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Introduction

Let A and G be finite groups and assume that A acts on G via group automorphisms. 
In the case when the orders of A and G are coprime and A is solvable, G. Glauberman 
found in 1968 a canonical bijection between the set of irreducible A-invariant characters 
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of G and the set of irreducible characters of the fixed point subgroup CG(A). If A is not 
solvable, another canonical bijection was found by I.M. Isaacs in 1973. The mere fact 
that the sets of A-invariant irreducible characters of G and of irreducible characters of 
CG(A) have the same cardinality has already important consequences. For instance, it 
proves that the actions of A on the irreducible characters and on the conjugacy classes 
of G are permutation isomorphic.

Let us now turn to the analogous question on (p-)Brauer characters (for a prime p), 
that is an open problem proposed by G. Navarro (see [12]). K. Uno [17] gave a natural 
map between the set of irreducible A-invariant p-Brauer characters of G and the set 
of irreducible p-Brauer characters of CG(A), when G is a p-solvable group. If G is not 
p-solvable (and therefore, A is solvable by the Odd Order Theorem), no progress has 
been made since 1983. The case where A is cyclic is a well-known consequence of the 
so-called Brauer’s argument on character tables. In fact, this also proves the case when 
G is a quasi-simple group, using the classification of finite simple groups (see [15]). The 
general case, however, seems out of reach with those methods.

In this paper, we present a reduction of this problem to a question on finite sim-
ple groups. We prove that if the finite simple non-abelian groups satisfy the inductive 
Brauer–Glauberman condition (see Definition 6.1), then the answer to Problem 5 of [12]
is affirmative. This is our main result.

Theorem A. Let G and A be finite groups. Suppose that A acts on G with (|A|, |G|) = 1. 
Suppose that all finite non-abelian simple groups involved in G satisfy the inductive 
Brauer Glauberman condition from Definition 6.1. Then the number of irreducible 
p-Brauer characters of G fixed by A is the number of irreducible p-Brauer characters 
of CG(A). Consequently, the actions of A on the irreducible p-Brauer characters and on 
the p-regular conjugacy classes of G are permutation isomorphic.

In [15] the inductive Brauer–Glauberman condition is checked for all simple groups 
not of Lie type, as well as for simple groups of Lie type in the defining characteristic 
case.

In contrast to other inductive conditions on simple groups coming from global/local 
conjectures, the inductive Brauer–Glauberman condition splits into two parts. One part 
can be seen as a stronger version of the main statement, since it requires the existence of 
some equivariant bijection with some Clifford-theoretic properties, that can be seen as 
analogous to those introduced in [8]. The second (and more surprising) part requires the 
existence of a bijection which we call fake Galois action (Definition 4.4). In certain spe-
cific situations, the Glauberman correspondence is only explained by the action of Galois 
automorphisms on ordinary characters. The fake Galois action required by the inductive 
Brauer–Glauberman condition provides a tool to overcome the difficulty caused by the 
fact that, in general, there is no action of the Galois group on the Brauer characters.

This article is structured in the following way: We introduce the notation on ordi-
nary and Brauer characters in Section 1. Afterwards, we collect some well-known results 
about the Glauberman correspondence. In Section 3, we define a partial order relation 
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on modular character triples. We introduce the notion of fake Galois conjugate charac-
ter triples in Section 4. Afterwards we study coprime actions on the direct product of 
quasi-simple groups in Section 5. The aforementioned relations between character triples 
play a central role in the definition of the inductive Brauer–Glauberman condition (see 
Definition 6.1). In Section 6 we study some implications of the validity of the inductive 
Brauer–Glauberman condition for central products of covering groups of simple non-
abelian groups. Finally, we conclude with the proof of Theorem A.

1. Notation

Unless otherwise stated, all groups considered are finite. We use the notation of [5]
for ordinary characters and [13] for Brauer characters.

Let us fix some notation for the rest of the article. We fix a prime p. Choose a 
maximal ideal M in the ring R of algebraic integers with p ∈ M , so that F = R/M is an 
algebraically closed field of characteristic p. Write ∗ : R → F to denote the natural ring 
homomorphism. This homomorphism can be extended to S = {r/s | r ∈ R, s ∈ R\M} by

(r/s)∗ = r∗(s∗)−1,

for every r ∈ R and s ∈ R \M , see Chapter 2 of [12].
Let G be a group. The irreducible p-Brauer characters IBr(G) of G (with respect 

to M) are defined in Chapter 2 of [13].
Let H ⊆ G and χ ∈ Irr(G). We write Irr(χH) to denote the set of irreducible con-

stituents of the restriction of χ to H. Let ψ ∈ Irr(H). Then Irr(G|ψ) denotes the set of 
irreducible constituents of ψG, the induced character of ψ to G. We use the analogous 
notation for Brauer characters.

We write G0 to denote the set of p-regular elements of G, i.e., the set of elements of 
G or order coprime to p. If χ ∈ Irr(G), we denote by χ0 the restriction of χ to G0, which 
is a Brauer character by Corollary 2.9 of [13].

If a group A acts on a set Λ, we write Aλ to denote the stabilizer in A of λ ∈ Λ. If a 
group A acts on G, then A acts on Irr(G) and on IBr(G). We write IrrA(G) to denote 
the set of A-invariant elements of Irr(G) and IBrA(G) to denote the set of A-invariant 
elements of IBr(G).

Recall that the Glauberman-Isaacs correspondence is a uniquely defined natural bi-
jection

π(G,A) : IrrA(G) → Irr(CG(A)),

that exists whenever a group A acts coprimely on a group G. (As we have mentioned, 
the case where A is solvable was proved by Glauberman and the remaining case, where 
|G| is odd, by Isaacs. T. Wolf proved in [18] that both correspondences agreed when both 
are defined.) In this paper, we are interested in the case where A is solvable, but we do 
prove some results in more generality for possible future use. According to Theorem 2.1 
of [19] the Glauberman-Isaacs correspondence satisfies then
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π(G,A) = π(T,A/B) ◦ π(G,B),

for any B ▹A, where T = CG(B).

2. Review on character counts above Glauberman-Isaacs correspondents

The main goal of this section is to count Brauer characters lying above characters of 
normal p′-subgroups and their Glauberman correspondents.

We shall use the following.

Lemma 2.1. Assume that A acts on G, K ▹ G is A-invariant, (|G : K|, |A|) = 1 and 
CG/K(A) = G/K. If η ∈ IBrA(K), then every χ ∈ IBr(G|η) is A-invariant.

Proof. This follows from the same considerations as in Lemma 2.5 of [18]. ✷

Suppose that K ▹G and η is an irreducible G-invariant character of K. If η is an ordi-
nary character, then |Irr(G|η)| can be determined by a purely group theoretical method 
due to P.X. Gallagher. There is an analogous result for Brauer characters. If η is a Brauer 
character we say that Kg ∈ (G/K)0 (or g) is η-good if every extension ϕ ∈ IBr(⟨K, g⟩) of 
η is U -invariant where U/K = CG/K(Kg). Notice that η always extends to ⟨K, g⟩ since 
⟨K, g⟩/K is cyclic (Theorem 8.12 of [13]). Also, U acts on IBr(⟨K, g⟩|η) as ⟨K, g⟩ ✁ U . 
It is clear that if Kg ∈ (G/K)0 is η-good, then every G-conjugate of Kg also is, so we 
can talk about p-regular η-good classes of G/K.

Theorem 2.2. Suppose that K ▹G and that η ∈ IBr(K) is G-invariant. Then, |IBr(G|η)|
is equal to the number of p-regular η-good classes of G/K.

Proof. See Theorem 6.2 of [7]. ✷

The following is basically a particular case of Theorem 2.12 of [19].

Theorem 2.3. Let A act coprimely on G. Suppose that K ▹G is A-invariant and G = KC, 
where C = CG(A). Then η ∈ IrrA(K) extends to Gη iff η′ ∈ Irr(K ∩ C) extends to Cη′ , 
where η′ ∈ Irr(CK(A)) is the Glauberman-Isaacs correspondent of η.

Proof. Notice that Gη ∩ C = Cη′ by Lemma 2.5(b) of [19]. Hence, we may assume that 
η and η′ are C-invariant.

Suppose that η extends to some χ ∈ Irr(G). By [18, Lem. 2.5] we see that χ ∈ IrrA(G). 
Since [G, A] ≤ K, by [19, Thm. 2.12]

η′ = π(K,A)(η) = π(K,A)(χK) = (π(G,A)(χ))K∩C .

Hence π(G,A)(χ) is an extension of η′. Analogously we see that η extends to G, if η′
extends to C. ✷
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Next, we need similar results for Brauer characters.

Lemma 2.4. Let K ✁ G, θ ∈ Irr(K) be G-invariant and suppose that K is a p′-group. 
Then θ extends to an ordinary character of G if and only if θ extends to a Brauer 
character of G.

Proof. Let θ̃ ∈ Irr(G) be an extension of θ to G. Then (θ̃)0 is a Brauer character of G
extending θ. Suppose that ϕ ∈ IBr(G) extends θ. Let Q/N be a Sylow q-subgroup of 
G/N for some prime q. If q ̸= p, then ϕQ is an ordinary character extending θ. If q = p, 
then θ extends to Q by Corollary (6.28) of [5]. Hence θ extends to G by Corollary (11.31) 
of [5]. ✷

Theorem 2.5. Suppose that A acts coprimely on G. Let K ▹ G be A-invariant. Suppose 
that p ! |K| and G = KC, where C = CG(A). Let η ∈ IrrA(K) be G-invariant and write 
η′ ∈ Irr(K ∩ C) to denote its Glauberman-Isaacs correspondent. Then

|IBr(G|η)| = |IBr(C|η′)|.

Proof. By Theorem 2.2 it suffices to show that for every c ∈ C, the element cK is η-good 
if and only if the element cK ∩ C is η′-good. According to [9, Thm. 4.7] it suffices to 
show that for every U with K ≤ U ≤ G and abelian U/K, η extends to U as a Brauer 
character if and only if η′ extends to U ∩C as a Brauer character. We apply Theorem 2.3
and Lemma 2.4 in U . ✷

Corollary 2.6. Suppose that A acts coprimely on G. Let K ▹G be A-invariant. Suppose 
that K is a p′-group and G = KC, where C = CG(A). Let N ▹G be contained in K ∩C

and let θ ∈ Irr(N). Then

|IBrA(G|θ)| = |IBr(C|θ)|.

Proof. Let B be a set of representatives of the C-orbits of IrrA(K|θ) and B′ =
{π(K,A)(η) | η ∈ B}. Then B′ ⊆ Irr(K ∩ C|θ) by [19, Lem. 2.4] and B′ is a set of 
representatives of the C-orbits of Irr(K ∩C|θ). By Corollary 5.2 of [18], we deduce that 
the bijection π(K,A) is C-equivariant. Hence B′ is a set of representatives of the C-orbits 
of Irr(K ∩ C|θ).

Every element of IBrA(G|θ) lies over a unique element of B and also every element of 
IBr(C|θ) lies over a unique element of B′. Thus

|IBrA(G|θ)| =
∑

η∈B
|IBrA(G|η)| and |IBr(C|θ)| =

∑

η∈B
|IBr(C|π(K,A)(η))|.

By Lemma 2.1, for every η ∈ B we have that |IBrA(G|η)| = |IBr(G|η)|. Hence, it suffices 
to show that |IBr(G|η)| = |IBr(C|π(K,A)(η))| for every η ∈ B. By the Clifford correspon-
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dence on Brauer characters, we may assume that η ∈ B is G-invariant. Now, the result 
follows from Theorem 2.5. ✷

3. Central isomorphisms of modular character triples

In this section we introduce a new order relation on modular character triples. It can 
be seen as a modular analogue of the notion of central isomorphic (ordinary) character 
triples introduced in [14]. Afterwards we record several results on the construction of 
modular character triples respecting this new relation. Those results mainly follow from 
an easy inspection of analogous results on the related order and equivalence relations 
given in [14] and [16] on ordinary character triples. Although the consideration follow 
the ideas in [14] and [16] we do not take into account p-blocks.

