Certain monomial characters of $p^\prime\text{-degree}$

GABRIEL NAVARRO AND CAROLINA VALLEJO

Abstract. An odd degree rational valued character χ of a solvable group G is induced from a linear character of order 2 of some subgroup of G. We extend this result of Gow to certain cyclotomic fields.

Mathematics Subject Classification. 20C15.

Keywords. Rational characters, Monomial characters, Characters of finite groups.

1. Introduction. A lovely result of Gow [1] from 1975 asserts that if G is a solvable group and $\chi \in \operatorname{Irr}(G)$ is an odd degree irreducible complex character with real values, then χ is necessarily induced from a rational linear character λ of some subgroup U of G (in particular, χ is rational valued). Our aim in this note is to provide a *cyclotomic version* of Gow's result. If n is an integer, here we denote by \mathbb{Q}_n the n-th cyclotomic field and if χ is a character, then $\mathbb{Q}(\chi)$ is the smallest field containing the values of χ .

Theorem A. Let p be a prime, let G be a p-solvable finite group, and let $P \in$ Syl_p(G). Let $\chi \in Irr(G)$ be such that p does not divide $\chi(1)$ and such that $\mathbb{Q}(\chi) \subseteq \mathbb{Q}_{p^a}$ for some $a \ge 0$. If $|\mathbf{N}_G(P)/P|$ is odd, then there exists a subgroup $V \subseteq G$ and a linear character $\lambda \in Irr(V)$ with $\mathbb{Q}(\lambda) \subseteq \mathbb{Q}_{p^a}$ such that $\lambda^G = \chi$. Furthermore, if $\chi = \gamma^G$ for some linear $\gamma \in Irr(W)$, then $W = V^g$ and $\gamma = \lambda^g$ for some $g \in G$.

The condition that $|\mathbf{N}_G(P)/P|$ is odd is (unfortunately) necessary: if p = 3, then G = SL(2,3) has a rational character of degree 2 which is not monomial. In this case, $\mathbf{N}_G(P)/P$ has order 2. Also, we need to assume that G is *p*-solvable, even in Gow's original situation: the group $G = A_6$ has two nonmonomial rational characters of degree 5.

The research of the first author is partially supported by the Spanish Ministerio de Educación y Ciencia proyecto MTM2010-15296 and Prometeo/Generalitat Valenciana.

2. Proofs. In general, we use the notation of [4]. If $U \subseteq G, \gamma \in \operatorname{Irr}(U)$, and $g \in G$, then $\gamma^g \in \operatorname{Irr}(U^g)$ is the character of U^g satisfying $\gamma^g(u^g) = \gamma(u)$ for $u \in U$. Also, $(U, \gamma)^g = (U^g, \gamma^g)$. If $\chi \in \operatorname{Irr}(U)$ has values in some subfield $F \subseteq \mathbb{C}$, where F/\mathbb{Q} is Galois and $\sigma \in \operatorname{Gal}(F/\mathbb{Q})$, then we know that χ^{σ} , defined by

$$\chi^{\sigma}(u) = \chi(u)^{\sigma}$$

for $u \in U$, is also an irreducible character of U (for a proof of this elementary fact see Lemma (2.1) of [6], for instance).

Proof of Theorem A. First we argue by induction on |G| that there exists a pair (V, λ) , where V is a subgroup of G and λ is a linear character of V, such that $\mathbb{Q}(\lambda) \subseteq \mathbb{Q}_{p^a}$ and $\lambda^G = \chi$. For the reader's convenience, we do this in a series of steps. The first four of these are of general type, which are not obtained by induction, and that shall be used in the second part of the proof.

- Step 1. If $N \triangleleft G$, then there exists a *P*-invariant $\theta \in \operatorname{Irr}(N)$ under χ , and any two of them are $\mathbf{N}_G(P)$ -conjugate. This follows from the following standard argument. Let $\theta_1 \in \operatorname{Irr}(N)$ be under χ , let T_1 be the stabilizer of θ_1 in *G*, and let $\psi_1 \in \operatorname{Irr}(T_1|\theta_1)$ be the Clifford correspondent of χ over θ_1 . (See Theorem (6.11) of [4].) Since χ has p'-degree, we have that $|G : T_1|$ is not divisible by p, and then $P^{h^{-1}} \subseteq T_1$ for some $h \in G$. Then $P \subseteq T = I_G(\theta)$, where $\theta = (\theta_1)^h \in \operatorname{Irr}(N)$. Also, if $\eta \in \operatorname{Irr}(N)$ is also *P*-invariant under χ , then by Clifford's theorem we have that $\eta^g = \theta$ for some $g \in G$. Then $P, P^g \subseteq T$, and thus $P^{gt} = P$ for some $t \in T$ by Sylow theory. Now $\eta^{gt} = \theta^t = \theta$ are $\mathbf{N}_G(P)$ -conjugate.
- Step 2. If $N \triangleleft G, \theta \in \operatorname{Irr}(N), g \in G$, and $\sigma \in \operatorname{Gal}(\mathbb{Q}(\theta)/\mathbb{Q})$, then we have that $(\theta^{\sigma})^g = (\theta^g)^{\sigma}$. In particular, the stabilizer of θ in G is the stabilizer of θ^{σ} in G.

