CHARACTER TABLES AND SYLOW 2-GENERATION

Joint work with Gabriel Navarro, Noelia Rizo and Mandi Schaeffer Fry

Carolina Vallejo Rodríguez

Universidad Carlos III de Madrid - Instituto de Ciencias Matemáticas de Madrid London Algebra Colloquium In this talk, all groups will be finite.

G finite group, $P \in Syl_2(G)$. Assume $P = \langle x, y \rangle$ (includes *P* cyclic, dihedral, semidihedral, generalized quaternion, etc.).

In this talk, all groups will be finite.

G finite group, $P \in \text{Syl}_2(G)$. Assume $P = \langle x, y \rangle$ (includes *P* cyclic, dihedral, semidihedral, generalized quaternion, etc.).

Write $f(2^n, 2)$ to be the number of isomorphism classes of 2-generated groups of order 2^n . Then

$$2^{n^2/4+o(n^2)} \leq f(2^n, 2) \leq 2^{n^2/2+o(n^2)}$$

(Jaikin-Zapirain, 2008)

In this talk, all groups will be finite.

G finite group, $P \in \text{Syl}_2(G)$. Assume $P = \langle x, y \rangle$ (includes *P* cyclic, dihedral, semidihedral, generalized quaternion, etc.).

Write $f(2^n, 2)$ to be the number of isomorphism classes of 2-generated groups of order 2^n . Then

$$2^{n^2/4+o(n^2)} \leqslant f(2^n, 2) \leqslant 2^{n^2/2+o(n^2)}$$

(Jaikin-Zapirain, 2008)

Aim: Understand the character theory of groups possessing a 2-generated Sylow 2-subgroup.

A representation $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism. The representation ρ is irreducible if \mathbb{C}^n has no proper *G*-invariant subspace.

A representation $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism. The representation ρ is irreducible if \mathbb{C}^n has no proper *G*-invariant subspace.

The character afforded by ρ (irreducible) is $\chi \in Irr(G)$,

 $\chi: \mathcal{G} \to \mathbb{C}$ $g \mapsto \operatorname{Trace}(\rho(g)).$

A representation $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism. The representation ρ is irreducible if \mathbb{C}^n has no proper *G*-invariant subspace.

The character afforded by ρ (irreducible) is $\chi \in Irr(G)$,

 $\chi: G \to \mathbb{C}$ $g \mapsto \operatorname{Trace}(\rho(g)).$

The degree of χ is $\chi(1) = n$.

A representation $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism. The representation ρ is irreducible if \mathbb{C}^n has no proper *G*-invariant subspace.

The character afforded by ρ (irreducible) is $\chi \in Irr(G)$,

 $\chi: G \to \mathbb{C}$ $g \mapsto \operatorname{Trace}(\rho(g)).$

The degree of χ is $\chi(1) = n$.

Examples

• The principal character of G is $\mathbf{1}_G \colon G \to \mathbb{C}^{ imes}$ with $\mathbf{1}_G(g) = 1$ for every $g \in G$.

A representation $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism. The representation ρ is irreducible if \mathbb{C}^n has no proper *G*-invariant subspace.

The character afforded by ρ (irreducible) is $\chi \in Irr(G)$,

 $\chi: G \to \mathbb{C}$ $g \mapsto \operatorname{Trace}(\rho(g)).$

The degree of χ is $\chi(1) = n$.

Examples

• The principal character of G is $1_G : G \to \mathbb{C}^{\times}$ with $1_G(g) = 1$ for every $g \in G$.

• In general, $\operatorname{Lin}(G) = \operatorname{Hom}(G, \mathbb{C}^{\times}) \subseteq \operatorname{Irr}(G)$.

A representation $\rho: G \to \operatorname{GL}_n(\mathbb{C})$ is a group homomorphism. The representation ρ is irreducible if \mathbb{C}^n has no proper *G*-invariant subspace.

The character afforded by ρ (irreducible) is $\chi \in Irr(G)$,

 $\chi \colon \mathcal{G} \to \mathbb{C}$ $g \mapsto \operatorname{Trace}(\rho(g)).$

The degree of χ is $\chi(1) = n$.

Examples

- The principal character of G is $1_G \colon G \to \mathbb{C}^{ imes}$ with $1_G(g) = 1$ for every $g \in G$.
- In general, $\operatorname{Lin}(G) = \operatorname{Hom}(G, \mathbb{C}^{\times}) \subseteq \operatorname{Irr}(G)$.

