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Certain monomial characters of p′-degree
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Abstract. An odd degree rational valued character χ of a solvable group
G is induced from a linear character of order 2 of some subgroup of G.
We extend this result of Gow to certain cyclotomic fields.
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1. Introduction. A lovely result of Gow [1] from 1975 asserts that if G is a
solvable group and χ ∈ Irr(G) is an odd degree irreducible complex character
with real values, then χ is necessarily induced from a rational linear character
λ of some subgroup U of G (in particular, χ is rational valued). Our aim in
this note is to provide a cyclotomic version of Gow’s result. If n is an integer,
here we denote by Qn the n-th cyclotomic field and if χ is a character, then
Q(χ) is the smallest field containing the values of χ.

Theorem A. Let p be a prime, let G be a p-solvable finite group, and let P ∈
Sylp(G). Let χ ∈ Irr(G) be such that p does not divide χ(1) and such that
Q(χ) ⊆ Qpa for some a ≥ 0. If |NG(P )/P | is odd, then there exists a subgroup
V ⊆ G and a linear character λ ∈ Irr(V ) with Q(λ) ⊆ Qpa such that λG = χ.
Furthermore, if χ = γG for some linear γ ∈ Irr(W ), then W = V g and γ = λg

for some g ∈ G.

The condition that |NG(P )/P | is odd is (unfortunately) necessary: if p = 3,
then G = SL(2, 3) has a rational character of degree 2 which is not mono-
mial. In this case, NG(P )/P has order 2. Also, we need to assume that G is
p-solvable, even in Gow’s original situation: the group G = A6 has two non-
monomial rational characters of degree 5.
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2. Proofs. In general, we use the notation of [4]. If U ⊆ G, γ ∈ Irr(U), and
g ∈ G, then γg ∈ Irr(Ug) is the character of Ug satisfying γg(ug) = γ(u) for
u ∈ U . Also, (U, γ)g = (Ug, γg). If χ ∈ Irr(U) has values in some subfield F ⊆
C, where F/Q is Galois and σ ∈ Gal(F/Q), then we know that χσ, defined by

χσ(u) = χ(u)σ

for u ∈ U , is also an irreducible character of U (for a proof of this elementary
fact see Lemma (2.1) of [6], for instance).

Proof of Theorem A. First we argue by induction on |G| that there exists a
pair (V, λ), where V is a subgroup of G and λ is a linear character of V , such
that Q(λ) ⊆ Qpa and λG = χ. For the reader’s convenience, we do this in
a series of steps. The first four of these are of general type, which are not
obtained by induction, and that shall be used in the second part of the proof.

Step 1. If N � G, then there exists a P -invariant θ ∈ Irr(N) under χ, and any
two of them are NG(P )-conjugate.
This follows from the following standard argument. Let θ1 ∈ Irr(N)
be under χ, let T1 be the stabilizer of θ1 in G, and let ψ1 ∈ Irr(T1|θ1)
be the Clifford correspondent of χ over θ1. (See Theorem (6.11) of
[4].) Since χ has p′-degree, we have that |G : T1| is not divisible by
p, and then Ph−1 ⊆ T1 for some h ∈ G. Then P ⊆ T = IG(θ), where
θ = (θ1)h ∈ Irr(N). Also, if η ∈ Irr(N) is also P -invariant under χ,
then by Clifford’s theorem we have that ηg = θ for some g ∈ G. Then
P, P g ⊆ T , and thus P gt = P for some t ∈ T by Sylow theory. Now
ηgt = θt = θ are NG(P )-conjugate.

Step 2. If N � G, θ ∈ Irr(N), g ∈ G, and σ ∈ Gal(Q(θ)/Q), then we have that
(θσ)g = (θg)σ. In particular, the stabilizer of θ in G is the stabilizer
of θσ in G.
This immediately follows from the corresponding definitions.

