Magnetic field formation and evolution in
neutron stars @Saclay 18.11.16

Towards a consistent modeling
of magneto-rotating stellar evolution

Koh Takahashi

Argelander-Institut fir Astronomie, University of Bonn
JSPS Overseas Research Fellow

Argelander-

Institut G2 =% JAPAN SOCIETY FOR THE PROMOTION OF SCIENCE

3 re g dT = AN

ey & HARS#TIRFAS
Astronomie



Outline

What are the evolutionary processes to form
rotating & magnetized WDs/NSs?

No solid theoretical predictions have been made.

(Langer 2014)

Because this is a tough work...
-The evolutionary timescale is long.
-The structure change affects the magnetic field.
-Stellar magnetic field will also affect the evolution.

| will report the current status of this field.

-A lot of studies have been done for specific topics.
-Many observational works
-Promising mechanisms of the interplay

-We are trying to construct a consistent method
to follow the magneto-rotating stellar evolution.
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Stars with convective/radiative envelopes

The HR Diagram of Nearby Stars
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-Stars have different envelope structures

due to different surface temperatures.

-OBA stars are radiative stars.
-FGK stars are convective stars.

-Surface magnetic structures are
different between radiative stars and
convective stars.

-‘Fossil field’ for radiative stars
-‘Dynamo field’ for convective stars

‘fossil fields’ just means ‘stable fields’.

the origin of the “fossil’ field is unknown.
-flux conservation?

-core dynamo?

-stellar merger?
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The sun and FGK convective stars

-Magnetic activities

-sSunNspots

-flares

-Small & large scale fields

~1 kG at sunspots

~1 G for the dipole component

Age vs field strength

-All the convective stars likely have solar-like
surface magnetic fields.

-Surface magnetic field in FGK stars show strong
correlation with the age and the rotation periods.

-Magnetic amplification by the a-Q dynamo?
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Rotation vs field strength

(Vidotto et al. 2014)
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Surface magnetic fields in radiative stars 2/8

Ap stars -Accumulating evidences indicate that
-Chemically peculiar A type stars massive OB type stars share common
-~10% of all A type stars magnetic features with less-massive A

_B, ~ 300-10k G type stars. y.4e et al. 2016; Wade & Neiner 2018)
-non-magnetic stars < ~1 G

-Large-scale structure (>~dipole) Compatible with a field in a stable

equilibrium (‘Fossil’ field).
(Badcock 1947,58; Landstreet 1992)

Kochukhov et al. 2002: Magnetic field structure in a2 CVn with 5 rotational phases




A fossil field in a stable stratified radiative zone

-Strong, large-scale, and stable surface magnetic fields observed in radiative
stars are compatible with the fossil field, i.e. a field in a stable equilibrium,
picture. (Wade & Neiner 2018)

-A great number of investigations has been done to find the

static/stable magnetic configurations in a radiative star.
(Braithwaite & Spruit 2017 for a review)

A stable twisted-torus in equilibria

-In an arbitrary configuration, magnetic

. . . SN\
fields move together with gases with the NN
Alfvén velocity. P SN
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-With the short timescale ~ R/va ~ 10 yr
for a star with 10 kG, the magnetic field
will find a stable configuration.

-The fossil field will persist with a long
timescale ~ R2/n ~ 1010 yr for the sun.

(Braithwaite & Nordlund 2006)



Interesting correlations in radiative stellar magnetism 3/8

-Correlations with fundamental parameters

have been observed.

-age

-rotation
-binarity

Magnetic field modulus against Prot
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Stars retain magnetic fields from the birth to the death.

How can we model the interplay between
structural changes and magnetic field evolution?

