m
= v =
determinar
a) x ® N(2 ;2) luego P(1,5< x< 2,5) = P (t1 < t <t2) = P (-0.25<t<0.25) = 0.1974
siendo t1= (1.5-2)/2=-0.25 t2= (2.5-2)/2=0.25
b) Z= 2x+y
Z® N[
2·2+3 ; ] =
N[7 ;
]
P(Z< 2) = P( t < t1 ) =P (t < -0.963)= 0.1685 ir a script de la normal
siendo t1= (2-7)/5.19=-0.963
c) Z=2x-y
Z® N [2·2-3 ;] = N [1 ;
]
P(Z< 2) = P( t < t1 ) =P (t < 0.3)= 0.6179
siendo t1= (2-1)/3.31=0.3