.000
Bulgaria	0.000	Italy	0.264	Slovenia	0.000
Cyprus	_	Latvia	0.000	Spain	_
Czech Rep.	0.000	Lithuania	0.025	Sweden	0.000
Denmark	0.000	Luxembourg	0.000	UK	0.000
Estonia	0.000	Malta	0.000		
Finland	0.000	Netherlands	0.000		
France	0.000	Poland	0.233		
Germany	0.000	Portugal	0.000		


[3.2] Aplicación 1 \blacktriangleright E2 / GRECIA: estimación del impacto $(\hat{\alpha}_{1t})$

Year	Impact (gap in pp)	Year	Impact (gap in pp)
2009	0.23	2015	18.47*
2010	1.56	2016	20.09***
2011	2.24	2017	18.81***
2012	5.41	2018	19.63***
2013	10.08	2019	17.24***
2014	14.15*	_	_
	Average impact (00	00 0010 11 00**	

Average impact (2009 - 2019): 11.63**

$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

1] MOTIVACIÓN INICIAL [2] SCM

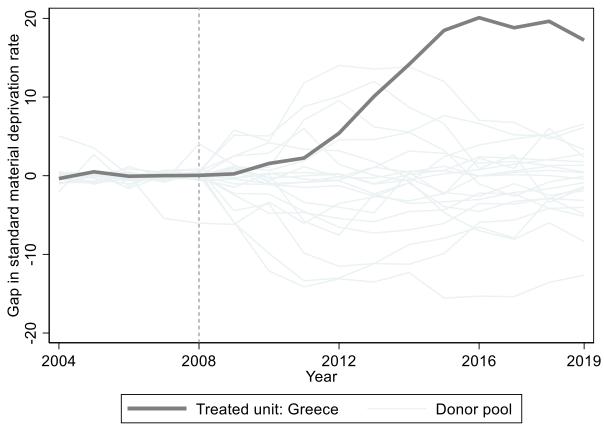
[4] APLICACIÓN 2: SUBSIDIO AGRARIO

[5] RECAPITULACIÓN Y EXTENSIONES

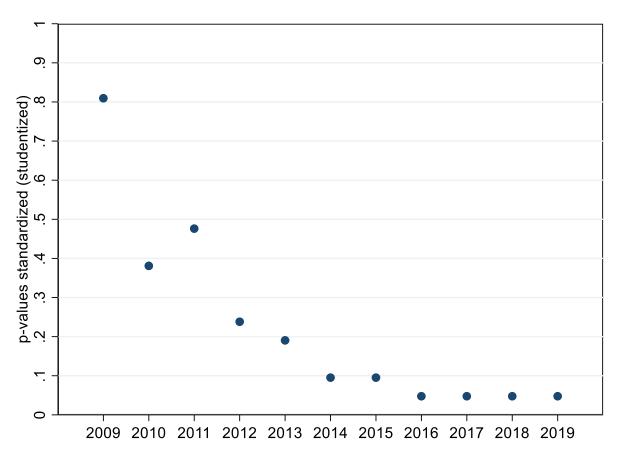
[3.2] Aplicación 1 \blacktriangleright E2 / GRECIA: estimación del impacto $(\hat{\alpha}_{1t})$

Year	Impact (gap in pp)	Year	Impact (gap in pp)
2009	0.23	2015	18.47*
2010	1.56	2016	20.09***
2011	2.24	2017	18.81***
2012	5.41	2018	19.63***
2013	10.08	2019	17.24***
2014	14.15*	_	_