/ pre MS star (~10%): ‘
Bhaege ~ 100 G, MS star (~10%):

R~1-10 Ro Bapep ~ 300-10k G,

(Alecian et al. 2012) R~ 1-10 R®
(Auriere et al. 2007)
Star forming cloud:
Bmc ~ 106 G,
R~0.1-1 pc .
(Crutcher 2012)
White dwarf (~10%):
Bup ~ 103-10° G, -
R ~0.01 Roe
(Ferrario et al. 2015)
Red giants:
Brc ~ 1-10 G,
Neutron star: R ~ 1000 R
Bpulsar ~1010-1015 G, (Grunhut et al. 2010; Tessore et al. 2017)
R~ 10 km

(Tauris & van den Heuvel 2006)
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Stars retain magnetic fields from the birth to the death. 4/8

How can we model the interplay between
structural changes and magnetic field evolution?

Scaling relation
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Magnetic field amplification in a massive star

Rotation profiles in a 15 Mc model
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Current status of magnetic evolution models

Works which consider magnetic field distributions

(O 1l

Tayler-Spruit dynamo: Feiden & Chaboyer 2012,13,14 | 114
-Maeder & Meynet 2003,04,05 -low-mass stars et | |
-Heger et al. 2005 ) T 1"
-Denissenkov & Pinsoneault 2007 -magnetic pressure I
and a lot of more... -convective inhibition
_ _ -no rotation
Wind confinement: -no dynamo
-Petit et al. 2017
-Georgy et al. 2017
Magnetic breaking: ~ Radius Fracton
-Meynet et al. 2011 Potter et al. 2012a,b,c
S -intermediate-mass stars . ' ' =0 — ]
Convection inhibition: -consider rotation [ i V=023 oo
-Petermann et al. 2015 magnetic stress 10° i % 20,75 ceeennes .
aQ dynamo : i “‘f{;. t tms:1 """""""" ;
; : LN
-magnetic breaking o .
10" F ¢ E
-no convective dynamo F S
-non-conservative form : IR
for angular momentum |3 | L v, 3
. . - | : ] | -
-non-ngranglan evolution 0 : 5 3 . 5 .
equations r/R
®©
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Wind-magnetic field interaction

-Strong surface magnetic fields result in
-wind confinement leading to a formation of rigidly rotating magnetosphere
-efficient angular momentum loss by both the magnetic stress and by the gas

Magnetic wind confinement Observed & modeled (solid line) light curves of ¢ Ori E
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Magnetic inhibition of convection

-Strong magnetic fields inside a star may limit the size of convective
zones, which is one of the fundamental parameter of the massive star
evolution.

Non-magnetic star

-Ap star

-Chemically peculiar A type stars
-enhancements in Sr, Cr, Eu, Si.

-Subsurface convection mixes the chemical

profiles in the subsurface region. Magnetic star

-In a magnetic star, the subsurface convection is

suppressed by the strong magnetic field. Inside
the stable medium, heavy elements which have a

lot of lines is affected by the radiative levitation.
(Landstreet 1992)

-The 3 Cep star V2052 Oph requires a small overshoot parameter.
(Briquet et al. 2012)
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Angular momentum transport by the magnetic stress

-Magnetic stress can transport angular momentum
much more effectively than hydrodynamical processes.

B:

B.B N
r S
S — ¢ Bq) s ::"“
dr =

-Most “magnetic” stellar evolution simulations estimate
the magnetic stress based on the Tayler-Spruit dynamo

theory. (Spruit 1999,2002; Maeder&Meynet 2003,04,05; Heger et al. 2005)

1. A poloidal field exists in the radiative layer.

2. The Q-dynamo: the poloidal field is wound up to create
the new toroidal component.

3. The strong toroidal magnetic field is unstable to the m=1
perturbation.

4. The Pitts-Tayler instability in the toroidal field creates
the new poloidal component.

5. Saturation takes place when turbulent diffusion by the
Pitts-Tayler instability overcomes dynamo.
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Towards a consistent modeling of magneto-rotating stellar evolution

No solid theoretical predictions have been made. (Langer 2014)

Our strategy

Goal:
-consistent calculation to estimate the WD/NS rotation & magnetism.

