Certain Monomial Characters and Their Subnormal Constituents

Carolina Vallejo

Universitat de Valècia

St. Andrews, August 2013

1/15

This is a joint work with G. Navarro.

Introduction

Let G be a group. A character $\chi \in Irr(G)$ is said to be **monomial** if there exist a subgroup $U \subseteq G$ and a linear $\lambda \in Irr(U)$, such that

$$\chi = \lambda^{G}$$

A group G is said to be **monomial** if all its irreducible characters are monomial.

There are few results guaranteeing that a given character of a group is monomial. It is well-known the following

Theorem

Let G be a supersolvable group. Then all irreducible characters of G are monomial.

But this result depends more on the structure of the group than on characters themselves.

An interesting result.

Theorem (Gow)

Let G be a solvable group. Suppose that $\chi \in Irr(G)$ takes real values and has odd degree. Then χ is rational-valued and monomial.

We give a monomiality criterium which also deals with fields of values and degrees of characters. Notation: For *n* an integer, we write

 $\mathbb{Q}_n = \mathbb{Q}(\xi),$

where ξ is a primitive *n*th root of unity.

Theorem A

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and the values of χ are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is monomial.

When p = 2, we can recover Gow's result from Theorem A.

The hypothesis about the index $|N_G(P) : P|$ is necessary. Consider the group SL(2,3) and the prime p=3.

The solvability hypothesis is necessary in both Gow's and Theorem A. The alternating group A_6 is a counterxample in the two cases.

B_{π} Theory

We say that $\chi \in Irr(G)$ is a π -special character of G, if (a) $\chi(1)$ is a π -number.

(b) For every subnormal subgroup $N \triangleleft \triangleleft G$, the order of all the irreducible constituents of χ_N is π -number.

A \mathbf{B}_{π} character of a group *G* may be thought as an irreducible character of *G* induced from a π -special character of some subgroup of *G*. (True in groups of odd order).

10/15

Main results

Now, I can state the main result.

Theorem B

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its values are contained in the cyclotomic extension $\mathbb{Q}_{|G|_p}$, then χ is a B_p character of G.

We notice that B_p characters with degree not divisible by p are monomial. Thus Theorem B implies Theorem A.

Subnormal constituents of B_{π} characters are B_{π} characters. Then, as a Corollary of Theorem B we get.

Corollary C

Let G be a p-solvable group. Suppose that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. If $\chi \in \operatorname{Irr}(G)$ has degree not divisible by p and its field of values is contained in $\mathbb{Q}_{|G|_p}$, then every subnormal constituent of χ is monomial.

We also obtain the following consequence. The number of such characters can be computed locally.

Corollary D

Let G be a p-solvable group. Assume that $|\mathbf{N}_G(P) : P|$ is odd, where $P \in \operatorname{Syl}_p(G)$ for some prime p. The number of irreducible characters which have degree not divisible by p and field of values contained in $\mathbb{Q}_{|G|_p}$ equals the number of orbits under the natural action of $\mathbf{N}_G(P)$ on P/P'.

Thanks for your attention!