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Resumen

Introducciéon

La astronomia de ondas gravitatorias

A comienzos del siglo veinte, la teoria de Einstein de la relatividad general re-
volucioné nuestra manera de entender el mundo fisico con un nuevo paradigma
que no sélo describia la gravitacién sino el espacio-tiempo en si mismo. Actual-
mente esta teoria estd profundamente arraigada, y es la base de los modelos
maés realistas en cosmologia y astrofisica. Sin embargo, todas sus predicciones
no han podido todavia ser confirmadas por las observaciones. Una de estas
predicciones es la existencia de ondas gravitatorias. En el amanecer de un nue-
vo siglo estd emergiendo una nueva rama de la astronomfia, la astronomia de
ondas gravitatorias, dedicada al estudio de objetos astrofisicos y cosmolégicos
mediante la deteccién de las ondas gravitatorias emitidas por estos.

Para que un objeto astrofisico emita ondas gravitatorias observables desde
la Tierra, éste debe ser un objeto compacto con fuertes campos gravitatorios
que ademads tengan variaciones temporales. El estudio de las ondas gravita-
torias emitidas es una herramienta excelente para observar las partes maés
reconditas de dichos objetos astrofisicos. Por ejemplo, se podra observar el co-
lapso de nicleo estelares en la formacién de supernovas o el vecindario de agu-
jeros negros rodeados de discos de acrecimiento. Estas regiones son invisibles a
cualquier otra observacién del espectro electromagnético. También se podran
detectar las perturbaciones del espacio tiempo producidas por el choque de
dos agujeros negros, que de otra manera serian invisibles. Adem4s serd posible
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realizar observaciones complementarias de fuentes conocidas de radiacién elec-
tromagnética, como escenarios que involucren estrellas de neutrones o enanas
blancas. Estas observaciones nos ayudaran a constrefiir mejor los pardmetros
de estos sistemas (masa, momento angular, tamano, ecuacién de estado de la
materia nuclear, etc). Para impulsar el crecimiento de esta nueva rama de la
astronomia es indispensable un desarrollo en paralelo de detectores y modelado
de fuentes.

A lo largo de las dos dltimas décadas han sido disefiados un gran nimero de
detectores de ondas gravitatorias. Se han construido gigantescas instalaciones
con detectores basados en interferometria liaser en Europa (VIRGO, EGO),
EE.UU. (LIGO) y Japén (TAMA), para detectar ondas gravitatorias en el
rango de los kHz, y extensiones de estos interferémetros ya estan planeadas
(Advanced LIGO en EE.UU., LCGT en Japén y EURO en Europa). También
interferémetros en el espacio (la colaboracién ESA /NASA llamada LISA) para
observar fuentes emitiendo en el rango de los mHz. Por otro lado, el modelado
de fuentes es necesario para establecer que objetos astrofisicos y cosmolégicos
serdn detectables en términos de amplitud de la sefial y rango de frecuencias,
y reperrcute en el disefio de los actuales y futuros detectores. Pero los modelos
tedricos no sélo son ttiles para el diseno del detector, sino también son una
parte esencial del proceso de deteccién. El bajo nivel sefial/ruido de los detec-
tores convierte la deteccién en un reto, que sélo podra ser superado si se usan
técnicas especificas como el filtrado por reconocimiento de patrones (matched
filtering). En estas técnicas, las plantillas de ondas gravitatorias proporciona-
das por el modelado de fuentes, son cruciales para ayudar en el andlisis de
datos. Ademds, se necesitan modelos tedricos para interpretar dichas ondas y
extraer su contenido fisico, que es al fin y al cabo la meta final de la astronomia
de ondas gravitatorias.

Uno de los escenarios astrofisicos méas interesantes donde buscar ondas gra-
vitatorias es el colapso gravitatorio de los nticleos de hierro en estrellas masivas
(M > 8Mg). El objeto resultante, una proto-estrella de neutrones (PNS) o un
agujero negro rodeado por un disco de acrecimiento, es la base de los mo-
delos de algunos de los fendmenos observables mas energéticos del universo:
supernovas tipo Ib/Ic/II, erupciones de rayos gamma (GRB) y formacién de
chorros. Todas estas son fuentes prometedoras de ondas gravitatorias, y su
investigacion tedrica es de gran interés para entender las implicaciones de las
observaciones. El objetivo principal de esta tesis es el estudio de la radiacién
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gravitatoria producida en un escenario en particular, el colapso gravitatorio
de nicleos estelares en rotacién y la posterior evolucién de las PNS que se
forman.

El paradigma del colapso de nicleos estelares

Actualmente, el paradigma aceptado para explicar las supernovas de tipo
Ib/Ic/II es el del colapso de nicleos estelares. Aunque todavia quedan pre-
guntas por resolver, el progreso cientifico realizado en las dltimas décadas ha
llevado a un amplio consenso sobre como se produce una supernova. A conti-
nuacién describiremos brevemente el actual conocimiento sobre el mencionado
paradigma del colapso de nicleos, remitiendo al lector interesado a Arnett
et al. (1989); Bethe (1990); Fryer & New (2003); Kotake et al. (2005a) para
mas informacién.

Una estrella es un objeto en el que la autogravedad y los gradientes de
presién alcanzan un equilibrio. Las altas temperaturas y presiones de su interior
inician una cadena de reacciones termonucleares empezando por el combustible
original de la estrella, el hidrégeno. A lo largo de la evolucién de una estrella
masiva (entre 9Mg y 30Mg), el hidrégeno se transforma en helio, el helio en
carbono y asf consecutivamente, de modo que en unos diez millones de afios se
forma una estructura en capas en la que los diferentes productos resultantes de
los distintos procesos de fusién nuclear quedan estratificados. El 1iltimo eslabén
de la cadena de reacciones termina con la formacién de elementos del grupo
del hierro-niquel, que son estables, ya que la energia de ligadura por nucleén
alcanza su valor minimo. Estos elementos se acumulan en el centro a medida
que la capa de silicio que los rodea va consumiéndose, formando el nicleo de
hierro. Cuando el nicleo alcanza la denominada masa de Chandrasekhar, con
un valor de ~ 1,5M ¢, la presién de electrones relativistas que sostiene al niicleo
no puede contrarrestar su autogravedad y el colapso es inevitable.

Dos procesos inducen dicho colapso. En primer lugar, las capturas electréni-
cas por los nicleos reducen la presién de electrones al mismo tiempo que los
neutrinos emitidos se llevan energia del nicleo. En segundo lugar, para densi-
dades superiores a 10!° g cm™—3, la fotodesintegracién de niicleos de hierro en
helio (que es un proceso endotérmico) enfria el nicleo. Al principio del colapso
el nicleo de hierro tiene un radio de unos miles de kilémetros, una densidad
central de p ~ 10'° g cm™3, y una temperatura de T ~ 10'° K. Parte de la
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energia del campo gravitatorio del nicleo se libera en forma de energia cinética
lo que acelera la materia que cae a una fraccién significativa de la velocidad
de la luz. A densidades superiores a ~ 10'2 g cm™3, los neutrinos quedan
atrapados y la composicién alcanza rapidamente el equilibrio beta al exceder
los ~ 10'3 g cm™2. Como los neutrinos atrapados sélo escapan en escalas de
tiempo de su difusién (mayores que la escala de tiempo del colapso), no se
pierde més energfa por neutrinos, y el colapso procede casi adiabaticamente.
Mientras la densidad aumenta, el equilibrio beta se desplaza hacia estados de
materia rica en neutrones. Al llegar a densidades del orden de la densidad de
la materia nuclear, p, ~ 2x 10 g cm 3, la fuerza nuclear entre nucleones em-
pieza a jugar un papel predominante como fuente fundamental de presién. Si
la masa del niicleo es suficientemente baja para no colapsar a un agujero negro,
la caida de la parte interior se detiene a unos ~ 10 km, rebotando y formando
una fuerte onda de choque que se propaga hacia el exterior contra el material
que todavia cae. Mientras ésta se propaga, la fotodisociacion de nicleos de hie-
rro transforman la energia cinética del choque en energia térmica, y, cuando
la onda de choque sale de la neutrino-esfera, los neutrinos abandonan libre-
mente el choque llevdndose parte de la energia. Como consecuencia la onda
de choque se detiene a unos 100 km del centro unas decenas de milisegundos
después. Para entonces, una proto-estrella de neutrones caliente se ha formado
en los ~ 30 km interiores con una enorme cantidad de neutrinos atrapados
en el interior. Las escalas de tiempo de difusién de los neutrinos se vuelven
importantes, y una gran cantidad de pares neutrino-antineutrino son emitidos,
llevandose consigo energia de la PNS y enfridndola para formar una estrella
de neutrones (NS) compacta de ~ 10 km. Una pequeia fraccién de la inmensa
energia que transportan los neutrinos emitidos se deposita detrds del choque,
el cual revive, y se produce una explosién supernova retardada. Al alcanzar
la explosién regiones de menor densidad, el choque se acelera y destruye la
estrella entera llevandose la mayor parte de la masa. Unicamente queda una
pequeiia fraccién de ~ 1 Mg en el centro formando una estrella de neutrones.