Let us start by recalling some facts on modular character triples. If N ▹ G and 
θ ∈ IBr(N) is G-invariant, then the triple (G, N, θ) is called a modular character triple. 
Isomorphisms of modular character triples (see Definition 8.25 of [13]) establish an equiv-
alence relation on them. If (σ, τ) : (G, N, θ) → (Γ, M, ϕ) is an isomorphism of modular 
character triples, then τ is an isomorphism G/N → Γ/M and for every N ≤ J ≤ G σ
yields a bijection σJ : IBr(J |θ) → IBr(Jτ |ϕ), where τ(J/N) = Jτ/M .

If N ≤ J ≤ G, ψ ∈ IBr(J |θ) and g = gN ∈ G/N , we define ψg ∈ IBr(Jg|θ) by

ψg(xg) = ψ(x) for every x ∈ J.

Note that this is well-defined. We say that a modular character triple isomorphism

(σ, τ) : (G,N, θ) → (Γ,M,ϕ)

is strong if

(σJ(ψ))τ(g) = σJg(ψg),

for all g ∈ G/N , all groups J with N ≤ J ≤ G and all ψ ∈ IBr(J |θ).
Let (G, N, θ) be a modular character triple. Let X be an F -representation affording 

the Brauer character θ. According to Theorem 8.14 of [13], there exists a projective 
representation P of G, such that PN = X. Moreover, we can choose P such that its 
factor set α satisfies

α(g, n) = 1 = α(n, g),

for every g ∈ G and n ∈ N . In this situation, we say that P is a projective representation 
of G associated to θ. Then α can be seen as a map on G/N×G/N (see the remarks after 
Theorem 8.14 of [13]). Furthermore, if ProjF (J/N, α−1) is a set of representatives of the 
similarity classes of irreducible projective F -representations of J/N with factor set α−1

where N ≤ J ≤ G, then
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RepF (J, θ) = {Q⊗ PJ : Q ∈ ProjF (J/N,α−1)}

is a set of representatives of similarity classes of representations affording a Brauer char-
acter in IBr(J |θ) (see for example [14, Thm. 3.1]).

Theorem 3.1. Let (G, N, θ) and (H, M, θ′) be modular character triples satisfying the 
following assumptions:

(i) G = NH and M = N ∩H,
(ii) there exist projective representations P and P ′ of G and H associated to θ and θ′, 

respectively, whose factor sets α and α′ coincide via the natural isomorphism 
τ : G/N → H/M .

Now, for N ≤ J ≤ G, let σJ ∈ Ch(J |θ) → Ch(J ∩H|θ′) be the linear map given by

tr(Q⊗ PJ ) ,→ tr(QJ∩H ⊗ P ′
J∩H)

for any projective representation Q of J/N , whose factor set is inverse to the one of PJ . 
Then

(σ, τ) : (G,N, θ) → (H,M, θ′)

is a strong isomorphism of modular character triples.

Proof. See Theorem 3.2 of [14]. ✷

In the situation of Theorem 3.1, we say that (σ, τ) an isomorphism of modular char-
acter triples given by P and P ′.

The following gives examples of (strong) modular character triple isomorphisms.

Lemma 3.2. Let (G, N, θ) be a modular character triple.

(a) If α : G → H is an isomorphism of groups, then (G, N, θ) is strongly isomorphic to 
(H, M, ϕ) where M = α(N) and ϕ ∈ IBr(M) is the character defined by ϕ(α(n)) =
θ(n) for every n ∈ N0.

(b) If M▹G and M ≤ ker(θ), then (G, N, θ) and (G/M, N/M, θ) are strongly isomorphic, 
where θ(nM) = θ(n) for every n ∈ N0.

(c) Suppose that µ : G → H is an epimorphism and that K = ker(µ) ≤ ker(θ). Then 
(G, N, θ) and (H, M, ϕ) are strongly isomorphic, where M = µ(N) and ϕ ∈ Irr(M)
is the unique character of M with ϕ(µ(n)) = θ(n) for every n ∈ N0.

(d) Suppose that there exists some η ∈ IBr(G) such that ηNθ = ϕ ∈ IBr(N). Then 
(G, N, θ) and (G, N, ϕ) are strongly isomorphic.
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Proof. The first two parts are straightforward from the definition, and the third is a 
direct consequence of (a) and (b). To prove (d), let P be a projective representation of 
G associated to θ. Write P ′ = P ⊗D, where D is a representation of G affording η. It is 
straightforward to check that P ′ is a projective representation of G associated to ϕ and 
that the factor sets of P and P ′ agree, since D is an actual representation. Now part (d) 
follows by applying Theorem 3.1. ✷

Definition 3.3. Let (G, N, θ) and (H, M, θ′) be modular character triples satisfying the 
following conditions:

(i) G = NH, M = N ∩H and CG(N) ≤ H.
(ii) There exist a projective representation P of G associated to θ with factor set α and 

a projective representation P ′ of H associated to θ′ with factor set α′ such that
(ii.1) α|H×H = α′, and
(ii.2) for every c ∈ CG(N) the scalar matrices P(c) and P ′(c) are associated with 

the same scalar (notice that P(c) and P ′(c) are scalar by Schur’s Lemma).

Let (σ, τ) be the isomorphism of character triples given by P and P ′ as in Theorem 3.1. 
Then we call (σ, τ) a central isomorphism of modular character triples, and we write

(G,N, θ) ≻Br,c (H,M, θ′).

By Lemma 3.3 of [14], condition (ii.2) above is equivalent to

IBr(ψCJ (N)) = IBr(σJ (ψ)CJ (N)),

for every ψ ∈ IBr(J |θ) and N ≤ J ≤ G. This is a modular analog of the relation ∼c

defined in [14]. In particular, the fact that ≻Br,c defines an order relation on the set of 
modular character triples and is thereby transitive follows from Lemma 3.8 of [14].

We shall frequently use the following.

Lemma 3.4. Let (G, N, θ) and (H, M, θ′) be modular character triples with

(G,N, θ) ≻Br,c (H,M, θ′).

(a) If P is a projective representation of G associated to θ with factor set α, then there 
exists a projective representation P ′ of H associated to θ′ with factor set α′ such 
that
(a.i) α|H×H = α′, and
(a.ii) for every c ∈ CG(N) the scalar matrices P(c) and P ′(c) are associated with 

the same scalar.
(b) If P ′ is a projective representation of H associated to θ′ with factor set α′, then there 

exists a projective representation P of G associated to θ with factor set α such that
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(b.i) α|H×H = α′, and
(b.ii) for every c ∈ CG(N) the scalar matrices P(c) and P ′(c) are associated with 

the same scalar.

Proof. Let Q and Q′ be projective representations as in 3.3. In the situation of (a), 
by Theorem 8.14 of [13], there exists a unique map ξ : G/N → F× such that P(g) =
Q(g)ξ(g) for every g ∈ G. Then P ′ := Q′ξ is a projective representation of H having the 
required properties. Analogous arguments prove part (b). ✷

The following result analyzes the behavior of central isomorphic modular character 
triples with respect to certain quotients.

Lemma 3.5. Suppose that (G, N, θ) ≻Br,c (H, M, θ′). Let ϵ : G → G1 be an epimorphism. 
Write N1 = ϵ(N) and H1 = ϵ(H). Suppose that Z = ker(ϵ) ≤ Z(N) ∩ ker(θ) ∩ ker(θ′)
and ϵ(CG(N)/Z) = CG1(N1). Then

(G1, N1, θ1) ≻Br,c (H1,M1, θ
′
1),

where θ1 ∈ IBr(N1) is such that θ = θ1 ◦ ϵ and θ′1 ∈ IBr(M1) is such that θ′ = θ′1 ◦ ϵ.

Proof. See the proof of Corollary 4.5 of [14]. Note that there the stronger assumption 
Z ≤ Z(G) is only used for the block-theoretic statements that are not relevant in the 
context here. ✷

Let Gi be finite groups for i = 1, 2. Recall that IBr(G1×G2) = {θ1×θ2 | θi ∈ IBr(Gi)}. 
The following lemma tells us how to construct central isomorphic modular character 
triples using direct and semi-direct products.

Lemma 3.6. Let m be a positive integer. Suppose that (Gi, Ni, θi) ≻Br,c (Hi, Mi, θ′i) for 
1 ≤ i ≤ m. Assume that all Gi, Hi, Ni, Mi are isomorphic. Write G = ×m

i=1Gi, 
H = ×m

i=1Hi, N = ×m
i=1Ni, M = ×m

i=1Mi, θ = θ1 × · · · × θm ∈ IBr(N) and θ′ =
θ′1 × · · · × θ′m ∈ IBr(M). Suppose that Sm acts on G by permutation of the isomorphic 
factors Gi, inducing an action on N , H and M by permuting their factors. Assume 
further (Sm)θ = (Sm)θ′ . Then

(G" (Sm)θ, N, θ) ≻Br,c (H " (Sm)θ,M, θ′).

Proof. Follows from the same arguments as in Theorems 5.1 and 5.2 in [16]. ✷

The following result is key, and lies deeper than the others already mentioned in this 
section.

Theorem 3.7. Let (G, N, θ) ≻Br,c (H, M, θ′). Suppose that N ▹ G1 and G1/CG1(N) is 
equal to G/CG(N) as a subgroup of Aut(N). Let H1 ≤ G1 such that H1 ≥ CG1(N), and
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H1/CG1(N) and H/CG(N) are equal as subgroups of Aut(N). Then

(G1, N, θ) ≻Br,c (H1,M, θ′).

Proof. This is, for Brauer characters, a particular case of Theorem 5.3 of [16]. ✷

The following nearly trivial observation will be useful later.

Lemma 3.8. Suppose that (G, N, θ) ≻Br,c (H, M, θ′). Let Γ with N ≤ G ≤ Γ and x ∈ Γ. 
Then (Gx, Nx, θx) ≻Br,c (Hx, Mx, (θ′)x).

Proof. According to Definition 3.3 one can obtain projective representations giving 
(Gx, Nx, θx) ≻Br,c (Hx, Mx, (θ′)x) by conjugation with x from those projective rep-
resentations giving (G, N, θ) ≻Br,c (H, M, θ′). ✷

Next, we discuss the Brauer characters of a central product of groups and their relation 
with Brauer central isomorphic character triples.

Lemma 3.9. Let N ▹G and Ti with N ≤ Ti ≤ G be such that G/N = T1/N × · · ·×Tk/N . 
Suppose that [Ti, Tj ] = 1 for every i ̸= j. Given θ ∈ IBr(N) and ϕi ∈ IBr(Ti|θ), there 
is a unique χ = ϕ1 · . . . · ϕk ∈ IBr(G|θ) such that χTi is a multiple of ϕi. Moreover, the 
map

IBr(T1|θ) × · · ·× IBr(Tk|θ) → IBr(G|θ)

(ϕ1, . . . ,ϕk) ,→ ϕ1 · . . . · ϕk

is a natural bijection.

Proof. This is a natural adaptation of Lemma 5.1 of [8] to Brauer characters. ✷

Lemma 3.10. Let N ▹H ≤ G. Let Z ▹G be an abelian group such that Z ≤ CG(N) and 
Z ∩N = Z ∩M . Suppose that (H, N, θ) ≻Br,c (K, M, θ′). Then

(HZ,NZ, θ · ν) ≻Br,c (KZ,MZ, θ′ · ν)

for every ν ∈ IBrH(Z|λ) where λ ∈ IBr(θZ∩M ).

Proof. See Proposition 3.9(b) of [14] together with Theorem 3.7. ✷

Later in this paper, we will need to control the values of certain projective represen-
tations, see for instance Lemma 4.7. The following method for constructing projective 
representations from representations given in [14] will be useful.

We recall that if ϵ : Ĝ → G is an epimorphism with ker(ϵ) = Z, then a Z-section
rep: G → Ĝ of ϵ is a map such that ϵ ◦ rep = idG and rep(1) = 1.
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Theorem 3.11. Let (G, N, θ) be a character triple with θ ∈ Irr(N). There exists a finite 
group Ĝ, an epimorphism ϵ : Ĝ → G with cyclic kernel Z ≤ Z(Ĝ) and a Z-section 
rep: G → Ĝ satisfying:

(a) N̂ = N1×Z = ϵ−1(N), N1 ∼= N via ϵ|N1 and N1▹Ĝ. The action of Ĝ on N̂ coincides 
with the action of G on N via ϵ.