Step 3. Suppose that N � G, and let θ ∈ Irr(N) be P -invariant under χ. If θ̄
is also an irreducible constituent of χN , where θ̄ is the complex-con-
jugate of θ, then θ = θ̄.
By Step 2, we have that θ̄ is also P -invariant, and therefore there
exists g ∈ NG(P ) such that θ̄ = θg, by Step 1. Now, g2 fixes θ (also
using Step 2). Now since NG(P )/P has odd order by hypothesis, we
conclude that 〈gP 〉 = 〈g2P 〉. Therefore g fixes θ and θ = θ̄ is real.

Step 4. We have that N = Op′(G) ⊆ ker(χ).
By Step 1, let θ ∈ Irr(N) be P -invariant under χ, let T be the sta-
bilizer of θ in G, and let ψ ∈ Irr(T ) be the Clifford correspondent
of χ over θ. We prove first that θ is real. By Step 3, it suffices to
show that θ̄ is under χ. Let σ ∈ Gal(Q(θ)/Q) the automorphism
induced by complex conjugation. Since Q(θ) ⊆ Q|N | and N is a
p′-group, we have that Qpa ∩Q(θ) = Q. By the Natural Irrationalities
theorem on Galois theory, let τ ∈ Gal(Qpa(θ)/Qpa) be the natural
extension of σ. Then χτ = χ because χ has values in Qpa . Therefore,
θτ = θσ = θ̄ lies under χ. Hence θ is real.



Vol. 99 (2012) Certain monomial characters of p′-degree 409

Next we use the Glauberman correspondence (see Chapter 13 of [4]).
This is a natural bijection

∗ : IrrP (N) → Irr(CN (P )) ,

where IrrP (N) is the set of P -invariant irreducible characters of N .
In fact, if θ ∈ IrrP (N), then

θCN (P ) = eθ∗ + pΔ ,

where θ∗ ∈ Irr(CN (P )), p does not divide e, and Δ is a character
of CN (P ) or zero. Now, θ∗ is an irreducible constituent of θCN (P )

with p′-multiplicity, and by uniqueness we deduce that θ∗ is real. But
CN (P ) = NN (P ) has odd order because NG(P )/P has odd order by
hypothesis. Thus θ∗ = 1 by Burnside’s theorem on real characters of
groups of odd order, and therefore θ = 1 by the uniqueness of the
Glauberman correspondence. Hence Op′(G) ⊆ ker(χ), as claimed.

Step 5. The character χ is faithful. In particular Op′(G) = 1.
Let L = ker(χ). Then NG/L(PL/L)/(PL/L) ∼= NG(P )/PNL(P ) has
odd order. If L > 1, then the existence of (V, λ) is readily obtained by
applying the inductive hypothesis in G/L.

Step 6. G is not a p-group.
Otherwise, since p does not divide χ(1), then we have that χ is linear.
In this case, we take (V, λ) = (G,χ).

Step 7. M = Op(G) is abelian, and if Z = Z(G), then Z < M .
Let ν ∈ Irr(M) be under χ. Since χ has p′-degree, then we have that ν
is linear. Thus M ′ is contained in the kernel of every G-conjugate of ν.
Since χ is faithful, we deduce thatM is abelian. Let Z = Z(G) ⊆ M by
Step 5. By Hall-Higman 1.2.3 Lemma, we have that Z < M (because
G is not a p-group, by Step 6).

Step 8. Let K/Z be a chief factor of G/Z inside M/Z. Let μ ∈ Irr(K) be
P -invariant under χ (which exists by Step 1). Let I be the stabilizer
of μ in G, and let ψ ∈ Irr(I|μ) be the Clifford correspondent of χ over
μ. Then I < G and Q(μ) ⊆ Qpa .
By Step 7, we have that K is abelian. If I = G, then χK = χ(1)μ and
then, using that μ is linear, faithful and G-invariant, we conclude that
K ⊆ Z, which is not possible. Thus I < G. We also have that |G : I|
is not divisible by p. We need to show that Q(μ) ⊆ Qpa .
Write χZ = χ(1)ζ, where ζ ∈ Irr(Z) is faithful. In particular, if |Z| =
pb, then Q(χ) contains a pb-primitive root of unity. Thus Qpb ⊆ Qpa .
Since K/Z is elementary abelian, then we have that the exponent of
K divides pb+1. Thus o(μ) divides pb+1 and Q(μ) ⊆ Qpb+1 .
Suppose first that a = 0, so that χ is rational. Since χ is real, then
μ and μ̄ are P -invariant characters under μ. By Step 3, we have that
μ is real. Since μ is linear, then we have that Q(μ) = Q, and we are
done in this case. So we may assume that a ≥ 1. Since Qpb ⊆ Qpa