Ondas gravitatorias del colapso de nitcleos estelares

La radiacién electromagnética y los neutrinos no son las dnicas emisiones de
una explosién supernova. El movimiento global de la estrella colapsante, que
rebota a densidades en torno a las de la materia nuclear, y las asimetrias
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del ntcleo, producen un destello (burst) de ondas gravitatorias. Segin como
gire la estrella progenitora y como proceda el colapso, las ondas gravitatorias
emitidas son de distinto tipo (Zwerger & Miiller 1997). Aunque las amplitudes
estimadas para progenitores realistas fuera de nuestra galaxia son pequefias
para ser detectadas con los actuales detectores de ondas gravitatorias (Miiller
et al. 2004), otros procesos pueden producir ondas gravitatorias més intensas
tras el colapso. En particular, los movimientos convectivos tras la onda de
choque producidos por la deposicién de la energia de los neutrinos emitidos en
la PNS, pueden dar lugar a amplitudes mayores incluso para nicleos girando
lentamente (Miiller et al. 2004).

Ademais, la proto-estrella de neutrones es en si misma una fuente prome-
tedora de ondas gravitatorias detectables. Para ritmos de rotacién y grados
de rotacién diferencial suficientemente altos se desarrollan inestabilidades no
axisimétricas en escalas de tiempo dindmicas ' como la llamada inestabilidad
de tipo barra (Tohline et al. 1985; Shibata et al. 2002), que produce fuertes
sefales de ondas gravitatorias. Cuando la estrella de neutrones se ha enfriado
hasta alcanzar unos 10!° K, puede estar sujeta a la denominada inestabili-
dad de Chandrasekhar-Friedman-Schutz (Chandrasekhar 1970; Friedman &
Schutz 1978) y se convierte en una importante fuente de ondas gravitatorias
(constltese Stergioulas 2003, para més informacién). Como consecuencia, un
modelado en detalle de la transformacién de la PNS caliente a la NS fria es
esencial para poder realizar predicciones en la emisién de ondas gravitatorias
de estrellas de neutrones. Especial atencién hay que dedicar a los ritmos de
rotacién, la distribucién de momento angular y la estructura e intensidad del
campo magnético.

Fisica involucrada en el colapso

Para poder estudiar apropiadamente el colapso gravitatorio de nicleos de hie-
rro y las ondas gravitatorias emitidas por éste, se deben incluir una cierta
cantidad de ingredientes fisicos. Aqui resumimos los mds importantes a tener
en cuenta:

1Estos valores, sin embargo, pueden no ser realistas, ya que no se conoce un camino
evolutivo que lleve a la creacién de PNS con los ritmos de rotacién necesarios.
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Relatividad general: La masa involucrada en el colapso es del orden
de ~ 1Mg. En la etapa final del colapso, esta masa se halla encerrada
en la PNS, con un radio de unas decenas de kilémetros. Para estas confi-
guraciones tan compactas, los efectos de la relatividad general empiezan
a aparecer, y la gravedad Newtoniana no es suficiente para describir el
equilibrio y la dindmica del sistema (ver por ejemplo el Cap. 29 de Misner
et al. 1973).

Ecuacién de estado de la materia nuclear: Se necesita una descrip-
cion termodindmica de la materia nuclear para poder calcular correcta-
mente la dindmica del proceso entero, cémo se produce el rebote y la
configuracién final de la PNS (vease Glendenning 1997; [Prakash et al.
2001, para més informacién).

Transporte de neutrinos: Este es un aspecto crucial en el modelado
para ser capaces de describir el mecanismo de la explosién retardada,
asi como el enfriamiento de la recién formada PNS que da lugar a la NS
final (ver Janka et al.|2005, y referencias allf citadas).

Campos magnéticos: Algunas observaciones sugieren la presencia de
campos magnéticos en el escenario de colapso y en los objetos resultantes.
El descubrimiento de pulsares de rayos X anémalos y Soft Gamma-Ray
Repeaters, interpretados como estrellas de neutrones fuertemente magne-
tizadas (magnetares) (Duncan & Thompson |1992; Thompson & Duncan
1996; Kouveliotou et al. 1999), hace que el estudio del colapso magneti-
zado sea de gran interés.

Otros mecanismos de transporte de energia: Probablemente exis-
ten otros mecanismos de transporte de energia dentro del nicleo que
juegan un papel importante en la dindmica del colapso, y no deben ser
despreciados. Algunos de estos son la conveccidn, la turbulencia, el trans-
porte radiativo y la difusién por viscosidad.

Conviene enfatizar que la inclusién de todos estos efectos en un cédigo

numérico no se puede acometer hoy en dia, principalmente debido a los costes
computacionales prohibitivos tanto en memoria como en tiempo de calculo. Por
lo tanto se deben hacer algunas simplificaciones en las simulaciones requeridas
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para describir la dindmica altamente no lineal que involucra el colapso de
nicleos estelares.

Marco tedrico

El marco general utilizado en la presente tesis es el de la relatividad gene-
ral en el formalismo 3 + 1 (Lichnerowicz 1944; |Choquet-Bruhat 1952). Dicho
formalismo, descrito en el capitulo 2, nos permite foliar el espacio-tiempo en
una serie de hipersuperficies espaciales sin interseccion, parametrizadas por el
tiempo propio. De este modo, cada hipersuperficie contiene el espacio tridi-
mensional completo para cierto valor del tiempo propio. Este tipo de foliacién
del espacio-tiempo nos permite tratar el problema de la evolucién de las ecua-
ciones de Einstein como un problema de condiciones iniciales, en el que a partir
del contenido de energia y materia en una hipersuperficie dada podemos evo-
lucionar el sistema en el tiempo.

Esta descomposicién todavia deja algunos pardmetros libres que fijar. De-
bemos especificar como serdn las coordenadas que describen las hipersuperficies
espaciales, y el modo particular en que se folia el espacio-tiempo (el slicing).
Para ello debemos imponer cuatro condiciones de gauge. La eleccion de éstas
es crucial para la correcta resolucién del problema, muy especialmente si esto
implica la resolucién numérica de las ecuaciones de Einstein. Por otro lado,
la resolucién del sistema completo de ecuaciones de Einstein es, en general,
un problema de gran dificultad. Por ello puede ser conveniente, al menos en
algunos escenarios, realizar alguna aproximacién que facilite la resolucién de
las ecuaciones, sin eliminar ningin elemento imprescindible.

En el capitulo 3 se describen las ecuaciones que gobiernan la dindmica de
fluidos y de campos electromagnéticos en el formalismo 3+1 de la relatividad
general. Estas ecuaciones se expresan de manera adecuada para su resolucién
numérica. Asumimos que el fluido que modelamos es tanto un fluido perfecto
(sin viscosidad) como un conductor perfecto (condicién de la magnetohidro-
dindmica ideal). Bajo estas condiciones las ecuaciones se simplifican notable-
mente.

En el capitulo 5 presentamos una nueva aproximacién de las ecuaciones
de Einstein del campo gravitatorio, a la cual llamamos CFC+. Esta aproxi-
macién estad basada en las correcciones a segundo orden en el desarrollo post-
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Newtoniano de la métrica conformemente plana, i.e. CFC+ representa una
extensién de la aproximacién CFC (o de Isenberg—Wilson-Mathews) descrita
en el capitulo 4. La derivacién del sistema extendido de ecuaciones se realiza
con gran detalle, asi como las condiciones de contorno que es necesario apli-
car para resolver numéricamente el sistema. Todas las ecuaciones de CFC+
son elipticas, ya que a segundo orden post-Newtoniano el cardcter hiperbdli-
co de las ecuaciones de Einstein desaparece. Ademds notamos que el hecho
de resolver ecuaciones elipticas asegura la estabilidad numérica de la solucién
y evita algunos problemas numéricos que pueden aparecer en evoluciones de
largo término de sistemas con gravedad intensa (agujeros negros) al usar la
formulacién 3 + 1 de la relatividad general. Por otro lado, el precio que debe
pagarse por usar la aproximacion CFC+ es la ausencia de la reaccién de la
radiacién gravitatoria en la dindmica, responsable de la extraccién de energia
y momento angular del sistema transportados por las ondas gravitatorias. Sin
embargo en los escenarios en que utilizamos esta aproximacion, este efecto pue-
de considerarse despreciable ya que las pérdidas de energia son insignificantes
en escalas de tiempo dinamicas.