(b) The character θ1 = θ ◦ ϵ|N1 ∈ Irr(N1) extends to Ĝ. The Z-section rep: G → Ĝ

satisfies rep(n) ∈ N1, rep(ng) = rep(n)rep(g) and rep(gn) = rep(g)rep(n) for every 
n ∈ N and g ∈ G.

(c) ϵ(CĜ(N̂)) = CG(N).

In particular, if D is a representation of Ĝ such that D|N1 affords θ1, then the map P
defined for every g ∈ G by

P(g) = D(rep(g))

is a projective representation of G associated to θ.

Proof. See Theorem 4.1 of [14]. ✷

Remark 3.12. The analog of Theorem 3.11 for modular character triples (G, N, ϕ) also 
holds.

4. Fake Galois action

We will start this section by reviewing how the Glauberman correspondence and a 
certain Galois action on ordinary characters are naturally related. We then describe 
the interplay between the projective representations associated with Galois conjugate 
characters. Afterwards we introduce a new relation between modular character triples 
which resembles Galois action. Finally, we investigate properties of this new relation.

Assume that a group A ≤ Sm is given, and let G > 1 be a group. Then A acts 
naturally on G̃ = G × · · · × G = Gm, the external direct product of m copies of G. 
Furthermore, if A is transitive, then

CG̃(A) = {(g, . . . , g) ∈ G̃ | g ∈ G}

and an irreducible A-invariant character χ of G̃ has the form

χ = θ × · · ·× θ

for some θ ∈ Irr(G). The group CG̃(A) is naturally isomorphic to G̃. Furthermore, if 
(|A|, |G|) = 1, then the Glauberman correspondent of χ is some Galois conjugate of θ
viewed as a character of CG̃(A). (See Proposition 4.2 below.)
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Notation 4.1. Let ∆m : G → G̃ be the injective morphism defined by g ,→ (g, . . . , g) for 
every g ∈ G. Then ∆m defines natural bijections Irr(G) → Irr(∆mG) and IBr(G) →
IBr(∆mG), where ∆mG is the image ∆m(G), that is the diagonal subgroup of G̃. If from 
the context m is clear, we omit the superscript m and write ∆ instead of ∆m.

Whenever n is a natural number, we write Qn to denote the cyclotomic extension 
of Q obtained by adjoining a primitive n-th root of unity to Q. For a fixed positive 
integer m, let π be the set of primes dividing m. Let n be any positive integer, we denote 
by σm ∈ Gal(Qn/Q) the Galois automorphism defined by

σm(ξ) = ξσm = ξπξ
m
π′ ,

for every root of unity ξ ∈ Qn, where ξπ and ξπ′ are respectively the π-part and the 
π′-part of ξ. This defines a Galois automorphism of Qn for any n.

If χ is any function taking values in a cyclotomic field, notice that χσm defined by

χσm(x) = χ(x)σm

is well-defined. For instance, if χ is an irreducible character of a group G, then χσm is an 
irreducible character of G. However, this is not longer true if χ is an irreducible Brauer 
character of G.

Proposition 4.2. Assume that a solvable subgroup A ≤ Sm is transitive. Let G be a finite 
group with (|A|, |G|) = 1. Let G̃ be the m-th direct product of copies of G. Let θ ∈ Irr(G)
and let χ = θ × · · · × θ ∈ IrrA(G̃). Then, the Glauberman correspondent of χ is the 
character χ′ = ∆(θσm), where θσm is the image of θ under the Galois automorphism σm.

Proof. This is essentially the content of Exercise 13.11 of [5]. To do the case where A
is cyclic of prime order, use Exercise 4.7 of [5]. The general case, follows by induction 
on |A|. ✷

It is clear that the Clifford theory of two ordinary irreducible Galois conjugate char-
acters is related.

Proposition 4.3. Let N ▹G and θ ∈ Irr(N). Let m be an integer coprime to |N |. Then θ
and θ′ = θσm satisfy:

(a) Gθ = Gθ′ .
(b) Assume G = Gθ. There exist P and P ′ projective representations of G associated to 

θ and θ′ such that:
(b.1) the factor sets α and α′ of P and P ′ satisfy

α(g, g′)σm = α′(g, g′)

for every g, g′ ∈ G, and
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(b.2) for every c ∈ CG(N) the scalar matrices P(c) and P ′(c) are associated with ξ
and ξσm for some root of unity ξ ∈ Q|G|.

Proof. By Theorem 3.11 and [5, Thm. 10.3], there exists a projective representation P
of G associated to θ whose entries are in Qk for some k ≥ 1. Choose P ′ = Pσm . The 
result follows from straightforward calculations. ✷

Let U be the subgroup of p′-th roots of unity of C× (the roots of order coprime to p). 
Then the epimorphism ∗ : S → F restricts to a group isomorphism ∗ : U → F× by [13, 
Lem. 2.1]. Let ωm : F× → F× be the map that σm induces via ∗ : U → F×. We denote 
by ζωm the image of ζ ∈ F× under ωm.

As we have said, the Galois group Gal(Q|G|/Q) does not act in general on IBr(G)
(see page 43 of [13]). The fact stated in Proposition 4.3 motivates the following relation 
between modular character triples, which characterizes when a pair of irreducible Brauer 
characters behaves like Galois conjugates via σm with respect to the Clifford theory.

Definition 4.4. Let (G, N, ϕ) and (G, N, ϕ′) be modular character triples and let m be 
an integer coprime to |N |. We write

(G,N,ϕ)(m) ≈ (G,N,ϕ′),

if there exist projective representations P and P ′ of G associated to ϕ and ϕ′ such that:

(i) for every x, y ∈ G the factor sets α and α′ of P and P ′ satisfy

α(x, y)ωm = α′(x, y),

and
(ii) for every c ∈ CG(N) the scalar matrices P(c) and P ′(c) are associated with scalars 

ζ and ζωm .

In the above situation we may say that ϕ′ is a fake m-th Galois conjugate of ϕ with 
respect to N ▹G.

We mention here some immediate consequences.

Remark 4.5. Let (G, N, ϕ) be a modular character triple, m an integer coprime to |N |.

(a) Then ϕσm satisfies ϕσm(n) = ϕ(nm) for every n ∈ N .
(b) If ϕ is linear, then ϕσm = ϕm ∈ IBr(N).
(c) Let ϕ′ ∈ IBr(N) and ν ∈ IBr(ϕ|Z(N)). Then (N, N, ϕ)(m) ≈ (N, N, ϕ′) if and only if 

IBr(ϕ′|Z(N)) = {νm}.



B. Späth, C. Vallejo Rodríguez / Journal of Algebra 457 (2016) 276–311 289

We give an alternative reformulation for (G, N, ϕ)(m) ≈ (G, N, ϕ′) in Lemma 4.8. 
In a first step we show that for a Brauer character there always exists a projective 
representation associated to it with particular properties.

Lemma 4.6. Let N ▹G and ϕ̃ ∈ IBr(G) with ϕ := ϕ̃N ∈ IBr(N). Then CG(N)′ ≤ ker(ϕ̃).

Proof. Let D be a representation affording ϕ̃ and c ∈ CG(N). Then D(c) commutes 
with the irreducible representation DN . By Schur’s Lemma, this implies that D(c) is 
scalar. The map λ : CG(N) → F× given by D(c) = λ(c)I is a homomorphism. Hence 
CG(N)/ker(λ) is an abelian p′-group. This proves the statement. ✷

Lemma 4.7. Let (G, N, ϕ) be a modular character triple, m an integer coprime to |N |
and (F×)m′ the subgroup in F× of elements of order coprime to m. Then, there exists a 
projective representation P of G associated to ϕ with factor set α such that:

(i) α(g, g′) ∈ (F×)m′ for every g, g′ ∈ G, and
(ii) for every c ∈ CG(N), P(c) is the scalar matrix associated to some ξ ∈ (F×)m′ .

Proof. Let π be the set of primes dividing m different from p, so that p /∈ π.
First assume that ϕ extends to some χ ∈ IBr(G). In this case it suffices to prove that 

there exists an extension of ϕ to G such that every π-element of CG(N) lies in ker(χ). 
By Lemma 4.6, we may assume that CG(N)′ = 1. Hence CG(N) is abelian and the Hall 
π-subgroup C of CG(N) satisfies C ▹G. Then N ∩ C = 1 and NC ∼= N × C. We want 
to prove that there exists an extension of ϕ to G containing C in its kernel. It suffices 
to prove that the character ϕ ∈ IBr(NC/C) given by ϕ extends to G/C.

Let q be any prime. If q ∈ π and Q/N ∈ Sylq(G/N), then ϕ ∈ IBr(NC/C) extends 
to QC/C because of (q, |NC : C|) = 1 by Theorem 8.13 of [12]. If q /∈ π and Q/N ∈
Sylq(G/N) we have that Q ∩ C = 1. Then χQ ∈ IBr(Q) defines an irreducible Brauer 
character of QC/C ∼= Q that is an extension of ϕ. According to Theorem 8.29 of [12], 
this implies that ϕ extends to G/C, and we are done in this case.

Now, we consider the general case. By Theorem 3.11, respectively Remark 3.12, there 
exists a central extension ϵ : Ĝ → G of G with finite cyclic kernel Z and a Z-section 
rep: G → Ĝ of ϵ such that:

(a) N̂ = N1 × Z = ϵ−1(N), the groups N1 and N are isomorphic via ϵ|N1 and N1 ▹ Ĝ. 
Moreover, the action of Ĝ on N̂ coincides with the action of G on N via ϵ.

(b) ϕ1 = ϕ ◦ ϵ|N1 ∈ IBr(N1) extends to Ĝ. The Z-section rep: G → Ĝ satisfies 
rep(n) ∈ N1, rep(ng) = rep(n)rep(g) and rep(g)rep(n) = rep(gn) for every n ∈ N

and g ∈ G.
(c) ϵ(CĜ(N̂)) = CG(N).
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According to (b) the character ϕ1 extends to Ĝ. By the first part of the proof, there 
is an extension ϕ̃1 ∈ IBr(Ĝ) such that every π-element of CĜ(N̂) lies in ker(ϕ̃1). Let D
be a representation affording ϕ̃1 and let P : G → GLϕ(1)(F ) be defined by

P(g) = D(rep(g)) for every g ∈ G.

For every g, g′ ∈ G we obtain

P(g)P(g′) = D(zg,g′)P(gg′),

where zg,g′ ∈ Z ≤ Z(Ĝ) is given by rep(g)rep(g′) = zg,g′rep(gg′). Since D(zg,g′) is 
a scalar matrix, P is a projective representation of G associated to ϕ with factor set 
α : G ×G → F× defined by α(g, g′)I = D(zg,g′) for every g, g′ ∈ G. It is straightforward 
to check that P satisfies the required properties. ✷

As a consequence of Lemma 4.7, we can reformulate Definition 4.4 in the following 
convenient way.

Lemma 4.8. Let (G, N, ϕ) and (G, N, ϕ′) be modular character triples, and let m be co-
prime to |N |. Then the following are equivalent:

(a) (G, N, ϕ)(m) ≈ (G, N, ϕ′),
(b) there exist projective representations P and P ′ of G associated to ϕ and ϕ′ both 

having the properties given in 4.7 and such that
(i’) the factor sets α and α′ of P and P ′ satisfy

α(g, g′)m = α′(g, g′) for every g, g′ ∈ G,

and
(ii’) for every c ∈ CG(N), the scalar matrices P(c) and P ′(c) are associated with 

scalars ζ and ζm respectively.

Proof. Since (G, N, ϕ)(m) ≈ (G, N, ϕ′) there exist projective representations Q and Q′

of G associated to ϕ and ϕ′ having the properties listed in Definition 4.4. Let P be a pro-
jective representation of G associated to ϕ with the properties described in Lemma 4.7. 
Then there exists a map ξ : G → F× with P = ξQ, see Theorem 3.1(b) of [14]. Hence ξ
is constant on N -cosets in G. Let ξ′ : G → F with ξ′(g) := ξ(g)ωm for every g ∈ G. Then 
P ′ := ξ′Q′ is again a projective representation of G associated to ϕ′.