•
$$\rho \colon S_3 \to \operatorname{GL}_2(\mathbb{C})$$
 given by $(1 \ 2 \ 3) \mapsto$

$$\begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \text{ and } (2 \ 3) \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ is an}$$

irreducible representation of degree 2.

Properties

- Characters are constant on *G*-conjugacy classes.
- |Irr(G)| = k(G) the number of *G*-conjugacy classes.
- $\chi(g) \in \mathbb{Q}(e^{2\pi i/o(g)}).$

Properties

- Characters are constant on *G*-conjugacy classes.
- |Irr(G)| = k(G) the number of *G*-conjugacy classes.
- $\chi(g) \in \mathbb{Q}(e^{2\pi i/o(g)}).$

We can display all the information on the values of Irr(G) in a $(k \times k)$ matrix known as the character table of G.

Properties

- Characters are constant on *G*-conjugacy classes.
- |Irr(G)| = k(G) the number of *G*-conjugacy classes.
- $\chi(g) \in \mathbb{Q}(e^{2\pi i/o(g)}).$

We can display all the information on the values of Irr(G) in a $(k \times k)$ matrix known as the character table of G.

Write $Irr(G) = {\chi_i}_{i=1}^k$ and ${g_j}_{j=1}^k$ for G-conjugacy class representatives, then $X(G) = [\chi_i(g_j)]_{i,j=1}^k$.

Properties

- Characters are constant on *G*-conjugacy classes.
- |Irr(G)| = k(G) the number of *G*-conjugacy classes.
- $\chi(g) \in \mathbb{Q}(e^{2\pi i/o(g)}).$

We can display all the information on the values of Irr(G) in a $(k \times k)$ matrix known as the character table of G.

Write $\operatorname{Irr}(G) = \{\chi_i\}_{i=1}^k$ and $\{g_j\}_{j=1}^k$ for *G*-conjugacy class representatives, then $X(G) = [\chi_i(g_j)]_{i,j=1}^k.$ For example, $X(S_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & -1 \end{bmatrix}.$

$$\checkmark |G| = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2.$$

✓
$$|G| = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2$$
.
✓ $|G : G'| = |\operatorname{Lin}(G)|$. Indeed, $G/G' \cong \operatorname{Lin}(G) \cong \operatorname{Irr}(G/G')$.

✓
$$|G| = \sum_{\chi \in Irr(G)} \chi(1)^2$$
.
✓ $|G : G'| = |Lin(G)|$. Indeed, $G/G' \cong Lin(G) \cong Irr(G/G')$.
✓ G-conjugacy class sizes.

✓
$$|G| = \sum_{\chi \in Irr(G)} \chi(1)^2$$
.
✓ $|G : G'| = |Lin(G)|$. Indeed, $G/G' \cong Lin(G) \cong Irr(G/G')$.
✓ G-conjugacy class sizes.

 \checkmark (Higman, 1971) The sets of primes dividing the orders of elements in G.

✓
$$|G| = \sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^2$$
.
✓ $|G : G'| = |\operatorname{Lin}(G)|$. Indeed, $G/G' \cong \operatorname{Lin}(G) \cong \operatorname{Irr}(G/G')$.
✓ *G*-conjugacy class sizes.

✓ (Higman, 1971) The sets of primes dividing the orders of elements in G.

$$X(S_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

✓
$$|G| = \sum_{\chi \in Irr(G)} \chi(1)^2$$
.
✓ $|G : G'| = |Lin(G)|$. Indeed, $G/G' \cong Lin(G) \cong Irr(G/G')$
✓ G-conjugacy class sizes.

✓ (Higman, 1971) The sets of primes dividing the orders of elements in G.

$$X(S_3) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

For a prime p, x and y have the same p'-part iff $\chi(x) \equiv \chi(y) \mod (p)$ (in general, modulo any ideal of the ring of algebraic integers containing p).

✓
$$|G| = \sum_{\chi \in Irr(G)} \chi(1)^2$$
.
✓ $|G : G'| = |Lin(G)|$. Indeed, $G/G' \cong Lin(G) \cong Irr(G/G')$.
✓ G-conjugacy class sizes.

 \checkmark (Higman, 1971) The sets of primes dividing the orders of elements in G.