La extraccién de las ondas gravitatorias se describe en el capitulo 6, y
se realiza mediante la férmula cuadrupolar de Einstein-Landau-Lifshitz. Esta
férmula incorpora el término dominante en la aproximacién de velocidades
bajas, y se obtiene realizando un desarrollo multipolar de la métrica en el
infinito futuro nulo, ademds de un desarrollo post-Newtoniano de las fuentes
a primer orden (Newtoniano). También se obtiene una relacién entre la onda
gravitatoria dada por la férmula cuadrupolar y el comportamiento asintético
de la métrica en la aproximacién CFC+.

Métodos numéricos

El capitulo 7 estd dedicado a la descripcién de los métodos numéricos em-
pleados en la resolucién de las ecuaciones de la (magneto-)hidrodindmica en
relatividad general. La resolucién de estas ecuaciones debe realizarse de manera
que se respeten las leyes de conservacién que representan (energia, momento
y ndmero de bariones). Para ello utilizamos métodos de alta resolucién de
captura de choques (HRSC de su acrnimo en inglés) (ver por ejemplo Leveque
1990; Toro 1999; Mart{ & Miiller 2002; Font 2003), que permiten resolver siste-
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mas hiperbdlicos de leyes de conservacién, utilizando un método que describe
correctamente la formacién y propagacién de ondas de choque.

El caso de las ecuaciones de la magneto-hidrodindmica ideal se trata aparte,
ya que la ecuacién adicional que se introduce (ecuacién de induccién) necesita
también un tratamiento especial. Para que la divergencia del campo magnético
se mantenga cero durante la evolucién, es decir se conserve el flujo magnético,
usamos el método fluz-CT (Evans & Hawley 1988). En particular, utilizamos
el esquema de/Antén et al. (2006)), en el que se hace uso de una reconstruccién
lineal de las variables primitivas y esquemas centrados para el calculo de los
flujos numéricos (Kurganov & Tadmor 2000).

El capitulo 8 est4 dedicado a los métodos numéricos utilizados para resolver
las ecuaciones de la métrica, ya sea en la aproximacién CFC o en su extensién
CFC+. Todas las ecuaciones con las que nos encontramos son de tipo eliptico,
y se pueden expresar como pseudo-ecuaciones de Poisson. Los diferentes méto-
dos utilizados dependen de las distintas fases del célculo de la métrica CFC+.
En primer lugar se calcula el potencial Newtoniano mediante una expansion de
la parte angular de las ecuaciones en simetria axial en polinémios de Legendre
(Miiller & Steinmetz 1995; Zwerger 1995). La segunda fase consiste en calcu-
lar la parte sin traza y transversa de la 3-métrica. Este cdlculo se reduce a la
resolucion de sistemas lineales de ecuaciones de Poisson, que se realiza median-
te la inversion directa del sistema discretizado expresado en forma matricial.
La inversién del sistema se realiza por medio de la descomposicién LU, que
aumenta la eficiencia del esquema numérico utilizado para estas ecuaciones.
Por dltimo se resuelve el sistema CFC modificado por las correcciones 2PN de
CFC+, que consiste en cinco ecuaciones elipticas no lineales acopladas. Para
cada ecuacion utilizamos el mismo resolvedor de Poisson que en el caso del
potencial Newtoniano, realizando una iteracién de punto fijo hasta obtener la
convergencia.
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Conclusiones

CFC+: dindmica del colapso y radiaciéon gravitatoria me-
joradas.

En el capitulo 9 de esta tesis se realizan tests y simulaciones de colapso de
nicleos estelares en rotacién utilizando la nueva aproximacién CFC+, presen-
tada en el capitulo 5. Se realizan tests para comprobar su aplicabilidad a la
simulacién del espacio-tiempo de estrellas de neutrones en rotacién, ya sea
en equilibrio o para las configuraciones resultantes del colapso gravitatorio de
nicleos estelares.

También comparamos la nueva aproximacién CFC+ con la aproximacién
CFC usada por Dimmelmeier et al. (2002a,b) en dos escenarios diferentes, os-
cilaciones de estrellas de neutrones y colapso de nicleos estelares a NS. En el
caso de las NS pulsantes, no hemos encontrado ninguna diferencia en el célculo
de las frecuencias de los modos cuasi-normales de dichos objetos, incluso en
las situaciones més extremas (i.e. con rotacién Kepleriana, cercana al limite
de pérdida de masa por rotacién). También hemos podido comparar nuestros
resultados directamente con simulaciones en relatividad general sin aproxima-
ciones, obteniendo de nuevo un acuerdo excelente. Nuestras simulaciones de
colapso de nicleos en rotacién cubren las distintas tipologias de colapso estu-
diadas por Dimmelmeier et al. (2002b), incluyendo ademds un caso extremo de
un nucleo con fuerte rotacién diferencial y una estructura casi toroidal. De nue-
vo, no se han encontrado diferencias significativas entre las dos aproximaciones
usadas. Por tanto podemos concluir que las correcciones a segundo orden post-
Newtoniano de la métrica CFC no mejoran significativamente los resultados
de la dindmica del colapso de nicleos estelares a estrellas de neutrones, ni la
dinamica de las estrellas de neutrones en si.

En cuanto a la extraccién de la radiacién gravitatoria tampoco hemos ob-
servado diferencias sustanciales entre CFC y CFC+. La comparacién ha sido
realizada usando la formula cuadrupolar de Einstein-Landau-Lifshitz, emplea-
da cominmente en la literatura para extraer las formas de onda. Ademés
hemos calculado las ondas gravitatorias directamente de las componentes de
la métrica CFC+. Aunque el célculo de formas de onda de este dltimo mo-
do no puede considerarse un método independiente de calculo de las ondas,
proporciona un test de consistencia de la aproximacién CFC+ que sirve para
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validar el esquema numérico utilizado para calcular la métrica.

La principal conclusién del capitulo 9 es la confirmacién de la aproxima-
cién CFC como una alternativa sumamente 1til a las ecuaciones de Einstein
completas en escenarios axisimétricos que involucren estrellas de neutrones en
rotacién, en equilibrio y como estado final de un colapso. Estos descubrimien-
tos estan fundamentados por dos hechos: en primer lugar, hemos demostrado
que las correcciones de segundo orden post-Newtoniano no juegan un papel
importante ni en la dindmica ni en la forma de las ondas gravitatorias emiti-
das en el colapso. Este hecho sugiere que correcciones de orden superior serdn
completamente insignificantes, al menos en escalas de tiempo dindmicas. En
segundo lugar, la comparacién directa de la aproximacién CFC con simula-
ciones en relatividad general ha sido recientemente realizada por Shibata &
Sekiguchi (2004) en el contexto de simulaciones de colapso de ntcleos estelares
en simetria axial. De nuevo, las diferencias encontradas tanto en la dindmica
como en la forma de las ondas no son significativas, lo que resalta la aplicabili-
dad de CFC (y CFC+) para realizar simulaciones precisas de estos escenarios
sin la necesidad de resolver el sistema completo de ecuaciones de Einstein.

Colapso magnetizado

En el capitulo 10 se presentan simulaciones del colapso de nicleos estela-
res magnetizados en rotacion, asi como los tests que validan la aproximacién
numérica usada para resolver las ecuaciones de la magneto-hidrodidmica ideal
en relatividad general.

Se ha disefiado un método para calcular configuraciones estacionarias de es-
trellas débilmente magnetizadas en relatividad general, ya sea con componente
toroidal o poloidal (o ambas) del campo magnético. Se utiliza la aproximacién
de campo pasivo (o campo prueba) para los modelos iniciales, en los cuales la
presién magnética es varios 6rdenes de magnitud menor que la presién (térmi-
ca) del fluido.

También se han realizado tests para comprobar la precisién y las propieda-
des de convergencia de la extensiéon “magnetizada”de nuestro c6digo numérico.
Como resultado se encuentra un orden de convergencia mayor de uno en el
campo magnético en todos los tests realizados. En los casos estacionarios el
orden de convergencia que se obtiene es superior a dos. Estos resultados son
consistentes con el segundo orden, espacial y temporal, del esquema numérico
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utilizado, inicamente reducido a primer orden en los choques. Se establece la
resolucion necesaria para poder evolucionar correctamente el campo magnéti-
co en una simulacién de colapso de nicleos estelares. Los errores en todos los
casos en los que la solucién teédrica es conocida estdn por debajo del 0,1 %,
excepto en los choques, que son correctamente capturados en un par de celdas
numéricas gracias al uso de esquemas HRSC.

