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Outline

Because this is a tough work…

  -The evolutionary timescale is long.

  -The structure change affects the magnetic field.

  -Stellar magnetic field will also affect the evolution.

I will report the current status of this field.
-A lot of studies have been done for specific topics.

  -Many observational works

  -Promising mechanisms of the interplay

What are the evolutionary processes to form 
rotating & magnetized WDs/NSs?

No solid theoretical predictions have been made.
(Langer 2014)

-We are trying to construct a consistent method

  to follow the magneto-rotating stellar evolution.
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Stars with convective/radiative envelopes
lo

g 
L/

L !

0

2

4

    6

-2

-4

      B - V

O             B           A         F        G            K                       M

Deneb

Antares

Betelgeuse

the Sun

α Cen

Rigel

(http://www.geocities.jp/p451640/hr_diagram/hrdiagram5.html)

The HR Diagram of Nearby Stars

-Surface magnetic structures are 
different between radiative stars and 
convective stars.

-Stars have different envelope structures 
due to different surface temperatures.

Convective stars

-FGK stars are convective stars.

-‘Fossil field’ for radiative stars

-‘Dynamo field’ for convective stars

‘fossil fields’ just means ‘stable fields’.


the origin of the ‘fossil’ field is unknown.

 -flux conservation?

 -core dynamo?

 -stellar merger?

Radiative stars

-OBA stars are radiative stars.
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The sun and FGK convective stars

-Surface magnetic field in FGK stars show strong 
correlation with the age and the rotation periods.

Rotation vs field strength

(Vidotto et al. 2014)

2366 A. A. Vidotto et al.

Figure 2. Correlation between the average large-scale field strength derived
from the ZDI technique ⟨|BV|⟩ and age t, for the non-accreting stars in our
sample. The trend found (solid line) has a similar age dependence as the
Skumanich law (!⋆ ∝ t−0.5). This relation could be used as an alternative
method to estimate the age of stars (‘magnetochronology’).

for more than two orders of magnitude in ⟨|BV|⟩ and three orders
of magnitude in t for the non-accreting stars. From our power-
law fit (solid line), we find that ⟨|BV|⟩ ∝ t−0.655 ± 0.045, which has
a similar age dependence as the Skumanich law (!⋆ ∝ t−0.5) and
supports the magnetism–age prediction inferred by S72 that there
is magnetic field decay as the inverse square-root of age. A similar
power-law dependence is found between the unsigned surface flux
#V = ⟨|BV |⟩4πR2

⋆ and age (#V ∝ t−0.622 ± 0.042).

3.1.2 Correlation with rotation period

Stellar winds are believed to regulate the rotation of MS stars.
The empirical Skumanich law, for example, can be theoretically
explained using a simplified stellar wind model (Weber & Davis
1967), if one assumes that the stellar magnetic field scales linearly
with the rotation rate of the star !⋆. To investigate whether our
data support the presence of such a linear-type dynamo (B ∝ !⋆ ∝
P −1

rot ), we present how ⟨|BV|⟩ scales with Prot in Fig. 3. Our results
show that ⟨|BV |⟩ ∝ P −1.32±0.14

rot (|ρ| = 0.54), indicating that our data
support a linear-type dynamo of the large-scale field within 3σ . A
similar nearly linear trend is found between the unsigned surface
flux #V and Prot, with a larger correlation coefficient |ρ| = 0.72.

Although the correlation between ⟨|BV|⟩ and Prot indeed exists
(with a negligible null probability), this relation has a significant
spread. One possible explanation for this spread could be that in
the Weber–Davis theory of stellar winds, a very simplistic field
geometry is assumed (a split monopole) with the entire surface of
the star contributing to wind launching. However, the complexity
of the magnetic field topology can play an important role in the
rotational evolution of the star (e.g. Vidotto et al. 2009, 2012; Cohen
et al. 2010). ZDI observations have shown that stellar magnetic
field topologies can be much more complex than that of a split
monopole. In addition, numerical simulations of stellar winds show
that part of the large-scale surface field should consist of closed field
lines, which do not contribute to angular momentum removal (e.g.
Vidotto et al. 2014). The large spread in the ⟨|BV|⟩–Prot relation
could therefore be explained by the differences in magnetic field
topologies present in the stars of our sample.

Figure 3. Correlation between the average large-scale field strength derived
from the ZDI technique ⟨|BV|⟩ and rotation period Prot, for the non-accreting
stars in our sample. Our data support the presence of a linear-type dynamo for
the large-scale field (i.e. ⟨|BV |⟩ ∝ !⋆ ∝ P −1

rot ) within 3σ , although a large
scatter exists. The open symbols (not considered in the fit) are saturated M
dwarf stars without age estimates: blue squares for M⋆ ≥ 0.4 M⊙ (early
Ms), green circles for 0.2 < M⋆/M⊙ < 0.4 (mid Ms) and red circles for
M⋆ ≤ 0.2 M⊙ (late Ms). The dotted line, at an arbitrary vertical offset, is
indicative of the slope found from ZB measurements between ⟨|BI|⟩ and Prot
(Saar 1996).

3.1.3 Correlation with Rossby number

Another possibility for the spread found in the relation between
⟨|BV|⟩ and Prot can be due to the fact that we are considering a broad
range of spectral types. Traditionally, the use of Rossby number (Ro)
instead of Prot allows comparison across different spectral types,
reducing the spread commonly noticed in trends involving Prot. Ro
is defined as the ratio between Prot and convective turnover time τc.
To calculate Ro for the non-accreting stars, we used the theoretical
determinations of τc from Landin, Mendes & Vaz (2010). Appendix
A5 shows how our results vary if we adopt different approaches for
the calculation of τc. For the eight stars that have masses outside
the mass interval for which τc was computed in Landin et al. (2010,
0.6 ≤ M⋆/M⊙ ≤ 1.2), we adopt the following approximation. Stars
with a given age t and mass M⋆ ≤ 0.6M⊙ were assumed to have
τc = τc(M⋆ = 0.6 M⊙, t) and for M⋆ ≥ 1.2 M⊙ were assumed to
have τc = τc(M⋆ = 1.2 M⊙, t). As a result, for the former (latter)
group, the calculated τc is a lower (upper) limit, while Ro is an
upper (lower) limit. In this work, we do not assign errors to Rossby
numbers, but we note that these values are model dependent. For
the accreting stars, Ro was derived from an update to the models of
Kim & Demarque (1996), as detailed by Gregory et al. (2012).

In general, all our fits against Ro have larger unsigned Spearman’s
rank correlation coefficients than fits against Prot. Fig. 4(a) shows
⟨|BV|⟩ as a function of Ro, where we find that ⟨|BV |⟩ ∝ Ro−1.38±0.14.
This relation will be further discussed later on Section 4.1. Addi-
tionally, we found a similar power-law dependence between the
magnetic flux #V and Ro (Fig. 4b): #V ∝ Ro−1.19±0.14. Right/left
arrows in Fig. 4 denote the cases with lower/upper limits of Ro.

We note that the correlation between ⟨|BV|⟩ and Ro indeed has
less scatter than that between ⟨|BV|⟩ and Prot shown in Fig. 3. In spite
of the tighter correlation, a noticeable scatter still exists, which, as
discussed in Section 3.1.2, could be caused by different field topolo-
gies. It is also worth noting that the field topology and intensity can
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Age vs field strength

-Magnetic activities
-sunspots

-flares

-Small & large scale fields
~1 kG at sunspots

~1 G for the dipole component

-All the convective stars likely have solar-like 
surface magnetic fields.

-Magnetic amplification by the α-Ω dynamo?
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Ap stars
-Chemically peculiar A type stars

-~10% of all A type stars

(Badcock 1947,58; Landstreet 1992)

Surface magnetic fields in radiative stars
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-Bl ~ 300-10k G

-non-magnetic stars < ~1 G

-Large-scale structure (>~dipole)
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Figure 3. The magnetic fields of α2 CVn (a) and 53 Cam (b), viewed at five rotational phases. The upper rows in each panel show field
strength and the lower rows the direction. Clearly, while α2 CVn has an almost perfect dipole field, the magnetic field of 53 Cam has a
much more complex geometry. From Kochukhov et al. [15,16].

axis at some angle. In other stars, this produces poor results and a more complicated geometry produces
better results, for instance dipole + quadrupole.

Improved observations have made it possible to combine the Zeeman effect with the Doppler effect
from the rotation of the star to get, in effect, some spatial resolution on the surface of the star, without
having to make prior assumptions of this kind. Piskunov & Kochukhov [14] have developed a technique
called Magnetic-Doppler imaging and have used it to make some impressive maps of the magnetic field
on a number of stars, such as 53 Cam [15], α2 CVn [16,17] and HD 37776 [18]. Two examples are shown
in figure 3. A similar technique called Zeeman–Doppler imaging, developed by Donati and Petit (e.g.
[19]) has been used to make magnetic images of cool stars, e.g. Petit et al. [20], as well as some hot
stars, e.g. Donati et al. [21] and figure 7. Using these techniques, some rather complicated geometries2

have been found which appear to indicate the presence of meandering flux tubes just below the stellar
surface.

2.1.1. Chemical peculiarities
Interesting and unique to intermediate-mass stars are processes near the surface: gravitational settling
and radiative levitation, which cause separation of chemical elements in the atmospheres of the stars and
result in a variety of observed chemical abundance phenomena [22]. Ap/Bp stars are defined as a class
showing peculiar (hence the ‘p’ in ‘Ap star’) abundances of rare earths and some lighter elements such
as silicon, as well as inhomogeneities of these elements on the surface which show correlations with the
magnetic field structure, albeit not the same kind of correlation in all stars. There is apparently a one-to-
one correlation between the Ap/Bp phenomenon and strong magnetic field, with the apparent exception
of the subclass of the HgMn stars [23].

The origin of this phenomenon is inextricably linked to the presence and location of surface and
subsurface convection layers resulting from opacity bumps associated with helium and hydrogen

2The common usage of the term ‘topology’ in this context is sloppy. Its meaning is distribution on the star’s surface. Topology is by
definition a global property of the entire field configuration; nothing can be inferred about it from observations of the stellar surface
alone.
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Kochukhov et al. 2002:  Magnetic field structure in α2 CVn with 5 rotational phases 

-Accumulating evidences indicate that 
massive OB type stars share common 
magnetic features with less-massive A 
type stars. (Wade et al. 2016; Wade & Neiner 2018)

Compatible with a field in a stable 
equilibrium (‘Fossil’ field).
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A fossil field in a stable stratified radiative zone

-A great number of investigations has been done to find the 
static/stable magnetic configurations in a radiative star.

A stable twisted-torus in equilibria
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(Braithwaite & Spruit 2017 for a review)
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Figure 9. The shape of the stable twisted-torus field in a star, viewed along and normal to the axis of symmetry. The transparent surface
represents the surface of the star; strong magnetic field is shown with yellow field lines, weak with black. Figure from Braithwaite &
Nordlund [89].

illustrated in figure 9. This corresponds qualitatively to equilibria suggested by Prendergast [83] and
Wright [81].

The stability of these axisymmetric fields, and in particular the range of possible ratios of toroidal
to poloidal field strength, was examined further by Braithwaite [90] with a mixture of analytic and
numerical methods. It was found that the fraction of energy in the poloidal component must satisfy
a(E/Egrav) < Ep/E ! 0.8 where E and Egrav are the total magnetic energy and the gravitational energy,
Ep is the energy of the poloidal field and a is some dimensionless factor of the order of unity. Akgün
et al. [91] got the same results with more analytic methods. To give some numbers, for an A star the
dimensionless factor a ∼ 15 and the ratio E/Egrav is only about 10−6 even in the most strongly magnetic
Ap star (B ≈ 30 kG), so that in this star we require for stability 10−5 ! Ep/E ! 0.8. In a neutron star a ∼ 400
[91], and assuming a magnetar field strength of 1015 G, the condition is 4 × 10−4 ! Ep/E ! 0.8. In stars
with weaker fields of course, the lower limit to the ratio Ep/E is even lower.

Physically, the upper limit comes from the need for a comparable-strength toroidal field to stabilize
the instability of a purely poloidal field, and is in rough agreement with the result of Wright [81]. The
lower limit is different because the instability of a purely toroidal field, unlike that of a poloidal field,
involves radial motion and so the stable entropy stratification has a stabilizing effect, preferentially on
the longer wavelengths which involve greater radial motion. The poloidal field stabilizes preferentially
the shorter wavelengths, and at sufficient poloidal field strength the two effects meet in the middle and
all wavelengths are stabilized. The stable stratification is more effective if the field is weaker, hence the
presence of the total field energy in the threshold. As E/Egrav is always a very small number, only a
relatively small poloidal field is required. See Braithwaite [90] for a more thorough explanation.

This result is of particular interest in the context of neutron stars, where the deformation of the star
from a spherical shape depends crucially on this ratio Ep/E because poloidal field makes the star oblate
and toroidal field prolate. In the presence of a suitable mechanism to damp torque-free precession, a
prolate star should ‘flip over’ until the magnetic and rotation axes are perpendicular, which is the state
in which the rotational kinetic energy is at a minimum, given a constant angular momentum. In this
state, the star emits gravitational waves (e.g. [92]).