Average impact (2009 - 2019): 11.63**


$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

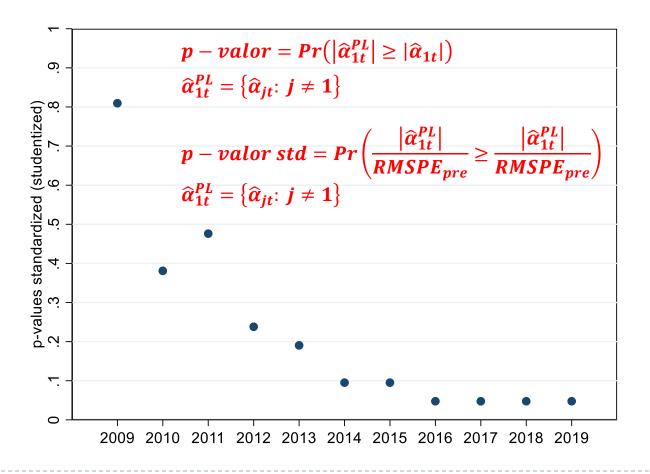
[3.2] Aplicación 1 ▶ E2 / GRECIA: inferencia → "in-place" placebos



4] APLICACIÓN 2: SUBSIDIO AGRARIO

5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E2 / GRECIA: inferencia → p-valores estándar


[3] APLICACIÓN 1: SD & PRIVACIÓN

4] APLICACIÓN 2: SUBSIDIO AGRARIC

5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ E2 / GRECIA: inferencia → p-valores estándar

[3] APLICACIÓN 1: SD & PRIVACIÓN [4] APLICACIÓN 2: SUBSIDIO AGRARIC

[4] APLICACIÓN 2: SUBSIDIO AGRARIO [5] RECAPITULACIÓN Y EXTENSIONES

[3.2] Aplicación 1 ▶ concluding remarks

RESULTADOS PRINCIPALES

- Apenas se ha investigado en temas de desigualdad, pobreza y privación aplicando SCM. En este trabajo demostramos su potencial y aplicabilidad examinando shocks de desempleo.
- 2) La evidencia presentada refuta el supuesto clásico de baja sensibilidad de los indicadores de privación material frente a cambios en el ciclo económico.
- 3) Los resultados obtenidos son robustos ante cambios en los outcomes, cuando se amplía el período de análisis e incluso cuando se aplica una definición alternativa de shock de desempleo.

- [] ÍNDICE [1] MOTIVACIÓN INICIAL [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN
- [4] APLICACIÓN 2: SUBSIDIO AGRARIO

C

[5] RECAPITULACIÓN Y EXTENSIONES

ÍNDICE

- 1: Motivación inicial
- 2: Controles sintéticos (synthetic control methods)
- 3: Aplicación 1: "shocks" de desempleo y privación material
- 4: Aplicación 2: subsidio agrario en Andalucía
- 5: Recapitulación y extensiones

[4.1] Aplicación 2 ▶ outline

An Impact Evaluation on the Aggregate Labour Supply of the Spanish Agrarian Unemployment Benefit

Ángel L. Martín-Román Universidad de Valladolid (UVa)

layala@cee.uned.es

Javier Martín-Román

Universidad Nacional de Educación a Distancia (UNED) imartin@cee.uned.es

RESULTADOS PRELIMINARES

[3] APLICACIÓN 1: SD & PRIVACIÓN
[4] APLICACIÓN 2: SUBSIDIO AGRARIO
[5] RECAPITULACIÓN Y EXTENSIONES

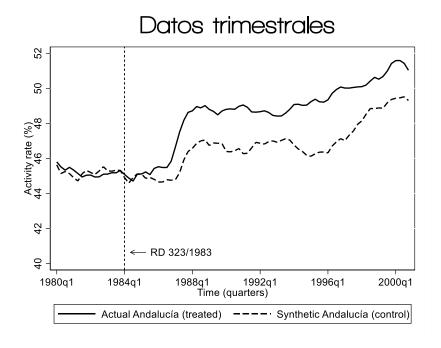
[4.1] Aplicación 2 ▶ outline

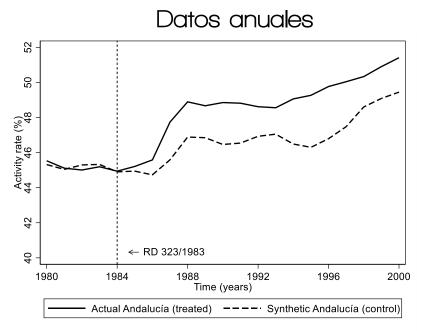
RESEARCH QUESTIONS:

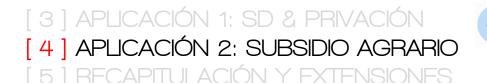
¿La aprobación del RD 323/1983 que regula el subsidio agrario por desempleo incrementó la tasa de actividad de la población andaluza? ¿La población "activizada" fue superior a la de beneficiarios?

