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Necessity of amplifying magnetic fields
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Accretion process:
m conversion of gravitational energy into thermal and radiative
energy,
m geometrically thick and optically thin regime (SGR A*)
Large scale magnetic fields are fundamental in disks:
m viscosity generation by means of the magnetorotational instability
(MRI) (Balbus and Hawley 1991);
m jets formation by means of Blandford-Znajek process (Blandford
and Znajek 1977).

Mean-field dynamo is a good candidate in amplifying magnetic field.
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Introduction
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Mean-field effect

v I Let us assume little turbulent fluttuations in a plasma
ynamo in
relativistic

disks accreting U=U,+ u, B = By + b.

onto rotating

black holes
The induction equation reads

oB

Mean field ot

ynamo

220 — W x (Ug x Bo) +nV2Bo + V x (u x b).

where
<UXb>:(JéBOf[))V><Bo.
1
0By 5
W =V x (UO X Bo)—F(’I]—Fﬂ)V Bo+OzV X Bo.
There are two effects:
m increase of the diffusion,

m generation of an electromotive force that produces a current
parallel to the magnetic field.



af) dynamo cycle

In a plasma with differential rotation let us introduce the poloidal and
ti toroidal components.

disks accreting

t tati J—
ot B=Bp+Br,

m Q effect produced by the differential rotation (Bp — Br).
Mean ficld m « effect produced by the fluctuations (Bt — Bp).

ynamo
We can close the cycle in axisymmetric case.
An example of a2 dynamo:

Butterfly diagram which shows the time course of sunspot distribution.
(http://solarscience.msfc.nasa.gov/images/bfly.gif).


http://solarscience.msfc.nasa.gov/images/bfly.gif

Generalized Ohm's law

dhmee

relativistic Covariant formulation of Ohm’s equation (Bucciantini e Del Zanna
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podawind  2013)
E' =nJ+¢B — | et =njt +¢b”
where
m E' = E + U x B is the comoving electric field.
i m 7) is the resistivity e £ := —a.

GRMHD
The spatial components:

ME+UxB—(E-U)U] =
n(J — QU) +¢€T[B— U x E—(B-U)U,

l

Corrections in Ampere's law
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ACCRETION DISKS

Accretion disks



Polish doughnuts

Mean-field Two ingredients:

dynamo in

s m gravity (Kerr metric)

disks accreting
St w perfect fluid (p = Kw™)
HD equilibrium:

W-VV,,,—F F)Ia BZO,
Ya—1lw

with W(r, ) is a potential.

The disk is defined in that zones where W — W, < 0 (Abramowicz
1978).

The fluid quantities are defined:

o (W W\
c W, — W. s 14

Accretion disks

Ya
Va — 1p
Then a small magnetic field is introduced (B? < w). Two
configurations:

m toroidal

m poloidal



Section of the Disk

Mean-field tin = 6, re = 12, dBH = 0.94
dynamo in
relativistic

disks accreting

onto rotating

black holes Disco2, p

9.54e-01

8.48e-01
7.42e-01
6.36e-01
5.30e-01
Accretion disks 4.24e-01
3.18e-01
2.12e-01

1.06e-01

0.00e+00

Two-dimensional map for p.
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simulations



ECHO code
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Numerical simulations were performed with ECHO (Eulerian
Conservaive High Order) (Del Zanna et al 2007).
Main features:

m Godunov type, shock capturing,
finite differences,
high-order reconstruction schemes,
ECHO code

generic metric

L]
L]
m simplified Riemann solvers (HLL),
u
m stiff terms (IMEX)
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i We define two numbers to quantify the dynamo action (Bugli et al.

disks accreting

onto rotating 2014) :

black holes AQR2
Cq = , o Ce=>.
n n
AQ is a typical angular velocity difference;
R is a typical lenght.

In our simulations we assumed:

Ca > 1,

ECHO code

C>1

m rotation stronger than diffusion;

m dynamo comparable with dissipation



Initial conditions and evolution

(Cq = 8200 e Ce = —120)
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Dynamic
models

effect and evolution during mass loss
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Exponential growth
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Dynamic

models 2
t/P.

Growth of the components of the field and saturation.

m growth rate: ~ 4.4,
m saturation value: 0.1,
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Saturation
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ds  Q\/dr? 4 (rdf)?

If Quri > 6 the code resolves MRI (Hogg e Reynolds 2018).
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Model for the
emission from

SGR A*

SED of SGR A*

4 FIR variable flux
134 ¢+ Median flux, based on ., = 60%
1t Upper limit median flux, based on £y, = 25%
®  Upper limit median flux, based on fay, =25% and nen-detection
1 Minimum time-averaged flux density’ Stone+ 16
T T
101 1012 1013 1014

v [Hz]

SED of Sagittarius A* updated with the most recent measurements (von
Fellenberg et al. 2018).



Magnetobremsstrahlung emission

Mean-field . . . .
dynamo in This type of emission is synchrotron radiation produced by thermal
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EREpEt  electrons. The emissivity is given by:

onto rotating
black holes
V2rely,
, 1/3
i~ e YETEs ¢ e (— X
YT 602 ( )

with X = v/vs. The critical frequency vs is defined by:
Vs = (2/9)VC@§ sinf,

con
ve = eB/(2mmec), O = kT./(mec?).

The total luminosity is defined (optically thin plasma):

Model for the

emission from

SRS Fmax 27 /3 27
L, = / r2dr / sinfd6 doary'/?j,
fin /3 0



Model of the disk around SGR A*

At the equilibrium we assume (Moscibrodzka et al. 2009):
AR m geometrically thick and optically thin plasma (r;, = 6, rou: = 12),

onto rotating

black holes m 7.~ T

m n.=10" cm3.
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T,/T,=1, =85

o Lowwd vound ol ool ol suid ol
10 1071 1'% 10% 10% 10% 10 1077 1018 10% 102

v[Hz]

Model for the

emission from

Srission SED calculated with Monte Carlo scheme (Moscibrodzka et al. 2009).

= B~28G,
O, ~17 = T, ~ 101 K



of magnetic field and emissivity
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of magnetic field and emissivity
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Consistency of the model

I = When the dynamo saturates, the field reaches the value of ~ 30 G and
isks accreting

onto rotating the luminosity is consistent with the observed peak.

1e35
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181G)
g

0 5000 10000 15000 20000 17000 18000 19000 20000
t(s) t(s)

Model for the .
smission from Evolution of the magnetic field B (sx) and L,v (dx).

Oc~4— T, ~2-10° K
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Conclusions and future developments

Mean-field
RS .
relativistic Conclusions:
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o e m First dynamo simulation in an accretion disk in GRMHD regime
with global evolution of all quantities.

m Extension of the kinematic case to a fully dynamic regime.
m Saturation possibly related to MRI.

m Magnetobremsstrahlung model: emissivity evolves according to
the periodicity of the dynamo.

m Possible observational signature Event Horizon Telescope (EHT).

Future developments:

More complete study of the parameter space.
Better prescription for n e €.

Conclusions

m
m Implementation of o quenching.
m Interplay with MRI.
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Numerical simulation of an EHT observation (Bronzwaer et. al 2018).

Conclusions
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THE END

Conclusions
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