Requirements:
-long timescale evolution
-following conservation laws accurately

Method:
-new formalism based on the fundamental equations
-consistent evolutions among structure, rotation, & magnetic field

Confirmation:
-problems known for rotating stellar evolution
-magnetic fields in stellar interiors
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Evolution of rotating massive stars

Rotation affects stellar structure and evolution. (Meynet & Maeder 2000; Heger et al. 2000)
Three rotational effects are treated in 1D stellar evolution codes.

1. Deformation by centrifugal force
(Endal&Sofia 1976; Meynet&Maeder 1997)

2. Matter mixing by rotationally induced instabilities
(Endal&Sofia 1978; Maeder&Meynet 1996)

3. Mass loss enhancement
(Langer 1998, Maeder&Meynet 2000, Yoon et al. 2012)

The shellular rotation profile (Zahn 1992) evolves according to the
radial transport equation of the angular momentum.

d(z) 1 d( U)+1d< dQ)
— = ——(pr* —— | priv
5r2 d P 2 2d P 47 (Maeder & Zahn 1998)

U2 : radial component of the meridional flow velocity

Veff: effective viscosity, most of which come from the Reynolds stress
of turbulent flows induced by rotational instabilities.
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Formulation: field evolution

Magnetic field configuration:

-toroidal+poloidal decomposition
-dipole approximation

B(r,0) = BpOl(ra 0) + B (1, 0)
BpOl — Bl’(ra Q)el’ + B@(ra 0)89
B, = B¢(r, H)egba

Bpol =V X Ao,
Ay(r,0) = A(r)sin 6,

2A
B.(r,0) = —cos0
r

- sin @ 0(Ar)

By(r,0) o

17
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Formulation: field evolution

Basic equations:

-Ohm’s law + turbulent effects 7
-Induction equation

Mean-field MHD-
dynamo equation

0B
ot

1D averaging:
-Flux equation

U(E+9><B+QB+@VXB)
C C C

Vx(vxB+aB)—V x((n+n)V x B)

« B
B(t+dy)

(V' x B)> -dS C(rwt)&/\\

d®- / 0B
= — _ v X
dt o\ Ot
""" dAn: o (14d ., )
i nrﬁr(rz (9r(Ar ))+r(ch)¢(9—7r/2).
L g (Br\: 1 { 00 8(10 ondBr 9 (1 0 dor DAF
gl [kl | P B+ rt 220 AP |- r= 2
:dt(rzp): r’p ('_-’:_Q_{”‘erar(ﬂ Gr( ' ))+r6r or arc?r(rz é?r( ' )) " or 8r)

lllllllllllll
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Formulation: angular momentum transport

Basic equation:
-momentum conservation + Lorentz force = + Maxwell stress

o 1
v (ov) +V-(ovw) = -VP+pg+ Zj X B =+ (viscosity)
= —VP+pg+V-M+ (visc.)

1D averaging:
-Ang. mom. conservation + Maxwell stress

e a ...... smHBrBd) ........... e HBQB¢ ...... e ¢B ¢ ...... ey
§r2 or ¥ sin 6 96 47 op \ 4n 0p \ 8n

d , C1 9 (4PPABY: 1 0 ( , 09

—_ 0 — - off —

dt(r ) : pr 8r(5 4 )E+ pr? 8r( ' Vﬁar)
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Formulation
Bpol =V X Ar,

Magnetic field configuration: Ay(r,8) = A(r) sin,

-toroidal+poloidal decomposition

-dipole approximation 2A
B(r,0) = Byo(r,0) + Biox(r, ) Bi(r.6) = —-cosb
Byi = B.(r,0)e, + By(r,0)e Bo(r,0) = —>mOdAD
Bor = By(r,0)e,, roor
By(r,0) = B(r)sin26.