DATOS:

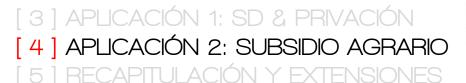
- Unidad tratada → Andalucía
- Donor pool → resto de CCAA (excepto Extremadura)
- Outcome → tasa de actividad (%)
- ▶ Base de datos → INE, datos trimestrales
- Periodo → 1980/q1 2000/q4 ▶ pre-tratamiento: 1980/q1 1984/q1
- Diapositiva | 41 de 60


- 1 INDICE 1 MOTIVACIÓN INICIAL 2 | SCM


3] APLICACIÓN 1: SD & PRIVACIÓN [4] APLICACIÓN 2: SUBSIDIO AGRARIO



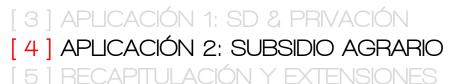
[4.2] Aplicación 2 > ANDALUCÍA: "eyeball test"



[4.2] Aplicación 2 > ANDALUCÍA: promedios de los predictores

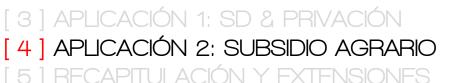
Dradiatora	Andalucía		
Predictors	Actual	Synthetic	
Males in active population (%)	76.89	76.30	
Actives aged 25-54 years / total actives (%)	63.39	59.11	
Employment in agriculture / total employment (%)	22.44	29.47	
Employment in construction / total employment (%)	11.01	10.55	
Long-term unemployment (1-2 years) (%)	20.36	19.18	
Very long-term unemployment (> 2 years) (%)	17.03	14.11	

Note: all predictors are averaged for the 1980/q1 - 1984/q1 period.



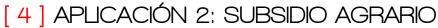
[4.2] Aplicación 2 ▶ ANDALUCÍA: pesos de los donantes (W*)

Spanish region	Weight	Spanish region	Weight
Aragón	0.000	Comunidad Valenciana	0.000
Principado de Asturias	0.000	Extremadura	_
Islas Baleares	0.000	Galicia	0.000
Canarias	0.005	Comunidad de Madrid	0.000
Cantabria	0.000	Región de Murcia	0.000
Castilla y León	0.000	Navarra	0.000
Castilla-La Mancha	0.995	País Vasco	0.000
Cataluña	0.000	La Rioja	0.000



[4.2] Aplicación 2 ▶ ANDALUCÍA: pesos de los donantes (W*)

Spanish region	Weight	Spanish region	Weight
Aragón	0.000	Comunidad Valenciana	0.000
Principado de Asturias	0.000	Extremadura	_
Islas Baleares	0.000	Galicia	0.000
Canarias	0.005	Comunidad de Madrid	0.000
Cantabria	0.000	Región de Murcia	0.000
Castilla y León	0.000	Navarra	0.000
Castilla-La Mancha	0.995	País Vasco	0.000
Cataluña	0.000	La Rioja	0.000

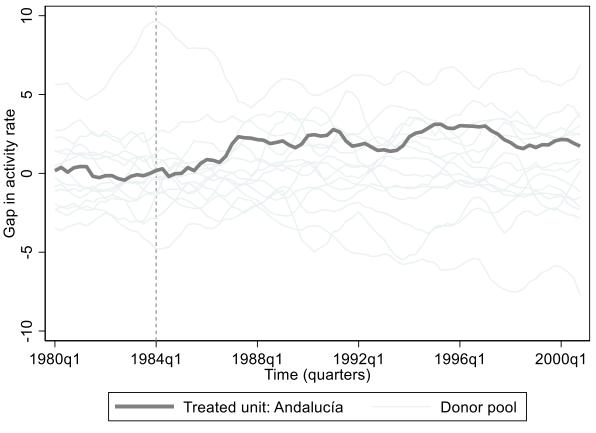


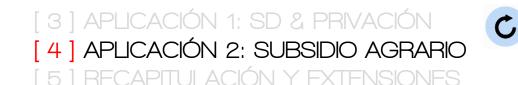
[4.2] Aplicación 2 ▶ ANDALUCÍA: pesos de los predictores (V*)