✓ G abelian, (p-)nilpotent, (p-)solvable, simple, etc.

✓
$$|G| = \sum_{\chi \in Irr(G)} \chi(1)^2$$
.
✓ $|G : G'| = |Lin(G)|$. Indeed, $G/G' \cong Lin(G) \cong Irr(G/G')$.
✓ G-conjugacy class sizes.

 \checkmark (Higman, 1971) The sets of primes dividing the orders of elements in G.

- ✓ G abelian, (p-)nilpotent, (p-)solvable, simple, etc.
- ✗ Orders of elements: $X(D_8) = X(Q_8)$. ▮

✓
$$|G| = \sum_{\chi \in Irr(G)} \chi(1)^2$$
.
✓ $|G : G'| = |Lin(G)|$. Indeed, $G/G' \cong Lin(G) \cong Irr(G/G')$.
✓ G-conjugacy class sizes.

 \checkmark (Higman, 1971) The sets of primes dividing the orders of elements in G.

- ✓ G abelian, (p-)nilpotent, (p-)solvable, simple, etc.
- × Orders of elements: $X(D_8) = X(Q_8)$.
- X The exponent of the group: $X(p_+^{1+2}) = X(p_-^{1+2})$, for p odd.

Brauer's Problem 12 (1963)

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain?

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain?

Property or invariant	X(<i>G</i>)
P	\checkmark
$N_G(P) = G$	\checkmark
$N_{G}(P) = P$	✓ (using CFSG)
	[Navarro-Tiep-Turull, '07] and [Schaeffer Fry, '19]
$N_G(P)$ <i>p</i> -nilpotent	✓ (using CFSG)
	[Schaeffer Fry-Taylor, '18] and [Navarro-Tiep-V., '19]
$ \mathbf{N}_{G}(P) $	r ?

Above $P \leq \mathbf{N}_{G}(P) = \{g \in G \mid P^{g} = P\} \leq G$.

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain?

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain? In particular, can it be decided whether or not *P* is abelian?

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain? In particular, can it be decided whether or not *P* is abelian?

(Camina-Herzog, 1980) Characterize the commutativity of $P \in Syl_2(G)$ in terms of the sizes of the centralizers of 2-elements.

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain? In particular, can it be decided whether or not *P* is abelian?

(Camina-Herzog, 1980) Characterize the commutativity of $P \in Syl_2(G)$ in terms of the sizes of the centralizers of 2-elements.

For a prime p dividing |G|, write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$

For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain? In particular, can it be decided whether or not *P* is abelian?

(Camina-Herzog, 1980) Characterize the commutativity of $P \in Syl_2(G)$ in terms of the sizes of the centralizers of 2-elements.

For a prime p dividing |G|, write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$

Theorem (Itô-Michler, 1986) Let G be a finite group, p a prime and $P \in Syl_p(G)$. $Irr_{p'}(G) = Irr(G)$ if, and only if, $P \leq G$ is abelian. For a prime *p* dividing the order of *G* and $P \in Syl_p(G)$. How much information about the structure of *P* does X(G) contain? In particular, can it be decided whether or not *P* is abelian?

(Camina-Herzog, 1980) Characterize the commutativity of $P \in Syl_2(G)$ in terms of the sizes of the centralizers of 2-elements.

For a prime p dividing |G|, write $\operatorname{Irr}_{p'}(G) = \{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\}.$

Theorem (Itô-Michler, 1986) Let G be a finite group, p a prime and $P \in Syl_p(G)$. $Irr_{p'}(G) = Irr(G)$ if, and only if, $P \trianglelefteq G$ is abelian.

• This theorem was one of the first applications of the CFSG.

The commutativity of P
Brauer's height zero conjecture for principal blocks (1963) G group, p a prime and $P \in Syl_p(G)$. Let $B_0 = B_0(G)$.

 $\operatorname{Irr}_{p'}(B_0) = \operatorname{Irr}(B_0)$ if, and only if, P is abelian.

Brauer's height zero conjecture for principal blocks (1963) G group, p a prime and $P \in Syl_p(G)$. Let $B_0 = B_0(G)$.

 $\operatorname{Irr}_{p'}(B_0) = \operatorname{Irr}(B_0)$ if, and only if, P is abelian.

• This is the principal block case of Brauer's Problem 23. It's now a theorem!