En cuanto a las simulaciones de colapso de ntcleos magnetizados en la
aproximaciéon CFC, se han considerado casos con campo magnético puramen-
te poloidal al inicio (serie D3MO0) y puramente toroidal (serie T3MO), en la
aproximacién de campo pasivo. Los modelos D3MO son una extensién a relati-
vidad general de algunos de los modelos considerados por Obergaulinger et al.
(2005) en gravedad Newtoniana y magneto-hidrodindmica ideal. Nuestra in-
tencién es comparar la dindmica y las ondas gravitatorias con estos resultados
previos. No se encuentran diferencias cualitativas en los modelos estudiados,
aunque la magnitud del campo magnético en el rebote y después de éste es en
el caso CFC consistentemente menor (50 — 80 %) que en el caso Newtoniano.

En cada serie de modelos, la amplificacién del campo magnético procede
de un modo distinto. Mientras que en los modelos D3MO el enrollamiento de
las lineas de campo poloidales en lineas toroidales, debido a la rotacién dife-
rencial (dinamo-Q), es el mecanismo de amplificacién principal en el colapso,
en los modelos T3MO el campo magnético se amplifica inicamente debido a la
compresién radial, ya que la componente poloidal del campo estd ausente en
la evolucién. Encontramos pues que para los modelos estudiados, la dinamo-{2
es mucho més eficiente amplificando el campo magnético que la compresién
radial. Por lo tanto, la componente toroidal del campo magnético al final de
la evolucién es més débil en los modelos T3MO que en los modelos D3MO, en
los cuales no habia tal componente inicialmente.

Al final de nuestras simulaciones las variables del fluido alcanzan un esta-
do de cuasi-equilibrio. Para los modelos D3MO, la proto-estrella de neutrones
formada tiene una estructura de nicleo/envoltura. Dentro del niicleo, donde la
densidad de materia nuclear ha sido alcanzada, la componente dominante del
campo magnético es la poloidal, y los perfiles de rotacién son practicamente
planos, i.e. el nicleo de la PNS gira rigidamente. Por otro lado, la envoltura
que lo rodea gira diferencialmente, y por lo tanto la componente toroidal del
campo magnético domina en esta regiéon debido al mecanismo de la dinamo-Q.
Este efecto produce un crecimiento lineal sostenido de la componente toroidal
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después del rebote. Si no hubieran otros procesos, el campo magnético se satu-
raria en ~ 1 s en valores de B¥ ~ 10'® G. En los modelos T3MO la dinamo-Q
no esté activa ya que no hay componente poloidal del campo magnético. Por
lo tanto, al alcanzar la PNS el estado de cuasi-equilibrio, el campo magnético
permanece estacionario.

Otros mecanismos de amplificacién del campo pueden actuar si no se consi-
dera la aproximacién de campo pasivo o se elimina la condicién de axisimetria.
Se ha estimado el efecto del mecanismo de amplificacién que probablemente
sea dominante, es decir, la inestabilidad magneto-rotacional (MRI). Encontra-
mos que durante el colapso, la escala temporal tipica del modo que crece mas
rapidamente en la MRI es de aproximadamente 1 s, y por tanto no afectard a
la fase de colapso. Sin embargo, tras el rebote, hay dos regiones susceptibles
de desarrollar la MRI: la regién tras la onda de choque y la regién convectiva
que rodea la, PNS. En ambas regiones la escala de tiempo estimada de la MRI,
~ 1 ms, es del orden de la escala de tiempo dindmica. En simulaciones sin
la aproximacion de campo pasivo y con resolucion suficientemente grande, se
espera que la MRI se desarrolle en estas regiones y domine su dindmica en
unos pocos ms.

Secuencias evolutivas de proto-estrellas de neutrones en
rotacién

En el capitulo 11 se trata el problema de la evolucién a largo término de proto-
estrellas de neutrones en rotacién, construyendo secuencias evolutivas de con-
figuraciones estacionarias en axisimetria y relatividad general. La estructura
termodindmica y la evolucién de estas secuencias han sido extrapoladas de si-
mulaciones con simetria esférica que incluian transporte de neutrinos. Aunque
esto es una simplificaciéon del problema, nos da una visién interesante sobre
como evolucionan las diferentes cantidades relevantes cuando la PNS pierde su
contenido leptdénico y su exceso de energia de ligadura, contrayéndose. Ademas,
encontramos que las estimaciones de luminosidad no son muy diferentes de lo
que se esperaria.

Se ha realizado un esfuerzo especial para entender en que lugar del es-
pacio de pardametros se encontraria un caso realista. La mayor incertidumbre
concierne a la ley de rotacién de la PNS al nacer. Analizando resultados de
simulaciones de colapso de nicleos estelares, parece que la escala tipica de



xxii

variacién de la velocidad angular se situa sobre los 10 km, y que la conserva-
cién de momento angular durante el colapso de un nicleo estelar (inicialmen-
te girando rigidamente) no parece permitir velocidades angulares que varien
en escalas espaciales menores que algunos km. En recientes simulaciones se
muestra la presencia de importantes corrientes meridionales y turbulencias,
pero poco mas se conoce sobre la distribucién de momento angular. Para sim-
plificar, nos restringimos al caso estacionario. Esto implica una distribucién
cuasi-cilindrica (con desviaciones debidas a efectos relativistas) de la veloci-
dad angular. Este estado sélo se puede alcanzar tras varios giros de la PNS,
cuando ha tenido suficiente tiempo para relajarse. Por otro lado, debe tenerse
en cuenta que en los primeros 0.5 s el sistema estd lejos de ser estacionario,
pero después la evolucién se produce de modo cuasi-estacionario, excepto por
movimientos convectivos de baja velocidad. De nuestro estudio de secuencias
cuasi-estacionarias podemos deducir una serie de resultados cualitativos:

i) Para cada instante de la evolucidn, estrellas girando con altos grados de
rotacién diferencial pueden tener velocidades angulares en el centro de 5 a 10
veces mayores, y sobre un 50 % mds de momento angular. El momento angular
especifico, J/M, méximo varia entre (1 —2) GMg/c = (0,5 — 1) x 106 ¢cm? /s,
dependiendo del grado de rotacion diferencial.

ii) El valor méximo del cociente de la energia cinética de rotacién y la
energia potencial, T'/|W |, que se obtiene en el caso de rotacién diferencial es de
0.2, mientras que para rotacién rigida es ~ 0,11. Asi pues, PNS con rotacién
diferencial pueden desarrollar la inestabilidad CFS, que aparece a ~ 0,14,
y también la inestabilidad discutida recientemente para valores pequefios de
T/|W| (Shibata et al. 2002, 2003; Watts et al. 2003).

iii) M4s interesante es el hecho de que se encuentran varias situaciones en las
que, incluso si el modelo inicial estd por debajo del valor critico de T'/|W |, como
la estrella se contrae en la escala de difusién de los neutrions (5-10 s), se acelera
entrando en la ventana de inestabilidad. Un efecto observacional de este efecto
podia ser un retraso de unos pocos segundos entre el pico de emisién de los
neutrinos, y el maximo de ondas gravitatorias en una supernova galactica. Esto
depende de la cantidad inicial de momento angular, que es aproximadamente
igual al momento angular del nicleo de hierro del progenitor. Calculos recientes
de evolucién estelar sugieren que el momento angular especifico del nicleo
(~ 1,7Mg) de una estrella de 15M, puede ser tan alto como 3 x 10'¢ cm?
s~!, si se desprecia el frenado magnético, o 102 cm? s~! incluyendo la tensién
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magnética en la evolucién (Heger et al. 2004). Estos valores corresponden a
J/M = (0,2 —6) GMg/c. Si el momento angular es alto (J/M > 2), las
fuerzas centrifugas pararian el colapso antes de la formacién de la PNS. Valores
intermedios (J/M = 1) pueden llevar a la formacién de una PNS en rotacién
rapida que entra en la regién de inestabilidad varios segundos después de su
nacimiento. Si el frenado magnético es muy eficiente durante la evolucién de
la estrella masiva, J/M < 0,5, se formard la PNS tras el colapso sin alcanzar
valores extremos de velocidad angular y del cociente T'/|W|.

La continuacién natural de este trabajo es incluir mecanismos posibles de
transporte de momento angular entre las diferentes capas de la estrella, lo que
puede involucrar el transporte de neutrinos, el transporte debido a turbulen-
cias, campos magnéticos, viscosidad por neutrinos, movimientos convectivos
y/o pérdidas de momento angular debidas a emisién de ondas gravitatorias.
A menos que la estrella nazca con casi la maxima velocidad angular posible,
algunos o todos estos mecanismos disipativos pueden modificar nuestra vision
actual de la evolucién de una PNS.