In order to verify that P and P ′ satisfy the condition in (i’) let g, g′ ∈ G. According 
to Definition 4.4(i), the factor sets β and β′ of Q and Q′ satisfy β(g, g′)ωm = β′(g, g′). 
By the definitions, the factor sets α and α′ of P and P ′ satisfy

α(g, g′) = ξ(g)ξ(g′)
ξ(gg′) β(g, g′) and α′(g, g′) = ξ′(g)ξ′(g′)

ξ′(gg′) β′(g, g′).
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This implies that α(g, g′)ωm = α′(g, g′). By the choice of P, α(g, g′) is an m′-root of 
unity in F×, hence α′(g, g′) = α(g, g′)m also is. This proves that P and P ′ satisfy the 
condition (i’).

In order to verify that P and P ′ satisfy the condition in (ii’) let c ∈ CG(N) and 
ζ ∈ F× be the scalar associated to Q(c). According to Definition 4.4(ii), Q′(c) is the 
scalar matrix associated with ζωm . By definition P(c) and P ′(c) are the scalar matrices 
associated with ζξ(c) and (ζξ(c))ωm . By the choice of P, ζξ(c) is an m′-root of unity 
in F×, hence (ζξ(c))ωm = (ζξ(c))m also is. Hence they satisfy the condition (ii’).

Moreover we see that P ′ is a projective representation having the properties mentioned 
in 4.7.

To prove the converse, just notice that the projective representations P and P ′ in (b) 
have the properties described in Lemma 4.7 and recall that ωm act on m′-th roots of 
unity of F× by raising them to its m-th power. It is then immediate that P and P ′ give 
(G, N, θ)(m) ≈ (G, N, θ′). ✷

The notion of fake Galois conjugate character triples is important in our later appli-
cation, since it allows us to construct from Galois conjugate character triples new central 
isomorphic character triples, see Theorem 4.10 below.

Notation 4.9. Let m be a positive integer. For groups H ≤ G we denote by Hm the 
external direct product of m copies of H, whenever the context is clear. For groups 
K, H ≤ G with K ≤ NG(H), we denote by ∆

̂
HK the group ⟨Hm, ∆K⟩. Note that 

⟨Hm, ∆K⟩ = Hm(∆K) in Gm because of K ≤ NG(H).

Theorem 4.10. Let (G, N, ϕ) and (G, N, ϕ′) be modular character triples. Let Z = Z(N), 
Ñ := Nm, G

̂
= ∆

̂
ZG and N

̂
= ∆

̂
ZN . Further let ν ∈ IBr(ϕZ), ϕ̃ = ϕ ×· · ·×ϕ ∈ IBr(Ñ), 

ν̃ = ν × · · ·× ν ∈ IBr(Z̃) and ϕ
̂

= ∆ϕ′ · ν̃ ∈ IBr(N
̂

). Then the following are equivalent:

(i) (G, N, ϕ)(m) ≈ (G, N, ϕ′),
(ii) (Ñ(G

̂
" Sm), Ñ , ϕ̃) ≻Br,c (G

̂
" Sm, N

̂
, ϕ
̂
).

Proof. We first prove that (i) implies (ii). Let Q and Q′ be projective representations of 
G giving

(G,N,ϕ)(m) ≈ (G,N,ϕ′)

satisfying (b.i’) and (b.ii’) of Lemma 4.8.
We construct projective representations P0 and P ′

0 of ÑG

̂
and G

̂
associated to ϕ̃ and 

ϕ
̂

respectively. Note that ÑG

̂
= ∆

̂
NG. Straightforward calculations show that the map 

P0 : ÑG

̂
→ GLϕ(1)m(F ) given by

P0((n1, . . . , nm)∆g) = Q(n1g) ⊗ · · ·⊗Q(nmg) for every (n1, . . . , nm) ∈ Ñ and g ∈ G
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defines a projective representation associated to ϕ̃. The factor set α0 of P0 satisfies

α0(ñ∆g, ñ′∆g′) = β(g, g′)m for every ñ, ñ′ ∈ Ñ and g, g′ ∈ G,

where β denotes the factor set of Q. Let τ be an F -representation of Z̃ affording ν̃ where 
Z̃ := Zm. The map P ′

0 : G
̂
→ GLϕ

̂
(1)(F ) given by

P ′
0(z̃∆g) = τ(z̃)Q′(g) for every z̃ ∈ Z̃ and g ∈ G

is a projective representation associated to ϕ
̂
. (The map is well-defined since IBr(ν̃∆Z) =

IBr((∆ϕ′)∆Z).) The factor set α′
0 of P ′

0 satisfies

α′
0(z̃∆g, z̃′∆g′) = β′(g, g′) = β(g, g′)m = α0(z̃∆g, z̃′∆g′)

for every g, g′ ∈ G and z, z′ ∈ Z̃, where β′ denotes the factor set of Q′. (Recall that 
β′(g, g′) = β(g, g′)m since Q and Q′ satisfy Lemma 4.8(b.i’)).

In the next step we extend P0 and P ′
0 to projective representations P and P ′ of 

(ÑG

̂
) "Sm and G

̂
"Sm with the required properties. Note that Sm has a natural action 

on the tensor space 
⊗

Fϕ(1) by permuting the tensors. This induces a representation 
R : Sm → GLϕ(1)m(F ). The map P : ∆

̂
NG " Sm → GLϕ(1)m(F ) given by

P(xσ) = P0(x)R(σ) for every x ∈ ÑG

̂
and σ ∈ Sm

is a projective representation of ÑG

̂
"Sm = Ñ(G

̂
"Sm). Note that PN ≀Sm is a represen-

tation, as defined in [4, Thm. 25.6]. By straightforward calculations using the definition 
of R we see that the factor set α of P satisfies

α(ñ∆gσ, ñ′∆g′σ′) = α0(ñ∆g, ñ′∆g′) for every g, g′ ∈ G, ñ, ñ′ ∈ Ñ and σ,σ′ ∈ Sm.

In the next step we define P ′ by extending P ′
0. Note that [∆G, Sm] = 1. Hence 

ν̃ and τ are Sm-invariant and the map P ′ : G
̂
" Sm → GLϕ′(1)(F ) with P ′(gz̃σ) :=

P ′
0(g)τ(z̃) for every g ∈ G

̂
, z̃ ∈ Z̃ and σ ∈ Sm is a projective representation whose 

factor set α′ satisfies

α′(gσ, g′σ′) = α′
0(g, g′) for every g, g′ ∈ G

̂
and σ,σ′ ∈ Sm.

Altogether this proves that P and P ′ have the property described in Definition 3.3(ii.1)
In the last step we compare P(x) and P ′(x) for x ∈ C(ÑǦ)!Sm

(Ñ). We have that 
C(ÑǦ)!Sm

(Ñ) = ∆
̂
ZCG(N). Then x = z̃∆c for some z̃ ∈ Z̃ and c ∈ CG(N). Since Q(c)

and Q′(c) are scalar matrices associated with some ζ and ζm, respectively by 4.8(b.ii’). 
By definition P(z̃∆c) and P ′(z̃∆c) are scalar matrices associated with τ(z̃)ζm. This 
implies that P and P ′ satisfy the property in Definition 3.3(ii.2).
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Using the definitions of the various groups we see that the group theoretic conditions 
in Definition 3.3(i) are satisfied. This proves (i) implies (ii) according to Definition 3.3.

In the following we only sketch the considerations that prove that (ii) implies (i): we 
start by choosing a projective representation Q of G associated to ϕ as in Lemma 4.7. 
Then one can construct a projective representation P of Ñ(G

̂
"Sm) associated to ϕ̃ as in 

the first part of the proof. Let P ′ be the projective representation of G
̂
"Sm associated 

to ϕ
̂

given by Lemma 3.4(a). Then P ′|∆G defines via the natural isomorphism ∆G → G

a projective representation Q′ of G associated to ϕ′ because P ′|∆N affords ∆ϕ′. It is 
easy to check that Q and Q′ give (G, N, ϕ)(m) ≈ (G, N, ϕ′) using Lemma 4.8. ✷

Corollary 4.11. Assume the notation and the situation of Theorem 4.10. Let H ▹G with 
H ≤ CG(N) and write G

̂
1 = ∆

̂
ZHG. Then

(Ñ(G
̂

1 " Sm), Ñ , ϕ̃) ≻Br,c (G
̂

1 " Sm, N

̂
,ϕ
̂
).

Proof. Note that ÑG

̂
1 = ∆

̂
NHG and G

̂
1 = ∆

̂
HZG are well-defined. The group ∆

̂
NHG "

Sm induces on Ñ the same automorphisms as ∆
̂
NG " Sm. Accordingly, the statement 

follows from Theorem 4.10 through an application of Theorem 3.7. ✷

Also, as a corollary of Theorem 4.10, we obtain that (G, N, ϕ)(m) ≈ (G, N, ϕ′) is a 
property that only depends on the characters ϕ and ϕ′ as well as the automorphisms 
induced by G on N . The actual structure of G has no influence on the relation.

Corollary 4.12. Let (G, N, ϕ) and (G, N, ϕ′) be modular character triples. Suppose that 
for an integer m coprime to |N |,

(G,N,ϕ)(m) ≈ (G,N,ϕ′).

Let G1 be a group such that N ▹G1 and G1/CG1(N) is equal to G/CG(N) as a subgroup 
of Aut(N). Then

(G1, N,ϕ)(m) ≈ (G1, N,ϕ′).

Proof. This follows from combining Theorem 4.10 and Theorem 3.7. ✷

We have defined the notion of fake m-th Galois conjugate character triples. We con-
clude this section by introducing fake m-th Galois action and verifying their existence on 
p-solvable groups. Indeed, the fact that fake Galois actions do always exist on p-solvable 
groups will lead to a simpler verification of the inductive Brauer–Glauberman condition 
defined in the subsequent Section 6, see Remark 6.2.

Definition 4.13. Let N ▹G. Let S ≤ IBr(N) be a G-invariant subset. Let m be an integer 
coprime to |N |. We say that there exists a fake m-th Galois action on S with respect 
to G if there exists a G-equivariant bijection
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fm : S → S

such that

(Gϕ, N,ϕ)(m) ≈ (Gϕ, N, fm(ϕ)) for every ϕ ∈ S .

Let N be a p-solvable group. Then the Galois group Gal(Q|N |/Q) acts on IBr(N), see 
the proof of Proposition 4.15 for more details. In this case, we show that there exists a 
fake m-th Galois action on IBr(N) for any integer m coprime to |N | and with respect 
to any G with N ▹G. We first need a lemma.

Lemma 4.14. Let N ▹G and θ ∈ Irr(N). Assume that θ is G-invariant and θ0 ∈ IBr(N). 
Let k = exp(G). Write L = Qk and SL = {r/s | r ∈ R∩L, s ∈ R∩L −M}. There exists 
a projective representation of G associated to θ with matrix entries in SL.

Proof. We notice that by Brauer’s Theorem [5, Thm. 10.3], L is a splitting field for G. 
By Problem 2.12 of [13], let Y be an SL-representation of N affording θ. We check that 
there exists a projective representation of G associated to θ extending Y with entries 
in SL. For every g ∈ G/N , the representation Y extends to a representation Yg of ⟨N, g⟩
as in Theorem 8.12 of [13], where g ∈ G with gN = g. Define D(g) = YgN (g) for every 
g ∈ G. Then D is a projective representation of G extending Y, by Lemma 8.27 of [13]. 
Hence, it suffices to control the matrix entries of the representations Yg. In other words, 
we only need to check the case where θ extends to G.