Brauer's height zero conjecture for principal blocks (1963) G group, p a prime and $P \in Syl_p(G)$. Let $B_0 = B_0(G)$.

 $\operatorname{Irr}_{p'}(B_0) = \operatorname{Irr}(B_0)$ if, and only if, P is abelian.

• This is the principal block case of Brauer's Problem 23. It's now a theorem!

(\Leftarrow) Holds by work of Kessar and Malle from 2013 (for arbitrary blocks).

Brauer's height zero conjecture for principal blocks (1963) G group, p a prime and $P \in Syl_p(G)$. Let $B_0 = B_0(G)$.

 $\operatorname{Irr}_{p'}(B_0) = \operatorname{Irr}(B_0)$ if, and only if, P is abelian.

• This is the principal block case of Brauer's Problem 23. It's now a theorem!

(\Leftarrow) Holds by work of Kessar and Malle from 2013 (for arbitrary blocks). (\Rightarrow) Recently shown by Malle and Navarro (2021). Generation properties of P

P is *n*-generated if, and only if, $|P/\Phi(P)| \leq p^n$, where $\Phi(P)$ is the Frattini subgroup (*non-generating* elements of *P*).

P is *n*-generated if, and only if, $|P/\Phi(P)| \leq p^n$, where $\Phi(P)$ is the Frattini subgroup (*non-generating* elements of *P*).

• Does *X*(*G*) know if *P* is cyclic (1-generated)?

P is *n*-generated if, and only if, $|P/\Phi(P)| \leq p^n$, where $\Phi(P)$ is the Frattini subgroup (*non-generating* elements of *P*).

• Does *X*(*G*) know if *P* is cyclic (1-generated)?

Theorem (Kimmerle-Sandling, 1995) *G* and *H* finite groups with X(G) = X(H) and $P \in Syl_p(G)$. If *P* is abelian, then $Q \in Syl_p(H)$ is abelian. In such a case $P \cong Q$.

P is *n*-generated if, and only if, $|P/\Phi(P)| \leq p^n$, where $\Phi(P)$ is the Frattini subgroup (*non-generating* elements of *P*).

• Does *X*(*G*) know if *P* is cyclic (1-generated)?

Theorem (Kimmerle-Sandling, 1995) *G* and *H* finite groups with X(G) = X(H) and $P \in Syl_p(G)$. If *P* is abelian, then $Q \in Syl_p(H)$ is abelian. In such a case $P \cong Q$.

• From this result, we cannot tell whether P is cyclic or not by just looking at X(G). Are there ways to do so? Ideally in terms of $Irr(B_0(G))$.

Let $\mathcal{G} = \operatorname{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$. Then \mathcal{G} acts on $\operatorname{Irr}(G)$ (and on $\operatorname{Irr}(B_0(G))$). $\chi^{\sigma}(g) = \sigma(\chi(g)), \text{ for } \sigma \in \mathcal{G}, \ \chi \in \operatorname{Irr}(G), \ g \in G.$

Let $\mathcal{G} = \operatorname{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$. Then \mathcal{G} acts on $\operatorname{Irr}(G)$ (and on $\operatorname{Irr}(B_0(G))$). $\chi^{\sigma}(g) = \sigma(\chi(g)), \text{ for } \sigma \in \mathcal{G}, \ \chi \in \operatorname{Irr}(G), \ g \in G.$

Write $\mathcal{K}_p = \{ \sigma \in \mathcal{G} \mid \sigma(\xi) = \xi \text{ if } p \nmid o(\xi) \} \leqslant \mathcal{G}.$

Let $\mathcal{G} = \operatorname{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$. Then \mathcal{G} acts on $\operatorname{Irr}(G)$ (and on $\operatorname{Irr}(B_0(G))$). $\chi^{\sigma}(g) = \sigma(\chi(g)), \text{ for } \sigma \in \mathcal{G}, \ \chi \in \operatorname{Irr}(G), \ g \in G.$

Write $\mathcal{K}_{p} = \{ \sigma \in \mathcal{G} \mid \sigma(\xi) = \xi \text{ if } p \nmid o(\xi) \} \leqslant \mathcal{G}.$

• (Sambale, 2020) Characterizes P cyclic in terms of the orbit sizes under the action of \mathcal{K}_p on $Irr(B_0(G))$.

