Convective dynamos in protoneutron stars

Raphaël Raynaud, Jérôme Guilet, Matteo Bugli, Alexis Reboul-Salze

CEA-Saclay, Astrophysics division

PHAROS & CoCoNut Meeting 2018: Magnetic field formation and evolution in neutron stars CEA Saclay, November 15th, 2018

Introduction	Model 0000	Results 00000000	Conclusion
Table of contents			

Introduction		
• 0 000		

Model

Results 000000000

A class of higly magnetized neutron stars

The $P - \dot{P}$ diagram

Magnetars

- galactic X-ray sources (bursts, outbursts, flares)
- \sim 30 objects ($\stackrel{?}{\geq}$ 10% of the young NS population)
- $m \circ \sim 10$ associated with standard SNRs

The dipolar model

- magnetic field intensity $B \propto \sqrt{\dot{P}P} \sim 10^{15}\,{\rm G}$
- spindown time scale $\tau_{\rm c} \propto P \dot{P}^{-1} \sim 10^3 \, {\rm yr}$

Introduction	Model	Results	Conclusion	
0000				
A close of high magnetized neutron stars				

What the origin of such strong magnetic fields ?

Possible scenario

- fossil field
- In-situ amplification
 - MRI (next talk by Alexis Reboul-Salze)
 - convective dynamo: Thompson & Duncan (1993)

Introduction	Model	Results	Conclusion
0000			
A 1 C111	1		

What the origin of such strong magnetic fields ?

Possible scenario

- fossil field
- in-situ amplification
 - MRI (next talk by Alexis Reboul-Salze)
 - convective dynamo: Thompson & Duncan (1993)

Implications

About 1000 articles on magnetars dealing with

- superluminous SNe
- FRBs (Margalit 2018, Unveiling the Engines of Fast Radio Bursts, Super-Luminous Supernovae, and Gamma-Ray Bursts)
- ... see talk by Matteo Bugli

Introduction	Model	Results	Conclusion
0000			
Neutron star birth			

Core collapse of a massive star

Protoneutron star st	ructure	and evolution	
Neutron star birth			
00000			
Introduction	Model	Results	Conclusion

Introduction	Model	Results	Conclusion
00000			
Protoneutron star interior model			

Determining the extent of the convective zone

Methods

0 stability determined according to the Schwarzschild criterion

2 deduce the shell geometry and the background profile ($\tilde{T}, \tilde{\varrho}$)

R. Raynaud (CEA)

Protoneutron star dynamos

Introduction	Model	Results	Conclusion
00000	००००	00000000	
Table of contents			

Introduction	Model	Results	Conclusion
00000	0000	00000000	

A canonical model of a protoneutron star convective zone

Requirements and simplification hypothesis

Introduction	Model	Results	Conclusion
	0000		
Protoneutron star convective zone			

The anelastic approximation (sound-proof approximation)

$$\nabla \cdot (\tilde{\varrho} \mathbf{u}) = 0$$

$$\frac{D\mathbf{u}}{Dt} = -\nabla \left(\frac{p}{\tilde{\varrho}}\right) - \frac{2}{E}\mathbf{e}_z \times \mathbf{u} - \frac{Ra}{Pr} \frac{d\tilde{T}}{dr} S\mathbf{e}_r + \frac{1}{EPm} \frac{1}{\tilde{\varrho}} \left(\nabla \times \mathbf{B}\right) \times \mathbf{B} + \mathbf{F}_{\nu}$$

$$\frac{DS}{Dt} = \frac{1}{Pr\tilde{\varrho}\tilde{T}} \nabla \cdot \left(\kappa\tilde{\varrho}\tilde{T}\nabla S\right) + \frac{Pr}{Ra\tilde{\varrho}\tilde{T}} \left(\frac{\eta}{Pm^2 E} \left(\nabla \times \mathbf{B}\right)^2 + Q_{\nu}\right)$$

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{u} \times \mathbf{B}) - \frac{1}{Pm} \nabla \times (\eta \nabla \times \mathbf{B})$$

$$\nabla \cdot \mathbf{B} = 0$$

Jones+11,14

Introduction	Model	Results	Conclusion
00000	0000	00000000	
Protoneutron star convective zone			

Units and control parameters

MagIC pseudo-spectral code: chosen units

$$\begin{bmatrix} d \end{bmatrix} = r_{o} - r_{i}, \quad \begin{bmatrix} t \end{bmatrix} = \frac{d^{2}}{\nu_{o}}, \quad \begin{bmatrix} B \end{bmatrix} = \sqrt{\Omega \varrho_{o} \mu_{0} \eta_{o}}$$
$$\begin{bmatrix} S \end{bmatrix} = d \left. \frac{\partial S}{\partial r} \right|_{r_{o}}, \quad \begin{bmatrix} T \end{bmatrix} = T_{o}, \quad [\varrho] = \varrho_{o}$$