This immediately follows from the corresponding definitions.

Step 3. Suppose that $N \triangleleft G$, and let $\theta \in \operatorname{Irr}(N)$ be *P*-invariant under χ . If $\overline{\theta}$ is also an irreducible constituent of χ_N , where $\overline{\theta}$ is the complex-conjugate of θ , then $\theta = \overline{\theta}$.

By Step 2, we have that $\bar{\theta}$ is also *P*-invariant, and therefore there exists $g \in \mathbf{N}_G(P)$ such that $\bar{\theta} = \theta^g$, by Step 1. Now, g^2 fixes θ (also using Step 2). Now since $\mathbf{N}_G(P)/P$ has odd order by hypothesis, we conclude that $\langle gP \rangle = \langle g^2P \rangle$. Therefore g fixes θ and $\theta = \bar{\theta}$ is real.

Step 4. We have that $N = \mathbf{O}_{p'}(G) \subseteq \ker(\chi)$. By Step 1, let $\theta \in \operatorname{Irr}(N)$ be *P*-invariant under χ , let *T* be the stabilizer of θ in *G*, and let $\psi \in \operatorname{Irr}(T)$ be the Clifford correspondent of χ over θ . We prove first that θ is real. By Step 3, it suffices to show that $\overline{\theta}$ is under χ . Let $\sigma \in \operatorname{Gal}(\mathbb{Q}(\theta)/\mathbb{Q})$ the automorphism induced by complex conjugation. Since $\mathbb{Q}(\theta) \subseteq \mathbb{Q}_{|N|}$ and *N* is a p'-group, we have that $\mathbb{Q}_{p^a} \cap \mathbb{Q}(\theta) = \mathbb{Q}$. By the Natural Irrationalities theorem on Galois theory, let $\tau \in \operatorname{Gal}(\mathbb{Q}_{p^a}(\theta)/\mathbb{Q}_{p^a})$ be the natural extension of σ . Then $\chi^{\tau} = \chi$ because χ has values in \mathbb{Q}_{p^a} . Therefore, $\theta^{\tau} = \theta^{\sigma} = \overline{\theta}$ lies under χ . Hence θ is real. Next we use the Glauberman correspondence (see Chapter 13 of [4]). This is a natural bijection

$$: \operatorname{Irr}_P(N) \to \operatorname{Irr}(\mathbf{C}_N(P)),$$

where $\operatorname{Irr}_P(N)$ is the set of *P*-invariant irreducible characters of *N*. In fact, if $\theta \in \operatorname{Irr}_P(N)$, then

$$\theta_{\mathbf{C}_N(P)} = e\theta^* + p\Delta \,,$$

where $\theta^* \in \operatorname{Irr}(\mathbf{C}_N(P)), p$ does not divide e, and Δ is a character of $\mathbf{C}_N(P)$ or zero. Now, $\overline{\theta^*}$ is an irreducible constituent of $\theta_{\mathbf{C}_N(P)}$ with p'-multiplicity, and by uniqueness we deduce that θ^* is real. But $\mathbf{C}_N(P) = \mathbf{N}_N(P)$ has odd order because $\mathbf{N}_G(P)/P$ has odd order by hypothesis. Thus $\theta^* = 1$ by Burnside's theorem on real characters of groups of odd order, and therefore $\theta = 1$ by the uniqueness of the Glauberman correspondence. Hence $\mathbf{O}_{p'}(G) \subseteq \ker(\chi)$, as claimed.

