Certain Monomial Characters and Their Subnormal Constituents

Carolina Vallejo

Universitat de València

St. Andrews, August 2013
This is a joint work with G. Navarro.
Introduction
Let G be a group. A character $\chi \in \text{Irr}(G)$ is said to be monomial if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in \text{Irr}(U)$, such that

\[\chi = \lambda^G. \]
Let G be a group. A character $\chi \in \text{Irr}(G)$ is said to be \textbf{monomial} if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in \text{Irr}(U)$, such that

$$\chi = \lambda^G.$$

A group G is said to be \textbf{monomial} if all its irreducible characters are monomial.
There are few results guaranteeing that a given character of a group is monomial. It is well-known the following
There are few results guaranteeing that a given character of a group is monomial. It is well-known the following

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.
There are few results guaranteeing that a given character of a group is monomial. It is well-known the following

Theorem

\[\text{Let } G \text{ be a supersolvable group. Then all irreducible characters of } G \text{ are monomial.} \]

But this result depends more on the structure of the group than on characters themselves.
An interesting result.
An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in \text{Irr}(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.
An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in \text{Irr}(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.

We give a monomiality criterium which also deals with fields of values and degrees of characters.
Notation: For n an integer, we write

$$\mathbb{Q}_n = \mathbb{Q}(\xi),$$

where ξ is a primitive nth root of unity.
Notation: For n an integer, we write

$$\mathbb{Q}_n = \mathbb{Q}(\xi),$$

where ξ is a primitive nth root of unity.

Theorem A

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and the values of χ are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is monomial.
Notation: For n an integer, we write

$$\mathbb{Q}_n = \mathbb{Q}(\xi),$$

where ξ is a primitive nth root of unity.

Theorem A

Let G be a p-solvable group. Assume that $|\text{N}_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and the values of χ are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is monomial.

When $p = 2$, we can recover Gow’s result from Theorem A.
The hypothesis about the index $|N_G(P) : P|$ is necessary.
The hypothesis about the index $|N_G(P) : P|$ is necessary. Consider the group $SL(2,3)$ and the prime $p=3$.
The hypothesis about the index \(|N_G(P) : P|\) is necessary. Consider the group SL(2,3) and the prime \(p=3\).

The solvability hypothesis is necessary in both Gow’s and Theorem A.
The hypothesis about the index $|N_G(P) : P|$ is necessary. Consider the group $SL(2,3)$ and the prime $p=3$.

The solvability hypothesis is necessary in both Gow’s and Theorem A. The alternating group A_6 is a counterexample in the two cases.
B_π Theory
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if

(a) $\chi(1)$ is a π-number.
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if

(a) $\chi(1)$ is a π-number.

(b) For every subnormal subgroup $N \triangleleft G$, the order of all the irreducible constituents of χ_N is π-number.
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if

(a) $\chi(1)$ is a π-number.

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is π-number.

A B_π character of a group G may be thought as an irreducible character of G induced from a π-special character of some subgroup of G.
We say that $\chi \in \text{Irr}(G)$ is a π-special character of G, if
(a) $\chi(1)$ is a π-number.
(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is π-number.

A B_π character of a group G may be thought as an irreducible character of G induced from a π-special character of some subgroup of G. (True in groups of odd order).
Main results
Now, I can state the main result.
Now, I can state the main result.

Theorem B

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}|G|_p$, then χ is a B_p character of G.

We notice that B_p characters with degree not divisible by p are monomial. Thus Theorem B implies Theorem A.
Now, I can state the main result.

Theorem B

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}[G]_p$, then χ is a B_p character of G.

We notice that B_p characters with degree not divisible by p are monomial.
Now, I can state the main result.

Theorem B

Let G be a p-solvable group. Assume that $|N_G(P) : P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is a B_p character of G.

We notice that B_p characters with degree not divisible by p are monomial. Thus Theorem B implies Theorem A.
Subnormal constituents of B_π characters are B_π characters.
Subnormal constituents of B_π characters are B_π characters. Then, as a Corollary of Theorem B we get.
Subnormal constituents of B_π characters are B_π characters. Then, as a Corollary of Theorem B we get.

Corollary C

Let G be a p-solvable group. Suppose that $|N_G(P) : P|$ is odd, where $P \in Syl_p(G)$ for some prime p. If $\chi \in \text{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}_{|G|_p}$, then every subnormal constituent of χ is monomial.
We also obtain the following consequence.
We also obtain the following consequence. The number of such characters can be computed locally.
We also obtain the following consequence. The number of such characters can be computed locally.

Corollary D

Let G be a p-solvable group. Assume that $|N_G(P):P|$ is odd, where $P \in \text{Syl}_p(G)$ for some prime p. The number of irreducible characters which have degree not divisible by p and field of values contained in $\mathbb{Q}|G|_p$ equals the number of orbits under the natural action of $N_G(P)$ on P/P'.
Thanks for your attention!