Towards a consistent modeling of magneto－rotating stellar evolution

Koh Takahashi
Argelander－Institut für Astronomie，University of Bonn JSPS Overseas Research Fellow

Argelander－ Institut
für
Astronomie
Japan Society for the Promotion of Science
日本学沐振興会

What are the evolutionary processes to form rotating \& magnetized WDs/NSs?

No solid theoretical predictions have been made.

(Langer 2014)
Because this is a tough work...
-The evolutionary timescale is long.
-The structure change affects the magnetic field.
-Stellar magnetic field will also affect the evolution.

I will report the current status of this field.
-A lot of studies have been done for specific topics.
-Many observational works
-Promising mechanisms of the interplay
-We are trying to construct a consistent method to follow the magneto-rotating stellar evolution.

Stars with convective/radiative envelopes

(http://www.geocities.jp/p451640/hr diagram/hrdiagram5.html)
-Stars have different envelope structures due to different surface temperatures.
-OBA stars are radiative stars.
-FGK stars are convective stars.
-Surface magnetic structures are different between radiative stars and convective stars.
-‘Fossil field’ for radiative stars
-‘Dynamo field' for convective stars
'fossil fields' just means 'stable fields'.
the origin of the 'fossil' field is unknown.
-flux conservation?
-core dynamo?
-stellar merger?

The sun and FGK convective stars

-Magnetic activities
-sunspots
-flares
-Small \& large scale fields
$\sim 1 \mathrm{kG}$ at sunspots
$\sim 1 \mathrm{G}$ for the dipole component
-All the convective stars likely have solar-like surface magnetic fields.
-Surface magnetic field in FGK stars show strong correlation with the age and the rotation periods.
-Magnetic amplification by the $\alpha-\Omega$ dynamo?

Age vs field strength

Rotation vs field strength

(Vidotto et al. 2014)

Surface magnetic fields in radiative stars

Ap stars
-Chemically peculiar A type stars
-~10\% of all A type stars

- B_{I} ~ 300-10k G
-non-magnetic stars < ~1 G
-Large-scale structure (>~dipole)
-Accumulating evidences indicate that massive OB type stars share common magnetic features with less-massive A type stars.
(Wade et al. 2016; Wade \& Neiner 2018)

Compatible with a field in a stable equilibrium ('Fossil' field).
(Badcock 1947,58; Landstreet 1992)

Kochukhov et al. 2002: Magnetic field structure in a^{2} CVn with 5 rotational phases

A fossil field in a stable stratified radiative zone

-Strong, large-scale, and stable surface magnetic fields observed in radiative stars are compatible with the fossil field, i.e. a field in a stable equilibrium, picture.
(Wade \& Neiner 2018)
-A great number of investigations has been done to find the static/stable magnetic configurations in a radiative star.
(Braithwaite \& Spruit 2017 for a review)

A stable twisted-torus in equilibria

-In an arbitrary configuration, magnetic fields move together with gases with the Alfvén velocity.
-With the short timescale $\sim \mathbf{R} / \mathbf{v}_{\mathrm{A}} \sim 10 \mathrm{yr}$ for a star with 10 kG , the magnetic field will find a stable configuration.
-The fossil field will persist with a long timescale $\sim \mathbf{R}^{2 / \eta} \sim 10^{10} \mathrm{yr}$ for the sun.

(Braithwaite \& Nordlund 2006)

Interesting correlations in radiative stellar magnetism

-Correlations with fundamental parameters have been observed.
-age
-rotation
-binarity

Magnetic field modulus against $P_{\text {rot }}$

Time evolution (Fossati et al. 2016)

Binarity of Ap magnetic stars

Stars retain magnetic fields from the birth to the death.