3.5. Non-axisymmetric equilibria
From further simulations [93], it became clear that depending on the initial conditions, a wide range
of equilibria can form, including non-axisymmetric equilibria (figure 10). Crucial is the distribution of
magnetic energy and the amount of flux passing through the stellar surface to the low-conductivity
medium outside. It is important to note that during relaxation to equilibrium there is essentially no radial
transport of gas and magnetic flux, fluid motion being confined to spherical shells, so the total unsigned
flux through any spherical shell

∮
|B · dS| can only fall. Therefore, an initial field which is buried in the

interior of a radiative star or zone evolves into a similarly buried equilibrium. It turns out that in this case,
an approximately axisymmetric field forms. At the opposite end of the spectrum, an initial field with a
flat radial field-strength profile with a finite amount of magnetic flux at the surface evolves into a non-
axisymmetric equilibrium (figure 11). It seems that both axisymmetric and non-axisymmetric equilibria
do form in nature, and both types can be found among A, B and O main-sequence stars as well as among
white dwarfs (figures 3 and 7).

The geometries of these various equilibria have one feature in particular in common, namely that
they can be thought of in terms of twisted flux tubes surrounded by regions of purely poloidal field.

 on April 4, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

(Braithwaite & Nordlund 2006)

-In an arbitrary configuration, magnetic 
fields move together with gases with the 
Alfvén velocity.


-With the short timescale ~ R/vA ~ 10 yr 
for a star with 10 kG, the magnetic field 
will find a stable configuration.


-The fossil field will persist with a long 
timescale ~ R2/η ~ 1010 yr for the sun.

-Strong, large-scale, and stable surface magnetic fields observed in radiative 
stars are compatible with the fossil field, i.e. a field in a stable equilibrium, 
picture. (Wade & Neiner 2018)
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Interesting correlations in radiative stellar magnetism
-Correlations with fundamental parameters 
have been observed.

  -age 
  -rotation 
  -binarity

A&A 592, A84 (2016)
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Fig. 3. Fractional MS ⌧-distributions of a) the magnetic stars and b) all
stars in our sample. Panel c) shows the fraction of magnetic stars as
a function of fractional MS age, normalised such that the incidence
of magnetic stars is 7% (Wade et al. 2014; Fossati et al. 2015b). The
shaded regions indicate bootstrapped 1� estimates to give an indication
of the statistical significance of the variability in the ⌧-distributions. The
solid line in the middle panel shows the ⌧-distribution of our synthetic
population of a magnitude-limited sample of massive stars (see text).

if present, are probably very complex. Since we considered all
known magnetic stars, this sample is as complete as it can pos-
sibly be to the best of our current knowledge.

The ⌧-distribution of all stars increases with fractional
MS age and reveals that our sample is dominated by relatively
old stars. About 70% of the stars are in the second half of their
MS evolution. The drop in ⌧-distribution around ⌧= 1.0 arises
because we did not consider any star beyond the terminal-age
main sequence (TAMS) as predicted by Brott et al. (2011). This
means that some stars that overlap the MS within their error bars
are missing in the ⌧-distribution because their best-fitting age is
beyond the TAMS.

To understand the characteristics of the ⌧-distribution of all
stars, we computed a synthetic population of massive stars, as-
suming continuous star formation, the Salpeter initial mass func-
tion (Salpeter 1955), and a uniform distribution of heliocentric
distances. We then set the magnitude cut at V = 9 mag and de-
rived the ⌧-distribution of the synthetic stars, which shows a be-
haviour similar to the observed one (Fig. 3b). The increase in
⌧-distribution with increasing fractional MS age is a bias caused
by the fact that stars become more luminous as they age: a
magnitude-limited sample of MS stars contains a larger portion
of old stars than a similar volume-limited sample (cf. Malmquist
bias; Malmquist 1922). Because of the same magnitude cut, the
⌧-distribution of magnetic stars is also a↵ected in the same way
by this bias.

Some di↵erences between the observed and synthetic
⌧-distributions of all stars are present. These are probably caused
by biases in the sample selection. For instance, the IACOB sam-
ple of B-type stars is slightly biased towards older stars for the
study of macroturbulence, while for the O-type stars in the north-
ern hemisphere it is complete up to V = 9 mag. Simplifying as-
sumptions in the population synthesis model (e.g., uniform dis-
tance distribution across the whole sky) may also contribute. In
addition, Fig. 2 shows that for masses higher than 30 M� the re-
gion close to the ZAMS is not sampled by the observations, as
previously noted by Castro et al. (2014). The lack of very mas-
sive stars close to the ZAMS slightly a↵ects the ⌧-distribution
of all stars and contributes to the discrepancy with the synthetic
⌧-distribution at ⌧< 0.5. Part of the discrepancy at older ages
(⌧> 0.5) may arise because the models do not consider a mass-
dependent overshooting, while observations suggest that it may
be present (Castro et al. 2014).

The bottom panel of Fig. 3 shows the fraction of magnetic
stars as a function of fractional MS age. Our current samples
are not complete, that is they do not contain all (magnetic)
massive stars brighter than V = 9 mag. In addition, our sample
is biased towards magnetic stars, as indicated by the fact that
the number ratio of magnetic and all stars is 16%, which is
higher than what is found by dedicated surveys (7%; Wade et al.
2014; Fossati et al. 2015b). Therefore, to also facilitate direct
comparisons with future observations, we re-scaled the fraction
of magnetic massive stars in Fig. 3c such that the overall mag-
netic incidence is 7%3 (Wade et al. 2014; Fossati et al. 2015b).
Nevertheless, this is not a problem as long as the samples are
representative, hence leading to ⌧-distributions comparable to
those obtained from complete samples. Assessing how repre-
sentative a sample is for the complete population can only be
done statistically because the complete population will never be
known. In our case, the robustness of the ⌧-distributions is given
by bootstrapped 1�-estimates. These bootstrapped uncertainties
quantify the variations in our ⌧-distributions because of stochas-
tic sampling from a parent distribution and will further decrease
when larger samples become available in the future. The similar
trend in ⌧-distributions of our sample stars and the population
synthesis model (which is by definition complete) also indicates
that our sample of stars can be considered representative of all
stars brighter than V = 9 mag.

3 Let (dp/d⌧)mag and (dp/d⌧)all be the ⌧-distributions of mag-
netic and all stars, respectively. To compute the incidence of
magnetic stars as a function of fractional MS age, fmag(⌧), we
need to compute the ratio of the numbers of magnetic and all
stars for each ⌧-bin: fmag(⌧) = Nmag (dp/d⌧)mag/Nall (dp/d⌧)all =
Nmag/Nall (dp/d⌧)mag/(dp/d⌧)all where Nmag and Nall are the total num-
bers of magnetic and all stars, respectively, such that Nmag/Nall ⇡7% is
the overall incidence of magnetic massive stars.
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Time evolution (Fossati et al. 2016)

Binarity of Ap magnetic stars

F. Carrier et al.: Multiplicity among CP stars. II. 157

in Fig. 7. Unfortunately, the phase coverage is not good, but the
depth of the dip varies in a very significant way, contrary to the
radial velocity and dip width. No longitudinal field curve exist
for this star, although Preston (1971) estimated a surface field
of 1.8 kG.

5. Statistics of Ap binaries

5.1. The sample of binaries

Our sample is composed of all Ap stars known as spectro-
scopic binaries. The catalogue of Renson (1991) gives us the
Ap stars. However, some stars considered as Am by Renson,
have been considered in this work as Ap (HD 56495, HD 73709
and HD 188854). Among these stars, the spectroscopic bina-
ries have been selected from the following sources. Fourteen
orbits were determined thanks to the CORAVEL scanner (this
paper and North et al. 1998). Lloyd et al. (1995) determined
a new orbit for θ Carinae (HD 93030) and Stickland et al.
(1994) for HD 49798. Recently, Leone & Catanzaro (1999)
have published the orbital elements of 7 additional CP stars,
two of which are He-strong, two are He-weak, one is Ap Si,
one Ap HgPt and one Ap SrCrEu. Wade et al. (2000) provided
the orbital elements of HD 81009. Other data come from the
Batten et al. (1989) and Renson (1991) catalogues. Among all
Ap, we kept 78 stars with known period and eccentricity, 74 of
them having a published mass function.

5.2. Eccentricities and periods

The statistical test of Lucy & Sweeney (1971) has been ap-
plied to all binaries with moderate eccentricity, in order to see
how far the latter is significant. The eccentricity was put to zero
whenever it was found insignificant. We can notice the effect of
tidal interactions (Zahn 1977, 1989; Zahn & Bouchet 1989) on
the orbits of Ap stars (see Fig. 8a). Indeed, all orbits with P
less than a given value (= Pcirc) are circularized. According
to the third Kepler law, a short period implies a small orbit
where tidal forces are strong. The period-eccentricity diagram
for the Ap stars does not show a well marked transition from
circular to eccentric orbits, in the sense that circular as well
as eccentric systems exist in the whole range of orbital peri-
ods between Pcirc = 5 days to a maximum of about 160 days.
The wider circular orbits probably result from systems where
the more massive companion once went through the red giant
phase; the radius of the former primary was then large enough
to circularize the orbit in a very short time. This is quite con-
sistent with the synchronization limit for giant stars of 3 to
4 M⊙ (P ∼ 150 days, Mermilliod & Mayor 1996).

An upper envelope seems well-defined in the e vs. log P di-
agram, especially for log P <∼ 2, although four points lie above
it. The leftmost of these, with (log P,e) = (0.69, 0.52) has a
rather ill-defined orbit2. Whether this envelope has any sig-
nificance remains to be confirmed with a larger sample than
presently available.

2 21 Her (HD 147869) has been measured by Harper (1931) and has
a relatively small amplitude.

Fig. 8. a) Diagram eccentricity versus period (in days) for the 78 Ap
stars. The symbols are according to the type of Ap: △ HgMn,

He weak, SrCrEu, Si. b) Diagram eccentricity versus period
(in days) for G dwarf stars (Duquennoy & Mayor 1991).

It is interesting to compare our e/ log P diagram with that
established by Debernardi (2002) for his large sample of Am
stars. For these stars, the limit between circular and eccen-
tric orbits is much steeper, many systems having e ∼ 0.7 at
P = 10 d only. The difference might be due to the wider mass
distribution of the Bp-Ap stars (roughly 2 to 5 M⊙) compared
to that of Am stars (1.5 to 2–2.5 M⊙), Pcirc being different for
each mass. One might also speculate that the lack of very ec-
centric and short periods is linked with the formation process of
Ap stars, which for some reason (e.g. pseudo-synchronization
in the PMS phase, leading to excessive equatorial velocities?)
forbid this region.

Qualitatively, Ap stars behave roughly like normal G-
dwarfs (Duquennoy & Mayor 1991) in the eccentricity-period
diagram. There is also a lack of low eccentricities at long pe-
riods (here for log P > 2.0), and the upper envelope is simi-
lar in both cases for log P > 1.0. One difference is the pres-
ence of moderate eccentricities for periods shorter than 10 days
among Ap binaries, and another is the complete lack of very
short orbital periods (P ≤ 3 days) among them, if one excepts
HD 200405. The latter feature, already mentioned in the past
(e.g. by GFH85) is especially striking because it does not oc-
cur for the Am binaries. The physical cause for it is probably
that synchronization will take place rather early and force the
components to rotate too fast to allow magnetic field and/or
abundance anomalies to subsist. However, even an orbital pe-
riod as short as one day will result in an equatorial velocity of
only 152 km s−1 for a 3 R⊙ star, while single Bp or Ap stars
rotating at this speed or even faster are known to exist (e.g.
HD 60435, Bp SiMg, Prot = 0.4755 d; North et al. 1988).
The detection of one system with Porb = 1.635 d further
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in Fig. 7. Unfortunately, the phase coverage is not good, but the
depth of the dip varies in a very significant way, contrary to the
radial velocity and dip width. No longitudinal field curve exist
for this star, although Preston (1971) estimated a surface field
of 1.8 kG.

5. Statistics of Ap binaries

5.1. The sample of binaries

Our sample is composed of all Ap stars known as spectro-
scopic binaries. The catalogue of Renson (1991) gives us the
Ap stars. However, some stars considered as Am by Renson,
have been considered in this work as Ap (HD 56495, HD 73709
and HD 188854). Among these stars, the spectroscopic bina-
ries have been selected from the following sources. Fourteen
orbits were determined thanks to the CORAVEL scanner (this
paper and North et al. 1998). Lloyd et al. (1995) determined
a new orbit for θ Carinae (HD 93030) and Stickland et al.
(1994) for HD 49798. Recently, Leone & Catanzaro (1999)
have published the orbital elements of 7 additional CP stars,
two of which are He-strong, two are He-weak, one is Ap Si,
one Ap HgPt and one Ap SrCrEu. Wade et al. (2000) provided
the orbital elements of HD 81009. Other data come from the
Batten et al. (1989) and Renson (1991) catalogues. Among all
Ap, we kept 78 stars with known period and eccentricity, 74 of
them having a published mass function.

5.2. Eccentricities and periods

The statistical test of Lucy & Sweeney (1971) has been ap-
plied to all binaries with moderate eccentricity, in order to see
how far the latter is significant. The eccentricity was put to zero
whenever it was found insignificant. We can notice the effect of
tidal interactions (Zahn 1977, 1989; Zahn & Bouchet 1989) on
the orbits of Ap stars (see Fig. 8a). Indeed, all orbits with P
less than a given value (= Pcirc) are circularized. According
to the third Kepler law, a short period implies a small orbit
where tidal forces are strong. The period-eccentricity diagram
for the Ap stars does not show a well marked transition from
circular to eccentric orbits, in the sense that circular as well
as eccentric systems exist in the whole range of orbital peri-
ods between Pcirc = 5 days to a maximum of about 160 days.
The wider circular orbits probably result from systems where
the more massive companion once went through the red giant
phase; the radius of the former primary was then large enough
to circularize the orbit in a very short time. This is quite con-
sistent with the synchronization limit for giant stars of 3 to
4 M⊙ (P ∼ 150 days, Mermilliod & Mayor 1996).