Let $\mathcal{G} = \operatorname{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$. Then \mathcal{G} acts on $\operatorname{Irr}(G)$ (and on $\operatorname{Irr}(B_0(G))$). $\chi^{\sigma}(g) = \sigma(\chi(g)), \text{ for } \sigma \in \mathcal{G}, \ \chi \in \operatorname{Irr}(G), \ g \in G.$

Write $\mathcal{K}_{p} = \{ \sigma \in \mathcal{G} \mid \sigma(\xi) = \xi \text{ if } p \nmid o(\xi) \} \leqslant \mathcal{G}.$

• (Sambale, 2020) Characterizes P cyclic in terms of the orbit sizes under the action of \mathcal{K}_p on $Irr(B_0(G))$.

Let $\sigma_{p,e} \in \mathcal{K}_p$ be such that $\sigma_{p,e}(\omega) = \omega^{1+p^e}$ if $o(\omega)$ is a *p*-power.

Let $\mathcal{G} = \operatorname{Gal}(\mathbb{Q}(e^{2\pi i/|G|})/\mathbb{Q})$. Then \mathcal{G} acts on $\operatorname{Irr}(G)$ (and on $\operatorname{Irr}(B_0(G))$). $\chi^{\sigma}(g) = \sigma(\chi(g)), \text{ for } \sigma \in \mathcal{G}, \ \chi \in \operatorname{Irr}(G), \ g \in G.$

Write $\mathcal{K}_p = \{ \sigma \in \mathcal{G} \mid \sigma(\xi) = \xi \text{ if } p \nmid o(\xi) \} \leqslant \mathcal{G}.$

• (Sambale, 2020) Characterizes P cyclic in terms of the orbit sizes under the action of \mathcal{K}_p on $Irr(B_0(G))$.

Let $\sigma_{p,e} \in \mathcal{K}_p$ be such that $\sigma_{p,e}(\omega) = \omega^{1+p^e}$ if $o(\omega)$ is a *p*-power.

• By (Navarro-Tiep, 2019 and Malle, 2020) $P \in Syl_2(G)$ cyclic depends on the action of specific $\sigma_{2,e}$'s on $Irr_{2'}(B_0(G))$.

Recall $\sigma_{2,1} \in \mathcal{G}$ fixes odd roots of unity and $\sigma_{2,1}(\omega) = \omega^3$ for every 2-power root of unity ω . Write $\sigma_1 = \sigma_{2,1}$ and $\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}$ for σ_1 -fixed elements.

Recall $\sigma_{2,1} \in \mathcal{G}$ fixes odd roots of unity and $\sigma_{2,1}(\omega) = \omega^3$ for every 2-power root of unity ω . Write $\sigma_1 = \sigma_{2,1}$ and $\operatorname{Irr}_{2'}(B_0(\mathcal{G}))^{\sigma_1}$ for σ_1 -fixed elements.

Theorem A (Rizo-Schaeffer Fry-V., 2020) $G, P \in Syl_2(G)$ and $B_0 = B_0(G)$.

 $|\operatorname{Irr}_{2'}(B_0)^{\sigma_1}| = 2$ if, and only if, P is cyclic.

Recall $\sigma_{2,1} \in \mathcal{G}$ fixes odd roots of unity and $\sigma_{2,1}(\omega) = \omega^3$ for every 2-power root of unity ω . Write $\sigma_1 = \sigma_{2,1}$ and $\operatorname{Irr}_{2'}(B_0(\mathcal{G}))^{\sigma_1}$ for σ_1 -fixed elements.

Theorem A (Rizo-Schaeffer Fry-V., 2020) $G, P \in Syl_2(G)$ and $B_0 = B_0(G)$. $|Irr_{2'}(B_0)^{\sigma_1}| = 2$ if, and only if, P is cyclic.

• Theorem A conjecturally extends to general blocks and defect groups.

Recall $P/P' \cong \operatorname{Lin}(P) \cong \operatorname{Irr}(P/P')$. For p = 2, $\lambda \in \operatorname{Irr}(P/P')$ then $\lambda^{\sigma_1} = \lambda \iff \lambda^2 = \mathbf{1}_P \iff \lambda \in \operatorname{Irr}(P/\Phi(P))$. Hence

$$\operatorname{Irr}(P/P')^{\sigma_1} = \operatorname{Irr}(P/\Phi(P)) \cong P/\Phi(P)$$
.