La inestabilidad tipo barra para bajos 7/|WW| en estrellas
de neutrones

Finalmente en el capitulo 12 se presentan simulaciones AMR, (Adaptative Mesh
Refinement) de alta resolucién de la inestabilidad tipo barra para bajos T'/|W|,
de estrellas de neutrones en rotacién con grados extremos de rotacién diferen-
cial. Nuestra motivacién principal es revisitar las simulaciones de Shibata et al.
(2002), comprobando cudn sensible es el desarrollo de esta inestabilidad a efec-
tos numéricos como la resolucién de la malla. Resaltamos la importancia de
un correcto tratamiento de los delicados aspectos numéricos que pueden afec-
tar a las simulaciones en tres dimensiones usando cédigos basados en mallas
cartesianas, en particular la falta de resolucidn, el tratamiento de la atmésfera
numérica que rodea a la estrella, la correccién del desplazamiento del centro
de masas y las propiedades de conservacién de masa y momento lineal del es-
quema numérico. Las simulaciones revelan la compleja morfologia involucrada
en la dindmica no lineal de la inestabilidad. Encontramos que en la fase no
lineal de la evolucién, la excitacién de modos tipo Kelvin-Helmholtz del flui-
do en el exterior del radio de corrotacién de los modelos estelares estudiados,
lleva a la saturacién de la inestabilidad de tipo barra. Mientras que nuestro
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trabajo confirma las tendencias generales mostradas en el trabajo de Shibata
et al. (2002), la resolucién usada para realizar las simulaciones puede jugar
un papel relevante en el comportamiento a largo plazo de la inestabilidad y
en la dindmica no-lineal de la estrella en rotacién, que sélo se hace patente
en un modelo especifico de nuestra seleccién (el modelo D2). Estos resultados
tienen implicaciones en las amplitudes alcanzables por las ondas gravitatorias
asociadas.
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Chapter 1

Introduction

1.1 Gravitational wave astronomy

At the beginning of the twentieth century, Einstein’s theory of General Rela-
tivity revolutionized our way of understanding the physical world by providing
a new paradigm to describe not only the gravitation but also spacetime itself.
Nowadays this theory is deeply established, and is in the grounds of most fea-
sible models in cosmology and astrophysics. However, since relativity was first
formulated, not all its predictions have been confirmed by observations. A
remarkable example is the direct measurement of gravitational waves (GWs).
At the dawn of the new century, a whole new branch of astronomy, gravita-
tional wave astronomy, is emerging, devoted to the study of astrophysical and
cosmological objects through the detection of the GWs they emit.

Detectable GWs are produced at strong and dynamical gravitational com-
pact sources. They constitute an excellent tool for observing the most elu-
sive parts of astrophysical objects, their deepest regions obscured to elec-
tromagnetic observations, like collapsing cores of supernovae or the neigh-
borhood of black holes surrounded by infalling material. The perturbations
of spacetime produced by the merging of black holes, invisible otherwise,
will be amenable to detection, and complementary observations of known
electromagnetic-radiating sources will be possible, as scenarios involving neu-
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tron stars or white dwarfs. These observations will help us to better constrain
parameters of these systems (mass, angular momentum, size, equation of state
of nuclear matter). To boost the growth of this new branch of astronomy, a
parallel and a tight development of detectors and source modelling appears
indispensable.

During the last two decades a number of GW detectors have been de-
signed. Huge laser interferometers have been built in Europe (VIRGO, GEO),
USA (LIGO), and Japan (TAMA) to detect GWs in the kHz band. Exten-
sions of these interferometers are planned (Advanced LIGO in USA, LCGT
in Japan, and EURO in Europe), as well as a space-based interferometer (the
ESA/NASA collaboration LISA) to observe in the mHz band. Source mod-
elling, on the other hand, is necessary to establish which astrophysical and
cosmological objects will be detectable in terms of both, amplitude of the sig-
nal and frequency range, as well as to provide feedback in the design of current
and future detectors. But theoretical models are not only useful for the detec-
tor design, they are also an essential part of the detection process. The low
signal-to-noise level of the detectors place challenging obstacles for successful
detection, which observers can only pave away by using, whenever possible,
specific techniques based on matched filtering. In such techniques GW tem-
plates provided by source modelling are crucial to help the data analysis. In
addition, theoretical models are needed to interpret the GWs detected and to
extract their physical content, the final goal of GW astronomy.

One of the most interesting astrophysical scenarios to search for GWs is
the gravitational collapse of the inner iron cores of massive stars (M > 8Mg).
The resulting object, a hot proto-neutron star (PNS hereafter) or a black hole
surrounded by accreting material, lie at the heart of the models of some of the
most energetic observable events in the universe: type Ib/Ic/II supernovae,
gamma ray bursts (GRBs), and jet formation. These are all promising sources
of GWs, and their theoretical investigation is of paramount interest in order
to understand their observational implications. The main goal of this thesis is
the study of the gravitational radiation produced in this particular scenario,
the gravitational collapse of rotating stellar cores, and during the dynamical
evolution of the PNS formed.
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1.2 The core collapse paradigm

Nowadays, the accepted paradigm to explain type Ib/Ic/II supernovae is the
core collapse mechanism. Although a number of questions still await to be
addressed, the scientific progress achieved in the last decades have led to a
wide consensus of how a supernova is produced. In the following we briefly
describe the current understanding of the core collapse paradigm, addressing
the interested reader to Arnett et al. (1989); Bethe (1990); Fryer & New (2003);
Kotake et al. (2005a); Woosley & Janka (2005) for comprehensive reviews on
the subject.

A star is an object in which the self-gravity and the pressure gradients
struggle to reach an equilibrium. The high temperature and pressure of its
interior ignites a chain of thermonuclear reactions beginning with the original
fuel of the star, the hydrogen. Along the evolution of a massive star (between
9M and 30Mg), the hydrogen is burned into helium, the helium into carbon
and so on, forming in about ten million years a shell structure in which the
different products of the various nuclear fusion processes are stratified. The last
link in the chain ends with the formation of elements of the iron-nickel group,
which are stable, as the nuclear binding energy reaches the minimum. These
elements can not be burned any more and accumulate at the center in the so-
called iron core. The iron core is fed by the silicon-burning shell surrounding
it, and it grows until the so-called Chandrasekhar mass is reached. For such
mass, of about 1.5M¢, the degenerate relativistic electron pressure sustaining
the iron core cannot counteract its self-gravity any longer and the collapse is
inevitable.

Two processes induce the collapse. First, electron captures by nuclei reduce
the electron pressure while the neutrinos produced carry away energy from the
core. Second, for densities above 10'® g cm~3, photodisintegration of the iron
nuclei into helium (which is an endothermic process), cools the core. At the
beginning of the collapse the iron core has a radius of about a few 1000 km,
a central density of p ~ 10'° g em™3, and a temperature of T ~ 10'° K. Part
of the gravitational binding energy of the core is released into kinetic energy
which accelerates the infalling material to a significant fraction of the speed of
light. Beyond densities of ~ 102 g cm~3 neutrinos become trapped and the
composition quickly approaches beta-equilibrium when the density exceeds ~
1013 g cm—3. As the trapped neutrinos only escape on their diffusion timescale
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(larger than the collapse timescale), no further energy losses by neutrinos are
produced, and the collapse proceeds almost adiabatically. While the density
increases beta-equilibrium shifts towards more neutron-rich matter. As the
density reaches nuclear matter density, p, ~ 2 x 10* g cm~2, nuclear forces
between nucleons begin to play a prevailing role as the fundamental source of
pressure. If the mass of the collapsing core is low enough not to undergo black
hole formation, the collapse of the inner part is stopped at about ~ 10 km,
bouncing back and forming a strong shock wave that propagates outwards
through the infalling material. As it propagates photo-dissociation of iron
nuclei transform the kinetic energy of the shock into thermal energy, and, when
the shock exits the neutrino sphere, neutrinos leave freely carrying energy from
the shock. As a consequence the shock stalls at about 100 km after a few 10 ms.
At this time a hot proto-neutron star has formed in the inner ~ 30 km, with a
huge amount of neutrinos trapped inside. Neutrino diffusion timescales become
important, and copious amounts of thermal neutrino-antineutrino pairs are
emitted, which carry away energy of the PNS and cool it to form a compact
neutron star (NS hereafter) of ~ 10 km. A small fraction of the immense energy
that leaves with the neutrinos is deposited behind the stalled shock which is
revived, and a delayed supernova explosion is produced. As the explosion
reaches lower density regions, the shock accelerates and disrupts the whole
star carrying away most of the mass. Only a fraction of about 1 Mg remains
at the center forming the neutron star. The electromagnetic radiation emitted
by the outer layers forms the observable supernova.

1.3 Gravitational waves from core collapse

Not only electromagnetic radiation and neutrinos are emitted in the supernova
explosion. The bulk motion of the collapsing star, that bounces at densities
around nuclear matter density, produces a gravitational wave burst if aspher-
ical. Depending on how the progenitor star rotates and on how the collapse
proceeds, different types of waveforms are emitted (Zwerger & Miiller |11997).
Although the estimated amplitudes for realistic progenitors are small to be de-
tectable in present-day GW detectors beyond the Galaxy (Miiller et al. 2004),
other processes can lead to stronger GWs after the collapse. In particular,
convective motions behind the shock driven by neutrinos can lead to high-
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amplitude GWs even for slowly rotating cores (Miiller et al. 2004).