and a ≥ 1, we now have that pb ≤ pa. In particular, o(μ) divides
pa+1. Let 〈σ〉 = Gal(Qpa+1/Qpa), where σ has order p because a ≥ 1.
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Since χσ = χ, by Clifford’s theorem it follows that μσ = μg for some
g ∈ G. Then Ig = I by Step 2. Furthermore, since o(σ) = p, we have
that gp ∈ I. However, NG(I)/I is a p′-group (because P ⊆ I), and
therefore g ∈ I. Hence μσ = μ and therefore Q(μ) ⊆ Qpa , as desired.

Final Step. Let τ ∈ Gal(Qpa(ψ)/Qpa). Since τ fixes χ and μ, then we have
that τ fixes ψ by the uniqueness in the Clifford correspondent. Therefore, we
have that Q(ψ) ⊆ Qpa . Now, since P ⊆ I < G and NI(P )/P has odd order, we
can apply induction to ψ and deduce that there exists V ⊆ I and λ ∈ Irr(V )
with Q(λ) ⊆ Qpa such that λI = ψ. Then λG = χ, and the first part of the
proof is complete.

In the second part of this proof, we prove that if (W,γ) and (V, λ) are
any two pairs with γ(1) = 1 = λ(1) and λG = χ = γG, then there is g ∈ G
such that (W,γ) = (V, λ)g. We do this by arguing by induction on |G|. Let
L = ker(χ). Since γG = χ = λG, then L = coreG(ker(λ)) = coreG(ker(γ))
is contained in V ∩ W . By induction, we easily may assume that L = 1. In
particular Op′(G) = 1 by Step 4 in the first part of this proof. Now, let
M = Op(G). Since |G : V | and |G : W | are not divisible by p (because χ(1) is
not), then we have that M ⊆ V ∩ W . Now, by Mackey, λM and γM are two
irreducible constituents of χM . By Clifford’s theorem and replacing (V, λ) by
some G-conjugate, there is no loss if we assume that λM = τ = γM . Hence V
and W are contained in T , the stabilizer of τ in G. By the uniqueness of the
Clifford correspondent, we have that λT = γT = ψ. Since τ and χ have values
in some cyclotomic field Qpb , then we have that ψ has also values in Qpb by the
uniqueness of the Clifford correspondence. If T = G, then M ⊆ Z(G) (using
that τ is linear and χ is faithful) and G is a p-group, by Hall-Higman’s Lemma
1.2.3. In this case, V = W = G and χ = γ = λ. Otherwise, T < G,NT (P )/P
has odd order, and we apply induction to T and ψ. �

We finish this note with a few remarks. Let G be a finite group, let p
be a prime, and let Irrp′(G) be the set of irreducible characters of G of
p′-degree. How many p′-degree irreducible characters does G have with field
of values contained in Qpa? It does not seem easy at all how to answer this
question in general. However, if G is p-solvable and NG(P )/P has odd order,
then it is somewhat remarkable that this number can be computed locally. If
we write Xp′,pa(G) = {χ ∈ Irrp′(G) | Q(χ) ⊆ Qpa}, then it can be proved
that |Xp′,pa(G)| = |Xp′,pa(NG(P ))|, where P ∈ Sylp(G). This result fol-
lows by using the natural correspondences between Irrp′(G) → Irrp′(NG(P ))
constructed by Isaacs (in the case where p = 2) and by Turull (in the case
where |NG(P )| is odd) (see [3] and [7] for these two non-trivial theorems). But
in fact, it is easier to construct a natural bijection

Xp′,pa(G) → Xp′,pa(NG(P ))

using that Xp′,pa(G) consists of monomial characters (by Theorem A) and the
main result of [5].

Also, it can also be proved that the monomial character in our Theorem A
is one of the characters that can be obtained via the method proposed in [2].
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