An upper envelope seems well-defined in the e vs. log P di-
agram, especially for log P <∼ 2, although four points lie above
it. The leftmost of these, with (log P,e) = (0.69, 0.52) has a
rather ill-defined orbit2. Whether this envelope has any sig-
nificance remains to be confirmed with a larger sample than
presently available.

2 21 Her (HD 147869) has been measured by Harper (1931) and has
a relatively small amplitude.

Fig. 8. a) Diagram eccentricity versus period (in days) for the 78 Ap
stars. The symbols are according to the type of Ap: △ HgMn,

He weak, SrCrEu, Si. b) Diagram eccentricity versus period
(in days) for G dwarf stars (Duquennoy & Mayor 1991).

It is interesting to compare our e/ log P diagram with that
established by Debernardi (2002) for his large sample of Am
stars. For these stars, the limit between circular and eccen-
tric orbits is much steeper, many systems having e ∼ 0.7 at
P = 10 d only. The difference might be due to the wider mass
distribution of the Bp-Ap stars (roughly 2 to 5 M⊙) compared
to that of Am stars (1.5 to 2–2.5 M⊙), Pcirc being different for
each mass. One might also speculate that the lack of very ec-
centric and short periods is linked with the formation process of
Ap stars, which for some reason (e.g. pseudo-synchronization
in the PMS phase, leading to excessive equatorial velocities?)
forbid this region.

Qualitatively, Ap stars behave roughly like normal G-
dwarfs (Duquennoy & Mayor 1991) in the eccentricity-period
diagram. There is also a lack of low eccentricities at long pe-
riods (here for log P > 2.0), and the upper envelope is simi-
lar in both cases for log P > 1.0. One difference is the pres-
ence of moderate eccentricities for periods shorter than 10 days
among Ap binaries, and another is the complete lack of very
short orbital periods (P ≤ 3 days) among them, if one excepts
HD 200405. The latter feature, already mentioned in the past
(e.g. by GFH85) is especially striking because it does not oc-
cur for the Am binaries. The physical cause for it is probably
that synchronization will take place rather early and force the
components to rotate too fast to allow magnetic field and/or
abundance anomalies to subsist. However, even an orbital pe-
riod as short as one day will result in an equatorial velocity of
only 152 km s−1 for a 3 R⊙ star, while single Bp or Ap stars
rotating at this speed or even faster are known to exist (e.g.
HD 60435, Bp SiMg, Prot = 0.4755 d; North et al. 1988).
The detection of one system with Porb = 1.635 d further

cut off at ~3 days

(Carrier et al. 2002)

Magnetic field modulus against ProtA&A 601, A14 (2017)

Fig. 1. Histogram showing the distribution of the phase-averaged mean
magnetic field moduli of the 84 Ap stars with resolved magnetically
split lines presently known. The shaded part of the histogram corre-
sponds to those stars whose field modulus has been measured through-
out their rotation cycle (see text).

fields in Ap stars could represent the ultimate lower limit of the
field strength distribution. However, at the low dipole strength
(<⇠300 G) at which the hBzi cut-o↵ is found, measuring the mean
magnetic field modulus represents a major challenge.

On the strong field side, while compared to Paper I, a few
additional stars have populated the high end of the distribution of
hBiav, their meaning for the characterisation of this distribution
is limited, since several were observed at high resolution as the
result of the detection of their exceptionally strong longitudinal
fields as part of spectropolarimetric surveys. In other words, they
are not a priori representative of the distribution of magnetic field
strengths that one would derive from the study of an unbiased
sample of Ap stars with low v sin i.

In Fig. 2, we plotted hBiav against the rotation period Prot
for those stars from Tables 1 and 2 for which the latter, or at
least a lower limit of it, could be determined. This figure, which
is an updated version of Fig. 50 of Paper I, fully confirms the
result inferred from the latter, that very strong magnetic fields
(hBiav >⇠ 7.5 kG) are found only in stars with rotation periods
shorter than ⇠150 days. This result is visually emphasised in
the figure by dashed lines: the horizontal line corresponds to
hBiav = 7.5 kG, and the vertical line to Prot = 150 d. The rep-
resentative points of 50 stars appear in Fig. 2. Twenty-seven
of them correspond to stars with Prot < 150 d, of which 17
have hBiav � 7.5 kG. By contrast, none of the 23 stars with
Prot > 150 d have hBiav � 7.5 kG. The di↵erence between the
two groups is highly significant: a Kolmogorov-Smirnov test in-
dicates that the distributions of hBiav between the stars with a
rotation period shorter than 150 days and those with a longer
rotation period are di↵erent at the 100.0% confidence level.

This result receives further support from consideration of the
stars with magnetically resolved lines whose period is unknown
and for which the average of the mean magnetic field modu-
lus over this period may exceed ⇠7.5 kG. Among the stars of

Fig. 2. Observed average of the mean magnetic field modulus against
rotation period. Dots: stars with known rotation periods; triangles: stars
for which only the lower limit of the period is known. Open symbols
are used to distinguish those stars for which existing measurements do
not cover the whole rotation cycle. The horizontal and vertical dashed
lines, corresponding to hBiav = 7.5 kG and Prot = 150 d, respectively,
emphasise the absence of very strong magnetic fields in the stars with
the slowest rotation (see text for details).

Tables 13 and 14, this is almost certainly the case for HD 47103,
HD 55540, HD 66318, HD 70702, BD +0 4535, and HD 168767.
The spectral lines of HD 70702 and HD 168767 show consider-
able rotational broadening, so that their periods must be of the
order of a few days (Elkin et al. 2012), while Elkin et al. (2010a)
infer from their estimate of v sin i for BD +0 4535 that its pe-
riod must be shorter than ⇠60 days. The mean field modulus
of HD 55540 shows a variation of ⇠600 G between two ob-
servations taken one month apart (Freyhammer et al. 2008); its
period should probably be of the order of months. The situa-
tion is less clear for HD 47103 (Appendix A.8) and HD 66318
(Bagnulo et al. 2003). Both of these stars have a low v sin i and
neither shows definite variations of the magnetic field; either one
of the angles i or � is small for these two stars or their periods are
longer than one year. Obtaining more and better observations to
establish if HD 47103 and HD 66318 are actually variable, and
if so, to determine their periods, would represent a further test of
the existence and nature of a di↵erence in the distribution of the
field strengths below and above Prot = 150 d.

There are several other stars in Table 14 for which hBiav, as
computed from the few available measurements, is of the order
of or slightly greater than 7.5 kG. It would be interesting to deter-
mine their periods (if they are not already known) and to obtain
more hBiav measurements distributed well throughout their ro-
tation cycle, but it appears highly improbable that any of these
stars could represent a significant exception to the conclusion
that very strong fields do not occur in very long-period stars.

For two of the stars that appear to rotate extremely slowly,
HD 55719 and HD 165474, the scatter of the individual hBi val-
ues around a smooth, long-term variation trend is much greater
than we would expect from the appearance of the Fe ii � 6149.2
diagnostic line in their spectrum. This is unique: for all the other

A14, page 18 of 90
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Stars retain magnetic fields from the birth to the death.

MS star (~10%):

BApBp ~ 300-10k G,

R ~ 1-10 R!
(Aurière et al. 2007)

Star forming cloud:

BMC ~ 10-6 G,

R ~ 0.1-1 pc
(Crutcher 2012)

pre MS star (~10%):

BHAeBe ~ 100 G,

R ~ 1-10 R!
(Alecian et al. 2012)

Red giants:

BRG ~ 1-10 G,

R ~ 1000 R!
(Grunhut et al. 2010; Tessore et al. 2017)

Neutron star:

Bpulsar ~ 1010-1015 G,

R ~ 10 km
(Tauris & van den Heuvel 2006)

White dwarf (~10%):

BWD ~ 103-109 G,

R ~ 0.01 R!
(Ferrario et al. 2015)

How can we model the interplay between 
structural changes and magnetic field evolution?
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Magnetic field amplification in a massive star

Kippenhahn diagram of a 22 M! model

(A. Heger; https://2sn.org/stellarevolution/explain.gif)

Rotation profiles in a 15 M! model

(Heger et al. 2000)

382 HEGER, LANGER, & WOOSLEY Vol. 528

FIG. 9.ÈAngular velocity (panels a, b), speciÐc angular momentum (panels c, d), and integrated angular momentum, divided by m5@3J(m) \ /0m j(m@)dm@,
(thick lines ; panels e, f ) as a function of the mass coordinate m at di†erent evolutionary stages for two 15 stars. The evolution of stars with a ZAMSM

_equatorial rotational velocity of D 100 km s~1 (left ; Model G15B) and D 300 km s~1 (right ; Model F15B) are depicted. In both models, the e†ect of
k -gradients on rotational mixing is taken into account. The thin lines in panels e and f give a logarithmic scale of levels of constant J, labeled with log
(J/erg s).

burning, it becomes much smaller in the cores. The faster
rotation of Model F15B sustains the transport of angular
momentum out of the core for a longer time than in Model
G15B, where the core angular momentum is almost com-

pletely conserved (Fig. 9). That is, the angular momentum is
less efficiently trapped in the fast rotating Model F15B than
in the Models G15B and E15B (Figs. 8 and 9). This feed-
back process leads to a convergence of the core rotation
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_equatorial rotational velocity of D 100 km s~1 (left ; Model G15B) and D 300 km s~1 (right ; Model F15B) are depicted. In both models, the e†ect of
k -gradients on rotational mixing is taken into account. The thin lines in panels e and f give a logarithmic scale of levels of constant J, labeled with log
(J/erg s).

burning, it becomes much smaller in the cores. The faster
rotation of Model F15B sustains the transport of angular
momentum out of the core for a longer time than in Model
G15B, where the core angular momentum is almost com-

pletely conserved (Fig. 9). That is, the angular momentum is
less efficiently trapped in the fast rotating Model F15B than
in the Models G15B and E15B (Figs. 8 and 9). This feed-
back process leads to a convergence of the core rotation
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Current status of magnetic evolution models

Tayler-Spruit dynamo:

-Maeder & Meynet 2003,04,05

-Heger et al. 2005

-Denissenkov & Pinsoneault 2007

  and a lot of more…

Wind confinement:

-Petit et al. 2017

-Georgy et al. 2017

Magnetic breaking:

-Meynet et al. 2011

Convection inhibition:

-Petermann et al. 2015

Works which consider magnetic field distributions

Potter et al. 2012a,b,c

Feiden & Chaboyer 2012,13,14
-low-mass stars

-magnetic pressure

-convective inhibition

-no rotation

-no dynamo

The Astrophysical Journal, 761:30 (15pp), 2012 December 10 Feiden & Chaboyer
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Figure 1. Magnetic field strength profile for a 1.0 M⊙ star with a 5.0 kG
photospheric magnetic field strength (maroon, solid). The green dash-dotted
line indicates the location of the stellar tachocline, the interface between the
radiative and convective regions. The plot is meant only to illustrate the field
strength profile. A small gap in the field strength profile is barely perceptible
near the surface of the star. This artifact is due to the separation of the stellar
interior and envelope integration regimes in the code.
(A color version of this figure is available in the online journal.)

with the peak magnetic field strength defined to occur at the
radius Rtach. The radial location described by Rtach is the location
of the stellar tachocline, an interface between the convective
envelope and radiative core. This interface region is thought to
be characterized as a strong shear layer where the differentially
rotating convection zone meets the radiative core rotating as a
solid body. Theory suggests that the tachocline is the source
location for the standard mean-field stellar dynamo (i.e., the
α–ω dynamo; Parker 1975).

Since DSEP monitors the shell location of the boundary to
the convection zone, the tachocline appeared to be a reasonable
location, both theoretically and numerically, to base the scaling
of the magnetic field strength. However, defining the magnetic
field strength at the tachocline (B(Rtach)) is required. In an
effort to allow for direct comparisons between field strengths
input into the code and observed magnetic field strengths, the
field strength at the tachocline is anchored to the photospheric
(surface) magnetic field strength,

B(Rtach) = Bsurf

(
R∗

Rtach

)3

. (81)

where Bsurf = B(R∗) is introduced as a new free parameter. The
advantage of Bsurf as a free parameter is that it has potential to
be constrained observationally.

Fully convective stars do not possess a tachocline. However,
a dynamo mechanism still has the potential to drive strong
magnetic fields through an α2 mechanism (Chabrier & Küker
2006). Full three-dimensional MHD modeling suggests that,
in this case, the magnetic field strength peaks at about 0.15
R∗ (Browning 2008). Unfortunately, the adopted micro-physics
were solar-like and may not be entirely suitable for fully convec-
tive M-dwarfs. Regardless of these shortcomings, Browning’s
investigation provides the only estimate, to date, for the loca-
tion of the peak magnetic field strength in fully convective stars.

As such, we adopt Rtach = 0.15R∗ as the dynamo source loca-
tion in our models of fully convective stars.

3.6. Numerical Implementation

Although we have laid out the mathematical construction of
the magnetic perturbation, we have yet to illuminate precisely
how the perturbation is treated numerically. When a magnetic
model is first executed, the user provides a surface magnetic field
strength, the geometry parameter γ , and the age at which the
magnetic perturbation will occur. The model proceeds to evolve
the same as a standard model until the initial perturbation age is
reached.

