Highly magnetic neutron stars: an observational update

Francesco Coti Zelati

Institute of Space Sciences (ICE), CSIC-IEEC, Barcelona

CoCoNuT Meeting 2018, CEA (Saclay), November 14, 2018

Different emission channels: the pulsar zoo

Magnetars: B-powered

XDINS: kT-powered

Pulsars: rotation- powered

CCOs: kT-powered

Recycled binaries: rotation-powered

Magnetars

- about 25 X-ray pulsars with $Lx \sim 10^{31} 10^{36} \text{ erg s}^{-1}$
- x-ray luminosity generally larger than the rotational energy loss rate
- soft and hard x-ray emission (0.5-200 keV); thermal + non-thermal spectral components
- rotating with $P \sim 0.3 12 \text{ s}$
- magnetic fields of $B_p \sim 10^{13} 10^{15}$ Gauss
- flaring activity in soft gamma-rays (0.01 10^2 s; L_x ~ 10^{38} 10^{46} erg s⁻¹)
- large outbursts (months-years; E ~10⁴⁰ 10⁴³ erg)
- transient radio emission (in 4 cases)

Distribution in the Galaxy

McGill Online Magnetar Catalogue; Olausen & Kaspi 2014

Discovery rate

Flaring activity (timescale: sec/min)

<u>Short bursts</u>

• duration ~0.01-1s • $L_x \sim 10^{39}$ -10⁴¹ erg s⁻¹ • soft γ -rays thermal spectra

(kT ~ 30-40 keV)

<u>Intermediate bursts</u>

- duration 1-40 s
- peak ~10⁴¹-10⁴³ erg s⁻¹
- abrupt on-set
- usually soft γ -rays thermal spectra

<u>Giant Flares</u>

- very rare events (only 3 observed)
- $L_x > 3x10^{44} \text{ erg s}^{-1}$
- \bullet initial peak lasting <1 s with a hard spectrum
- ringing tail that can last > 500s, with softer spectrum and showing the NS spin pulsations

Outburst activity (timescale: months/years)

Outburst activity: mechanisms

1. Internal source of heat: Local magnetic stresses deform part of the stellar crust. Plastic flows convert the magnetic energy into heat. Partly is conducted up to the surface and radiated (thermal afterglow)

2. **External source of heat:** Crustal displacements twist up the external B-field. Returning currents hit and heat the NS surface. The bundle dissipates as the energy supply from the star interior decreases.

Both processes are likely at work.

Emission can be sustained up to a few years.

Nobili, Turolla & Zane 2008a,b; Beloborodov 2009; Pons & Rea 2012; Parfrey et al. 2013; Beloborodov & Levin 2014 Beloborodov & Li 2016; Li et al. 2016; Li et al. 2018

The magnetar in the Galactic Centre: SGR J1745-2900

The magnetar in the Galactic Centre: SGR 1745-2900

Proper motion from VLBA observations

Transverse velocity of 236+/-11 km/s at PA = 22+/-2 deg East-of-North

90% probability on average of being <mark>bound to the SMBH</mark> if born within 1 pc. P_{orb} ~ 500 yr - several kyrs (Rea et al. 2013)

The magnetar in the Galactic Centre: SGR J1745-2900

~ **3.5** years

Coti Zelati et al. 2015, 2017; Coti Zelati et al. in prep

The magnetar in the Galactic Centre: SGR J1745-2900

We recently observed magnetar-like activity or traces also from non-canonical magnetars...