Recall
$$P/P' \cong \operatorname{Lin}(P) \cong \operatorname{Irr}(P/P')$$
. For $p = 2$,
 $\lambda \in \operatorname{Irr}(P/P')$ then $\lambda^{\sigma_1} = \lambda \iff \lambda^2 = \mathbf{1}_P \iff \lambda \in \operatorname{Irr}(P/\Phi(P))$.
Hence

$$\operatorname{Irr}(P/P')^{\sigma_1} = \operatorname{Irr}(P/\Phi(P)) \cong P/\Phi(P)$$
.

Theorem A (Rizo-Schaeffer Fry-V., 2020)

$$G, P \in Syl_2(G)$$
 and $B_0 = B_0(G)$.
 $|Irr_{2'}(B_0)^{\sigma_1}| = 2$ if, and only if, P is cyclic.

Recall
$$P/P' \cong \operatorname{Lin}(P) \cong \operatorname{Irr}(P/P')$$
. For $p = 2$,
 $\lambda \in \operatorname{Irr}(P/P')$ then $\lambda^{\sigma_1} = \lambda \iff \lambda^2 = \mathbf{1}_P \iff \lambda \in \operatorname{Irr}(P/\Phi(P))$.
Hence

$$\operatorname{Irr}(P/P')^{\sigma_1} = \operatorname{Irr}(P/\Phi(P)) \cong P/\Phi(P)$$
.

Theorem A (Rizo-Schaeffer Fry-V., 2020)

$$G, P \in Syl_2(G)$$
 and $B_0 = B_0(G)$.
 $|Irr_{2'}(B_0)^{\sigma_1}| = 2$ if, and only if, P is cyclic.

(
$$\Leftarrow$$
) Assume $P \in \operatorname{Syl}_2(G)$ is cyclic, then $G = M \rtimes P$ and
 $|\operatorname{Irr}_{p'}(B_0)^{\sigma_1}| = |\operatorname{Irr}_{p'}(P)^{\sigma_1}| = |\operatorname{Irr}(P/P')^{\sigma_1}| = |P/\Phi(P)| = 2.$

Recall
$$P/P' \cong \operatorname{Lin}(P) \cong \operatorname{Irr}(P/P')$$
. For $p = 2$,
 $\lambda \in \operatorname{Irr}(P/P')$ then $\lambda^{\sigma_1} = \lambda \iff \lambda^2 = \mathbf{1}_P \iff \lambda \in \operatorname{Irr}(P/\Phi(P))$.
Hence

$$\operatorname{Irr}(P/P')^{\sigma_1} = \operatorname{Irr}(P/\Phi(P)) \cong P/\Phi(P)$$
.

Theorem A (Rizo-Schaeffer Fry-V., 2020)

$$G, P \in Syl_2(G)$$
 and $B_0 = B_0(G)$.
 $|Irr_{2'}(B_0)^{\sigma_1}| = 2$ if, and only if, P is cyclic.

(
$$\Leftarrow$$
) Assume $P \in \operatorname{Syl}_2(G)$ is cyclic, then $G = M \rtimes P$ and
 $|\operatorname{Irr}_{p'}(B_0)^{\sigma_1}| = |\operatorname{Irr}_{p'}(P)^{\sigma_1}| = |\operatorname{Irr}(P/P')^{\sigma_1}| = |P/\Phi(P)| = 2.$

 (\Rightarrow) Requires the use of the CFSG.

<i>P</i>	2	2 ²	2 ³	24	2 ⁵	• • •
cylic	1	1	1	1	1	•••
abelian	1	2	3	5	7	• • •
2-generated	1	2	4	9	20	• • •

<i>P</i>	2	2 ²	2 ³	24	2 ⁵	• • •	2 ⁿ
cylic	1	1	1	1	1	• • •	1
abelian	1	2	3	5	7	•••	$p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$
2-generated	1	2	4	9	20		$f(2^n, 2) \sim 2^{c(2) \cdot n^2}$

<i>P</i>	2	2 ²	2 ³	2 ⁴	2 ⁵		2 ⁿ	X(G)
cylic	1	1	1	1	1	• • •	1	1
abelian	1	2	3	5	7	• • •	$p(n) \sim \frac{1}{4n\sqrt{3}}e^{\pi\sqrt{\frac{2n}{3}}}$	1
2-generated	1	2	4	9	20		$f(2^n, 2) \sim 2^{c(2) \cdot n^2}$?