Once the perturbation age is reached, the magnetic field
strength profile is prescribed based on the assumed photospheric
field strength and the location of the tachocline, as in Figure 1.
The magnetic energy and magnetic pressure are then computed
for each of the model’s mass shells. Here, the total pressure
associated with each mass shell is also perturbed.

Following the introduction of the perturbation, the code must
recompute the structure of the stellar envelope, which is separate
from the stellar interior integration. The envelope comprises the
outer 2%–3%, by radius, of the stellar model. Surface boundary
conditions are determined prior to the envelope integration by
interpolating within the phoenix model atmosphere tables using
log g and Teff . This interpolation returns Pgas at the surface of the
star and defines the start of the inward integration. The magnetic
perturbation is then explicitly included in the calculation of the
analytic EOS.

This leads into the convection routines, where the non-
standard stability criterion in Equation (53) is evaluated and
judged. Either the equations of magnetic MLT are solved, or the
radiative gradient is selected. The envelope integration scheme
proceeds until it reaches a pressure commensurate with the
pressure for the interior regime.

From the newly calculated envelope, the interior integration
begins using a Henyey integration scheme (Henyey et al. 1964)
with the magnetic perturbation implemented. The EOS and
convection routines are evaluated as in the envelope. Once a
final solution is converged upon, the code iterates in time and
the process is repeated. For each temporal iteration, the magnetic
field profile is adjusted to adapt to changes in the location of the
tachocline and changes in the number of mass shells.

4. INITIAL TESTING

In Section 3, we outlined the formulation and implementation
of a magnetic perturbation within the framework of DSEP. With
the perturbation implemented, it was crucial to perform a series
of numerical tests and common-sense checks to validate that the
code was operating properly.

The four key numerical tests were to ensure that

1. The relative change in radius between magnetic models
of monotonically increasing photospheric magnetic field
strength must also be monotonically increasing with respect
to a non-magnetic model.

2. All model adjustments after the initial perturbation must be
continuous and smooth.

3. The final perturbed model properties must be independent
of the evolutionary stage at which the perturbation is made.

4. The resulting perturbed model must be consistent, regard-
less of the number of time steps taken after the perturbation.
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-no convective dynamo

-non-conservative form

  for angular momentum 

-non-Lagrangian evolution

  equations

-intermediate-mass stars

-consider rotation 
  magnetic stress 
  αΩ dynamo 
-magnetic breaking

2362 A. T. Potter, S. M. Chitre and C. A. Tout

Figure 1. Grid of models considered in Section 3. The colour of each point
indicates the surface field strength at the ZAMS.

predicted is around nine orders of magnitude larger than the poloidal
field. This is because the !-effect, the conversion of poloidal field
into toroidal field by differential rotation, is much stronger than
the α-effect that regenerates the poloidal field. We take the surface
value of the field to be the strength of the toroidal field just below
the boundary layer. If we were instead to take the poloidal field, we
would need a larger value of γ to produce a stronger field. In this case
the toroidal field is around six orders of magnitude larger than the
poloidal field. So a surface poloidal field of 103 G would correspond
to a toroidal field of 109 G just below the surface. The fields then
increase by several orders of magnitude towards the core. Not only
do these field strengths seem unreasonably energetic but also the
magnetic stresses result in cores that are spinning near or above
break-up velocity. However, spectropolarimetric observations have
concluded that the large-scale structure of the external magnetic
fields of massive stars is largely dipolar so there must be some
mechanism for converting the toroidal field into poloidal field at the
surface. It is likely that the stellar wind stretches the field lines in

Figure 3. Evolution of the surface magnetic field strength in a 5 M⊙ star
initially rotating at 300 km s−1 with and without magnetic braking. The
surface field strength shows only a slight degree of variation during the
main sequence when there is no magnetic braking. When magnetic braking
is included the field strength peaks sharply after the ZAMS and then decays
away rapidly. However, the field strength at the end of the main sequence is
still several hundred Gauss.

the radial direction, changing the toroidal field to a radial geometry
as material is ejected from the stellar surface (Parker 1958).

Owing to the very large value for Dcon predicted from mixing-
length theory, the predicted field is extremely weak within the con-
vective core. This is somewhat at odds with our observations in the
Sun where large-scale magnetic flux can be transported through a
convective region without being destroyed. It may be that convec-
tion is better treated by an anisotropic diffusivity. Certainly in the
Sun, where the outer envelope is convective, we see latitudinal vari-
ations in the surface angular velocity which we have ignored owing
to the shellular rotation hypothesis (Zahn 1992) which applies to the
radiative zones of massive stars. Therefore, this does not strongly
affect our model but deserves further consideration in the future.

We first consider models in the absence of magnetic braking in
order to distinguish evolutionary effects owing to the dynamo from
those caused by braking. In this case, although the surface field only
exhibits a small degree of variation (Fig. 3), the magnetic field inside
the star becomes significantly stronger during the course of the main

Figure 2. Evolution of the magnetic field in a 5 M⊙ star initially rotating at 300 km s−1 without magnetic braking. The left-hand plot shows the magnetic
potential for the poloidal field and the right-hand plot shows the toroidal field. The α-effect produces a weak poloidal field that is efficiently converted into
toroidal field by differential rotation. For each component, the field strength is approximately three orders of magnitude smaller at the surface than at the core.
The ratio of the toroidal and poloidal field strengths is of the order of 109.

C⃝ 2012 The Authors, MNRAS 424, 2358–2370
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RASDownloaded from https://academic.oup.com/mnras/article-abstract/424/3/2358/978168
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Wind-magnetic field interaction

-Strong surface magnetic fields result in

  -wind confinement leading to a formation of rigidly rotating magnetosphere

  -efficient angular momentum loss by both the magnetic stress and by the gas

�12

Magnetic wind confinement

Magnetic stars as heavy BH progenitors 1053

Figure 1. Schematic representation of the circumstellar magnetosphere of a
slowly rotating magnetic massive star, based on the description of ud-Doula
& Owocki (2002) and ud-Doula et al. (2008). The equatorial radius of the
last closed loop is given by the closure radius Rc, which is of the order of
the Alfvén radius RA where the magnetic energy density balances the wind
kinetic energy density. The whole magnetospheric structure corotates with
the stellar surface.

metal-poor galaxies (Mokiem et al. 2007a,b). Models of isolated,
single massive star evolution show that heavy BHs are likely to form
in low-metallicity environments with Z ! 0.1 Z⊙ (Spera, Mapelli
& Bressan 2015; Belczynski et al. 2016; Abbott et al. 2016b).1

In this paper, we explore the effects of a large-scale, dipolar
surface magnetic field in suppressing wind mass-loss and enabling
an additional channel for a heavy BH to form in a solar-metallicity
environment.

In the last decade, large magnetometric surveys (Fossati
et al. 2015; Wade et al. 2016) have revealed a population of mag-
netic massive stars, comprising ∼10 per cent of all main-sequence
(MS) OB stars. These magnetic fields, ranging from a few hundred
Gauss to tens of kilogauss, have properties different from dynamo-
powered solar-type stars: They are of large scale and mainly dipolar,
stable and probably of fossil origin, i.e. they were left behind from
a previous evolutionary epoch.

An important aspect of magnetic massive stars is the formation of
wind-fed circumstellar magnetospheres (ud-Doula & Owocki 2002;
Townsend, Owocki & ud-Doula 2007; ud-Doula et al. 2008; ud-
Doula et al. 2013). The interaction between the wind and field
creates a region of closed loops (Fig. 1) that channels the upflowing
wind material into standing shocks near the loop apices. The mag-
netic field strongly couples the wind to the stellar surface, forcing
it into corotation. In the absence of significant stellar rotation able
to provide centrifugal support to the cooling, post-shock material,
the trapped gas is pulled back to the stellar surface by gravity over a
dynamical time-scale (Owocki et al. 2016). Such a magnetosphere
is referred to as a ‘dynamical magnetosphere’ (DM). The mass-loss

1 For binary evolution, the low-metallicity requirement is less stringent in
some models (Belczynski et al. 2016; Marchant et al. 2016, and reference
therein.)

rate is thus reduced according to the fraction of the stellar surface
feeding closed loops.

It has been shown both theoretically and observationally that
the rotational braking produced by these magnetic fields is very
effective for the most massive O-type stars (ud-Doula, Owocki
& Townsend 2009; Petit et al. 2013).2 Therefore, very massive
magnetic stars should rapidly transition from hosting a rotationally
supported magnetosphere to a DM. As we will present, many of the
known magnetic O stars have a significant fraction of their winds
returning to the stellar surface because of magnetic confinement,
effectively reducing the mass-loss to a point that can rival with the
effect of a low metallicity.

In this paper, we explore how the magnetic confinement evolves
with time to predict how large-scale, dipolar magnetic fields, like
those measured on ∼10 per cent of O stars, will reduce the lifetime-
integrated mass-loss, making it easier to form heavy BHs from
magnetic progenitors, lessening (or altogether doing away with) the
requirements for very low metallicity.

Section 2 summarizes the current day magnetic confinement of
magnetic O-type stars and compares with metallicity relations. Sec-
tion 3 explains our implementation of the magnetic confinement sce-
nario within the Modules for Experiments in Stellar Astrophysics
(MESA) evolution code. Section 4 presents the relation between the
initial and final masses of our models at galactic metallicity. Finally,
Section 5 summarizes our findings.

2 W I N D QU E N C H I N G BY MAG N E T I C
C O N F I N E M E N T I N O - T Y P E STA R S

As described above, a large-scale magnetic field at the surface of
a massive star can confine the outflowing, radiatively driven wind
(Babel & Montmerle 1997a,b). The principal influence of the mag-
netic field on the stellar wind is to reduce the effective rate of
mass-loss, due to two main effects.

(i) In the slowly rotating, DM case, only the open field regions
contribute to the total mass-loss by the star (red regions in Fig. 1),
as the trapped, post-shock material located in closed-line regions
(blue region in the figure) is constantly pulled back to the stellar
surface by gravity (ud-Doula et al. 2008).

(ii) The tilt of the magnetic field with respect to the direction
normal to the stellar surface reduces the wind-feeding rate at the
loop footpoint (Owocki & ud-Doula 2004; Bard & Townsend 2016).
This results in a further reduction of the total wind-feeding rate,
more important for low latitude loops near the magnetic equator.
As low latitude field loops will generally be closed for a dipolar
magnetic geometry with a typical wind confinement, this effect
adds only marginally to the reduction of the mass-loss rate; hence,
we ignore this higher order effect. However, as a consequence we
will obtain a conservative lower limit to the mass-loss reduction
caused by the presence of the magnetic field.

According to ud-Doula & Owocki (2002), the equatorial radius,
of the farthest closed magnetic loop, Rc, in a magnetized wind with
a dipolar geometry at the stellar surface is of the order of the Alfvén
radius RA (see Fig. 1). More precisely,

Rc ≈ R⋆ + 0.7(RA − R⋆), (1)

where R⋆ is the stellar radius.

2 With the exception of Plaskett’s star, which has significant rotation, and is
thought to be a post-mass-transfer object (Grunhut et al. 2013).
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(Donati et al. 2002; Petit et al. 2017)
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TABLE 1
RRM Model Parameters

Q
(Qc) !*

b
(deg)

i
(deg)

a
(Rp)

0.5 10!3 55 75 (!0.041, 0.30, !0.029)

Fig. 1.—Observed (diamonds) and modeled (solid line) Strömgren u-band
light curves of j Ori E, phased on the star’s 1.19 day rotation period. The
error bars on the observational data are based on conservative estimates of
the scatter in the raw data (Hesser et al. 1977, their Fig. 1).

Fig. 2.—Observed (left) and modeled (right) time-series gray scales of the circumstellar Ha emission of j Ori E, phased on the star’s 1.19 day rotation period.
White indicates a 22% excess (in continuum units) over the background photospheric flux, and black indicates a 12% deficit; the gray levels are scaled linearly between
these extremes. The velocity axis is expressed in units of the star’s projected rotation velocity, km s!1 (Groote & Hunger 1982).v sin i p 160

magnetic origin from the stellar origin. Then, the position vec-
tor in the stellar reference frame r is related to the magnetic
frame position vector viar̃

˜r p Qr" a, (1)

where the orthogonal matrix Q specifies a rotation by an angle
b (the dipole obliquity) about the Cartesian y-axis. In the TO05
treatment, a was set to zero, allowing simple expressions (their
eq. [21]) to be obtained relating the spherical polar coordinates
in each reference frame. For nonzero a, such expressions do
not exist, but the transformation between frames remains well
defined.

3. RRM MODEL

3.1. General Considerations

In Table 1, we summarize the basic parameters for the RRM
model of j Ori E. The rotation rate is an estimationQ p 0.5Qc

based on the star’s 1.19 day period, while the scale height pa-
rameter !* (TO05, eq. [38]) has been assigned a value typicalof early-type stars. The choices of the obliquity, , andb p 55!
observer inclination, , have been guided by certain char-i p 75!
acteristics of the spectroscopic and photometric observations pre-
sented below. In particular, the unequal spacing of the light-
curve minima of j Ori E, whereby the secondary eclipse follows
the primary by ∼0.4 of a rotation phase (see Fig. 1), restricts
the possible RRM geometries to those satisfying the approximate
relation . A further indication that comesb " i ≈ 130! i " 75!
from the fact that at lower inclinations, the Ha variations, which
take the form of a double S-wave (see Fig. 2), would exhibit a

central spike when the two curves intersect but no such spike
is observed in the spectroscopy.
The one remaining parameter of the model is the dipole offset

vector a. The motivation for assuming a nonzero offset comes
from the facts that the primary and secondary eclipses have
unequal depths and that the two curves of the double S-wave
are of unequal strength. The offset we select comprises (1) a
displacement of the dipole center by 0.3Rp in a direction per-
pendicular to both magnetic and rotation axes, followed by
(2) a displacement of the dipole center by !0.05Rp along the
magnetic axis. The first displacement produces a density con-
trast between the two clouds situated at the intersections of the
equators that allows us to achieve a good fit between the model
and the observations. The second displacement has little effect
on the circumstellar plasma distribution, but its introduction
improves the fit to the magnetic field observations. We note
that Short & Bolton (1994) also suggested an offset dipole field
in order to explain asymmetries in the field observations.