Predictors	Weight
Males in active population (%)	0.318
Actives aged 25-54 years / total actives (%)	0.009
Agricultural employment / total employment (%)	0.002
Construction employment / total employment (%)	0.598
Long-term unemployment (1-2 years) (%)	0.027
Very long-term unemployment (> 2 years) (%)	0.046

Year	Impact (gap in pp)	Year	Impact (gap in pp)
1985	0.27	1993	1.51***
1986	0.85***	1994	2.57***
1987	2.15***	1995	2,96***
1988	2.01***	1996	2.97***
1989	1.82***	1997	2.56***
1990	2.39***	1998	1,73**
1991	2.27***	1999	1.81***
1992	1,69***	2000	1.96***

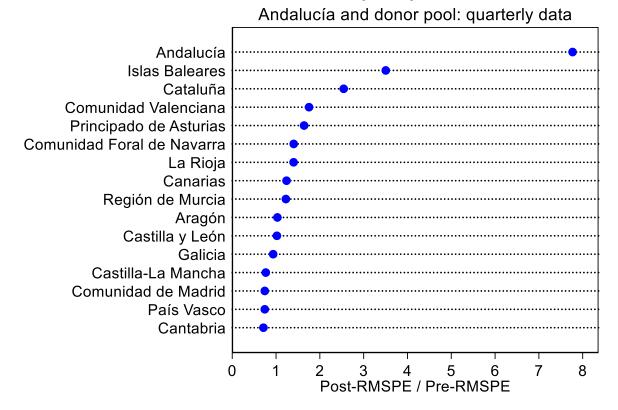
Average impact (1985 – 2000): 1.97***

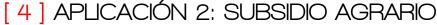

[5] RECAPITULACIÓN Y EXTENSIONES


[4.2] Aplicación 2 \blacktriangleright ANDALUCÍA: estimación del impacto $(\hat{\alpha}_{1t})$

Year	Impact (gap in pp)	Year	Impact (gap in pp)
1985	0.27	1993	1.51***
1986	0.85***	1994	2.57***
1987	2.15***	1995	2,96***
1988	2.01***	1996	2.97***
1989	1.82***	1997	2.56***
1990	2.39***	1998	1,73**
1991	2.27***	1999	1.81***
1992	1,69***	2000	1.96***
Average impact (1985 – 2000): 1.97***			