4 dimensionless control parameters

$$E = \frac{\nu_{o}}{\Omega d^{2}}, \quad Pr = \frac{\nu_{o}}{\kappa_{o}}, \quad Pm = \frac{\nu_{o}}{\eta_{o}}, \quad Ra = \frac{T_{o}d^{3} \frac{\partial S}{\partial r}|_{r_{o}}}{\nu_{o}\kappa_{o}}, \quad Ra_{c} = f(E, Pr)$$

Scaling the results

$$Ra^{*} = \frac{E^{3}}{Pr^{2}}Ra = \frac{\Phi_{o}}{4\pi r_{o}^{2}\varrho_{o}\Omega^{3}d^{3}} \implies \Omega \stackrel{E}{\Longrightarrow} \nu_{o} \stackrel{Pr,Pm}{\Longrightarrow} \kappa_{o}, \eta_{o}$$

Introduction	Model	Results	Conclusion
	0000		
-			

Protoneutron star convective zone

Parameter space achievable in numerical simulations

Typical parameters

Input:
$$E \sim 10^{-3}$$
, $\Pr = 0.1$, $Ra/Ra_c \sim 10$, $Pm = O(1) \ll 10^{14}$
Output: $Rm = \frac{Ud}{\eta} \lesssim O(10^2) \ll 10^{17}$, $10^{-1} \lesssim Ro = \frac{U}{\Omega d} \lesssim 10^1$

Ra=8.840e+03 ; Ek=1.00e-03 ; Pr=0.10 ; Pm=2.0 ; $\chi = 0.5$

Ra=8.840e+03 : Ek=1.00e-03 : Pr=0.10 : Pm=2.0 : y = 0.5

Introduction	Model	Results	Conclusion
00000	0000	00000000	
Table of contents			

1 Introduction

Introduction	Model	Results	Conclusion
		00000000	
Hydronamical simulations			
The onset of conv	ection		

Isosurfaces of v_r and velocity streamlines

Introduction	Model	Results	Conclusion
		00000000	

Different dynamo branches

(Numerical) stellar & planetary dynamos : simplified overview

Dichotomy between:

- Dipolar dynamos: axisymmetric, stationary
- O Multipolar dynamos: non axisymmetric, oscillatory
 - Ω-effect at work for oscillatory dynamos
 - with stress-free b.c., bi-stable behaviour

Christensen+06, Gastine+[12,13], Schaeffer+17, Schrinner+[12,14], Raynaud+[14,15,16], Strugarek+[17,18], Duarte+18, Dormy+18

Introduction	Model

Results ○○●○○○○○○

With pseudovacuum outer boundary condition

Oscillatory dynamo with chaotic reversals of the surface dipole

Introduction	Model

Results ○○○●○○○○○ Conclusion

With perfect conductor outer boundary condition

Strong field regime (stationary)

Introduction	Model	Results	Conclusion
00000	0000	○○○○●○○○○	
Comparative view			

Weak vs. strong field

Introduction 00000	Model 0000	Results	Conclusion
Parameter study			
Dipole intensity			

Parameter study	
Introduction Model Results 00000 0000 00000	Conclusion 0000

Introduction	Model	Results	Conclusion
00000	0000	○○○○○○●○	
Parameter study			

Introduction 00000	Model 0000	Results	Conclusion
Parameter study			

Magnetic/kinetic energy scaling

Introduction	Model	Results	Conclusion
00000	0000	00000000	
Table of contents			

1 Introduction

2 Model

3 Results

Introduction	Model	Results	Conclusion

Conclusions

These first protoneutron star dynamos are

- "compatible" with observational constraints on the dipole field strength ($\geq 10^{14}$ G)
- **2** non dipole dominated, Ω -effect driven (differential rotation)

The saturated state is

- strongly sensitive to the outer magnetic boundary condition: magnetostrophic balance (Coriolis - Lorentz) favoured with perfect conductor b. c. at low Rossby number
- Weakly sensitive to the interior model (various diffusivity profiles)

Introduction 00000	Model 0000	Results 00000000	Conclusion

Some perspectives

Observations: field topology

- Tiengo+13: phase dependent absorption features ⇒ small scale surface field
- Makishima+18: 55 ks hard X-ray pulse-phase modulation $\implies B_T \sim 10^{16} \,\mathrm{G}$

Modelling

- link with Alexis Reboul-Salze work on the stably stratified region & Matteo Bugli for supernova models
- initial conditions for the subsequent evolution phases: magneto-thermal evolution