(Townsend et al. 2005)



subsurface convection

Non-magnetic star

Magnetic star

Magnetic inhibition of convection

-Subsurface convection mixes the chemical 
profiles in the subsurface region.


-In a magnetic star, the subsurface convection is 
suppressed by the strong magnetic field. Inside 
the stable medium, heavy elements which have a 
lot of lines is affected by the radiative levitation.
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-Ap star
-Chemically peculiar A type stars

  -enhancements in Sr, Cr, Eu, Si.

(Landstreet 1992)

-Strong magnetic fields inside a star may limit the size of convective 
zones, which is one of the fundamental parameter of the massive star 
evolution.

(Briquet et al. 2012)
-The β Cep star V2052 Oph requires a small overshoot parameter.



�14

Angular momentum transport by the magnetic stress

-Magnetic stress can transport angular momentum 
much more effectively than hydrodynamical processes.

S =
BrBϕ

4π

Br

Bφ

1. A poloidal field exists in the radiative layer.

2. The Ω-dynamo: the poloidal field is wound up to create 

the new toroidal component.

3. The strong toroidal magnetic field is unstable to the m=1 

perturbation.

4. The Pitts-Tayler instability in the toroidal field creates 

the new poloidal component. 
5. Saturation takes place when turbulent diffusion by the 

Pitts-Tayler instability overcomes dynamo.

poloidal component of
     seed field

toroidal field

Pitts-Tayler instability

poloidal field

-Most “magnetic” stellar evolution simulations estimate 
the magnetic stress based on the Tayler-Spruit dynamo 
theory. (Spruit 1999,2002; Maeder&Meynet 2003,04,05; Heger et al. 2005)
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Towards a consistent modeling of magneto-rotating stellar evolution

Our strategy

Goal:

-consistent calculation to estimate the WD/NS rotation & magnetism.

Method:

-new formalism based on the fundamental equations

-consistent evolutions among structure, rotation, & magnetic field

Confirmation:

-problems known for rotating stellar evolution

-magnetic fields in stellar interiors

No solid theoretical predictions have been made. (Langer 2014)

Requirements:

-long timescale evolution 

-following conservation laws accurately
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Evolution of rotating massive stars

Rotation affects stellar structure and evolution.

Three rotational effects are treated in 1D stellar evolution codes.

2. Matter mixing by rotationally induced instabilities

1. Deformation by centrifugal force

3. Mass loss enhancement
(Endal&Sofia 1978; Maeder&Meynet 1996)

(Langer 1998, Maeder&Meynet 2000, Yoon et al. 2012)

(Endal&Sofia 1976; Meynet&Maeder 1997)

(Meynet & Maeder 2000; Heger et al. 2000)

The shellular rotation profile (Zahn 1992) evolves according to the 
radial transport equation of the angular momentum.

ρ
d
dt

(r2Ω) =
1

5r2

d
dr

(ρr4ΩU2) +
1
r2

d
dr (ρr4νeff

dΩ
dr ) (Maeder & Zahn 1998)

U2 : radial component of the meridional flow velocity

νeff: effective viscosity, most of which come from the Reynolds stress

        of turbulent flows induced by rotational instabilities.
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Formulation: field evolution

Magnetic field configuration: 
-toroidal+poloidal decomposition

-dipole approximation

A&A proofs: manuscript no. draft

1. Introduction

2. Methods

2.1. Simplification on the magnetic field

We approximate that the mean component of the stellar magnetic field is axially symmetric and the magnetic axis is in common
with the rotation axis. The magnetic field is divided into the poloidal and the toroidal components:

B(r, θ) ≡ Bpol(r, θ) + Btor(r, θ) (1)
Bpol = Br(r, θ)er + Bθ(r, θ)eθ (2)
Btor = Bφ(r, θ)eφ, (3)

where Br, Bθ, and Bφ are the r, θ, and φ components of the magnetic fields, respectively, and they are functions of the radius, r, and
the latitude, θ. Because the magnetic field satisfies the solenoidal (the divergence free) condition, one can find a vector potential A
that satisfies

B = ∇ × A. (4)

We utilize the toroidal component of the vector field, Ator = Aφeφ, to express the poloidal magnetic field,

Bpol = ∇ × Ator, (5)

so that not only Btor but also Bpol naturally satisfies the solenoidal condition. Because of the axial symmetry, the poloidal magnetic
field components can be related to Aφ as

Br(r, θ) =
1

r sin θ
∂

∂θ
(Aφ sin θ) (6)

Bθ(r, θ) = −1
r
∂

∂r
(Aφr). (7)

In order to handle the magnetic field evolution by a one-dimensional method, the latitudinal dependence of the magnetic field
somehow has to be determined, As for the simplest case, we approximate that the poloidal field has the same latitudinal dependence
as a dipolar field, thus

Aφ(r, θ) ≡ A(r) sin θ, (8)

which results in

Br(r, θ) =
2A
r

cos θ (9)

Bθ(r, θ) = − sin θ
r
∂(Ar)
∂r
. (10)

Similarly, the toroidal component is approximated to have a sin 2θ dependence, which is also one of the simplest latitudinal depen-
dence to have an even parity, in order to ensure that the toroidal magnetic field is a pseudo (or, axial) vector. Therefore,

Bφ(r, θ) = B(r) sin 2θ. (11)

In summary, the stellar magnetic field in this work is fully described by the two radial functions of A(r) and B(r) under the approxi-
mations of the axial symmetry and of the latitudinal dependences.

2.2. Evolution equations of the magnetic field

The macroscopic evolution of the magnetic field may be described by the MHD-dynamo equation:

∂B
∂t
= ∇ × (v × B + αB) − ∇ × ((η + ηt)∇ × B) , (12)

where v is the fluid velocity, η is the magnetic diffusivity, and α and ηt are the pseudo-scalar * and the turbulent magnetic diffusivity.
We rename the total magnetic diffusivity as η + ηt → η.

The enclosed mass, m, is defined here as

m(t; r) ≡
∫ r

0
4πr2ρdr, (13)
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Formulation: field evolution

1D averaging:

-Flux equation

dl

Vdt

B(t+dt)
B(t)

C(t)

C(t+dt)

2.3 Magnetic flux ਐԽํఔࣜͨ͠٭ཱʹ

͋Δۂ໘ C ʹରͦ͠ΕΛԣ੾Δ magnetic flux Λ ΦC ͱఆΊΔɿ

ΦC ≡
∫

C
B · dS. (50)

໘ۂਐԽʹΑΓؒ࣌ C ͸଎౓ V Λͯͬ࣋ C ′ ʹྲྀΕΔͱ͢ΔɻΦC ͷؒ࣌ਐԽ͸ҎԼͷΑ͏ʹॻ͚Δɿ

dΦC =

∫

C′
B(t+ dt) · dS −

∫

C
B(t) · dS (51)

=

(∫

C′
B(t+ dt) · dS −

∫

C′
B(t) · dS

)
+

(∫

C′
B(t) · dS −

∫

C
B(t) · dS

)
. (52)

͜͜ͰɺӈลୈҰ߲Λ࣓৔ͷؒ࣌ඍ෼ʹॻ͖͑׵Δɻ·ͨӈลୈೋ߲Λ Gauss’ theorem Λ༻͍ͯม͢ܗΔɿ
∫

D
(∇ ·B)dV =

∫

C′
B · dS −

∫

C
B · dS +

∫

∂D
B · dS (53)

=

∫

C′
B · dS −

∫

C
B · dS +

∫

∂C
B · (dl× V dt) (54)

=

∫

C′
B · dS −

∫

C
B · dS + dt

∫

∂C
dl · (V ×B) (55)

=

∫

C′
B · dS −

∫

C
B · dS + dt

∫

C
(∇× (V ×B)) · dS. (56)

͜͜ͰྖҬ D͸ C → C ′ ͕૟͍ͨྖҬɺྖ Ҭ ∂D͸ྖҬ Dͷଆ໘ɺ·ͨྖҬ ∂C ͸ۂ໘ C ͷԑɻsolenoidal

condition ΑΓ ∇ ·B = 0 ͳͷͰɺ݁ہ
∫

C′
B · dS −

∫

C
B · dS = −dt

∫

C
(∇× (V ×B)) · dS (57)

͕੒ཱɻdt → 0 ͱͯ͠

dΦC

dt
=

∫

C

(
∂B

∂t
−∇× (V ×B)

)
· dS (58)

ΛಘΔɻ͜Εʹ͞Βʹ༠ಋํఔࣜΛ୅ೖͯ͠ɺ࠷ऴతʹ

dΦC

dt
=

∫

C
(∇× (U ×B)−∇× (η∇×B) +∇× (αB)) · dS (59)

͕੒ཱɻ͜͜Ͱ U ≡ v − V ͱͨ͠ɻ

2.3.1 AͷਐԽํఔࣜ

C ͱͯ͠൒ܘ rͷٿ໘ͷ্൒໘ΛͱΓɺͦ ΕΛԣ੾Δ magnetic fluxΛ Φr ͱఆΊΔɻΦr ͸Kelvin-Stokes’

theorem ʹΑΓҎԼͷΑ͏ʹࢉܭͰ͖Δɿ

Φr =

∫

C
B · dS (60)

=

∫

C
(∇×A) · dS (61)

=

∫

∂C
A · dl (62)

= 2πrAφ(θ = π/2) (63)

= 2πAr. (64)
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where ρ is the density. Then the radius of the surface, in which the enclosed mass m is contained, can be defined as rm(t; m). This rm
moves with the velocity

vm ≡ ∂rm

∂t

∣∣∣∣∣
m

(14)

= −
(
∂m
∂r

∣∣∣∣∣
t

)−1
∂m
∂t

∣∣∣∣∣
r

(15)

=

∫
ρv · dS
4πr2ρ

. (16)

The vm, the Lagrangian expansion/contraction velocity, can thus be regarded as the averaged fluid velocity (so that the enclosed
mass is referred to as "Lagrangian").

In order to follow a long-timescale stellar evolution, it is desired to formulate an evolution equation to have a "Lagrangian"
form, in which the time derivative is defined not with a constant radius coordinate but with a constant enclosed mass coordinate. To
achieve this, we utilize the evolution equations of magnetic fluxes to describe the magnetic field evolution. For an arbitrary surface
S , the magnetic flux ΦS can be defined as ΦS ≡

∫
S B · dS. The boundary of the surface S , a circuit C, moves with a velocity V(r),

r ∈ C. Then the total time derivative of the magnetic flux becomes

dΦS

dt
=

∫

S

(
∂B
∂t
− ∇ × (V × B)

)
· dS. (17)

Substituting eq.(12), the evolution equation for the magnetic flux,

dΦS

dt
=

∫

S
{∇ × (U × B + αB) − ∇ × (ηt∇ × B)} · dS (18)

=

∫

C
(U × B + αB − ηt∇ × B) · dl (19)

where U ≡ v − V, is obtained.
The radial magnetic flux is defined as

Φr(m) ≡
∫

S 1

B · dS (20)

= 2πAr, (21)

where S 1 is taken as the upper-half surface of a sphere, with which the enclosed mass m is defined, and C1 is its boundary cir-
cuit, which are shown in Fig.??. Now we apply eq.(19) to Φr. Because the velocity of the circuit C1 coincides with the expan-
sion/contraction velocity, vm, the vector field U ≡ v − V now means a flow other than the expansion and contraction due to the
structure evolution. For the sake of the simplicity, we consider that only rotation flow contributes to U, in other words, we does not
consider the meridional circulation for U in this work. Then the evolution equation of A(r) is obtained as
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∂r
∂Ar
∂r

)
(28)

Article number, page 3 of 4

A&A proofs: manuscript no. draft

is obtained. Using ∆rm = ∆m/4πρr2
m and the fact that d/dt and ∆m are commutative, the evolution equation of B,

d
dt

(
Br
r2ρ

)
=

1
r2ρ

(
Ar
∂Ω

∂r
+ ηr

∂

∂r

(
1
r2
∂

∂r
(Br2)

)
+ r
∂η

∂r
∂Br
∂r
− αr

∂

∂r

(
1
r2
∂

∂r
(Ar2)

)
− r
∂α

∂r
∂Ar
∂r

)
(29)

is obtained.
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Formulation: angular momentum transport

Basic equation:

-momentum conservation + Lorentz force → + Maxwell stress
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is obtained. Using ∆rm = ∆m/4πρr2
m and the fact that d/dt and ∆m are commutative, the evolution equation of B,

d
dt

(
Br
r2ρ

)
=

1
r2ρ

(
Ar
∂Ω

∂r
+ ηr

∂

∂r

(
1
r2
∂

∂r
(Br2)

)
+ r
∂η

∂r
∂Br
∂r
− αr

∂

∂r

(
1
r2
∂

∂r
(Ar2)

)
− r
∂α

∂r
∂Ar
∂r

)
(29)

is obtained.
Tentatively, we neglect the advection terms which include derivatives of η and α, assuming that it is the ...