Let θ̃ ∈ Irr(G) be an extension of θ. Let X be a representation affording θ̃ with entries 
in SL (again such X does exist by Problem 2.12 of [13]). We have that XN affords θ. 
Hence, there is some T ∈ GLn(L) such that XN = T−1YT . Write T = (tij), where 
tij ∈ L. By Lemma 2.5 of [13], since all tij are algebraic over Q, there exists β ∈ L

such that all βtij ∈ R but not all βtij ∈ M . Since XN = (βT )−1Y(βT ), we may assume 
that tij ∈ R and T ∗ ̸= 0 (replacing T by βT ). By assumption, the F -representations 
X ∗

N and Y∗ are irreducible. Moreover T ∗X ∗
N = Y∗T ∗. By Schur’s Lemma, this implies 

T ∗ ∈ GLn(F ). In particular, we have that det(T ∗) = det(T )∗ ̸= 0 and so det(T ) /∈ M . 
Thus T ∈ GLn(SL) and the representation TXT−1 with entries in SL extends Y. ✷

Proposition 4.15. Let N be a p-solvable group and m an integer coprime to |N |. If N ▹G, 
then there exists a fake m-th Galois action on IBr(N) with respect to G.

Proof. Let Bp′(N) be the subset of Irr(N) defined in Section 5 of [6]. By Corollary 10.3 
of [6], we have that Bp′(N) provides a canonical lift of IBr(N). Moreover, Aut(N) and 
Gal(Q|N |/Q) act on the set Bp′(N). Thus, the bijection Bp′(N) → IBr(N) given by 
θ ,→ θ0 commutes with the action of Aut(N). Consider σm as defined at the beginning 
of this section. Let ϕ ∈ IBr(N) and θ ∈ Bp′(N) with ϕ = θ0. Since θσm ∈ Bp′(N), we 
have that ϕσm = (θσm)0 ∈ IBr(N). Hence the map fm : IBr(N) → IBr(N) defined by 
ϕ ,→ ϕσm is an Aut(N)-equivariant bijection.
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Let ϕ ∈ IBr(N). We want to prove that (Gϕ, N, ϕ)(m) ≈ (Gϕ, N, ϕσm). We may 
assume that G = Gϕ. Let θ ∈ Bp′(N) be the canonical lift of ϕ. Then θ is G-invariant 
and θσm is the canonical lift of ϕσm . Let k = exp(G) and write L = Qk. By Lemma 4.14, 
there exists a projective representation D of G associated to θ with matrix entries in SL =
{r/s | r ∈ R∩L, s ∈ R∩L −M∩L}. In particular, the map Dσm is a well-defined projective 
representation of G associated to θσm with matrix entries in SL. It is straightforward to 
check that the F -projective representations P = D∗ and P ′ = (Dσm)∗ associated to ϕ
and ϕσm satisfy the required properties of Definition 4.4. ✷

5. Coprime action on simple groups and their direct products

In this section we study the situation where a group A acts coprimely on the direct 
product of isomorphic non-abelian simple groups. We describe the structure of A and 
related groups.

The starting point of our considerations is the following consequence of the classifica-
tion of finite simple groups.

Theorem 5.1. Let S be a simple non-abelian group. Let B act on S faithfully with 
(|B|, |S|) = 1. Then B is cyclic, NAut(S)(B) = CAut(S)(B) and

Z(CX(B)) = CX(B) ∩ Z(X), (5.1)

where X is the universal covering group of S and B acts on X via the canonical identi-
fication Aut(S) = Aut(X) from [1, Ex. 6, Chapt. 11].

Proof. We identify B with the corresponding subgroup of Aut(S). According to the 
classification of finite simple groups the group S has to be a simple group of Lie type and 
B is Aut(S)-conjugate to some group of field automorphisms of S, see for example Section 
2 of [10]. Accordingly B is cyclic. The structure of Aut(S) is described in Theorem 2.5.12 
of [3]. Straightforward computations with Aut(S) prove that NAut(S)(B) = CAut(S)(B).

Let X be the universal covering group of S. For the proof of Z(CX(B)) = CX(B) ∩
Z(X) we may assume that B ̸= 1 and hence by the above that S is a simple group of Lie 
type. Arguing as in the beginning of Section 2 of [10] we see that the Schur multiplier 
of S is generic or S = 2B2(8) and B is a cyclic group of order 3.

Let us consider first the case where S = 2B2(8) and that B is a cyclic group of order 3. 
Then X = 22.2B2(8) and CX(B) = 2B2(2). The group 2B2(2) is a Frobenius group of 
order 5 · 4 and has trivial centre. Accordingly Z(X) ∩CX(B) is trivial as well.

Hence we can assume that X = XF , for some simply-connected simple algebraic group 
X and some Steinberg endomorphism F : X → X. We can assume that B is generated 
by some automorphism that is induced by some Steinberg endomorphism F0 : X → X. 
Without loss of generality we can assume that some power of F0 coincides with F . 
According to Theorem 24.15 of [11] we see that
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Z(CX(B)) = Z(XF0) = Z(X)F0 = (Z(X)F )F0 = (Z(XF ))F0 = Z(X) ∩ CX(B).

This is the equation. ✷

Notation 5.2. Let S be a non-abelian finite simple group, let X be the universal covering 
group of S. Let r be a positive integer r and X̃ := Xr, the external direct product of 
r copies of X. Suppose A ≤ Aut(X̃) with (|A|, |X|) = 1. Let Γ̃ ≤ Aut(X̃) such that 
Γ̃ ≤ CAut(X̃)(A) and that Γ̃A acts transitively on the factors of X̃.

In the following we identify Aut(X̃) with Aut(S) ≀ Sr, using that Aut(X) ∼= Aut(S)
by Exercise 6 of Chapter 11 in [1] and Aut(X̃) = Aut(X) ≀ Sr by straight-forward 
considerations. We use the notation introduced for elements of wreath products given 
in [2].

Note that X̃ is also the internal direct product of X1, . . . , Xr, where for i = 1, . . . , r, 
the group Xi is defined by

Xi = 1 × · · ·×X × · · ·× 1

with a non-trivial factor at the i-th position. The natural isomorphism pri : Xi → X

induces the epimorphism

pri : Aut(X̃)Xi → Aut(X) with α ,→ pr−1
i ◦α|Xi ◦ pri . (5.2)

Lemma 5.3. Assume the notation in Notation 5.2. Write Bi = pri(AXi) for each i ∈
{1, . . . , r}.

(a) The groups Bi are cyclic.
(b) If Γ̃A acts transitively on {X1, . . . , Xr}, then Bi and B1 are Aut(X)-conjugate and 

the A-orbits on the set {X1, . . . , Xr} all have the same length.

Proof. Notice that Bi acts on X with (|X|, |Bi|) = 1. By Theorem 5.1, we have that Bi

is cyclic. This proves part (a).
Now, since Γ̃A acts transitively on {X1, . . . , Xr}, there is some αi ∈ Γ̃A such that 

Xαi
1 = Xi. It is easy to check that Bi = pr(AXi) = pr((AX1)αi) = Bβi

1 , where βi ∈
Aut(X) is given by βi ◦ pri = pr1 ◦α−1

i |Xi .
Furthermore Γ̃ permutes transitively the A-orbits on {X1, . . . , Xr}. Hence these 

A-orbits all have the same length. This concludes the proof of part (b). ✷

According to the classification of finite simple groups Schreier’s conjecture holds, i.e. 
Out(S) is always solvable. In particular, if X is the universal covering group of the 
non-abelian simple group S and π is the set of primes dividing |X|, then Aut(X) is 
π-separable, and hence there are Hall π′-subgroups in Aut(X).

Using this fact one can determine a convenient group containing A.
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Proposition 5.4. Assume the notation in Notation 5.2. Write Bi = pri(AXi) for each i ∈
{1, . . . , r}. Suppose that Γ̃A acts transitively on {X1, . . . , Xr}. Let π be the set of prime 
divisors of |X|. Let H be a Hall π′-subgroup of Aut(X). Then A is Aut(X)r-conjugate 
to a subgroup of H ≀ Sr. Also, Bi = B1 for all i = 1, . . . , r.

Proof. By the discussion preceding the statement of this proposition Aut(X) is 
π-separable. Hence Aut(X)rA is also π-separable. Let K = Aut(X)rA ∩ Sr. Notice 
that K is a π′-subgroup of Sr. Moreover, Hr "K is a Hall π′-subgroup of Aut(X)rA. 
Since A is a π′-subgroup of Aut(X)rA, there exist a ∈ A and α ∈ Aut(X)r, such that

Aaα = Aα ≤ Hr "K ≤ H ≀ Sr.

For the latter part we may assume A ≤ H ≀Sr. Now, B1, Bi ≤ H are Aut(X)-conjugate 
by Lemma 5.3(b). In particular |Bi| = |B1|. Since H is cyclic, by Theorem 5.1, this 
implies Bi = B1. ✷

Proposition 5.5. Assume the notation in Notation 5.2. Suppose that A ≤ H ≀ Sr. Write 
B = pr(AX1). Then A is Hr-conjugate to a subgroup of B ≀ Sr.

Proof. It is enough to prove the statement in the case where A acts transitively on 
{X1, · · · , Xr} by working on A-orbits.

If A ≤ H ≀ Sr acts transitively on {X1, . . . , Xr}, then for every i ∈ {1, . . . , r}, there 
exist ai ∈ A such that

Xai
1 = Xi,

and hi ∈ H such that for every x ∈ X

(x, 1, . . . , 1)ai = (1, . . . , xhi , . . . , 1) ∈ Xi.

Let h = (1H , h−1
2 , . . . , h−1

r ) ∈ Hr. We claim that Ah ≤ B ≀ Sr. First notice that 
pr1((Ah)X1) = pr1((AX1)h) = B. Now, write âi = h−1aih ∈ Ah ≤ H ≀ Sr for each 
i ∈ {1, . . . , r}. Then

(x, 1, . . . , 1)âi = (1, . . . , x, . . . , 1) ∈ Xi

for every x ∈ X.
Let y ∈ Ah. Then y = (y1, . . . , yr)ρ ∈ H ≀ Sr. Let i ∈ {1, . . . , r}. Write j = ρ−1(i), so 

that

Xy
i = Xj .

Since
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(x, 1 . . . , 1)âiyâ
−1
j = (xyi , 1 . . . , 1) ∈ X1,

for every x ∈ X, we have that âiyâ−1
j ∈ (Ah)X1 . Consequently yj ∈ B. This argument 

applies for every i ∈ {1, . . . , r}, hence the claim follows. ✷

Recall the notation from the previous section. In the m-th direct product Gm of G
and for U ≤ G we write ∆U ≤ Gm for the diagonally embedded group U . We denote by 
∆
̂
ZU the group generated in Gm by the m-th direct product Zm of Z and ∆U , whenever 

U ≤ NG(Z). If we want to emphasize that ∆
̂
ZU is constructed in Gm we write ∆

̂
m

Z U .

Proposition 5.6. Assume the notation in Proposition 5.4. Let B = B1 and let Γ =
CAut(X)(B). Suppose that A ≤ B ≀ Sr and that A acts transitively on {X1, . . . , Xr}. 
Then

Γ̃A ≤ (∆
̂
BΓ) " Sr.

Proof. Let c ∈ Γ̃. Then c = (c1, . . . , cr)ρ with ci ∈ Aut(X) and ρ ∈ Sr. Let a ∈ AX1 . 
Then a = (b1, . . . , br)σ with bi ∈ B and σ ∈ Sr. The equation ac = ca implies that

b1 = c−1
1 bρ−1(1)c1 ∈ B.

This holds for every a ∈ AX1 . Hence c1 ∈ NAut(X)(B). By Theorem 5.1, we have that 
NAut(X)(B) = CAut(X)(B) = Γ. Proceeding like this for elements a ∈ AXi , we conclude 
ci ∈ Γ for every i ∈ {1, . . . , r}. Hence Γ̃ ≤ Γ ≀ Sr.

Now, for a ∈ A with a = (b1, . . . , br)σ ∈ B ≀Sr and c ∈ Γ̃ with c = (c1, . . . , cr)ρ ∈ Γ ≀Sr

the equation ac = ca implies that

bicσ−1(i) = cibρ−1(i).

Hence cσ−1(1)c
−1
i ∈ B for every i ∈ {1, . . . , r}. Since A acts transitively on {X1, . . . , Xr}, 

we have that

cjc
−1
1 ∈ B,

for every j ∈ {1, . . . , r}. This proves that (c1, . . . , cr) ∈ Br∆Γ = ∆
̂
BΓ. This proves that 

Γ̃ ≤ (∆
̂
BΓ) " Sr. ✷

For our later application we consider the case where Γ̃A acts transitively.