In addition, the rotating PNS itself is a very promising source of detectable
GWs. For high enough rotation rates or for high degrees of differential rotation
(which may not be realistic, as there is no known evolutionary path to such fast
rotating PNS), nonaxisymmetric instabilities develop in dynamical timescales,
namely the so-called bar-mode instability (Tohline et al. 1985; Shibata et al.
2002), which produce strong GW signals. When the neutron star has cooled
to about 10'°K after its formation, it can be subject to the Chandrasekhar-
Friedman-Schutz instability (Chandrasekhar 1970; Friedman & Schutz 1978)
and it becomes an important source of gravitational waves (for a review see
Stergioulas|2003). Therefore, a detailed modelling of the transformation of the
hot PNS into a cold NS is essential in making predictions about the emission
of GWs from NS. Particular attention has to be paid to the rotation rates,
the distribution of angular momentum, and the magnetic field structure and
strength.

1.4 Physics involved in the collapse

In order to properly study the gravitational collapse of iron cores and the
emitted gravitational waves one has include a large number of physical ingre-
dients. Here, we summarize the most important ones that have to be taken
into account:

¢ General relativity: The mass involved in the core collapse is of the
order of ~ 1Mg. In the final stage of the collapse such mass is inside the
PNS, which has a radius of a few 10 km. For such compact configurations
general relativistic effect arise, and Newtonian gravity is not enough to
describe both, the equilibrium and the dynamics. (see e.g. Misner et al.
1973, Chap. 29).

¢ Equation of state for nuclear matter: A thermodynamical descrip-
tion of nuclear matter is needed in order to correctly calculate the dy-
namics of the entire process, how the bounce proceeds and the final
configuration of the PNS (see Glendenning 1997; Prakash et al. 2001, for
reviews).
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e Neutrino transport: This is a crucial aspect to include in the mod-
elling to describe the delayed explosion mechanism, and also for the
cooling of the newly formed PNS into the final NS (see Janka et al. 2005,
and references therein).

e Magnetic fields: Observations suggest that magnetic fields could play
a role in core collapse scenarios. The discovery of very asymmetric ex-
plosions (Wang et al. 1996, 2001; Leonard et al. 2001) and of Anoma-
lous X-Ray Pulsars and Soft Gamma-Ray Repeaters, interpreted as very
strongly magnetized neutron stars (magnetars) (Duncan & Thompson
1992; Thompson & Duncan 1996; Kouveliotou et al) [1999), make the
study of magnetized core collapse of outstanding interest.

e Other energy transport mechanisms: Other mechanisms to trans-
port energy inside the core do probably play a role in the dynamics of the
core collapse and should not be neglected. Some of these are convection,
turbulence, radiative transport, and diffusion by viscosity.

Needless to say, the inclusion of all such effects in a computer code is
not affordable nowadays, mainly due to the prohibitive computational cost
(both in terms of memory and running time) of the simulations required to
describe the highly nonlinear dynamics involved in core collapse. Therefore,
many simplifications need to be done. In the following section we summarize
the different approaches to the modelling of core collapse that can be achieved
nowadays.

1.5 State-of-the-art in numerical simulations of
core collapse

1.5.1 Hydrodynamical core collapse

During the last three decades many efforts have been made to numerically
simulate the collapse of stellar cores. As listed in the preceding section the
main difficulties arise from the fact that many physical effects are involved in a
process whose dynamics is highly nonlinear. Analytical approaches are of lim-
ited use to study core collapse and numerical simulations are needed to solve
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the coupled system of equations describing the fluid motion, the spacetime
evolution, the dynamics of the magnetic fields, and the neutrino transport.
Numerical simulations are driving progress in the field of core collapse su-
pernovae despite the limited knowledge on issues such as realistic precollapse
stellar models (including rotation and magnetic field strength and distribution)
or realistic equation of state, as well as numerical limitations due to Boltzmann
neutrino transport, multidimensional hydrodynamics, and relativistic gravity.
It is out of the scope of this introduction to review the field of existing sim-
ulations of core collapse supernovae, a topic which is covered in a number of
excellent reviews (see e.g. Miiller (1998) and references therein ). Here, we
limit ourselves to describe those representative simulations in which gravita-
tional waveforms have been extracted. The reader is addressed to the online
review by Fryer & New (2003) and references therein for further information.

Let us first begin with purely hydrodynamical simulations performed within
the framework of Newtonian physics. This approach is characterized by sim-
plified treatments for the fluid motion and spacetime dynamics, which allows
to put most of the effort in issues such as realistic microphysics and approx-
imate neutrino transport. Simulations are available in the literature, both in
axisymmetry and in full 3D. First attempts used Eulerian codes with artificial
viscosity (Miiller 1982; Finn 1989; Monchmeyer et al.1991) to account for the
presence of shock waves in the hydrodynamics. Pseudo-spectral methods were
used in the 3D simulations of Bonazzola & Marck (1993), who could only follow
the infalling phase of the entire process, due to the appearance of numerical
instabilities associated with the presence of shocks. The need for correctly
resolving the shock wave which forms after core bounce gradually led to the
use of high-resolution shock-capturing (HRSC) schemes. Zwerger & Miiller
(1997) first used HRSC methods to simulate a sequence of collapsing rotating
polytropes in axisymmetry and provided a comprehensive waveform catalog.
Extensions to 3D were carried out by Rampp et al. (1998b); Fryer et al. (2004).
In these works simple equations of state were used (e.g. Janka et al. (1993)).
Recently, there have been attempts to include more realistic physics in New-
tonian simulations: Ott et al. (2004) used the equation of state of Lattimer
& Swesty (1991), while Miiller et al. (2004) also incorporated 2D neutrino
transport and computed the GW emission produced by neutrino-driven con-
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vection . Unfortunately, Newtonian physics does not suffice to fully describe
the dynamics of the system nor the GWs emitted, and relativistic gravity and
hydrodynamics had to be incorporated in the modelling (Dimmelmeier et al.
2001, 2002a,b).

General relativistic simulations involve the challenging computational task
of solving Einstein’s field equations coupled to the fluid evolution. This part
is where the burden of the simulations resides, and less attention (compared
to the case of Newtonian simulations) is paid to issues such as microphysics,
where only simplified equations of state (polytropes, ideal gas, hybrid EOS),
have been used so far. Most of the existing simulations are performed only
in 2D and use the 3+1 formulation of Einstein’s equations. This formulation
(as well as recent reformulations of the 3+1 equations) is based on directly
solving the hyperbolic equations for the three-metric and extrinsic curvature.
The main drawback of this approach is the violation of the momentum and
Hamiltonian constraints during the evolution due to numerical errors. Al-
though significant improvements have been recently accomplished, 3+1-based
formulations still lack robustness and stability for long-term evolutions, espe-
cially in spacetimes involving black holes (curvature singularities). An alterna-
tive approach relies on constrained evolution of Einstein’s equations, explicitly
solving the constraint equations to reduce the number of evolution equations.
The basic formulation of this kind is the so-called conformally flat condition,
or CFC (Isenberg 1978; Wilson et al. 1996), which is an approximation of
Einstein’s equations in which the spatial part of the metric is assumed to
be comformally flat. This approximation, and its 2nd post-Newtonian exten-
sion CFC+ have proved very accurate to describe core collapse to neutron
stars (Dimmelmeier et al. 2001, 2002b; |Cerd4-Durdn et al. 2005), even upon
comparing to exact formulations such as BSSN (Shibata & Sekiguchi 2004).
Contrary to ADM-like approaches, CFC/CFC+ are based on elliptic equations.
The main drawback of both CFC and CFC+ is the fact that the gravitational
waves degrees of freedom are lost in the approximation made. As a result
GWs have to be extracted in an approximate way directly from the sources.
Recently, a new constrained formulation has been proposed by Bonazzola et al.
(2004), which appears very promising to solve Einstein’s equations in a numer-

1We note that Miiller et al. (2004) used a modified relativistic potential, and general
relativistic effects were taken into account in the neutrino transport.
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ically stable way. As for 3D general relativistic simulations of core collapse,
numerical codes to study this problem have been developed only very recently,
both based on the BSSN formulation (Shibata & Sekiguchi 2004, 2005), and
on the CFC approximation (Dimmelmeier et al.|2005b).