Induction equation

-Ohm’s law + turbulent effects
-evolution equation of magnetic flux

d(Ar) (1 0 ) B
7 = nrar (r2 (9r(Ar )) + r(aB)y(0 = /2).
d [ Br 1 02 o(1 0 on 0Br o(1 0 Oa 0Ar
— = = —|Ar— Br? — = ArH) | - r— —
dt(rzp) rzp( " or +m8r(r2 (9r( ' )+r8r or ar@r(rz (9r( ' )) " or 6r)

Momentum conservation
-Lorentz force & Maxwell stress

1 0 (4r°AB . 1 o , 0Q
: — oty =2
5 4n or? or P Vel s,

d
220y = 2
dt (r€) pr? or
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Summary of the input physics 6/8

In the new formalization, we have achieved;

Satisfying ang. mom. conservation & flux conservation:
Adequate to follow a long-timescale evolution.

Q) effect is naturally introduced:
It comes from the induction equation.

a effect taken from a mean-field dynamo theory:
Convective helical flow amplifies magnetic fields (Rudiger&Kichatinov 1993).
a-quenching is included.
Only ag¢ is currently considered.

Nt of the Pitts-Tayler instability:
Strong toroidal fields introduce m=1 instability (Pitts&Tayler 1985).
No Tayler-Spruit dynamo included.

Tentatively omitted effects:
-magnetic pressure
-Joule heat
-convective suppression
-magnetic breaking
-wind confinement
21



Internal rotation & magnetic field evolution

Very preliminary results for a ‘non-magnetic’ 5 Mec model
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Efficient angular momentum transportation

Stellar evolution calculation generally

predicts faster rotation periods of
stellar interior than observations.

-Compact remnants:
-WDs for inter-mediate mass stars
-NSs for massive stars

-Red giant cores for low-mass stars

(Mosser et al. 2012)

RG cores should rotate 10 times
faster than their surfaces.
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Evolution of the core rotation period
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Constraint for the internal magnetic field

I=1 mode suppression
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|I=1 mode suppression in RGs would result from the wave
trapping due to strong magnetic field in a He core.

-Fuller et al. 2015
-explain incidence rate

Stello et al 2016: Minimum magnetic field

strength to explain the I=1 mode suppression
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Conclusion

Current Status

-Stars, at least a fraction of them, in all evolutionary stages have surface magnetic fields.

-pre-MS stars

-MS stars
-radiative/convective stars
-red giants

-WDs/NSs

-Indications of magnetic effects onto the stellar evolution

-angular momentum transport
-Wind-magnetic field interactions
-inhibition of convection

A new model

-Consistent treatments of structure, rotation, & magnetic field evolution
-Interesting agreements with observations

-core/surface rotation periods of factor of ~10 difference
-internal magnetic field strength of ~10¢6 G.
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Surface magnetic fields in convective stars
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(Auriere et al. 2015)

-Fraction:
-29/48 (but with highly biased samples)

-Active giants
-Thermohaline deviants (Ap descendants)
-CFHT snapshot subsamples

-Properties:

-Bi~1-100 G
-correlation with rotation periods

-The magnetic fields are likely to be
produced by the a-Q dynamo.

-GK giants are expected to have weak surface

magnetic fields because of their large radii
and slow rotations. (Landstreet 2004)
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Hunter diagram

Rotational mixing can account for the N enhancement in massive stars.

Observed & modeled [N/H] vs v sin i relation

Single Likely

stars binaries
o 37<kgg<sider 4 Numberof - -Majority of stars coincide with
©  loggxdidec 4 stars per bin the positive correlation
T T T T T T 103 =
MRS d . predicted by the theory.

-Meanwhile, two outliers exist;
1 E4102 slowly-rotating N-enhanced stars
and fast-rotating N-normal stars.

[ ] -The origins of these outliers are
. - still debatable.

= | P30 -Age/Mass effect?

ENE -Binary?

= | -Magnetic field?

12 + log [N/H]

. | | . | | 0 High magnetic incidence rate for

0 50 100 150 200 250 300 EC galactic N-rich stars (Morel et al.
vsini(kms-) 2008)

(Brott et al. 2011; Langer 2012)
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