How can we model the interplay between

 structural changes and magnetic field evolution?
pre MS star (~10\%):
$B_{\text {HAeBe }} \sim 100 \mathrm{G}$, R ~ 1-10 R. (Alecian et al. 2012)

MS star (~10\%):
$B_{\text {ApBp }} \sim 300-10 \mathrm{k}$ G, R ~ 1-10 R.
(Aurière et al. 2007)

Star forming cloud:
$B_{M C} \sim 10^{-6} G$,
R ~ 0.1-1 pc
(Crutcher 2012)

White dwarf ($\sim 10 \%$):
$B_{W D} \sim 10^{3}-10^{9} \mathrm{G}$, $R \sim 0.01 R$ 。
(Ferrario et al. 2015)

Neutron star:
$B_{\text {pulsar }}$ ~ 1010-1015 G, $\mathrm{R} \sim 10 \mathrm{~km}$
(Tauris \& van den Heuvel 2006)

Red giants:
$B_{R G} \sim 1-10 G$, R ~ 1000 R。
(Grunhut et al. 2010; Tessore et al. 2017)

Stars retain magnetic fields from the birth to the death.
How can we model the interplay between structural changes and magnetic field evolution?

Scaling relation

Magnetic field amplification in a massive star

Rotation profiles in a $15 \mathrm{M} \odot$ model

(Heger et al. 2000)

Kippenhahn diagram of a $\mathbf{2 2} \mathbf{M} \odot$ model

(A. Heger; https://2sn.org/stellarevolution/explain.gif)

Current status of magnetic evolution models

Works which consider magnetic field distributions

Tayler-Spruit dynamo:
-Maeder \& Meynet 2003,04,05
-Heger et al. 2005
-Denissenkov \& Pinsoneault 2007 and a lot of more...

Wind confinement:
-Petit et al. 2017
-Georgy et al. 2017

Magnetic breaking:
-Meynet et al. 2011

Convection inhibition:
-Petermann et al. 2015

Feiden \& Chaboyer 2012,13,14
-low-mass stars -magnetic pressure -convective inhibition
-no rotation
-no dynamo

Potter et al. 2012a,b,c
-intermediate-mass stars
-consider rotation magnetic stress $a \Omega$ dynamo
-magnetic breaking
-no convective dynamo
-non-conservative form for angular momentum -non-Lagrangian evolution equations

Wind-magnetic field interaction

-Strong surface magnetic fields result in
-wind confinement leading to a formation of rigidly rotating magnetosphere -efficient angular momentum loss by both the magnetic stress and by the gas

Magnetic wind confinement

Open Loop Regions: ultimately the only regions contributing to the total mass loss.

Observed \& modeled (solid line) light curves of σ Ori E

(Townsend et al. 2005)

Magnetic inhibition of convection

-Strong magnetic fields inside a star may limit the size of convective zones, which is one of the fundamental parameter of the massive star evolution.
-Ap star
-Chemically peculiar A type stars -enhancements in Sr, Cr, Eu, Si.
-Subsurface convection mixes the chemical profiles in the subsurface region.
-In a magnetic star, the subsurface convection is suppressed by the strong magnetic field. Inside the stable medium, heavy elements which have a lot of lines is affected by the radiative levitation.
(Landstreet 1992)

Non-magnetic star

Magnetic star

-The β Cep star V2052 Oph requires a small overshoot parameter.
(Briquet et al. 2012)

Angular momentum transport by the magnetic stress

-Magnetic stress can transport angular momentum much more effectively than hydrodynamical processes.

$$
S=\frac{B_{r} B_{\phi}}{4 \pi}
$$

-Most "magnetic" stellar evolution simulations estimate the magnetic stress based on the Tayler-Spruit dynamo theory. (Spruit 1999,2002; Maeder\&Meynet 2003,04,05; Heger et al. 2005)

1. A poloidal field exists in the radiative layer.
2. The Ω-dynamo: the poloidal field is wound up to create the new toroidal component.
3. The strong toroidal magnetic field is unstable to the $m=1$ perturbation.
4. The Pitts-Tayler instability in the toroidal field creates the new poloidal component.
5. Saturation takes place when turbulent diffusion by the Pitts-Tayler instability overcomes dynamo.