1.5.2 Magnetized core collapse

Magneto-rotational core collapse simulations were first performed as early as
1970 (LeBlanc & Wilson 1970; Bisnovatyi-Kogan et al. 1976; Meier et al.|1976;
Miiller & Hillebrandt 1979; Ohnishi 1983; Symbalisty 1984). Nowadays, the
inclusion of magnetic fields in the collapse modelling has been carried out by a
growing number of groups, becoming the study of magneto-rotational collapse
a very active field of research. All simulations performed so far have considered
Newtonian magnetohydrodynamics and gravity, either using simplified para-
metric equations of state (Yamada & Sawai 2004; Ardeljan et al. 2005; Sawai
et al. 2005; Obergaulinger et al. 2005) or more sophisticated microphysics. In
the later case Kotake et al. (2004a,b); Takiwaki et al. (2004); Kotake et al.
(2005b) used an equation of state based on the relativistic mean-field theory
with a Thomas-Fermi approach, and a leakage scheme to treat the electron cap-
tures and the neutrino transport, while Akiyama et al. (2003) used a LLPR
equation of state with one dimensional neutrino transport in the Fokker-Planck
approximation. The interested reader is addressed to to/Wheeler et al. (2002);
Wheeler & Akiyama (2004) for reviews on this topic. Only very recently Ober-
gaulinger et al. (2006) have performed simulations using a modified Newtonian
potential to take into account general relativistic effects. But, to date, fully
general relativistic simulations of magneto-rotational core collapse are not yet
available in the literature.

The main implications of the presence of strong magnetic fields in the col-
lapse are the redistribution of the angular momentum and the appearance of
jet-like explosions. However, the presence of strong magnetic fields in the sim-
ulations needs to be justified, resorting to mechanisms for the amplification of
the initial field which exists in weakly-magnetized progenitor stars. Different
amplification processes have been taken into account in the different simula-
tions listed before. As the collapse proceeds, differential rotation winds up the
poloidal component of the magnetic field lines, creating a toroidal field (Meier
et al. 1976). This mechanism extracts energy from the rotational energy of
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the star into the magnetic field. If meridional flows are present, the toroidal
field can be transformed into the poloidal one via the a-{2-dynamo. Yet the
most relevant mechanism is likely to be the so-called magneto-rotational in-
stability (Balbus & Hawley |1998), which, irrespective of the initial strength
of the magnetic field, may amplify it exponentially until it reachs saturation
(about 10'5 G). Akiyama et al. (2003); Yamada & Sawai (2004); Kotake et al.
(2005b); Sawai et al. (2005); Obergaulinger et al. (2005); Obergaulinger et al.
(2006) have recently studied the effects of this instability in the context of
magneto-rotational core collapse.

1.5.3 Gravitational wave extraction

Two main approaches have been traditionally followed to extract GWs from
astrophysical sources. In the first approach the behaviour of the metric is
directly computed in the wave zone, far from the sources, through a multipole
expansion of the metric potentials when r — co. Since GWs can be considered,
in most cases, as small perturbations of the metric (the expected GW energy
from a core collapse is < 10~6Mc?), extensive work has been based upon
perturbation theory (Regge & Wheeler|1957; Zerilli| 1970; Moncrief 1974). For
a recent review on perturbative approaches see Sasaki & Tagoshi (2003). The
full nonlinear theory, the Bondi-Sachs-Penrose approach, has been developed
by Bondi et al. (1962); Sachs (1962); Penrose (1963, 1965); Geroch & Horowitz
(1978). This approach is very powerful, but only gives information about the
metric in the limit where r — oo, and, therefore, there is no way to connect
the GWs with the source. From the numerical point of view, this implies
that one needs to numerically evolve the spacetime variables from the near
zone (close to the sources) to the wave zone (asymptotically flat region) in
full general relativity, and then extract the waveform in a gauge invariant way
(Abrahams et al. 1992) by comparing with the linearized GW of perturbation
theory. The spatial scales involved in this approach, in which the size of the
computational grid needs to be much larger than the size of the sources, and the
(demanding) numerical precision required to correctly extract the waveforms,
make this approach ineffective for some scenarios, as core collapse, even for
the present-day, largest supercomputers.

The second approach is the wave-generation formalism (see Blanchet, 2002,
for a review). In this case a multipolar and post-Minkowskian (PM) expan-
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sion of the metric is performed. As this expansion is possible for the entire
spacetime, it connects the gravitational waves at future null infinity with the
sources. The problems arise when computing the required multipoles, as most
of the integrals diverge. To solve this problem a regularization is needed, and
in order to explicitly calculate the GWs a post-Newtonian (PN) expansion
of the sources is necessary. Using both ingredients it is possible to calcu-
late the GWs taking into account information from the sources only. Since
this is the only information needed, no accuracy is lost because of wave evo-
lution, and the waveforms are computed in a straightforward way even in a
post-processing process of the simulated data. Within this approach the most
commonly used approximation is the so-called Newtonian standard quadrupole
formula 2, based upon a linearization of the gravitational radiation field and a
Newtonian approximation of the sources.

It is worth noticing that in all simulations of core collapse performed to
date, the gravitational wave signals have been extracted using the Newtonian
quadrupole formula or, at most, higher order Newtonian multipoles have been
employed (Monchmeyer et al. 1991). The only remarkable exception is the
work by Siebel et al. (2003), who used the Bondi news to extract the GWs di-
rectly at future null infinity. Comparisons between the quadrupole formula and
gauge invariant calculations in pulsating neutron stars (Shibata & Sekiguchi
2003) show good agreement. This also holds true for the comparison between
the quadrupole news and the Bondi news (Siebel et al.|2002), but however,
significant disagreement is found between the latter two approaches in the case
of core collapse simulations (Siebel et al. 2003).

1.6 Organization of the thesis

The remaining of this thesis is organized in four parts.

In Part [IT the theoretical framework for the results obtained in the thesis
is presented. We describe the particular formalism of the general theory that
we use (Chapter [2), the resulting equations for both relativistic hydrodynam-
ics and magnetohydrodynamics (Chapter [3), and the approximations used to

2This formula is also referenced in the literature as Einstein quadrupole formula or
Einstein-Landau-Lifshitz quadrupole formula.
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formulate Einstein’s equations: the comformally flat condition (CFC) approx-
imation (Chapter 4) and the new CFC+ approximation (Chapter [5). At the
end of this part we describe the formalism used for the computation of the
gravitational waves in our simulations (Chapter [6) .

Part TIT]is devoted to the numerical methods used to perform our simula-
tions, for both the hydrodynamics and magnetohydrodynamics (Chapter [7),
and for the metric evolution (Chapter [8).

In Part IV we present the results of our simulations and the tests performed
to validate those simulations. In Chapter 9] we discuss our results on core
collapse simulations in the CFC+ approximation for the metric, comparing this
approach with CFC. General relativistic magnetized core collapse simulations
are considered in Chapter [10. Chapters 11 and are self-contained and
discuss topics related to the aftermath of core collapse. The first chapter is
devoted to the study of the long-term evolution of neutron stars after core
collapse, and the second one to nonaxisymmetric bar-mode instabilities that
can occur in rapidly rotating stars.

Finally, in Part [V we summarize our results and give a brief outlook of
some issues we plan to investigate in future work.

1.7 Conventions

We use a spacelike signature (—, +, +, +) and units in which ¢ = G = 1, except
in some passages, particularly in the Appendices, where ¢ and G are retained
for a better understanding of the post-Newtonian expansion. For the Einstein’s
equations we use the sign convention of Misner et al) (1973). Greek indices
run from 0 to 3, Latin indices from 1 to 3, and we adopt the standard Einstein
convention for summation over repeated indices. The indices of three-vectors
and three-tensors are raised and lowered by means of the three-metric.
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Chapter 2

(General framework

In this chapter we describe the basic physical principles that lie behind gravita-
tional collapse. Owing to the compactness of the astrophysical objects involved
in gravitational core collapse, i.e. the low value of the mass-to-radius ratio,
Newtonian theory is insufficient to correctly describe the system, and it is nec-
essary to employ Einstein’s theory of general relativity. Although simple in
concept, the mathematical structure of general relativity is far more involved
than Newton’s classical theory. Therefore, a careful choice of the formulation
of Einstein’s equations should be done, in order to perform numerical simula-
tions successfully.

2.1 Einstein’s equations

Spacetime is described as a four-dimensional pseudo-Riemannian manifold M
with a non positive-definite metric g. For a given set of coordinates {z*} the
metric tensor g, describes the line element as

ds® = g, dztda”, (2.1)

and an inverse metric g*” can be defined by the fact that g,,g*° = 02, with
82 being the Kronecker delta. Given a metric Juv, the curvature of spacetime

17
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can be fully determined. The Riemann curvature tensor is defined as

RY,, =0,T%, —9,I% +T0,T5, —T0,T,

poo

(2.2)

where Fﬁ,, are the Christoffel symbols given by

1 dg 9oy Ouv
A LA o pv _ 99u
O = 20" <6w" v P ) (2.3)

From the Riemann tensor related tensorial quantities can be derived as the
Ricci tensor
Ry, = R,,, (2.4)

and the scalar curvature
R = Rﬁ. (2.5)

Within this spacetime, Einstein’s equations can be easily expressed in a
covariant manner as
Gy =81T,. (2.6)

This rather compact form of the equations yields a relation between the mass
and the energy content, given by the energy-momentum tensor 7, , and the
structure of the spacetime, given by the Einstein tensor

1
Gu,l/ = Ruu - Egu,l/R- (27)
As a consequence of the symmetry properties of the Riemann tensor, the con-

tracted Bianchi identities (see e.g. Misner et al. 1973, Chap. 15) lead to
G*., =0, (2.8)

where “; 17 is the covariant derivative with respect to the metric g,,,. Through
the Einstein’s equations it immediately follows that

™, =0, (2.9)

which expresses the local conservation law of energy and momentum.