Thermally emitting neutron stars (XDINSs)

- Distances : D<500 pc
- Spin periods: P~3-11 s
- Magnetic dip-fields: *B*~10¹³ G
- Age: *t*~0.1-1 Myr
- Luminosities: L_X~10³⁰-10³³ erg s⁻¹
- L_X >> Rotational energy loss rate
- No radio emission
- F_x/F_{opt}~10⁴ 10⁵

Thermal X-ray spectra (kT_{BB} ~ 40-110 eV)

Phase-dependent absorption features

Systematic search for narrow phase-dependent absorption features in all XDINSs. Narrow feature found in the spectrum of RX J0720.4-3125 and RX J1308+2127

Phase-resolved spectral analysis

Phase-dependent line:

$$E_{line} = 745_{-27}^{+17} eV$$

$$\sigma_{\text{line}} = 42_{-33} + 51_{-33} \text{ eV}$$

$$Eqw = 28_{-11} + 9 eV$$

Complex structure of the external magnetic field

Possible origin: proton cyclotron resonant scattering in a small magnetic loop close to the surface

First observational evidence of a complex magnetic field in the XDINSs Evolutionary connection between XDINSs and magnetars.

Central compact objects (CCOs)

- Point-like X-ray sources close to centre of SNRs
- No counterparts at other wavelengths.
- Thermal-like emission
- $L_X \sim few \ 10^{33} \, erg \, s^{-1}$

	Central Compact Objects in Supernova Remnants							
ССО	SNR	Age (kyr)	d (kpc)	P (s)	f _p ^a (%)	B_s (10 ¹⁰ G)	$L_{x,\text{bol}}$ (erg s ⁻¹)	
RX J0822.0-4300	Puppis A	4.5	2.2	0.112	11	2.9	5.6×10^{33}	
CXOU J085201.4-461753	G266.1-1.2	1	1		<7		2.5×10^{32}	
1E 1207.4-5209	PKS 1209-51/52	7	2.2	0.424	9	9.8	2.5×10^{33}	
CXOU J160103.1-513353	G330.2 + 1.0	≳3	5		<40		1.5×10^{33}	
1WGA J1713.4-3949	G347.3-0.5	1.6	1.3		<7		$\sim 1 \times 10^{33}$	
XMMU J172054.5-372652	G350.1-0.3	0.9	4.5				3.9×10^{33}	
CXOU J185238.6+004020	Kes 79	7	7	0.105	64	3.1	5.3×10^{33}	
CXOU J232327.9 + 584842	Cas A	0.33	3.4		<12		4.7×10^{33}	
2XMMi J115836.1-623516	G296.8-0.3	10	9.6				1.1×10^{33}	
XMMU J173203.3-344518	G353.6-0.7	~ 27	3.2		<9		1.3×10^{34}	
CXOU J181852.0-150213	G15.9+0.2	1–3	(8.5)				$\sim 1 \times 10^{33}$	

Gotthelf et al. 2013, De Luca 2017

1E 161348–505: a unique phenomenology

P = 6.67 hr, variable profile, age of 2kyr

1E 161348–505: magnetar-like activity

A magnetar-like burst (Swift BAT, 2016/06/22)

 $F_{1-10keV} \sim 1.2x10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} \text{ wrt} \\ F_{1-10keV(q)} \sim 1.7x10^{-12} \text{ erg cm}^{-2} \text{ s}^{-1}$

D'Ai' et al. 2016; Rea et al. 2016

Spectral analysis: outburst peak

Simultaneous observations with Chandra and NuSTAR on 2016 June 25

Spectral analysis: outburst decay

345 days after the outburst onset

Borghese et al. 2017

Magnetar-like activities from two young RPPs

PSR 1846-0258

- rotational power of Edot ~ 8x10³⁶ erg s⁻¹
- rotating with $P \sim 0.3$ s
- magnetic fields $B \sim 5 \times 10^{13}$ Gauss
- Kes 75 and with a PWN
- X-ray rotation-powered pulsar
- magnetar-like bursts and outburst in 2008

PSR 1119-6127

- rotational power of Edot ~ $2.3 \times 10^{36} \text{ erg s}^{-1}$
- rotating with $P \sim 0.4$ s
- magnetic fields $B \sim 4 \times 10^{13}$ Gauss
- with a PWN
- Radio/X-ray rotation-powered pulsar
- magnetar-like bursts and outburst in 2016

Gavriil et al. 2008, Kumar & Safi-Harb 2008, Archibald et al. 2016, Gogus et al. 2016

Systematic study of magnetar outbursts

Coti Zelati et al. 2018 Magnetar Outburst Online Catalog http://magnetars.ice.csic.es/

- 23 outbursts from 14 magnetars + 2 high-B RPPs + CCO in RCW 103
- about 1100 X-ray observations (12 Ms) between from 1998 to 2017
- extraction of spectra for all observations
- spectral fitting with empirical and more physically-motivated models
- light curve extraction, modelling and estimate of energetics and decay time scale

All performed in a homogeneous and consistent way for the first time!