2.3. Azimuthal equation of motion of the fluid

∂

∂t
(ρv) + ∇ · (ρvv) = −∇P + ρg +

1
c

j × B + (viscosity) (30)

= −∇P + ρg + ∇ ·M + (visc.) (31)

ρ

(
∂

∂t
+ vr
∂

∂r
+

vθ
r
∂

∂θ
+

vφ
r sin θ

∂

∂φ

)
(vφr sin θ) = r sin θ (∇ ·M)φ + (visc.)φ (32)

=
1
r2
∂
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(
r3 sin θBrBφ

4π

)
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1
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⎛
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sin2 θBθBφ
4π

⎞
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(
BφBφ

4π

)
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∂φ

(
B2

8π

)
+ (visc.)φ (33)

d
dt

(r2Ω) =
1
s3

1
ρr2
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∂r

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r3
∫ π/2

0 BrBφ sin2 θdθ
4π

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ + (visc.)φ (34)

where s3 ≡
∫ π/2

0 sin3 θdθ = 2/3.

d
dt

(r2Ω) =
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ρr2
∂

∂r

(
4
5

r2AB
4π
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ρr2
∂

∂r
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ρr4νeff
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∂r

)
(35)
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dt
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where s3 ≡
∫ π/2

0 sin3 θdθ = 2/3.

d
dt

(r2Ω) =
1
ρr2
∂

∂r
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5

r2AB
4π
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+

1
ρr2
∂

∂r

(
ρr4νeff
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∂r
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1. Introduction

2. Methods

2.1. Simplification on the magnetic field

We approximate that the mean component of the stellar magnetic field is axially symmetric and the magnetic axis is in common
with the rotation axis. The magnetic field is divided into the poloidal and the toroidal components:

B(r, θ) ≡ Bpol(r, θ) + Btor(r, θ) (1)
Bpol = Br(r, θ)er + Bθ(r, θ)eθ (2)
Btor = Bφ(r, θ)eφ, (3)

where Br, Bθ, and Bφ are the r, θ, and φ components of the magnetic fields, respectively, and they are functions of the radius, r, and
the latitude, θ. Because the magnetic field satisfies the solenoidal (the divergence free) condition, one can find a vector potential A
that satisfies

B = ∇ × A. (4)

We utilize the toroidal component of the vector field, Ator = Aφeφ, to express the poloidal magnetic field,

Bpol = ∇ × Ator, (5)

so that not only Btor but also Bpol naturally satisfies the solenoidal condition. Because of the axial symmetry, the poloidal magnetic
field components can be related to Aφ as

Br(r, θ) =
1

r sin θ
∂

∂θ
(Aφ sin θ) (6)

Bθ(r, θ) = −1
r
∂

∂r
(Aφr). (7)

In order to handle the magnetic field evolution by a one-dimensional method, the latitudinal dependence of the magnetic field
somehow has to be determined, As for the simplest case, we approximate that the poloidal field has the same latitudinal dependence
as a dipolar field, thus

Aφ(r, θ) ≡ A(r) sin θ, (8)

which results in

Br(r, θ) =
2A
r

cos θ (9)

Bθ(r, θ) = − sin θ
r
∂(Ar)
∂r
. (10)

Similarly, the toroidal component is approximated to have a sin 2θ dependence, which is also one of the simplest latitudinal depen-
dence to have an even parity, in order to ensure that the toroidal magnetic field is a pseudo (or, axial) vector. Therefore,

Bφ(r, θ) = B(r) sin 2θ. (11)

In summary, the stellar magnetic field in this work is fully described by the two radial functions of A(r) and B(r) under the approxi-
mations of the axial symmetry and of the latitudinal dependences.

2.2. Evolution equations of the magnetic field

The macroscopic evolution of the magnetic field may be described by the MHD-dynamo equation:

∂B
∂t
= ∇ × (v × B + αB) − ∇ × ((η + ηt)∇ × B) , (12)

where v is the fluid velocity, η is the magnetic diffusivity, and α and ηt are the pseudo-scalar * and the turbulent magnetic diffusivity.
We rename the total magnetic diffusivity as η + ηt → η.

The enclosed mass, m, is defined here as

m(t; r) ≡
∫ r

0
4πr2ρdr, (13)
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where ρ is the density. Then the radius of the surface, in which the enclosed mass m is contained, can be defined as rm(t; m). This rm
moves with the velocity

vm ≡ ∂rm

∂t

∣∣∣∣∣
m

(14)

= −
(
∂m
∂r

∣∣∣∣∣
t

)−1
∂m
∂t

∣∣∣∣∣
r

(15)

=

∫
ρv · dS
4πr2ρ

. (16)

The vm, the Lagrangian expansion/contraction velocity, can thus be regarded as the averaged fluid velocity (so that the enclosed
mass is referred to as "Lagrangian").

In order to follow a long-timescale stellar evolution, it is desired to formulate an evolution equation to have a "Lagrangian"
form, in which the time derivative is defined not with a constant radius coordinate but with a constant enclosed mass coordinate. To
achieve this, we utilize the evolution equations of magnetic fluxes to describe the magnetic field evolution. For an arbitrary surface
S , the magnetic flux ΦS can be defined as ΦS ≡

∫
S B · dS. The boundary of the surface S , a circuit C, moves with a velocity V(r),

r ∈ C. Then the total time derivative of the magnetic flux becomes

dΦS

dt
=

∫

S

(
∂B
∂t
− ∇ × (V × B)

)
· dS. (17)

Substituting eq.(12), the evolution equation for the magnetic flux,

dΦS

dt
=

∫

S
{∇ × (U × B + αB) − ∇ × (ηt∇ × B)} · dS (18)

=

∫

C
(U × B + αB − ηt∇ × B) · dl (19)

where U ≡ v − V, is obtained.
The radial magnetic flux is defined as

Φr(m) ≡
∫

S 1

B · dS (20)

= 2πAr, (21)

where S 1 is taken as the upper-half surface of a sphere, with which the enclosed mass m is defined, and C1 is its boundary cir-
cuit, which are shown in Fig.??. Now we apply eq.(19) to Φr. Because the velocity of the circuit C1 coincides with the expan-
sion/contraction velocity, vm, the vector field U ≡ v − V now means a flow other than the expansion and contraction due to the
structure evolution. For the sake of the simplicity, we consider that only rotation flow contributes to U, in other words, we does not
consider the meridional circulation for U in this work. Then the evolution equation of A(r) is obtained as

d(Ar)
dt

=
1

2π

∫

C1

(U × B + αB − η∇ × B) · dl (22)

= ηr
∂

∂r

(
1
r2
∂

∂r
(Ar2)

)
+ r(αB)φ(θ = π/2). (23)

Similarly, the azimuthal magnetic flux and its differential are defined as

Φφ(m) ≡
∫

S 2

B · dS (24)

and

∆Φφ(m) ≡ ∂Φφ
∂m

∣∣∣∣∣∣
t
∆m (25)

= Brm∆rm, (26)

where S 2 is a sectoral surface with a radius rm on the meridional plane. Applying eq.(18) to ∆Φφ,

d
dt

(∆Φφ) =

∫

∆S 2

{∇ × (U × B + αB) − ∇ × (ηt∇ × B)} · dS (27)

= (rm∆rm)
(
A
∂Ω

∂r
+ η
∂

∂r

(
1
r2
∂

∂r
(Br2)

)
+
∂η

∂r
∂Br
∂r
− α ∂
∂r

(
1
r2
∂

∂r
(Ar2)

)
− ∂α
∂r
∂Ar
∂r

)
(28)
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is obtained. Using ∆rm = ∆m/4πρr2
m and the fact that d/dt and ∆m are commutative, the evolution equation of B,

d
dt

(
Br
r2ρ

)
=

1
r2ρ

(
Ar
∂Ω

∂r
+ ηr

∂

∂r

(
1
r2
∂

∂r
(Br2)

)
+ r
∂η

∂r
∂Br
∂r
− αr

∂

∂r

(
1
r2
∂

∂r
(Ar2)

)
− r
∂α

∂r
∂Ar
∂r

)
(29)

is obtained.
Tentatively, we neglect the advection terms which include derivatives of η and α, assuming that it is the ...

2.3. Azimuthal equation of motion of the fluid

3. Conclusions
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2.3. Azimuthal equation of motion of the fluid

∂

∂t
(ρv) + ∇ · (ρvv) = −∇P + ρg +

1
c

j × B + (viscosity) (30)

= −∇P + ρg + ∇ ·M + (visc.) (31)

ρ

(
∂

∂t
+ vr
∂

∂r
+

vθ
r
∂

∂θ
+

vφ
r sin θ

∂

∂φ

)
(vφr sin θ) = r sin θ (∇ ·M)φ + (visc.)φ (32)

=
1
r2
∂

∂r

(
r3 sin θBrBφ

4π

)
+

1
sin θ

∂

∂θ

⎛
⎜⎜⎜⎜⎝

sin2 θBθBφ
4π

⎞
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∂φ
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BφBφ

4π
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Summary of the input physics

ηt of the Pitts-Tayler instability:

  Strong toroidal fields introduce m=1 instability (Pitts&Tayler 1985).

  No Tayler-Spruit dynamo included.

α effect taken from a mean-field dynamo theory:

  Convective helical flow amplifies magnetic fields (Rudiger&Kichatinov 1993).

  α-quenching is included.

  Only αφφ is currently considered.

Ω effect is naturally introduced:

  It comes from the induction equation.

Satisfying ang. mom. conservation & flux conservation:

  Adequate to follow a long-timescale evolution.

Tentatively omitted effects:

  -magnetic pressure

  -Joule heat

  -convective suppression

  -magnetic breaking

  -wind confinement

In the new formalization, we have achieved;
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Internal rotation & magnetic field evolution
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Efficient angular momentum transportation

(Cantiello et al. 2014)

The Astrophysical Journal, 788:93 (7pp), 2014 June 10 Cantiello et al.

Figure 5. Evolution of the average core rotational period as a function of
logarithmic time to the end of the calculation (WD cooling sequence). The
black and red solid lines show the surface and core rotational periods for our
1.5 M⊙ model rotating with an initial surface velocity of about 50 km s−1 and
including angular momentum transport due to Tayler–Spruit magnetic fields in
radiative regions (together with transport due to rotational instabilities). The plot
shows evolution from the end of H-core burning (terminal age main sequence,
TAMS) to the cooling WD sequence (when the luminosity decreases below
log L/L⊙ ∼ −2). The star symbols indicate the location of KIC8366239 and
KIC5006817 as derived using the maximum observed splitting of their mixed
modes, the blue dashed line shows the fit to the core rotation data of early red
giants in Mosser et al. (2012b). Gray regions show the range of the inferred
core rotation rates for the clump stars of Mosser et al. (2012b) and the typical
rotation rate of non-magnetic WD (see, e.g., Koester et al. 1998; Ferrario &
Wickramasinghe 2005; Córsico et al. 2011; Greiss et al. 2014). The dotted line
shows a model with an imposed core rotation of 30 days on the clump evolving
with no angular momentum transport (j-conservation) into a WD. The black
dashed line shows a fit to the theoretical prediction for core rotation on the RGB
past the luminosity bump, highlighting the change in slope compared to the
early RGB (see the text).
(A color version of this figure is available in the online journal.)

same model only including angular momentum transport due to
rotational instabilities has ξ changing from −1.32 to −0.13).
Different exponents are found for different initial rotational ve-
locities, but we consistently find a break at the luminosity bump.
This is because the value of the specific angular momentum
of the advected material decreases rapidly as the core engulfs
regions left by the retreating convective envelope. Therefore,
regardless of the specific angular momentum transport mech-
anism operating in stars, in red giants ascending the RGB we
expect that the rate of spindown should decrease past the lumi-
nosity bump, and depart from the relation ≈R0.7±0.3 observed
by Mosser et al. (2012b).

While such a change in the exponent could give further
clues into the currently debated extra mixing mechanism that
operate past the luminosity bump, it is unlikely to be ob-
served, as g-dominated modes are predicted to become unob-
servable as stars move up along the RGB, due to a combina-
tion of increasing inertia and increasing damping in the core
(Dupret et al. 2009). For a 1.5 M⊙ and 1 yr of observations,
g-dominated mixed modes have been predicted to be detectable
only for stars with νmax ! 50 µHz and ∆ν ! 4.9 µHz (Grosjean
et al. 2014).

4.2. Clump Stars

After reaching the tip of the RGB, stars with M " 2 M⊙
ignite He in their degenerate core. This leads to a large release
of energy, called the He-flash, which, during a period of

about 2 Myr, lifts the degeneracy of the core leading to a
stable He-burning phase. Such a transition phase has a unique
asteroseismic signature (Bildsten et al. 2012).

In our models during the He-flash the rotational period of
the core increases quite rapidly by a factor of about 10. This is
because the nuclear energy released results in core expansion. In
our 1.5 M⊙ model the 0.46 M⊙ core expands by approximately a
factor of three during the He-flash, with core moment of inertia
increasing by a factor of 10 from Ic = 3.13 × 1050 g cm2 to
Ic = 3.06 × 1051 g cm2 (See also Kawaler & Hostler 2005),
fully accounting for the spin down observed in the models
(see Figure 5). Even if the timescale of the He-flash is too
short for angular momentum transport outside the core, we note
that the convective episodes that accompany the He flash can
potentially play an important role in the redistribution of angular
momentum inside the He-core. Such rapid mixing episodes can
change the rotational profile of the g-mode cavity, as they lead to
a fairly rigidly rotating radiative region above core He-burning.
Therefore the expectation is that, regardless of previous history
of angular momentum transport, the core of clump stars that
underwent ignition of He in a degenerate core should be nearly
rigidly rotating.