Proposition 5.7. Assume the notation in Proposition 5.4. Let B = B1 and let Γ =
CAut(X)(B). Suppose that A ≤ B ≀ Sr and that Γ̃A acts transitively on {X1, . . . , Xr}. 
Let m be the length of an A-orbit in {X1, . . . , Xr}. Then for some τ ∈ Sr we have that

Aτ ≤ (B ≀ Sm)r/m and (Γ̃A)τ ≤ ((∆
̂
m

BΓ) " Sm) ≀ S r
m
.
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Proof. By Proposition 5.6 the statement holds when m = r.
Let d = r/m. We may assume that the A-orbits on {X1, . . . , Xr} are exactly 

{X1, . . . , Xm}, . . . , {X(d−1)m+1, . . . , Xdm} after conjugating Γ̃A by some τ ∈ Sr. (Notice 
that Aτ and Γ̃τ satisfy the same hypotheses as A and Γ̃.) This proves the first statement.

Let a = (b1, . . . , br)σ ∈ Aτ ≤ (B ≀ Sm)d and c = (c1, . . . , cr)ρ ∈ Γ̃τ . Note that 
σ ∈ (Sm)d, hence we can write σ = σ1 · · ·σd where σl ∈ Sm permutes the set 
{(l − 1)m + 1, . . . , lm}. The equation ac = ca implies that

bicσ−1(i) = cibρ−1(i) and σρ = σ.

Notice that σρ = σ implies that for every l ∈ {1, . . . , d}, we have that σρ
l = σk for a 

unique k ∈ {1, . . . , d}. Proceeding as in the first paragraph of the proof of Proposition 5.6
we can prove that ci ∈ Γ. Also, arguing as in the second paragraph of the proof of 
Proposition 5.6 we see that

cσ−1(i)c
−1
i ∈ B

for every i ∈ {1, . . . , r}. We can proceed like this for every a ∈ A. Since A is transitive 
on each {(l − 1)m + 1, . . . , lm} we conclude that

cjc
−1
l ∈ B

for every j ∈ {(l − 1)m + 1, . . . , lm} and for every l ∈ {1, . . . , d}. Hence (c1, . . . , cr) ∈
(Bm∆Γ)d = (∆

̂
m

BΓ)d.
Finally, since σρ = σ for every σ coming from an element a ∈ A, we conclude that ρ

permutes the set {{(l− 1)m + 1, . . . , lm} | l = 1, . . . , d} and also permutes the elements 
of the set {(l − 1)m + 1, . . . , lm} for each l = 1, . . . , d. Hence ρ ∈ Sm ≀ Sd. We conclude 
that c = (c1, . . . , cr)ρ ∈ ((∆

̂
m

BΓ) " Sm) ≀ Sd. ✷

6. The inductive Brauer–Glauberman condition

In this section we introduce the inductive Brauer–Glauberman condition. Then we 
outline some consequences for central products of covering groups of non-abelian simple 
groups.

Definition 6.1. Let S be a non-abelian simple group and X the universal covering group 
of S. We say that S satisfies the inductive Brauer–Glauberman condition if for every 
B ≤ Aut(X) with (|X|, |B|) = 1 the following conditions are satisfied:

(i) For Z := Z(X), Γ := CAut(X)(B), C0 := CX(B) and C := C0Z there exists a 
Γ-equivariant bijection

ΩB : IBrB(X) → IBrB(C),
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such that for every θ ∈ IBrB(X)

(X " Γθ, X, θ) ≻Br,c (C " Γθ, C,ΩB(θ)).

(ii) For every non-negative integer m with (|X|, m) = 1, there exists a fake m-th Galois 
action on IBr(C0) with respect to C0 " Γ.

The above condition can be divided into two requirements. Each of them has to be sat-
isfied for the universal covering group X and all groups B ≤ Aut(X) with (|X|, |B|) = 1. 
In order to check the requirements in Definition 6.1 for all non-abelian simple groups some 
simplifications are available. First we only need to consider B up to Aut(X)-conjugation. 
Moreover the condition 6.1(ii) is true in all required cases whenever 6.1(ii) is true for the 
universal covering group of every non-abelian simple group and B = 1.

Remark 6.2. Let S be a non-abelian simple group and X the universal covering group 
of S.

(a) The group S satisfies the inductive Brauer–Glauberman condition, if the conditions 
hold for some Aut(X)-transversal of subgroups B of Aut(X) with (|X|, |B|) = 1.

(b) Let B ≤ Aut(X) with (|X|, |B|) = 1 and |B| ̸= 1 and assume that CX(B) is 
quasi-simple. Then Condition 6.1(ii) holds for X and B, if for every integer m with 
(m, |X|) = 1 there exists a fake m-th Galois action on IBr(X1) with respect to 
X1 " Aut(X1), where X1 is the universal covering group of the unique non-abelian 
composition factor of CX(B).

(c) Let B ≤ Aut(X) with (|X|, |B|) = 1 and |B| ̸= 1 and assume that CX(B) is not 
quasi-simple. Then Condition 6.1(ii) holds for X and B.

Proof. For the proof of (a) we suppose that 6.1(i) and 6.1(ii) from Definition 6.1 are 
satisfied for the universal covering group X of some simple non-abelian group and for 
some B ≤ Aut(X) with (|X|, |B|) = 1. Let α ∈ Aut(X). Define ΩBα(χα) = ΩB(χ)α
for every χ ∈ IBrB(X). Then ΩBα is a Γα-equivariant bijection. By Lemma 3.8 we 
have that condition 6.1(i) is satisfied for ΩBα . Let m be an integer with (|X|, m) = 1. 
Let fm : IBr(CX(B)) → IBr(CX(B)) give the fake m-th Galois action on IBr(CX(B))
with respect to CX(B) " Γ, as in Definition 4.13. Define f ′

m(ϕα) = fm(ϕ)α for every 
ϕ ∈ IBr(CX(B)). It is easy to prove an analogue of Lemma 3.8 for m-th Galois conjugate 
modular character triples via Lemma 4.8. This implies that f ′

m gives a fake m-th Galois 
action on CX(Bα) with respect to CX(Bα) " Γα.

Now we prove parts (b) and (c). Let X be the universal covering group of some 
non-abelian simple group S. Let B ≤ Aut(X) with (|B|, |X|) = 1. If B ̸= 1, then the 
group S is a simple group of Lie type and B is Aut(X)-conjugate to some subgroup of the 
field automorphisms of X, see for example Section 2 of [10]. By part (a) we may assume 
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that B consists of field automorphisms. By Theorem 2.2.7 of [3], the group CX(B) is 
either quasi-simple, solvable or CX(B) ∈ {B2(2), G2(2), 2F4(2), 2G2(3)}.

Suppose that CX(B) is not quasi-simple. Write C0 = CX(B). If

C0 ∈ {B2(2),G2(2), 2F4(2), 2G2(3)},

then Out(C0) is cyclic and Z(C0) is trivial. Hence, it is easy to show that the identity 
yields a fake m-th Galois action on IBr(C0) with respect to C0 " Aut(C0), for every 
positive integer m with (|X|, m) = 1. If C0 is a solvable group, then Theorem 4.15
guarantees that for every m with (|X|, m) = 1, there exists a fake m-th Galois action on 
IBr(C0) with respect to any G in which C0 is normal. This proves part (c).

In all other cases CX(B) is quasi-simple and there exists some non-abelian simple 
group S1 such that CX(B) is a central quotient of the universal covering group X1
of S1. By assumption for every m with (|X1|, m) = 1, there exists a fake m-th Galois 
action on IBr(X1) with respect to X1 " Aut(X1). Since CAut(X)(B) ≤ Aut(X1) this 
gives the required fake m-th Galois action on IBr(CX(B)) according to an analogue of 
Lemma 3.5 for fake Galois conjugate modular character triples. We use that if m is such 
that (|CX(B)|, m) = 1, then also (|X1|, m) = 1 by [1, 33.12]. This proves (b). ✷

Notation 6.3. Let S be a non-abelian simple group and X its universal covering. We 
write Z := Z(X). If B ≤ Aut(X), then we write C0 := CX(B), C := C0Z and Γ :=
CAut(X)(B). For a positive integer r, let X̃ := Xr, Z̃ := Zr, C̃ := Cr. Let ∆ : X → X̃

be the map defined as in 4.1. We also continue using the constructions introduced in 
Notation 4.9 and write C

̂
:= ∆

̂
ZC0. For 1 ≤ i ≤ r let Xi and pri be defined as in 5.2.

Our aim in this section is to prove the following.

Theorem 6.4. Let S be a non-abelian simple group satisfying the inductive Brauer–
Glauberman condition. Let X be the universal covering group of S, r a positive integer 
and A ≤ Aut(X̃) with (|A|, |X|) = 1. Write Γ̃ := CAut(X̃)(A). Suppose that Γ̃A acts 
transitively on the factors {X1, . . . , Xr} of X̃. Then there exists a Γ̃-equivariant bijec-
tion

Ω̃X̃,A : IBrA(X̃) → IBrA(CX̃(A)Z̃),

such that for every χ ∈ IBrA(X̃) and χ′ := Ω̃X̃,A(χ)

(X̃ " Γ̃χ, X̃,χ) ≻Br,c (CX̃(A)Z̃ " Γ̃χ,CX̃(A)Z̃,χ′). (6.1)

We prove this result by first establishing a particular case and subsequently gener-
alizing to the above statement. In the following we use the identification Aut(X̃) =
Aut(X) ≀ Sr. For A ≤ Aut(X̃), write B := pr1(AX1) ≤ Aut(X).
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Proposition 6.5. If A acts transitively on {X1, . . . , Xr} and A ≤ B ≀Sr, then Theorem 6.4
holds.

First we determine the group CX̃(A)Z̃ and some related sets of characters.

Lemma 6.6. If A acts transitively on {X1, . . . , Xr} and A ≤ B ≀ Sr, then

(a) CX̃(A) = ∆C0 = CX̃(B ≀ Sr).
(b) IBrA(X̃) = {θ × · · ·× θ | θ ∈ IBrB(X)},
(c) IBrA(Z̃) = {ν × · · ·× ν | ν ∈ IBrB(Z)},
(d) IBrB(C) = {ϕ · ν | ϕ ∈ IBr(C0) and ν ∈ IBrB(Z) with IBr(ϕCZ(B)) =

IBr(νCZ(B))},
(e) IBrA(C̃) = {(ϕ × · · ·× ϕ) · (ν × · · ·× ν) | ϕ ∈ IBr(C0) and ν ∈ IBrB(Z)},
(f) IBrA(C

̂
) = {(∆ϕ) · µ | ϕ ∈ IBr(C0) and µ ∈ IBrA(Z̃)}.

Proof. Part (a) easily follows from Lemma 2.2 of [9]. The rest follows from straightfor-
ward considerations (use Lemma 3.9 for parts (d), (e) and (f)). ✷

Note that by Lemma 6.6(a), we have that C
̂

= ∆
̂
ZC0 = CX̃(A)Z̃. Before defining the 

map Ω̃X̃,A we introduce the bijection f̃r : IBrA(C̃) → IBrA(C
̂

).

Proposition 6.7. In the situation of Proposition 6.5, let Γ
̂

:= ∆
̂
BΓ and Y

̂
:= C

̂
"(Γ

̂
"Sr). 

Then there exists a ∆Γ-equivariant bijection

f̃r : IBrA(C̃) → IBrA(C
̂

)

such that for every ψ̃ ∈ IBrA(C̃) and ψ

̂
:= f̃r(ψ̃) we have (C̃Y

̂

ψ̃, C̃, ψ̃) ≻Br,c (Y
̂

ψ̃, C
̂
, ψ

̂
).

Proof. Write Z0 = Z(C0), Z̃0 = Zr
0 and C̃0 = Cr

0 . Note that the assumption that 
A acts transitively on {X1, . . . , Xr} with (|X|, |A|) = 1 implies (r, |X|) = 1. Since S
satisfies the inductive Brauer–Glauberman condition, there exists a fake Galois r-th 
action on IBr(C0) with respect to C0 " Γ. Let fr give a fake r-th Galois action as in 
Definition 4.13.