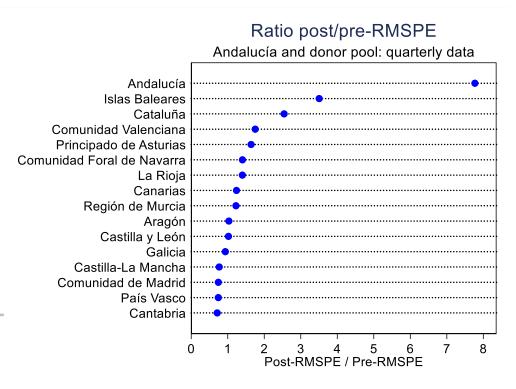
Olicación 2


[4.2] Aplicación 2 ▶ ANDALUCÍA: inferencia → "in-space" placebos

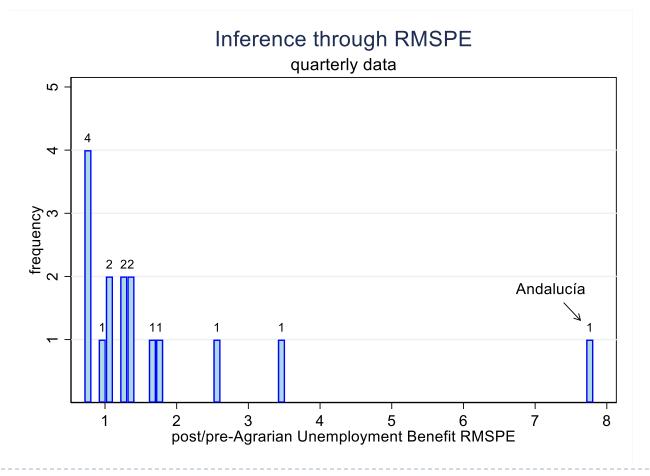


[4.2] Aplicación 2 🕨 ANDALUCÍA: inferencia 🖜 RMSPE, / RMSPE,

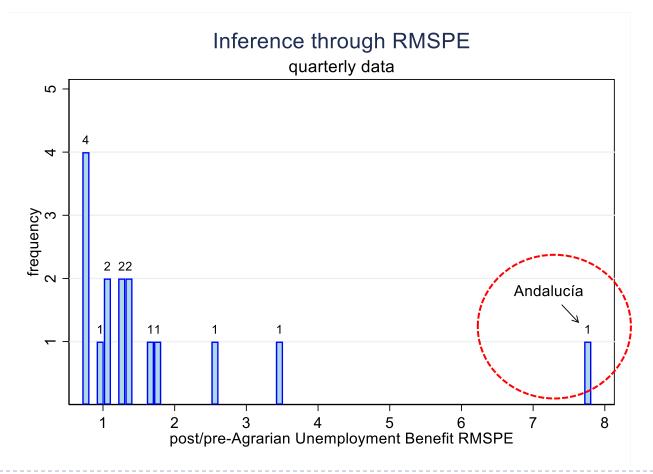
Ratio post/pre-RMSPE



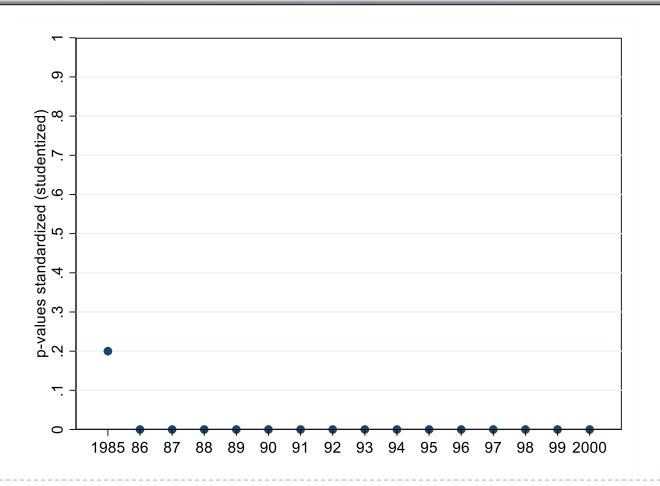
[4.2] Aplicación 2 🕨 ANDALUCÍA: inferencia 🖜 RMSPE, / RMSPE,


$$RMSPE_{post} = \sqrt{\frac{1}{T - T_0} \sum_{t=1}^{T_0} \left(Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt} \right)^2}$$

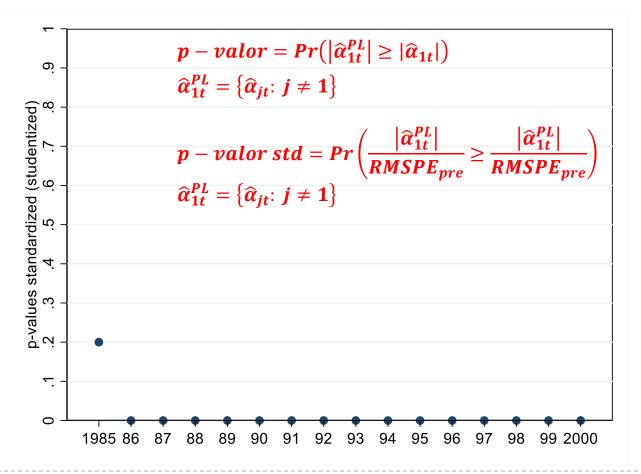
$$RMSPE_{pre} = \sqrt{\frac{1}{T_0} \sum_{t=1}^{T_0} \left(Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt} \right)^2}$$