After this rapid initial phase, the core rotation rate remains
fairly constant during core He burning. The clump stars in the
Mosser et al. (2012b) sample rotate with periods in the range
Pc ∼ 30–240 days. Isolated pulsating sdB stars (red giants
stripped of their envelope) show similar rotation rates, with
periods ranging from 23 to 88 days (see, e.g., Baran et al.
2012). Similar to the case of the early RGB, these values
are about one order of magnitude slower than models which
include magnetic torques, again pointing toward the need for
some extra angular momentum transport occurring in previous
evolutionary phases. Note that models including an artificial
diffusivity able to reproduce the observed splitting on the early
RGB (ν ∼ 104–105 cm2 s−1) fail to explain the rotation rates of
clump stars, with predicted rotation rates almost two orders
of magnitude higher than the observations. This is because
the torque required to couple core and envelope increases as
the star rapidly climbs the RGB. We note that a combination
of an artificial viscosity ν ∼ 104–105 cm2 s−1 with the TS
magnetic torques can reproduce both the early RGB and the
clump observations.

4.3. White Dwarf Rotation Rates

After core He burning the energy generation proceeds in two
shells (burning H and He) moving outward in mass coordinate
while the star moves up the asymptotic giant branch (AGB).
The He-shell becomes secularly unstable, giving rise to thermal
pulses (TP-AGB). These pulses grow in intensity and are thought
to enhance mass loss, ultimately leading to a complete removal
of the H-envelope, a planetary nebula and the transition to the
WD cooling sequence. The details are not well understood and
the transition time from the AGB to the WD cooling sequence
depends on the treatment of mass-loss beyond the AGB. Note
however that the timescale for angular momentum transport
between core and envelope is likely much longer than the range
of timescales discussed for the duration of this phase, so that
the results on the angular momentum content of WD models
should not depend strongly on the particular treatment of this
phase. This is supported by the fact that the observed WD
rotation rates can be recovered from the observed core rotation
of clump stars assuming no angular momentum transport (see
dotted line in Figure 5). It is true that this is only achieved

5

Evolution of the core rotation periodStellar evolution calculation generally 
predicts faster rotation periods of 
stellar interior than observations.

-Compact remnants: 
   -WDs for inter-mediate mass stars

   -NSs for massive stars

-Red giant cores for low-mass stars

(Mosser et al. 2012)

RG cores should rotate 10 times 
faster than their surfaces.
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Constraint for the internal magnetic field
l=1 mode suppression
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A prevalence of dynamo-generated magnetic fields 
in the cores of intermediate-mass stars
Dennis Stello1,2, Matteo Cantiello3, Jim Fuller3,4, Daniel Huber1,2,5, Rafael A. García6, Timothy R. Bedding1,2,  
Lars Bildsten3,7 & Victor Silva Aguirre2

Magnetic fields play a part in almost all stages of stellar evolution1. 
Most low-mass stars, including the Sun, show surface fields that are 
generated by dynamo processes in their convective envelopes2,3. 
Intermediate-mass stars do not have deep convective envelopes4, 
although 10 per cent exhibit strong surface fields that are presumed 
to be residuals from the star formation process5. These stars do have 
convective cores that might produce internal magnetic fields6, and 
these fields might survive into later stages of stellar evolution, but 
information has been limited by our inability to measure the fields 
below the stellar surface7. Here we report the strength of dipolar 
oscillation modes for a sample of 3,600 red giant stars. About 20 per 
cent of our sample show mode suppression, by strong magnetic fields 
in the cores8, but this fraction is a strong function of mass. Strong 
core fields occur only in red giants heavier than 1.1 solar masses, and 
the occurrence rate is at least 50 per cent for intermediate-mass stars 
(1.6–2.0 solar masses), indicating that powerful dynamos were very 
common in the previously convective cores of these stars.

Red giants are formed when a low- or intermediate-mass star has fin-
ished burning the hydrogen in its core. This leaves an inert helium core 
surrounded by a thin hydrogen-burning shell and a very thick outer 
convective envelope. Like the Sun, red giants oscillate in a broad comb-
like frequency spectrum of radial and non-radial acoustic modes that 

are excited by the turbulent surface convection9. The observed power 
spectrum has a roughly Gaussian envelope whose central frequency, 
νmax, decreases as a star expands during the red giant phase10. The 
comb structure of the spectrum arises from a series of overtone modes 
separated by the so-called large frequency separation, ∆ν. One of these 
overtone sequences is seen for each spherical degree, ℓ. For observations  
of unresolved distant stars, geometric cancellation prevents the detec-
tion of modes with ℓ > 3. Their spectra are characterized by a pattern of 
radial (ℓ = 0) and quadrupolar (ℓ = 2) modes that form close pairs, inter-
spersed with dipolar (ℓ = 1) modes located roughly halfway between 
successive radial-quadrupolar pairs. The octupolar modes (ℓ = 3) are 
weak or undetectable. The dipolar modes have turned out to be particu-
larly useful probes of internal structure11. They have been used to distin-
guish between hydrogen-shell and helium-core burning stars12–14 and 
to measure radial differential rotation15,16. This is because each acoustic 
non-radial mode in the envelope couples to multiple gravity modes in 
the core, forming several observable mixed modes with frequencies in 
the vicinity of the acoustic mode15. This coupling is strongest for dipole 
modes, making them the most useful probes of the core17.

Figure 1 shows the oscillation power spectra of red giants at three dif-
ferent evolutionary stages observed by NASA’s Kepler mission. For ‘nor-
mal’ stars (upper panels in Fig. 1), the dipolar modes (red peaks) have 

1Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia. 2Stellar Astrophysics Centre, Department of Physics and Astronomy, 
Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark. 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA. 4TAPIR, Walter Burke 
Institute for Theoretical Physics, Mailcode 350-17, California Institute of Technology, Pasadena, California 91125, USA. 5SETI Institute, 189 Bernardo Avenue, Mountain View, California 94043, 
USA. 6Laboratoire AIM, CEA/DSM—CNRS—Université Paris Diderot—IRFU/SAp Centre de Saclay, 91191 Gif-sur-Yvette Cedex, France. 7Department of Physics, University of California,  
Santa Barbara, California 93106, USA.

Figure 1 | Oscillation spectra of six red giants observed with Kepler. The 
stars are grouped into three pairs, each representing a different evolution 
stage ranging from the most evolved (lowest νmax) on the left to the least 
evolved (highest νmax) to the right. The coloured regions mark the power 
density dominated by modes of different degree ℓ = 0−3. For clarity the 

spectra are smoothed by 0.03∆ν, which for the most evolved stars tends 
to create a single peak at each acoustic resonance, although each peak 
comprises multiple closely spaced mixed modes (red peaks in the left and 
centre panels). The slightly downward-sloping horizontal dashed line 
indicates the noise level.
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similar power to the radial modes (black peaks). However, at each stage 
of evolution we also find stars with greatly suppressed dipolar modes 
(lower panels in Fig. 1). Suppressed dipolar modes have been reported 
in a few dozen red giant stars18,19, with an occurrence rate of about 20%. 

The cause of this phenomenon has been puzzling until recent theoreti-
cal work8, which showed that the suppression can be explained if waves 
entering the stellar core are prevented from returning to the envelope. 
This occurs for dipolar modes if there are strong magnetic fields in the 
core, giving rise to a “magnetic greenhouse effect”8.

We measured the amount of suppression by comparing the integrated 
power of the dipolar and radial modes (the dipole mode visibility, V2), 
averaged over the four orders centred on νmax (see Methods for details). 
While the normal stars show dipole mode visibilities of V2 ≈ 1.5, inde-
pendently of νmax, the stars with suppressed modes have V2 ≈ 0.5 for 
νmax ≈ 70 µHz and down to almost zero for the least-evolved red giants 
oscillating above 200 µHz (Fig. 1).

In Fig. 2 we show the dipole mode visibility for about 3,600 red giants 
observed over the first 37 months of the Kepler mission (see Methods). 
Our analysis is restricted to a sample of stars with νmax larger than 
50 µHz and masses below 2.1M⊙ (where M⊙ is the mass of the Sun), 
which, assuming no observational uncertainties, is expected to include 
only red giants that have not started burning helium in their cores13. 
We cross-matched our sample with those of known helium-burning 
stars13,14, which allowed us to identify and remove a small fraction 
of evolved stars burning helium that, owing to measurement uncer-
tainty, had entered our sample (2% of our sample, almost all with 
νmax < 70 µHz).

The stars in Fig. 2 form two distinct branches that gradually merge 
as the stars evolve leftwards towards lower νmax. Most stars fall on the 
‘normal’ upper branch of V2 ≈ 1.5, in agreement with previous results18. 
The lower branch, with suppressed dipole modes, agrees remarkably 
well with theoretical predictions (black curve). This prediction assumes 
that all the wave energy leaking into the stellar core is trapped by a 
magnetic greenhouse effect caused by strong internal magnetic fields8. 
The decrease of the suppression towards lower νmax is a consequence 
of the weaker coupling between acoustic waves in the envelope and 
gravity waves in the core8. With this large sample we have been able to 
separate the stars in Fig. 2 into five different mass intervals, from 0.9M⊙ 
to 2.1M⊙. It is striking how strongly the relative population on the lower 
branch (stars with suppressed dipole modes) depends on mass.

We quantify the mass dependence in Fig. 3 by showing the relative 
number of dipole-suppressed stars (those below the dashed line in 
Fig. 2) in narrow mass intervals. We see no suppression in red giants 
below 1.1M⊙, which coincides with the mass below which they did 
not have convective cores during the core-hydrogen-burning phase4. 

Figure 3 | Observed fraction of stars with suppressed dipolar modes. 
The abscissa is the stellar mass (in multiples of solar mass, M⊙). Dipole-
suppressed stars are defined as those that fall below the dashed line in 
Fig. 2. Only stars with νmax > 70 µHz are counted, to make the distinction 
between normal and suppressed unambiguous. The 1σ uncertainty in the 
fractions (grey vertical error bars) are based on Poisson statistics of the star 
counts (blue and green bars in the inset). The vertical dotted line separates 
stars for which hydrogen-core burning took place in either a radiative or 
convective environment for solar metallicity4.
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of the red giant phase to the red giant luminosity bump27. Stellar mass13 
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suppression8 for 1.1M⊙, 1.3M⊙, 1.5M⊙, 1.7M⊙ and 1.9M⊙ (top to bottom 
panels) and a radial-mode lifetime of 20 days29. The fiducial dashed line 
separates normal and dipole-suppressed stars.

2.62 2.92 3.10 3.22

2.0

1.5

1.0

0.5

0.0

V2

2.0

1.5

1.0

0.5

0.0

V2

2.0

1.5

1.0

0.5

0.0

V2

2.0

1.5

1.0

0.5

0.0

V2

2.0

1.5

1.0

0.5

0.0

V2

Qmax (μHz)

0.9

log[g (cm s–2)]

1.2

1.4

1.6

1.8

2.1
50 100 150 200

S
tellar m

ass (M
 �� )

© 2016 Macmillan Publishers Limited. All rights reserved

incidence rate vs mass

l=1 mode suppression in RGs would result from the wave 
trapping due to strong magnetic field in a He core.

-Fuller et al. 2015 
-explain incidence rate
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The onset of magnetic suppression above this threshold suggests that at 
least some of those stars had convectively driven magnetic dynamos in 
their cores during the core-hydrogen-burning (main-sequence) phase. 
This is supported by three-dimensional hydrodynamical modelling of 
these stars6. Red giants no longer contain convective cores, leading us 
to conclude that the strong magnetic fields in suppressed oscillators 
are the remnants of the fields produced by core dynamos during the 
main sequence.

Figure 3 shows that the incidence of magnetic suppression increases 
with mass, with red giants above 1.6M⊙ showing a remarkable sup-
pression rate of 50% to 60%. These have evolved from main-sequence 
A-type stars, among which only up to about 10% are observed to have 
strong fields at their surfaces5. We conclude that these magnetic A-type 
stars represent only the tip of the iceberg, and that a much larger frac-
tion of A-type stars have strong magnetic fields hidden in their cores.

In Fig. 4 we show the observed νmax and inferred mass of all the stars 
superimposed on a contour plot of minimum magnetic field strengths 
required for mode suppression8. For stars with suppressed modes (filled 
red circles), the underlying colour provides a lower bound to the field 
strength at the hydrogen-burning shell. For stars without suppressed 
modes (open black circles), the underlying colour represents an upper 
limit to the field at the hydrogen-burning shell; above or below the 
shell the field could potentially be larger. Hence, normal and dipole- 
suppressed stars that fall in the same regions of Fig. 4 may have core 
field strengths that are only slightly different. However, we expect that 
the dipole-suppressed stars on average exhibit stronger core fields than 
their normal counter parts.

Considering again the low-mass stars (<1.1M⊙), of which none show 
suppression, we see from Fig. 4 that radial magnetic fields above about 
100 kG are not present at the hydrogen-burning shell when the stars 
are just below the red giant luminosity bump (νmax ≈ 70–100 µHz). 
Assuming magnetic flux conservation from the main-sequence phase, 
this suggests that radial fields above approximately 5 kG do not exist 
within the cores of Sun-like stars8. Large-scale fields in the solar inte-
riors have been suggested to explain the properties of the tachocline20. 
However, our results do not rule out strong horizontal fields near the 

radiative–convective boundary because those fields would be outside 
the core and could not cause mode suppression when the star evolves 
into a red giant.