Towards a consistent modeling of magneto-rotating stellar evolution

No solid theoretical predictions have been made. (Langer 2014)

Our strategy

Goal:

-consistent calculation to estimate the WD/NS rotation \& magnetism.
Requirements:
-long timescale evolution
-following conservation laws accurately

Method:

-new formalism based on the fundamental equations
-consistent evolutions among structure, rotation, \& magnetic field

Confirmation:
-problems known for rotating stellar evolution
-magnetic fields in stellar interiors

Evolution of rotating massive stars

Rotation affects stellar structure and evolution. (Meynet \& Maeder 2000; Heger et al. 2000)
Three rotational effects are treated in 1D stellar evolution codes.

1. Deformation by centrifugal force
(Endal\&Sofia 1976; Meynet\&Maeder 1997)
2. Matter mixing by rotationally induced instabilities
(Endal\&Sofia 1978; Maeder\&Meynet 1996)
3. Mass loss enhancement
(Langer 1998, Maeder\&Meynet 2000, Yoon et al. 2012)

The shellular rotation profile (Zahn 1992) evolves according to the radial transport equation of the angular momentum.

$$
\rho \frac{\mathrm{d}}{\mathrm{~d} t}\left(r^{2} \Omega\right)=\frac{1}{5 r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\rho r^{4} \Omega U_{2}\right)+\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\rho r^{4} \sum_{\mathrm{eff}} \frac{\mathrm{~d} \Omega}{\mathrm{~d} r}\right) \text { (Maeder \& Zahn 1998) }
$$

U_{2} : radial component of the meridional flow velocity
Veff: effective viscosity, most of which come from the Reynolds stress of turbulent flows induced by rotational instabilities.

Formulation: field evolution

Magnetic field configuration:

-toroidal+poloidal decomposition
-dipole approximation

$$
\begin{aligned}
& \boldsymbol{B}(r, \theta) \equiv \boldsymbol{B}_{\mathrm{pol}}(r, \theta)+\boldsymbol{B}_{\mathrm{tor}}(r, \theta) \\
& \boldsymbol{B}_{\mathrm{pol}}=B_{r}(r, \theta) \boldsymbol{e}_{r}+B_{\theta}(r, \theta) \boldsymbol{e}_{\theta} \\
& \boldsymbol{B}_{\mathrm{tor}}=B_{\phi}(r, \theta) \boldsymbol{e}_{\phi}, \\
& \boldsymbol{B}_{\mathrm{pol}}=\nabla \times \boldsymbol{A}_{\mathrm{tor}}, \\
& A_{\phi}(r, \theta) \equiv A(r) \sin \theta, \\
& B_{r}(r, \theta)=\frac{2 A}{r} \cos \theta \\
& B_{\theta}(r, \theta)=-\frac{\sin \theta}{r} \frac{\partial(A r)}{\partial r} .
\end{aligned}
$$

Formulation: field evolution

Basic equations:

-Ohm's law + turbulent effects -Induction equation

$$
\begin{aligned}
\boldsymbol{j} & =\sigma\left(\boldsymbol{E}+\frac{\boldsymbol{v}}{c} \times \boldsymbol{B}+\frac{\alpha}{c} \boldsymbol{B}+\frac{\eta_{t}}{c} \nabla \times \boldsymbol{B}\right) \\
\frac{\partial \boldsymbol{B}}{\partial t} & =\nabla \times(\boldsymbol{v} \times \boldsymbol{B}+\alpha \boldsymbol{B})-\nabla \times\left(\left(\eta+\eta_{t}\right) \nabla \times \boldsymbol{B}\right)
\end{aligned}
$$

Mean-field MHDdynamo equation

1D averaging:
-Flux equation

$$
\frac{\mathrm{d} \Phi_{C}}{\mathrm{~d} t}=\int_{C}\left(\frac{\partial \boldsymbol{B}}{\partial t}-\nabla \times(\boldsymbol{V} \times \boldsymbol{B})\right) \cdot \mathrm{d} \boldsymbol{S}
$$

$$
\frac{d(A r)}{d t}=\eta r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(A r^{2}\right)\right)+r(\alpha \boldsymbol{B})_{\phi}(\theta=\pi / 2) .
$$