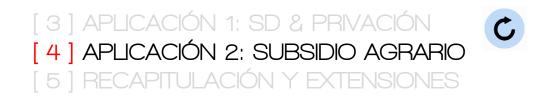

[5] RECAPITULACIÓN Y EXTENSIONES

[4.2] Aplicación 2 🕨 ANDALUCÍA: inferencia → RMSPE_r / RMSPE_i



[4.2] Aplicación 2 > ANDALUCÍA: inferencia > RMSPE, / RMSPE;


[4.2] Aplicación 2 > ANDALUCÍA: inferencia > p-valores standard



[5] RECAPITULACIÓN Y EXTENSIONES

[4.2] Aplicación 2 ▶ ANDALUCÍA: inferencia → p-valores standard

[4.2] Aplicación 2 > concluding remarks

RESULTADOS PRELIMINARES

- 1) Las primeras estimaciones reportan un impacto cercano a los dos puntos porcentuales. Si el RD 323/1983 no se hubiese aprobado, las tasas de actividad en Andalucía habrían sido dos puntos más bajas.
- 2) La evidencia inicial muestra un número de personas "activizadas" inferior al de beneficiarias. A falta de un análisis más profundo, no se detectan "efectos desborde" ("spillover-effects") de la política examinada.
- 3) Para futuro: implementar nuevas pruebas para completar el pertinente análisis de sensibilidad y robustez.

- 1 1 MOTIVACIÓN INICIAL [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN
- [4] APLICACIÓN 2: SUBSIDIO AGRARIO
- [5] RECAPITULACIÓN Y EXTENSIONES

ÍNDICE

- 1: Motivación inicial
- 2: Controles sintéticos (synthetic control methods)
- 3: Aplicación 1: "shocks" de desempleo y privación material
- 4: Aplicación 2: subsidio agrario en Andalucía
- → 5: Recapitulación y extensiones

- [] INDICE [2] SCM
- [3] APLICACIÓN 1: SD & PRIVACIÓN 1 | MOTIVACIÓN INICIAL [4] APLICACIÓN 2: SUBSIDIO AGRARIO

[5] RECAPITULACIÓN Y EXTENSIONES

[5.1] Resumen implementación SCM

- Identificar la unidad tratada y el "donor pool".
- Recabar información estadística acerca de nuestras variables objetivo, "outcome" (Y) y predictores (X), y concretar el periodo de análisis.
- Obtener las matrices de pesos $W^*(V^*)$ y V^* minimizando distancias en el periodo pre-tratamiento.
- Cuantificar el impacto en el periodo post-tratamiento:

$$\widehat{\alpha}_{1t} = Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

5) Realizar análisis de sensibilidad y robustez > test de permutación.

	ÍNDICE	
1	MOTIVACIÓN	
2	SCM	

[5] RECAPITULACIÓN Y EXTENSIONES

[5.2] Observaciones finales

- Un gran número de intervenciones públicas sucede a nivel agregado; resulta más sencillo trabajar con datos macro que con microdatos.
- SCM es una técnica transparente, tanto en el grado de ajuste como en la generación del contrafactual (unidad sintética).
- La inferencia estadística en SCM es menos formal, pero hay alternativas.
- Es difícil encontrar unidades con características similares a las de la unidad tratada que no hayan sido afectadas por la política analizada.
- Extensiones de la metodología SCM:
 - Cerulli (2019): enfoque no paramétrico
 - Ben-Michael et al. (2019): Augmented Synthetic Control Method
 - Abadie & L'Hour (2019): penalized synthetic control estimator
- Diapositiva | 59 de 60

¡Muchas gracias por su atención!

La evaluación de políticas públicas mediante la técnica de controles sintéticos

III Workshop en Evaluación de Políticas Públicas

Experiencias de evaluación de políticas públicas

JAVIER MARTÍN ROMÁN

Universidad Nacional de Educación a Distancia (UNED) jmartin@cee.uned.es