<i>P</i>	2	2 ²	2 ³	24	2 ⁵	• • •	2 ⁿ	X(G)
cylic	1	1	1	1	1	• • •	1	1
abelian	1	2	3	5	7	•••	$p(n) \sim \frac{1}{4n\sqrt{3}} e^{\pi\sqrt{\frac{2n}{3}}}$	1
2-generated	1	2	4	9	20		$f(2^n,2) \sim 2^{c(2) \cdot n^2}$	 Image: A start of the start of

Recall $\sigma_1 \in \mathcal{K}_2$ sends 2-power roots of unity to their cube, and $\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1} = \{\chi \in \operatorname{Irr}_{2'}(B_0(G)) \mid \chi^{\sigma_1} = \chi\}.$

Recall $\sigma_1 \in \mathcal{K}_2$ sends 2-power roots of unity to their cube, and

 $\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1} = \{ \chi \in \operatorname{Irr}_{2'}(B_0(G)) \mid \chi^{\sigma_1} = \chi \}.$

Theorem B (Navarro-Rizo-Schaeffer Fry-V., 2021) $G, P \in Syl_2(G) \text{ and } B_0 = B_0(G).$ $|Irr_{2'}(B_0(G))^{\sigma_1}| \leq 4 \text{ if, and only if, } P \text{ is 2-generated } (|P/\Phi(P)| \leq 4).$ Recall $\sigma_1 \in \mathcal{K}_2$ sends 2-power roots of unity to their cube, and

 $\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1} = \{ \chi \in \operatorname{Irr}_{2'}(B_0(G)) \mid \chi^{\sigma_1} = \chi \}.$

Theorem B (Navarro-Rizo-Schaeffer Fry-V., 2021) $G, P \in Syl_2(G) \text{ and } B_0 = B_0(G).$ $|Irr_{2'}(B_0(G))^{\sigma_1}| \leq 4 \text{ if, and only if, } P \text{ is 2-generated } (|P/\Phi(P)| \leq 4).$

• For the general block version of Theorem B, we would like to know if the following problem has a positive answer.

<u>Problem</u>: Suppose that *B* is a 2-block of *G* with defect $P \leq G$, such that *P* is elementary abelian. Is it true that |Irr(B)| = 4 if, and only if, $D = C_2 \times C_2$?

An example. Does G have a 2-generated Sylow 2-subgroup?

An example. Does G have a 2-generated Sylow 2-subgroup?

An example. Does G have a 2-generated Sylow 2-subgroup?
An example. Does G have a 2-generated Sylow 2-subgroup?

An example. Does G have a 2-generated Sylow 2-subgroup?

Yes, it does! $G = A_5 \rtimes C_4$.

• If G has even order, then $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}|$ is an even number.

- If G has even order, then $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}|$ is an even number.
 - 1. The case where $|Irr_{2'}(B_0(G))^{\sigma_1}| = 2$ is taken care by Theorem A.

- If G has even order, then $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}|$ is an even number.
 - 1. The case where $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}| = 2$ is taken care by Theorem A.
 - 2. We need to prove that $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}| = 4$ if, and only if, $|P/\Phi(P)| = 4$.

- If G has even order, then $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}|$ is an even number.
 - 1. The case where $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}| = 2$ is taken care by Theorem A.
 - 2. We need to prove that $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}| = 4$ if, and only if, $|P/\Phi(P)| = 4$.
- The character theory of groups with a 2-generated Sylow 2-subgroup has not been studied in full generality in the literature. Hence both directions were equally difficult, and required *ad hoc* reduction theorems and the use of the CFSG.

- If G has even order, then $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}|$ is an even number.
 - 1. The case where $|Irr_{2'}(B_0(G))^{\sigma_1}| = 2$ is taken care by Theorem A.
 - 2. We need to prove that $|\operatorname{Irr}_{2'}(B_0(G))^{\sigma_1}| = 4$ if, and only if, $|P/\Phi(P)| = 4$.
- The character theory of groups with a 2-generated Sylow 2-subgroup has not been studied in full generality in the literature. Hence both directions were equally difficult, and required *ad hoc* reduction theorems and the use of the CFSG.
- Theorem A and B follow from the Galois refinement of the Alperin-McKay conjecture proposed by Navarro in 2004.

Thanks for your attention!