Let ψ̃ ∈ IBrA(C̃). By Lemma 6.6(f), we have that ψ̃ = ϕ̃ · ν̃ for some ϕ̃ = ϕ × · · ·×ϕ ∈
IBrA(C̃0) and ν̃ = ν × · · · × ν ∈ IBrA(Z̃) with IBr(ϕ|C0∩Z) = IBr(ν|C0∩Z). We define 
f̃r(ψ̃) := ∆(fr(ϕ)) · ν̃. By this definition f̃r is a bijection. Note that f̃r is ∆Γ-equivariant 
as fr is Γ-equivariant. In particular, for ψ

̂
= f̃r(ψ̃) we have that Y

̂

ψ̃ = Y

̂

ψ

̂
, we have that 

[Z, B] ⊆ ker(ν).
Let ϕ′ := fr(ϕ) and Y0 := C0 " Γϕ. Since fr yields a fake Galois r-th action on 

IBr(C0) with respect to Y0, we have that

(Y0, C0,ϕ)(r) ≈ (Y0, C0,ϕ
′). (6.2)
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Let C
̂

0 := ∆
̂
Z0C0, λ ∈ IBr(ϕZ0), λ̃ = λ × · · ·× λ ∈ IBr(Z̃0) and ϕ

̂
= ∆ϕ′ · λ̃ ∈ IBr(C

̂
0). 

Write Y
̂

0 := ∆
̂
Z0BY0. Since Z0B ≤ CY0(C0), by Corollary 4.11 we have that Equation 

(6.2) yields

(C̃0(Y
̂

0 " Sr), C̃0, ϕ̃) ≻Br,c (Y
̂

0 " Sr, C

̂
0,ϕ
̂
). (6.3)

According to Theorem 5.1, we have Z0 = Z ∩ C0 and consequently C
̂

= Z̃C

̂
0. Then 

Equation (6.3) together with Lemma 3.10 implies

(C̃Y

̂

ψ̃, C̃, ψ̃) ≻Br,c (Y
̂

ψ̌, C

̂
,ψ

̂
). ✷

We can finally prove Proposition 6.5.

Proof of Proposition 6.5. We define Ω̃ := Ω̃X̃,A : IBrA(X̃) → IBrB(C
̂

) by

Ω̃(θ × · · ·× θ) = f̃r(ΩB(θ) × · · ·× ΩB(θ)),

for every θ ∈ IBrB(X), where ΩB is given by Definition 6.1(i) and f̃r is given by Propo-
sition 6.7. This map is well-defined according to Lemma 6.6. Also, by Lemma 6.6(e) this 
map is a bijection since f̃r is a bijection.

Recall Γ̃ = CAut(X̃)(A). Write Υ = ∆
̂
BΓ " Sr = ∆Γ(B ≀ Sr). By Proposition 5.6

Γ̃ ≤ Γ̃A ≤ Υ.

In order to prove that Ω̃ is Γ̃-equivariant we show that Ω̃ is actually Υ-equivariant. In 
view of the description of IBrA(X̃) and IBrA(C̃) given in Lemma 6.6, it follows that 
B ≀ Sr acts trivially on those sets. Hence Ω̃ is B ≀ Sr-equivariant. By definition, ΩB is 
Γ-equivariant and by Proposition 6.7, f̃r is ∆Γ-equivariant. Hence Ω̃ is ∆Γ-equivariant, 
so Γ̃-equivariant.

It remains to prove that for every χ ∈ IBrA(X̃)

(X̃ " Γ̃χ, X̃,χ) ≻Br,c (C̃ " Γ̃χ, C̃, Ω̃(χ)).

Let χ ∈ IBrA(X̃) and θ ∈ IBrB(X) with χ = θ × · · ·× θ. According to Definition 6.1(i), 
θ′ := ΩB(θ) satisfies

(X " Γθ, X, θ) ≻Br,c (C " Γθ, C, θ
′).

For ψ̃ = θ′ × · · ·× θ′ ∈ IBr(C̃), the equation above and Theorem 3.6 imply

(X̃ " (Γθ ≀ Sr), X̃,χ) ≻Br,c (C̃ " (Γθ ≀ Sr), C̃, ψ̃).

Using Υ ≤ Γ ≀ Sr and Υχ ≤ Γθ ≀ Sr we deduce



304 B. Späth, C. Vallejo Rodríguez / Journal of Algebra 457 (2016) 276–311

(X̃ " Υχ, X̃,χ) ≻Br,c (C̃ " Υχ, C̃, ψ̃). (6.4)

Let Y
̂

:= C

̂
" Υ, ψ

̂
:= f̃r(ψ̃). Then ψ

̂
= Ω̃(χ). By Proposition 6.7 we know

(C̃Y

̂

ψ̃, C̃, ψ̃) ≻Br,c (Y
̂

ψ̃, C

̂
,ψ

̂
).

Because of C̃ " Υχ = C̃Y

̂

ψ̃ and C
̂
" Υ

ψ

̂
= Y

̂

ψ

̂
, then the equation above is exactly

(C̃ " Υχ, C̃, ψ̃) ≻Br,c (C
̂
" Υψ̃, C

̂
,ψ

̂
). (6.5)

Since ≻Br,c is a partial order relation, ≻Br,c is transitive, so Equations (6.4) and (6.5)
imply

(X̃ " Υχ, X̃,χ) ≻Br,c (C
̂
" Υψ̃, C

̂
,ψ

̂
).

Since Γ̃χ ≤ Υχ = Υψ̃ and ψ

̂
= Ω̃(χ) this proves the statement. ✷

Remark 6.8. Assume the situation described in Proposition 6.5 as well as the notation 
of Theorem 6.4. The proof of Proposition 6.5 actually shows that the conclusions of 
Theorem 6.4 also hold with Υ = ∆

̂
BΓ " Sr ⊇ Γ̃ in place of Γ̃.

Proposition 6.9. Let m be the length of some A-orbit on {X1, . . . , Xr}. If Γ̃A acts tran-
sitively on {X1, . . . , Xr} and A ≤ (B ≀ Sm) r

m , then Theorem 6.4 holds.

Proof. Let Λ = {X1, . . . , Xr} and Λ1, . . . , Λd be the A-orbits on Λ. Notice that Γ̃ per-
mutes the A-orbits transitively by hypothesis. Hence r = dm, where m is the length of 
any A-orbit. We may assume Λj = {X(j−1)m+1, . . . , Xjm} for every 1 ≤ j ≤ d. Since 
A ≤ (B ≀ Sm)d, we know from Proposition 5.7 that

ACAut(X̃)(A) = AΓ̃ ≤ Υ,

where Υ := (∆
̂
m

BΓ " Sm) ≀ Sd.
For every 1 ≤ j ≤ d let XΛj := ⟨Y | Y ∈ Λj⟩ and ZΛj := ⟨Z(Y ) | Y ∈ Λj⟩. Clearly A

acts on XΛj with (|A|, |XΛj |) = 1. Let Υj be the projection of StabΥ(XΛj ) into Aut(XΛj ). 
Then Υj is isomorphic to ∆

̂
m

BΓ " Sm. By Lemma 6.5 (and using Remark 6.8), there is 
a Υ1-equivariant bijection

Ω̃Λ1,A : IBrA(XΛ1) → IBrA(C
̂

Λ1),

where C
̂

Λj := CXΛj
(A)ZΛ1 . Furthermore for every χ1 ∈ IBrA(XΛ1) and χ

̂
1 := Ω̃Λ1,A(χ1)

we have

(XΛ1 " (Υ1)χ1 , XΛ1 ,χ1) ≻Br,c (C
̂

Λ1 " (Υ1)χ1 , C

̂
Λ1 ,χ

̂
1). (6.6)
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For 2 ≤ j ≤ d we define Υj-equivariant bijections

Ω̃Λj ,A : IBrA(XΛj ) → IBrA(C
̂

Λj )

from Ω̃XΛ1 ,A
via the permutation action of Sd. For every χj ∈ IBrA(XΛj ) and χ

̂
j :=

Ω̃Λj ,A(χj) we have

(XΛj " (Υj)χj , XΛj ,χj) ≻Br,c (C
̂

Λj " (Υj)χj , C

̂
Λj ,χ

̂
j) (6.7)

by a transfer of Equation (6.6) via Lemma 3.8. Note that IBrA(X̃) is in natural corre-
spondence with IBrA(XΛ1) × · · · × IBrA(XΛd) and C

̂
= CX̃(A)Z̃ = C

̂
Λ1 × · · · × C

̂
Λd . 

For χj ∈ IBrA(XΛj ), the map Ω̃X̃,A : IBrA(X̃) → IBr(C
̂

) given by χ1 × · · · × χd ,→
Ω̃Λ1,A(χ1) × · · ·× Ω̃Λd,A(χd) is a well-defined (Υ1 × · · ·× Υd)-equivariant bijection. By 
definition Ω̃X̃,A is Sd-equivariant, where Sd is identified with the subgroup of Υ acting 
on the groups XΛi by permutation. Hence it is Υ-equivariant.

A straightforward argument proves that every character in IBrA(X̃) is (Υ1 × · · · ×
Υd)-conjugate to some χ = χ1 × · · · × χd where either χi and χj are Sd-conjugate or 
χi and χj are not Υ-conjugate (again Sd is identified with the subgroup of Υ acting on 
the XΛi groups by permutation). This implies that the stabilizer Υχ of χ in Υ satisfies

Υχ = ((Υ1)χ1 × · · · (Υd)χd) " (Sd)χ.

The Equations (6.6) and (6.7) for 2 ≤ i ≤ d together with Theorem 3.6 imply that the 
character χ satisfies

(X̃ " Υχ, X̃,χ) ≻Br,c (C
̂
" Υχ, C

̂
,χ′),

where χ′ := Ω̃(χ) = χ
̂

1 × · · ·× χ
̂
d. Of course, since Γ̃ ≤ Υ, we deduce

(X̃ " Γ̃χ, X̃,χ) ≻Br,c (C
̂
" Γ̃χ, C

̂
,χ′).

By Lemma 3.8 this proves the statement. ✷

Proof of Theorem 6.4 . By Proposition 5.4 there exists some α ∈ Aut(X)r such that 
Aα ≤ B ≀ Sr, where B is the projection of AX1 on Aut(X). Let m be the length of 
an A-orbit on {X1, . . . , Xr}. Since Γ̃ acts transitively on the A-orbits, d = r/m is the 
number of A-orbits. Let τ ∈ Sd be as given in Proposition 5.6. Then Aατ ≤ (B ≀ Sm)d. 
Let Ω̃X̃,Aατ be the Γ̃ατ -equivariant bijection given by Proposition 6.9. Define Ω̃X̃,A by 

χ ,→ Ω̃X̃,Aατ (χατ )(ατ)−1 for every χ ∈ IBrA(X̃). It is easy to check that Ω̃X̃,A is a 

Γ̃-equivariant bijection. Use Lemma 3.8 to check the central character triple isomorphism 
condition with respect to Ω̃X̃,A. ✷

The above statement is relevant by implying the following two results.
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Theorem 6.10. Let A act coprimely on G. Let K ▹G be an A-invariant perfect subgroup. 
Suppose that G = KCG(A). Write C = CG(A) and M = K ∩C. Suppose further that A
acts trivially on N = Z(G) ≤ K, K/N = S1 × · · ·× Sr

∼= Sr, where S is a non-abelian 
simple group, and CA permutes transitively {S1, . . . , Sr}. If S satisfies the inductive 
Brauer–Glauberman condition, then there exists a C-equivariant bijection

Ω′ : IBrA(K) → IBr(M),

such that (Gχ, K, χ) ≻Br,c (Cχ, M, χ′) for every χ ∈ IBrA(K) and χ′ = Ω′(χ).

Proof. Because of G = KCG(A) the group CA(K) coincides with CA(G) and we may 
assume that A acts faithfully on K, i.e. A ≤ Aut(K). Let S̃ := Sr. Let X be the universal 
covering group of S. Then, X̃ is the universal covering group of S̃. Write Z̃ := Z(X̃). 
Since K is a covering of S̃, there exists an epimorphism π : X̃ → K with L := ker(π) ≤ Z̃, 
where Z̃ := Z(X̃). In fact, X̃ is the universal covering of K.