$\frac{d}{d t}\left(\frac{B r}{r^{2} \rho}\right)=\frac{1}{r^{2} \rho}\left(A r \frac{\partial \Omega}{\partial r}+\eta r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(B r^{2}\right)\right)+r \frac{\partial \eta}{\partial r} \frac{\partial B r}{\partial r}-\alpha r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(A r^{2}\right)\right)-r \frac{\partial \alpha}{\partial r} \frac{\partial A r}{\partial r}\right)$

Formulation: angular momentum transport

Basic equation:

-momentum conservation + Lorentz force $\rightarrow+$ Maxwell stress

$$
\begin{aligned}
\frac{\partial}{\partial t}(\rho \boldsymbol{v})+\nabla \cdot(\rho \boldsymbol{v} \boldsymbol{v}) & =-\nabla P+\rho \boldsymbol{g}+\frac{1}{\boldsymbol{j} \times \boldsymbol{B}}+(\text { viscosity }) \\
& =-\nabla P+\rho \boldsymbol{g}+\nabla \cdot \boldsymbol{M}+(\text { visc. })
\end{aligned}
$$

1D averaging:

-Ang. mom. conservation + Maxwell stress

$$
\begin{aligned}
\rho\left(\frac{\partial}{\partial t}\right. & \left.+v_{r} \frac{\partial}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial}{\partial \theta}+\frac{v_{\phi}}{r \sin \theta} \frac{\partial}{\partial \phi}\right)\left(v_{\phi} r \sin \theta\right) \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(\frac{r^{3} \sin \theta B_{r} B_{\phi}}{4 \pi}\right)+\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\frac{\sin ^{2} \theta B_{\theta} B_{\phi}}{4 \pi}\right)+\frac{\partial}{\partial \phi}\left(\frac{B_{\phi} B_{\phi}}{4 \pi}\right)-\frac{\partial}{\partial \phi}\left(\frac{B^{2}}{8 \pi}\right) \\
\frac{d}{d t}\left(r^{2} \Omega\right) & =\frac{1}{\rho r^{2}} \frac{\partial}{\partial r}\left(\frac{4}{5} \frac{r^{2} A B}{4 \pi}\right)^{\prime}+\frac{1}{\rho r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} v_{\mathrm{eff}} \frac{\partial \Omega}{\partial r}\right)
\end{aligned}
$$

Formulation

Magnetic field configuration:

-toroidal+poloidal decomposition
-dipole approximation

$$
\begin{aligned}
\boldsymbol{B}(r, \theta) & \equiv \boldsymbol{B}_{\mathrm{pol}}(r, \theta)+\boldsymbol{B}_{\mathrm{tor}}(r, \theta) \\
\boldsymbol{B}_{\mathrm{pol}} & =B_{r}(r, \theta) \boldsymbol{e}_{r}+B_{\theta}(r, \theta) \boldsymbol{e}_{\theta} \\
\boldsymbol{B}_{\mathrm{tor}} & =B_{\phi}(r, \theta) \boldsymbol{e}_{\phi},
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{B}_{\mathrm{pol}}=\nabla \times \boldsymbol{A}_{\mathrm{tor}}, \\
& A_{\phi}(r, \theta) \equiv A(r) \sin \theta, \\
& B_{r}(r, \theta)=\frac{2 A}{r} \cos \theta \\
& B_{\theta}(r, \theta)=-\frac{\sin \theta}{r} \frac{\partial(A r)}{\partial r} .
\end{aligned}
$$

$$
B_{\phi}(r, \theta)=B(r) \sin 2 \theta .
$$

Induction equation

-Ohm's law + turbulent effects
-evolution equation of magnetic flux

$$
\begin{aligned}
\frac{d(A r)}{d t} & =\eta r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(A r^{2}\right)\right)+r(\alpha \boldsymbol{B})_{\phi}(\theta=\pi / 2) . \\
\frac{d}{d t}\left(\frac{B r}{r^{2} \rho}\right) & =\frac{1}{r^{2} \rho}\left(A r \frac{\partial \Omega}{\partial r}+\eta r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(B r^{2}\right)\right)+r \frac{\partial \eta}{\partial r} \frac{\partial B r}{\partial r}-\alpha r \frac{\partial}{\partial r}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(A r^{2}\right)\right)-r \frac{\partial \alpha}{\partial r} \frac{\partial A r}{\partial r}\right)
\end{aligned}
$$