- Step 5. The character χ is faithful. In particular $\mathbf{O}_{p'}(G) = 1$. Let $L = \ker(\chi)$. Then $\mathbf{N}_{G/L}(PL/L)/(PL/L) \cong \mathbf{N}_G(P)/P\mathbf{N}_L(P)$ has odd order. If L > 1, then the existence of (V, λ) is readily obtained by applying the inductive hypothesis in G/L.
- Step 6. G is not a p-group. Otherwise, since p does not divide $\chi(1)$, then we have that χ is linear. In this case, we take $(V, \lambda) = (G, \chi)$.
- Step 7. $M = \mathbf{O}_p(G)$ is abelian, and if $Z = \mathbf{Z}(G)$, then Z < M. Let $\nu \in \operatorname{Irr}(M)$ be under χ . Since χ has p'-degree, then we have that ν is linear. Thus M' is contained in the kernel of every G-conjugate of ν . Since χ is faithful, we deduce that M is abelian. Let $Z = \mathbf{Z}(G) \subseteq M$ by Step 5. By Hall-Higman 1.2.3 Lemma, we have that Z < M (because G is not a p-group, by Step 6).
- Step 8. Let K/Z be a chief factor of G/Z inside M/Z. Let $\mu \in \operatorname{Irr}(K)$ be P-invariant under χ (which exists by Step 1). Let I be the stabilizer of μ in G, and let $\psi \in \operatorname{Irr}(I|\mu)$ be the Clifford correspondent of χ over μ . Then I < G and $\mathbb{Q}(\mu) \subseteq \mathbb{Q}_{p^a}$.

By Step 7, we have that K is abelian. If I = G, then $\chi_K = \chi(1)\mu$ and then, using that μ is linear, faithful and G-invariant, we conclude that $K \subseteq Z$, which is not possible. Thus I < G. We also have that |G : I|is not divisible by p. We need to show that $\mathbb{Q}(\mu) \subseteq \mathbb{Q}_{p^a}$.

Write $\chi_Z = \chi(1)\zeta$, where $\zeta \in \operatorname{Irr}(Z)$ is faithful. In particular, if $|Z| = p^b$, then $\mathbb{Q}(\chi)$ contains a p^b -primitive root of unity. Thus $\mathbb{Q}_{p^b} \subseteq \mathbb{Q}_{p^a}$. Since K/Z is elementary abelian, then we have that the exponent of K divides p^{b+1} . Thus $o(\mu)$ divides p^{b+1} and $\mathbb{Q}(\mu) \subseteq \mathbb{Q}_{p^{b+1}}$.

Suppose first that a = 0, so that χ is rational. Since χ is real, then μ and $\bar{\mu}$ are *P*-invariant characters under μ . By Step 3, we have that μ is real. Since μ is linear, then we have that $\mathbb{Q}(\mu) = \mathbb{Q}$, and we are done in this case. So we may assume that $a \geq 1$. Since $\mathbb{Q}_{p^b} \subseteq \mathbb{Q}_{p^a}$ and $a \geq 1$, we now have that $p^b \leq p^a$. In particular, $o(\mu)$ divides p^{a+1} . Let $\langle \sigma \rangle = \operatorname{Gal}(\mathbb{Q}_{p^{a+1}}/\mathbb{Q}_{p^a})$, where σ has order p because $a \geq 1$.

Since $\chi^{\sigma} = \chi$, by Clifford's theorem it follows that $\mu^{\sigma} = \mu^{g}$ for some $g \in G$. Then $I^{g} = I$ by Step 2. Furthermore, since $o(\sigma) = p$, we have that $g^{p} \in I$. However, $\mathbf{N}_{G}(I)/I$ is a p'-group (because $P \subseteq I$), and therefore $g \in I$. Hence $\mu^{\sigma} = \mu$ and therefore $\mathbb{Q}(\mu) \subseteq \mathbb{Q}_{p^{a}}$, as desired.

Final Step. Let $\tau \in \text{Gal}(\mathbb{Q}_{p^a}(\psi)/\mathbb{Q}_{p^a})$. Since τ fixes χ and μ , then we have that τ fixes ψ by the uniqueness in the Clifford correspondent. Therefore, we have that $\mathbb{Q}(\psi) \subseteq \mathbb{Q}_{p^a}$. Now, since $P \subseteq I < G$ and $\mathbf{N}_I(P)/P$ has odd order, we can apply induction to ψ and deduce that there exists $V \subseteq I$ and $\lambda \in \text{Irr}(V)$ with $\mathbb{Q}(\lambda) \subseteq \mathbb{Q}_{p^a}$ such that $\lambda^I = \psi$. Then $\lambda^G = \chi$, and the first part of the proof is complete.