The map π induces an isomorphism Aut(X̃)L → Aut(K). Hence, the groups A
and C = CCG(K)/CG(K) can be seen as groups of automorphisms of X̃. In fact, 
under this identification, the group AC ≤ ACAut(X̃)(A) acts transitively on the fac-
tors of X̃. Because of (|A|, |K|) = 1 we have (|A|, |X̃|) = 1 by [1, 3.3.12]. Write 
Γ̃ := CAut(X̃)(A) and C

̂
:= CX̃(A)Z̃. By Theorem 6.4, there exists a Γ̃-equivariant 

bijection Ω̃ := Ω̃X̃,A : IBrA(X̃) → IBrA(C
̂

) such that

(X̃ " Γ̃χ, X̃,χ) ≻Br,c (C
̂
" Γ̃χ, C

̂
, Ω̃(χ))

for every χ ∈ IBrA(X̃). Since C ≤ Γ̃, we have that Ω̃ is C-equivariant and

(X̃ " Cχ, X̃,χ) ≻Br,c (C
̂
" Cχ, C

̂
,χ′) (6.8)

for every χ ∈ IBrA(X̃) and χ′ := Ω̃(χ). According to Equation (6.8) and Definition 3.3(ii)

Ω̃(IBrA(X̃ | 1L)) = IBrA(C
̂

| 1L).

Note that π(C
̂

) = π(CX̃(A)Z̃) = CK(A) = M and IBrA(M) = IBr(M). Hence Ω̃
defines, via π, a C-equivariant bijection

Ω′ : IBrA(K) → IBr(M).

Notice that CX̃!C(X̃) = Z̃, π(Z̃/L) = N = Z(K) = CK!C(K) and L ≤ Z̃ ∩ ker(χ) ∩
ker(χ′) for every χ ∈ IBrA(X̃/L) and χ′ := Ω̃(χ) ∈ IBrA(C

̂
/L). By Lemma 3.5, Equation 

(6.8) implies that

(K " Cχ,K,χ) ≻Br,c (M " Cχ,M,χ′)
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for every χ ∈ IBrA(K) and χ′ := Ω′(χ). Finally, a direct application of Theorem 3.7
yields

(Gχ,K,χ) ≻Br,c (Cχ,M,χ′). ✷

Corollary 6.11. Let A act coprimely on G. Let K ▹G be A-invariant. Suppose that G =
KCG(A). Write C = CG(A) and M = K ∩ C. Suppose further that A acts trivially on 
N = Z(G) ≤ K, K/N = S1 × · · ·×Sr

∼= Sr, where S is a non-abelian simple group, and 
CA permutes transitively {S1, . . . , Sr}. If S satisfies the inductive Brauer–Glauberman 
condition, then there exists a bijection

Ω′ : IBrA(K) → IBr(M),

satisfying (Gχ, K, χ) ≻Br,c (Cχ, M, χ′) for every χ ∈ IBrA(K) and χ′ = Ω′(χ).

Proof. Let K1 = [K, K]. Since K/N is a direct product of simple non-abelian groups, 
it follows that K1 is perfect and K = K1N . Let N1 = N ∩K1. Notice that CG(K1) =
CG(K). Also K is the central product of K1 and N . Write M1 = M ∩K1.

Let Ω′
1 : IBrA(K1) → IBr(M1) be the bijection given by Theorem 6.10. Every χ ∈

IBrA(K) has the form χ1 · µ, where χ1 ∈ IBrA(K1), µ ∈ IBr(N) and both characters lie 
over the same Brauer character of N1. Define Ω′ : IBrA(K) → IBr(M) by

χ1 · µ ,→ Ω′
1(χ1) · µ.

It is clear that Ω′ is a C-equivariant bijection. Let χ = χ1·µ ∈ IBrA(K). By Theorem 6.10
we have (Gχ1 , K1, χ1) ≻Br,c (Cχ1 , M1, Ω′

1(χ1)). A direct application of Lemma 3.10
implies

(Gχ,K,χ) ≻Br,c (Cχ,M,Ω′(χ)). ✷

7. A reduction theorem

We prove a relative version of Theorem A (relative to a normal subgroup) that allows 
us to use a key inductive argument.

Theorem 7.1. Let A act coprimely on G. Let N ▹ G be stabilized by A and write C =
CG(A). Let θ ∈ IBrA(N). Suppose that the non-abelian simple groups involved in G/N



308 B. Späth, C. Vallejo Rodríguez / Journal of Algebra 457 (2016) 276–311

satisfy the inductive Brauer–Glauberman condition. Then

|IBrA(G|θ)| = |IBr(CN |θ)|.

Proof. We proceed by induction on |G : N |.

Step 1. We may assume θ is G-invariant.
Let T = Gθ. Then CN ∩T = (CN)θ. By the Clifford correspondence for Brauer charac-
ters [13, Thm 8.9]

|IBrA(G|θ)| = |IBrA(T |θ)| and |IBr(CN |θ)| = |IBr(CN ∩ T |θ)|.

If T < G, then by induction hypothesis with respect to |T : N | < |G : N |

|IBrA(T |θ)| = |IBr(CT (A)N |θ)| = |IBr(CN ∩ T |θ)|.

Step 2. We may assume that N ≤ Z(GA) is a p′-group.
By Theorem 8.28 of [13], there exists a strong isomorphism of modular character triples

(σ, τ) : (GA,N, θ) → (Γ,M,ϕ)

such that M ≤ Z(Γ) is a p′-group. Whenever N ≤ H ≤ GA, we write Hτ to denote 
the subgroup of Γ such that τ(H/N) = Hτ/M . Then A ∼= τ(AN/N) = (AN)τ/M , so 
that (AN)τ/M acts on Gτ/M as A acts on G/N and (AN)τ/M acts trivially on M . 
Therefore

(CN)τ/M = τ(CN/N) = τ(CG/N (A)) = CGτ/M ((AN)τ/M) = CGτ ((AN)τ )/M.

By Theorem 8.13 of [13], θ extends to AN , and hence ϕ extends to (AN)τ . Recall that 
ϕ is a linear character since M ≤ Z(Γ). Let π be the set of primes dividing |A|. Write 
ϕ = ϕπϕπ′ . Recall that ϕπ and ϕπ′ , the π-part and π′-part of ϕ, are powers of ϕ. In 
particular, ϕπ extends to (AN)τ . If q /∈ π, then by Theorem 8.13 of [13] we have that 
ϕπ extends to Q for every Q/M ∈ Sylq(Γ/M). Thus ϕπ extends to Γ according to [13, 
Thm 8.29]. By parts (d) and (b) of Lemma 3.2, the modular character triple (Γ, M, ϕ)
is strongly isomorphic to (Γ, M, ϕπ′) and we may assume that ϕπ′ is faithful. Write 
ϕ′ = ϕπ′ . We have that |M | = o(ϕ′) is a π′-number. Hence M has a complement B in 
(AN)τ by Schur–Zassenhaus’ Lemma. Thus B acts coprimely on Gτ and (CN)τ/M =
CGτ (B)/M . Since (GA, N, θ) is strongly isomorphic to (Γ, M, ϕ′) we have that

|IBrA(G|θ)| = |IBrB(Gτ |ϕ′)| and |IBr(CN |θ)| = |IBr(CGτ (B)|ϕ′)|

and the claim follows.
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Step 3. We may assume G = KC for every A-invariant K with N < K ▹G.
Let N < K ▹G be A-invariant. We have that C acts on IBrA(K|θ). Let B be a complete 
set of representatives of C-orbits on IBrA(K|θ). Let K ≤ H ≤ G and ψ ∈ IBrA(H|θ). We 
have that H/K acts transitively on IBr(ψK) by [13, Cor. 8.7]. Also A acts on IBr(ψK). 
Since (|A|, |H/K|) = 1, by Glauberman’s Lemma ([5, Lem. 13.8] and [5, Cor. 13.9]) 
there is some A-invariant character in IBr(ψK) and any two of them are C-conjugate. 
This proves that every ψ ∈ IBrA(H|θ) lies over a unique element of B. By the previous 
argument for H = G and H = CK we have that

|IBrA(G|θ)| =
∑

η∈B
|IBrA(G|η)| and |IBrA(CK|θ)| =

∑

η∈B
|IBrA(CK|η)|.

By the inductive hypothesis |IBrA(G|η)| = |IBr(CK|η)| for every η ∈ B. Since A acts 
coprimely on CK/K and CCK/K(A) = CK/K, we have that IBrA(CK|η) = IBr(CK|η)
by Lemma 2.1. Hence |IBrA(G|θ)| = |IBrA(CK|θ)|. If CK < G, then by induction 
|IBrA(CK|θ)| = |IBr(C|θ)|, and the claim follows.

Step 4. We may assume Op(G) = 1.
Write O = Op(G). If O > 1, then |G/O : NO/O| < |G : N |. To prove the claim use that 
CG/O(A) = CO/O by coprime action, the fact that O ≤ ker(ϕ) for every ϕ ∈ IBr(G)
[13, Lem. 2.32] and the inductive hypothesis.

Step 5. Every chief factor K/N of GA with K ≤ G is a direct product of isomorphic 
non-abelian simple groups and N = Z(G).
Let K/N be a chief factor of GA with K ≤ G. We may assume that G = KC by Step 3
and that K/N is not a p-group by Step 4. If K/N is a p′-group, then |IBrA(G|θ)| =
|IBr(C|θ)| according to Corollary 2.6. Hence we can assume that GA has no abelian 
chief factor of the form K/N with K ≤ G. In particular N = Z(G).

Final Step. Let K/N be a chief factor of GA with K ≤ G. By Step 4 we may assume 
G = KC. By Step 5 we have that K/N ∼= S1 × · · · × Sr, where the Si are simple 
non-abelian groups. Notice that CA permutes transitively the groups Si in K/N and 
hence they are all isomorphic. Since S := S1 is involved in G/N , then S satisfies the 
inductive Brauer–Glauberman condition. Write M = C ∩K. By Corollary 6.11 there is 
a C-equivariant bijection

Ω′ : IBrA(K) → IBr(M),

such that (Gη, K, η) ≻Br,c (Cη, M, Ω′(η)) for every η ∈ IBrA(K). Since N ≤ CG(K), 
then Ω′ actually yields a bijection IBrA(K|θ) → IBr(M |θ). Let B be a set of representa-
tives of C-orbits on IBrA(K|θ). Every element of IBrA(G|θ) lies over a unique element 
of B as in Step 3. Since Ω′ is C-equivariant, we have that B′ = {Ω′(η) | η ∈ B} is a set 
of representatives of C-orbits on IBr(M |θ). Hence

|IBrA(G|θ)| =
∑

η∈B
|IBrA(G|η)| and |IBr(C|θ)| =

∑

η∈B
|IBr(C|Ω′(η))|.
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For every η ∈ B, we have IBrA(G|η) = IBr(G|η) by Lemma 2.1 and (Gη, K, η) ≻Br,c
(Cη, M, Ω′(η)) by Corollary 6.11. Thus |IBr(Gη|η)| = |IBr(Cη|Ω′(η))| for every η ∈ B. 
The result follows then by using the Clifford correspondence [13, Thm. 8.9]. ✷

Corollary 7.2. Let Γ be a group that acts coprimely on a group G. Suppose that every 
simple non-abelian group involved in G satisfies the inductive Brauer–Glauberman con-
dition. Then the actions of Γ on the Brauer characters of G and on the p-regular classes 
of G are permutation isomorphic

Proof. For every A ≤ Γ, Theorem 7.1 with N = 1 guarantees that |IBrA(G)| =
|IBr(CG(A))|. The map K ,→ K ∩ CG(A) is a well-defined bijection between the set 
of A-invariant p-regular classes of G and the set of p-regular conjugacy classes of CG(A). 
Hence the number of A-invariant irreducible Brauer characters of G equals the number 
of A-invariant p-regular conjugacy classes of G. By Lemma 13.23 of [5], this proves the 
statement. ✷
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