High-quality X-ray spectra

1E 1547-5408 (2008) Chandra

SGR 0418+5729 XMM-Newton

Swift 1822.3-1606 XMM-Newton

1E 1547-5408 (2009) Chandra

> SGR 1833-0832 XMM-Newton

Swift 1834.9-0846 Chandra

Cooling curves and empirical modelling

Correlations and anticorrelations

First parameter	Second parameter	Corr (c) or anticorr (a), Significance (σ) for Spearman / Kendall τ tests	PL index	Reference figure	Correlation expected? Internal cooling / untwisting bundle
Quiescent X-ray luminosity	Maximum luminosity increase	(a), 5.7/4.9	-0.7	Fig. 3	Yes / yes
Spin-down luminosity	Quiescent bolometric luminosity	-	-	Fig. 4	No/no
Dipolar magnetic field	Quiescent bolometric luminosity	(c), 3.2/2.9	2.0	Fig. 4	Does not apply
Dipolar magnetic field	Maximum luminosity	(c), 2.5 / 2.4	0.5	Fig. 5	Yes/yes
Dipolar magnetic field	Decay time-scale	-	-	Fig. 5	Yes/yes
Dipolar magnetic field	Outburst energy	(c), 3.7/3.3	1.0	Fig. <mark>6</mark>	Yes / yes
Characteristic age	Outburst energy	(a), 3.3/3.0	-0.4	Fig. <mark>6</mark>	Yes / ?
Maximum luminosity	Outburst energy	(c), 4.0/3.7	1.4	Fig. <mark>6</mark>	Yes / yes
Quiescent bolometric luminosity	Outburst energy	-	-	Fig. <mark>6</mark>	No / no
Maximum luminosity	Decay time-scale	-	-	Fig. 7	No / no
Outburst energy	Decay time-scale	(c), 3.9/3.6	0.5	Fig. 7	Yes / yes
Outburst energy	Maximum luminosity increase	-	-	Fig. 8	No/no
Decay time-scale	Maximum luminosity increase	-	-	Fig. 8	No/no

Correlations and anticorrelations (I)

Large flux enhancements can only be observed in faint quiescent magnetars

The definition of "transient" and "persistent" magnetars is deceptive: it only reflects their different quiescent luminosities

Pons & Rea (2012)

ALS.

Correlations and anticorrelations (II)

CCOs depart significantly from the trend.

Expected in the '*hidden magnetic field*' scenario (Viganò & Pons 2012; Torres-Forné et al. 2016)

The external *B* field is lower than the internal 'hidden' *B* field, hence does not trace the bolometric luminosity

RPPs depart a bit from the trend

The larger luminosity wrt the prediction likely due to **slamming particles** heating the NS surface

Correlations and anticorrelations (III)

Correlations and anticorrelations (IV)

Similar decay pattern for all magnetar outbursts

Expected in the interior crustal cooling model

(the deeper the location of the energy release, the more energetic the outburst, the longer the time for heat diffusion)

The magnetar outburst online catalogue

Summary and conclusions

- Magnetars are unique laboratories to study the effects on matter embedded in extreme magnetic fields.

- The intensive follow-up of magnetar outbursts is giving new key discoveries and results (e.g. the Galactic Centre magnetar and the CCO in RCW 103)

- Magnetar activity likely has a larger spread within the neutron star population

- General Utility. The Magnetar Outbursts Online Catalogue