Momentum conservation

-Lorentz force \rightarrow Maxwell stress

$$
\frac{d}{d t}\left(r^{2} \Omega\right)=\frac{1}{\rho r^{2}} \frac{\partial}{\partial r}\left(\frac{4}{5} \frac{r^{2} A B}{4 \pi}\right)+\frac{1}{\rho r^{2}} \frac{\partial}{\partial r}\left(\rho r^{4} v_{\mathrm{eff}} \frac{\partial \Omega}{\partial r}\right)
$$

In the new formalization, we have achieved;

Satisfying ang. mom. conservation \& flux conservation:

Adequate to follow a long-timescale evolution.
Ω effect is naturally introduced:
It comes from the induction equation.

a effect taken from a mean-field dynamo theory:

Convective helical flow amplifies magnetic fields (Rudiger\&Kichatinov 1993).
a-quenching is included.
Only $a_{\Phi \Phi}$ is currently considered.
η_{t} of the Pitts-Tayler instability:
Strong toroidal fields introduce $\mathrm{m}=1$ instability (Pitts\&Tayler 1985).
No Tayler-Spruit dynamo included.

Tentatively omitted effects:
-magnetic pressure
-Joule heat
-convective suppression
-magnetic breaking
-wind confinement

Internal rotation \& magnetic field evolution

Very preliminary results for a 'non-magnetic' 5 M. model

Efficient angular momentum transportation

Stellar evolution calculation generally predicts faster rotation periods of stellar interior than observations.
-Compact remnants:
-WDs for inter-mediate mass stars
-NSs for massive stars
-Red giant cores for low-mass stars
(Mosser et al. 2012)

RG cores should rotate 10 times faster than their surfaces.

Evolution of the core rotation period

Constraint for the internal magnetic field

$\mathrm{I}=1$ mode suppression

incidence rate vs mass

I=1 mode suppression in RGs would result from the wave trapping due to strong magnetic field in a He core.

-Fuller et al. 2015
-explain incidence rate

Stello et al 2016: Minimum magnetic field strength to explain the $\mathrm{I}=1$ mode suppression

Conclusion

Current Status

-Stars, at least a fraction of them, in all evolutionary stages have surface magnetic fields.
-pre-MS stars
-MS stars
-radiative/convective stars
-red giants
-WDs/NSs
-Indications of magnetic effects onto the stellar evolution
-angular momentum transport
-Wind-magnetic field interactions
-inhibition of convection

A new model

-Consistent treatments of structure, rotation, \& magnetic field evolution
-Interesting agreements with observations
-core/surface rotation periods of factor of ~ 10 difference -internal magnetic field strength of $\sim 10^{6} \mathrm{G}$.

Surface magnetic fields in convective stars

GK red giants

(Aurière et al. 2015)
-Fraction:
-29/48 (but with highly biased samples)
-Active giants
-Thermohaline deviants (Ap descendants)
-CFHT snapshot subsamples
-Properties:

- $\mathrm{B}_{\boldsymbol{\prime}}$ ~ 1-100 G
-correlation with rotation periods
-The magnetic fields are likely to be produced by the $a-\Omega$ dynamo.
-GK giants are expected to have weak surface magnetic fields because of their large radii and slow rotations.
(Landstreet 2004)

Hunter diagram

Rotational mixing can account for the \mathbf{N} enhancement in massive stars.
Observed \& modeled [$\mathrm{N} / \mathrm{H}]$ vs v sin i relation

(Brott et al. 2011; Langer 2012)
-Majority of stars coincide with the positive correlation predicted by the theory.
-Meanwhile, two outliers exist; slowly-rotating N -enhanced stars and fast-rotating N -normal stars.
-The origins of these outliers are still debatable.
-Age/Mass effect?
-Binary?
-Magnetic field?
High magnetic incidence rate for galactic N-rich stars (Morel et al. 2008)