Turning to higher masses we see that, for a given νmax, stars above 
1.4M⊙ require increasingly strong magnetic fields to suppress their 
dipolar modes. From Fig. 4, there is no clear upper limit to the field 
strengths present in red giant cores, given that dipole-suppressed 
stars are common even when field strengths B >1 MG are required 
for suppression. However, the hint of a decline in the occurrence of 
dipole-suppressed stars above 2M⊙ seen in Fig. 3 suggests there may be 
a mass above which dynamo-generated magnetic fields are less likely to 
cause oscillation mode suppression in intermediate-mass stars.

The high occurrence rate of dipole mode suppression demonstrates 
that internal magnetic fields, generated by a convective core dynamo 
during the main sequence, can persist through the red giant phase. 
This indicates that these dynamo-generated fields are frequently able 
to settle into long-lived stable configurations21,22. The occurrence rate 
of suppressed dipole modes in intermediate-mass red giants is much 
higher than the occurrence rate of strong fields at the surfaces of the 
main-sequence A-type stars from which they evolved. These surface 
fields are thought to be a relic of the star’s formation process21,23. We 
conclude that fields generated during convective hydrogen-core burn-
ing are able to settle into stable equilibrium configurations much more 
often (more than 50% of the time) than fields generated or inherited 
during star formation (less than 10% of the time).

Our results show that main-sequence stars with no observable mag-
netic field at the surface can still harbour strong fields in the core that 
survive into the red giant phase. The presence of internal magnetic 
fields might play an important part in angular momentum transport 
and potentially influence internal mixing processes. Fields too weak to 
suppress dipolar oscillation modes may exist in normal red giants, but 
these fields may nevertheless transport enough angular momentum 
to help explain the measured rotation rates of red giant cores16,24. The 
presence of strong internal magnetic fields might help to explain the 
extra internal mixing observed in red giant branch stars and asymptotic 
giant branch stars25. Interestingly, the magnetic field strength necessary 
for magnetic buoyancy mixing26 is similar to the field strength required 
for dipole mode suppression8.

After some time, intermediate-mass red giants also start burning 
helium in their cores. Suppressed dipolar modes in those so-called red 
clump stars will reveal whether the fields survive until helium-core 
burning, and whether they can account for magnetic fields observed 
in stellar remnants such as white dwarfs. Like intermediate-mass stars, 
more massive stars (>10M⊙) also undergo convective hydrogen-core 
burning that generates a magnetic dynamo, and which may produce 
the magnetic fields observed in many neutron stars.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Conclusion

-Stars, at least a fraction of them, in all evolutionary stages have surface magnetic fields.
-pre-MS stars

-MS stars 
 -radiative/convective stars 
-red giants

-WDs/NSs

-Indications of magnetic effects onto the stellar evolution
-angular momentum transport 
-Wind-magnetic field interactions

-inhibition of convection

Current Status

A new model

-Consistent treatments of structure, rotation, & magnetic field evolution
-Interesting agreements with observations

-core/surface rotation periods of factor of ~10 difference 
-internal magnetic field strength of ~106 G.



Surface magnetic fields in convective stars

GK red giants

-Fraction:

-Properties:
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(Aurière et al. 2015)

M. Aurière et al.: Magnetic fields of active red giants
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Fig. 5. Position of our sample stars in the Hertzsprung-Russell diagram. Solar metallicity tracks with rotation of Charbonnel & Lagarde (2010) and
Charbonnel et al. (in prep.) are shown up to the RGB tip for the low-mass stars (below 2 M⊙), and up to the AGB phase for the intermediate-mass
stars. The initial mass of the star (in M⊙) is indicated for each track. The color scale indicates the value of the maximum convective turnover time
within the convective envelope τ(max). The dotted lines delimit the boundaries of the first dredge up phase, which correspond respectively to the
evolutionary points when the mass of the convective envelope encompasses 2.5% of the total stellar mass, and when the convective envelope starts
withdrawing in mass at the end of the first dredge-up. Circles correspond to stars which are in Massarotti et al. (2008) and squares correspond to
other stars, as explained in the text.

intermediate-mass stars in young open clusters (e.g. Huang et al.
2010). The evolution of the internal angular momentum profile
and of the surface velocity is accounted for with the complete
formalism developed by Zahn (1992), Maeder & Zahn (1998),
and Mathis & Zahn (2004). Rotation in the convective enve-
lope is considered as solid, the rotational period at the surface
of the star being that at the top of the radiative zone. Note that
magnetic braking following the Kawaler (1988) prescription is
applied for masses below or equal to 1.25 M⊙ on the main se-
quence, but no magnetic braking is assumed in the following
evolution phases nor for the more massive stars. Additional mod-
els including magnetic braking after the main sequence turnoff
will be presented by Charbonnel et al. (in prep.) where predic-
tions for the rotation periods will be compared to the observed
periods of our sample stars (when available).

5.2.2. Theoretical turnover timescales and semi-empirical
Rossby numbers

Convective turnover timescale and Rossby number are impor-
tant quantities to infer magnetic activity and dynamo regime.
Figure 5 shows the variations of the maximum convective

turnover time2 τ(max) in the convective envelope along the evo-
lutionary tracks for different masses. We see that for all stellar
masses, τ(max) increases when the stars move towards lower ef-
fective temperature across the Hertzsprung gap up to a maximum
value at about the middle of the first dredge-up, i.e., at the base of
the RGB. τ(max) then decreases when the stars climb along the
RGB, before increasing again when the stars settle in the central
He-burning phase. Although not shown here, τ(Hp/2) computed
at half a pressure scale height above the base of the convective
envelope, and the convective turnover time at half radius within
the convective envelope τ(R/2) follow the same behavior along
the evolution tracks. These results are discussed by Charbonnel
et al. (in prep.).

For each detected giant we present in Table 4 the stellar
mass and evolutionary status derived as described in Sect. 5.1,
as well as the theoretical values (as predicted by the relevant
model or interpolated between tracks of different masses) for the
radius at the base of the convective envelope, for the convective

2 The local convective turnover time at a given radius r inside the con-
vective envelope is defined as τ(r) = αHp(r)/Vc(r). Hp(r) and Vc(r) are
the local convective pressure and velocity scale height. In our models,
α = 1.6.
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-29/48 (but with highly biased samples)

-Bl ~ 1-100 G

-correlation with rotation periods

M. Aurière et al.: Magnetic fields of active red giants

Table 5. Rossby number for stars with measured Prot.

HD Name obs Prot M Branch R τ(max) Ro
day M⊙ DCE day

Active Giants

4128 β Cet 215 3.5 He burning 0.01 232 0.93
9746 OP And 76 2. RGB 0.78 160 0.47
27536 EK Eri 308.8 1.9 Base RGB 0.01 234 1.3
28307 77 Tau 140 3. Base RGB 0.03 179 0.78
31993 V1192 Ori 28 1.8 RGB 0.32 129 0.22
33798 V390 Aur 9.8 2.25 Base RGB 0.04 230 0.04
47442 ν3 CMa 183 4.5 Base RGB 0.02 314 0.58
68290 19 Pup 159 2.5 He burning 0.07 335 0.47
72146 FI Cnc 28.5 2.4 Base RGB 0.06 122 0.23
111812 31 Com 6.8 2.75 HGap 0.02 58 0.12
112989 37 Com 111 5.25 He burning 0. 132 0.84
141714 δ CrB 59 2.5 HGap 0.01 271 0.22
203387 ι Cap 68 3. Base RGB 0.02 79 0.86
218153 KU Peg 25 2.5 Base BRG 0.08 165 0.15
223460 OU And 24.2 3. HGap 0.01 36 0.68

CFHT and miscellaneous

62509 Pollux 590 2.5 Base RGB 0.01 330 1.78

Notes. The radius R (6th column) where τ(max) is measured, is counted above the base of the convective envelope (CE) and is in units of the depth
of the CE.

subsample. The straight line is the least squares regression, ex-
cluding EK Eri which is known to be overactive with respect to
its rotational period (e.g. Aurière et al. 2008), and our three faster
rotators for which |Bl|max is significantly smaller than Bmean
(Table 2 and see next section). The overall fit is good, with a
regression index of –0.83. Ten stars are very close the regression
line. Therefore, Fig. 6 shows clearly that there is a rather tight
relation between magnetic field strength and rotational period in
the range of 25–200 days. This indicates that the majority of the
stars classified as “Active Giants” obey to the same |Bl|max − Prot
relation, that the strength of their magnetic fields depends on ro-
tation, and that the origin of their magnetic field should be the
same. We also identify several outliers: these are discussed in the
next section.

6.1.2. The strength of the magnetic field with respect
to the Rossby number

To better understand the dynamo regime which likely causes
the relation between the magnetic field strength and the rota-
tion, we plot in Fig. 7 |Bl|max as a function of the semi-empirical
Rossby number Ro (see Sect. 5.2.2) for the same 16 giants with
known Prot. We use τ(max) as the most representative quan-
tity of the dynamo that might operate at different depths within
the convective envelope of giant stars. In these conditions, the
Rossby number spans mainly between 0.04 and 1 and we obtain
a satisfactory correlation (regression index of –0.68 in logarith-
mic coordinates) excluding the same 4 giants as in Sect. 6.1.1.
This indicates that an α − ω type dynamo probably operates in
these evolved stars with Prot shorter than 200 day, as predicted
by Durney & Latour (1978). However, due to its high Ro of 1.8,
an α−ω type dynamo appears unlikely for Pollux (Aurière et al.
2014a and in prep.).

Some stars deviate from the relationship and deserve spe-
cial comments. EK Eri appears completely out of the plot. This
illustrates its status as the archetype of giants descended from
magnetic Ap stars (Prot = 308.8 d, |Bl|max = 98.6 G, Aurière
et al. 2011). OU And appears also in a similar situation with a

Fig. 6. Correlation of the strength of the magnetic field (|Bl|max in G)
with the rotational period (in days). The positions of Pollux and of
3 possible descendants of magnetic Ap stars are shown.

Fig. 7. Correlations of the strength of the magnetic field (|Bl|max in G)
with the Rossby number. The positions of Pollux and of 3 possible de-
scendants of magnetic Ap stars are shown.
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-Active giants

-Thermohaline deviants (Ap descendants)

-CFHT snapshot subsamples

-The magnetic fields are likely to be 
produced by the α-Ω dynamo.

-GK giants are expected to have weak surface 
magnetic fields because of their large radii 
and slow rotations. (Landstreet 2004)
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Hunter diagram

Rotational mixing can account for the N enhancement in massive stars.
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Figure 7
Hunter diagram for Large Magellanic Cloud early B-type stars from the VLT-FLAMES Survey of Massive
Stars (symbols) showing projected rotational velocity against their nitrogen surface abundance. Single stars
are plotted as circles, radial velocity variables as triangles; different colors indicate the surface gravities of the
observed stars. A population synthesis simulation based on single-star evolution models with rotational
mixing (Brott et al. 2011a) is shown as a density plot in the background. The color coding corresponds to the
number of predicted stars per pixel. Theoretical evolutionary tracks of 13-M⊙ stars, corresponding to the
average mass of the sample stars, are shown (lines) with their surface gravity coded by the same colors as the
observations. The corresponding rotational velocities have been multiplied by π/4 to account for the average
projection effect. The cross in the lower right corner shows the typical error on the observations. Adapted
from Brott et al. (2011b).

Hunter diagram:
a key diagram for
analyzing rotating
massive main-
sequence stars that
shows the nitrogen
surface abundance of
stars versus their
projected rotational
velocity

affected, and the sum of CNO nuclei is constant. In this respect, the results of Przybilla and
colleagues provide a breakthrough.

To interpret these results as the consequence of rotational mixing is problematic, however,
as the analyzed stars hardly rotate. At least their v sin i ’s are smaller than 30 km s−1, which is
why a highly accurate abundance analysis was possible. The reasoning that these stars are slow
rotators (rather than fast rotators viewed almost pole-on) is due to the discovery of a slowly rotating
nitrogen-rich subgroup of the early B-type stars in the LMC, which comprises about 15% of all
stars (Hunter et al. 2008b, Brott et al. 2011b). Galactic counterparts have been identified by Morel
et al. (2006) and Morel, Hubrig & Briquet (2008), who also found that stars of this subgroup have
a high incidence of magnetic fields.

The subgroup of nitrogen-rich slowly rotating early B stars shows up most clearly in the
Hunter diagram, which is shown for a sample of ∼100 LMC stars in Figure 7, for v sin i < 50 km
s−1 (Brott et al. 2011b). The inclination angles for these stars are unknown, but the clear gap of
nitrogen-rich stars between v sin i ≃ 50 km s−1 and v sin i ≃ 100 km s−1 implies that most N-rich
low-v sin i stars are true slow rotators.
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Observed & modeled [N/H] vs v sin i relation

(Brott et al. 2011; Langer 2012)

-Majority of stars coincide with 
the positive correlation 
predicted by the theory.

-Meanwhile, two outliers exist;

slowly-rotating N-enhanced stars 
and fast-rotating N-normal stars.

-The origins of these outliers are 
still debatable.

  -Age/Mass effect?

  -Binary?

  -Magnetic field?

High magnetic incidence rate for 
galactic N-rich stars (Morel et al. 
2008)