In the second part of this proof, we prove that if (W, γ) and (V, λ) are any two pairs with $\gamma(1) = 1 = \lambda(1)$ and $\lambda^G = \chi = \gamma^G$, then there is $g \in G$ such that $(W, \gamma) = (V, \lambda)^g$. We do this by arguing by induction on |G|. Let $L = \ker(\chi)$. Since $\gamma^G = \chi = \lambda^G$, then $L = \operatorname{core}_G(\ker(\lambda)) = \operatorname{core}_G(\ker(\gamma))$ is contained in $V \cap W$. By induction, we easily may assume that L = 1. In particular $\mathbf{O}_{p'}(G) = 1$ by Step 4 in the first part of this proof. Now, let $M = \mathbf{O}_p(G)$. Since |G:V| and |G:W| are not divisible by p (because $\chi(1)$ is not), then we have that $M \subseteq V \cap W$. Now, by Mackey, λ_M and γ_M are two irreducible constituents of χ_M . By Clifford's theorem and replacing (V, λ) by some G-conjugate, there is no loss if we assume that $\lambda_M = \tau = \gamma_M$. Hence V and W are contained in T, the stabilizer of τ in G. By the uniqueness of the Clifford correspondent, we have that $\lambda^T = \gamma^T = \psi$. Since τ and χ have values in some cyclotomic field \mathbb{Q}_{p^b} , then we have that ψ has also values in \mathbb{Q}_{p^b} by the uniqueness of the Clifford correspondence. If T = G, then $M \subseteq \mathbf{Z}(G)$ (using that τ is linear and χ is faithful) and G is a p-group, by Hall-Higman's Lemma 1.2.3. In this case, V = W = G and $\chi = \gamma = \lambda$. Otherwise, $T < G, \mathbf{N}_T(P)/P$ has odd order, and we apply induction to T and ψ . \square

We finish this note with a few remarks. Let G be a finite group, let p be a prime, and let $\operatorname{Irr}_{p'}(G)$ be the set of irreducible characters of G of p'-degree. How many p'-degree irreducible characters does G have with field of values contained in \mathbb{Q}_{p^a} ? It does not seem easy at all how to answer this question in general. However, if G is p-solvable and $\mathbf{N}_G(P)/P$ has odd order, then it is somewhat remarkable that this number can be computed locally. If we write $\mathcal{X}_{p',p^a}(G) = \{\chi \in \operatorname{Irr}_{p'}(G) | \mathbb{Q}(\chi) \subseteq \mathbb{Q}_{p^a}\}$, then it can be proved that $|\mathcal{X}_{p',p^a}(G)| = |\mathcal{X}_{p',p^a}(\mathbf{N}_G(P))|$, where $P \in \operatorname{Syl}_p(G)$. This result follows by using the natural correspondences between $\operatorname{Irr}_{p'}(G) \to \operatorname{Irr}_{p'}(\mathbf{N}_G(P))$ constructed by Isaacs (in the case where p = 2) and by Turull (in the case where $|\mathbf{N}_G(P)|$ is odd) (see [3] and [7] for these two non-trivial theorems). But in fact, it is easier to construct a natural bijection

$$\mathcal{X}_{p',p^a}(G) \to \mathcal{X}_{p',p^a}(\mathbf{N}_G(P))$$

using that $\mathcal{X}_{p',p^a}(G)$ consists of monomial characters (by Theorem A) and the main result of [5].

Also, it can also be proved that the monomial character in our Theorem A is one of the characters that can be obtained via the method proposed in [2].

References

- [1] R. Gow, Real-valued characters of solvable groups, Bull. London Math. Soc. 7 (1975), 132.
- [2] R. Gow, Characters of solvable groups induced by linear characters of Hall subgroups, Arch. Math. (Basel) 40 (1983), 232–237.
- [3] M. ISAACS, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-635.
- [4] M. ISAACS, Character Theory of Finite Groups, AMS Chelsea Publishing, Providence, RI, 2006.
- [5] M. ISAACS, Hall subgroup normalizers and character correspondences in Mgroups, Proc. Amer. Math. Soc. 109 (1990), 647-651.
- [6] G. NAVARRO AND J. TENT, Rationality and Sylow 2-subgroups, Proc. Edinb. Math. Soc. (2) 53 (2010), 787–798.
- [7] A. TURULL, Odd character correspondences in solvable groups, J. Algebra 319 (2008), 739-758.

GABRIEL NAVARRO AND CAROLINA VALLEJO Departament d'Àlgebra, Universitat de València, 46100 Burjassot, Spain e-mail: gabriel.navarro@uv.es

CAROLINA VALLEJO e-mail: carolina.vallejo@uv.es

Received: 26 April 2012