

INSTITUTO DE ASTROFÍSICA Facultad de física

Magnetic field evolution in neutron star cores Francisco Castillo, A. Reisenegger, J. A. Valdivia

Center of Astrophysics and Related Technologies

CoCoNuT Meeting 2018

Evidence for evolution?

$$B = 3.2 \times 10^{19} \sqrt{P\dot{P}/s} \text{ G}.$$

 $\tau = \frac{P}{2\dot{P}}.$

Evidence for evolution?

$$B = 3.2 \times 10^{19} \sqrt{P\dot{P}/s} \text{ G}.$$

$$\tau = \frac{P}{2\dot{P}}.$$

How does B evolve?

Neutron star structure

B evolution: Core vs. Crust

 $t_{\text{Ohm}} \sim \frac{5.7 \times 10^6}{O} \text{ yr}$ $t_{\text{ambip}} \sim 3 \times 10^7 \frac{L_6^2 T_6^2}{B_{12}^2} \text{ yr}$

We treat the crust as a vacuum

(whose magnetic field at any time is fully determined by the field in the core).

Formalism: Goldreich & Reisenegger (1992); Hoyos et al. (2008)

- Charge neutrality.
- Uniform background in hydrostatic and chemical equilibrium

$$\nabla \mu + \frac{\mu}{c^2} \nabla \Psi = 0 \,.$$

$$\begin{split} n_j(\vec{r},t) &\to n_j + \delta n_j(\vec{r},t) \quad j = n, c \\ \mu_j(\vec{r},t) &\to \mu + \delta \mu_j(\vec{r},t) \quad \mu = \mu_c = \mu_n \end{split}$$

We need numerical simulations

(i+1, j) $B_{\theta}, v_{\theta}, J_{r}$ $\beta, \delta n, B_{\phi}, v_{\phi}$ B_{r}, v_{r}, J_{θ} α, J_{ϕ} (i, j)(i, j+1)

We need numerical
simulations
$$B(t + \Delta t)$$

 $\delta n_c(t + \Delta t)$
 $\delta n_n(t + \Delta t)$ $\frac{\partial B}{\partial t} = \nabla \times [(v_A + v_n) \times B]$
 $\frac{\partial \delta n_c}{\partial t} + \nabla \cdot [n_c (v_A + v_n)] = -\lambda \Delta \mu$
 $\frac{\partial \delta n_n}{\partial t} + \nabla \cdot (n_n v_n) = +\lambda \Delta \mu$ $v_A (J \times B, \delta n_c)$
 $v_n (J \times B, \delta n_c, \delta n_n)$

We can distinguish two different regimes depending on temperature:

- *High* temperature: strong coupling regime
- Joint radial motions:
 - Opposed by strong buoyancy forces
 - Feasible only during a very short time after the neutron star birth

Strong coupling regime

Simulation performed taking $t_{\zeta} : t_{B\zeta} : t_{\lambda} : t_{B\lambda} = 1 : 100 : 640 : 64000$

Strong coupling regime

Simulation performed taking $t_{\zeta} : t_{B\zeta} : t_{\lambda} : t_{B\lambda} = 1 : 100 : 640 : 64000$

We can distinguish two different regimes depending on temperature:

- Lower temperatures: weak coupling regime
 - Weak interactions are strongly suppressed
 - Collisional coupling is reduced: Relative motions
 - Ambipolar diffusion

Weak coupling regime

Simulation performed taking $t_{\zeta} : t_{B\zeta} : t_{\gamma} : t_{B\gamma} = 1 : 500 : 2000 : 57290$

Summary and Conclusions

- Simulations that evolve simultaneously the magnetic field and the density perturbations it induces for neutrons and charged particles.
- Two regimes of magnetic field evolution:
 - Strong coupling
 - Urca reactions can adjust the composition "in real time".
 - Matter behaves as a single fluid (with time-varying composition) which moves together with the magnetic field.
 - Weak coupling
 - * Relative motion of neutrons and charged particles: Ambipolar diffusion
- The star evolves towards hydromagnetic equilibria

Summary and Conclusions

Caveats:

 Neglected the currents in the crust (assumed to have a very low conductivity.

Superfluidity/superconductivity.

Summary and Conclusions

- Previous work indicates that there are no stable hydromagnetic equilibria in barotropic stars:
 - Resulting equilibria are likely to become unstable if considered in full 3D.
 - **Currently:** I aim to develop a 3D code:
 - Challenge: Integration time
 - Any input appreciated