Due to the mathematical structure of the Einstein’s equations embedded
into a pseudo-Riemannian spacetime, physical implications can not be easily
interpreted, and some previous effort has to be done. The main difficulties can
be summarized as follows:
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e Contrary to Newtonian theory, built up in a three-dimensional space
evolving in time, general relativity resides in a four-dimensional manifold
in which the spacelike or timelike character of the coordinates is not a
priori well defined.

e Einstein’s equations tightly couple the spacetime geometry and the energy-
matter content of the system and their evolution. The curvature of the
spacetime is modified by the presence of an energy-matter distribution,
but at the same time, the laws governing the evolution of the system de-
pend on the curvature of the spacetime. Therefore, the resulting system
of equations becomes highly nonlinear and coupled, what makes difficult
to find solutions of Einstein’s equations for a general dynamical scenario
without time or space symmetries (and even if they are present).

e Spacetime geometry, represented by the symmetric metric tensor g,
can be described by six independent functions, the six physical degrees
of freedom of the system. But it has ten components. Therefore, one
has the freedom to select four gauge conditions to constrain the number
of independent components of the metric.

As we want to perform numerical simulations of fluid evolution in dynami-
cal spacetimes, the easiest approach is to adopt a formulation that allows us to
separate time and space coordinates, and that allows one to numerically cal-
culate the fluid evolution and the spacetime evolution in two consective steps.
The rest of this chapter describes the general formalism we adopt for spacetime
evolution, while the fluid evolution formalism is described in Chapter 3l

2.2 3+1 formalism

We adopt the 3 + 1 formalism (Lichnerowicz 1944;|Choquet-Bruhat 1952) to
foliate the spacetime manifold M into a set of non-intersecting space-like hy-
persurfaces ¥;, parametrized by the scalar time parameter ¢ (proper time) %
In this way, each hypersurface ¥; contains the entire three-dimensional space
for a given value of the timelike parameter . We can hence introduce a set

! Alternative formulations are available in the literature, see e.g. Winicour (2005) for a
review on the characteristic formulation.
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of coordinates {z#} = {t;x'} covering the entire manifold M with a definite
time or space character, as the coordinate ¢ is timelike and z* spacelike. This
foliation allows us to treat the problem as an initial value problem. For initial
conditions given at a certain initial proper time fy, i.e. for a matter-energy
distribution at a certain time slice ¥; , we can evolve the system forward in
time by means of Einstein’s equations, until £ > #5. We define n* as a unit
four-vector normal to the hypersurface and thus with timelike character:

nfn, = -1 (2.10)
Consequently we can define the projection operator
18= gk + ntn,, (2.11)
that projects tensor quantities from the four-dimensional manifold M onto the
three-dimensional hypersurface ¥;. The result of projecting the metric g, is
the induced three-metric
Yij EL?L; Guv- (212)
If we consider two time slices (see Fig.[2.1) X; and X;, 5 infinitesimally sep-

arated by.df, the variation dt of the coordinate time ¢ will depend on the
location z* on the hypersurface ¥; as

dt = adt. (2.13)

The function « is the so-called lapse function which describes the rate of ad-
vance of time along n*. In general the world line of the observer associated
with the chart {t;x'} is not tangent to n*. Thus, if we consider a point in
¥; with coordinates (t;z%) and we project it along n* into 3; 4, the spatial
coordinates will be shifted into (¢ + dt;z* — 'dt), where B* is a space-like
three-vector called shift vector. Taking this into account, the line element can
be written as

ds® = —a’dt® + v;j(da’ + Bidt)(dx? + B dt), (2.14)

where the ten independent components of the metric have been rewritten into
the lapse function a, the shift vector * and the three-metric 7;;. The vector
n* can be expressed in terms of the metric as

n* = (1; ’B—i> (2.15)
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o dt
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N

Figure 2.1: Schematic representation of the 341 foliation of the spacetime. See text
for explanations.

Once the spacetime foliation is set up, we can project any tensor quantities
from the four-dimensional manifold M onto a three-dimensional hypersurface
Y; using the projection operator L%, or along the time direction using n*. By
applying such projections to the energy-momentum tensor 7" one obtains
the following quantities:

E =n*n"T,, = ’T", (2.16)
1 .

Si=— 1in"Tu = —E(Tm = Ty5), (2.17)

Sij EJ.?J_; TIW = Tl'j, (218)
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which live in the hypersurface ;. Therefore, the spatial metric -;; is used to
raise and lower indices

St =48], (2.19)
S =AM S, (2.20)
S =445 = Sk (2.21)

Another very helpful quantity in the hypersurface ; is the extrinsic curvature
defined as

1
Kij = =5 Laij, (2.22)

where L« is the Lie derivative with respect to n* 2.
In the 3 + 1 formalism, the Einstein’s equations split into (i) evolution
equations for the three-metric v;; and the extrinsic curvature Kj;,

Opvij = —2aK;; + 2V (i85, (2.23)
8th'j = —VNja + OL(R,']' + KKz'j — 2Kz'ka)
+ ¥V Kij + 2K, iV ) B*

- L Jijg
8ma (s,, (s E)), (2.24)
and (ii) Hamiltonian and momentum constraint equations,
R+ K? - K;;K" —167E = 0, (2.25)
ViK% —~YK) — 8187 =0, (2.26)

which must be fulfilled at every space-like hypersurface. In these equations V;
is the covariant derivative with respect to the three-metric v;;, and K = v Kj;.
Curly brackets around indices indicate symmetrization:

1
a(bj) = §(a,~bj + a;b;). (2.27)

Additionally, it is interesting to take the trace of Egs. (2.23) and (2.24), that
lead to evolution equations for the determinant of the three-metric v and for
K,

2 For a detailed discussion of the Lie derivative, see e.g/Wald (1984).
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dylny = —2aK + 2V, (2.28)
WK =a(R+ K*) —VV,a+ fV;K — 4ra (3E - 9) . (2.29)

Given the mass-energy content of the system (i.e. the energy-momentum
tensor T),,) and its evolution, we can use the above equations to evolve the
spacetime. The first set of equations, and (2.24), are evolution equations
for the six independent components of the three-metric v;;. The extrinsic
curvature Kj; is an auxiliary variable used to cast the evolution system as a first
order (in time) system. The second set of equations is formed by the so-called
Hamiltonian constraint, Eq. (2.25), and the momentum constraint, Eq. (2.26)).
In total there are ten equations (not including the 6 auxiliary equations for
K;;) and ten unknowns: a, (; and the six independent components of ~;;.
Therefore, we still have to select four gauge conditions in order to reduce the
number of variables to the 6 physical degrees of freedom. This implies the
choice of the observer associated with the coordinates, and thus values for «
and B%. It is also possible to impose conditions for the three-metric in such
a way that they constrain the values of a and #¢. By the term slicing we
usually refer to the gauge conditions imposed to the lapse or to those that
constrain its value, and by spatial gauge we refer to those conditions that
restrict the choice of the shift vector. The gauge choice is crucial in order to
successfully solve Einstein’s equations for a given problem, either analytically
or numerically. Depending on the choice, four of the ten equations will be
removed. Therefore, one has to think beforehand about the equations to solve
before imposing the gauge conditions. Typically two approaches are followed
in the literature:

Hyperbolic formulations: In this family of formulations the gauge condi-
tions are such that only hyperbolic equations are solved, and the constraints
are automatically preserved if they were fulfilled at the initial time. This is
done usually by imposing gauge conditions directly to the lapse and shift.
With this choice, one can remove the constraint equations from the evolution
scheme, and the six physical degrees of freedom are contained into the three-
metric. The remaining equations are hyperbolic and therefore form an initial
value problem. Different formulations exist, which mainly differ by the choice
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of variables to evolve. A variation of the 3+1 decomposition is the ADM for-
mulation (Arnowitt et al. 1962) that evolves v;; and its conjugate momentum
7 (instead of Kj;), yielding a Hamiltonian approach to the equations. The
most promising formulation, from the numerical point of view, is the so-called
BSSN (Baumgarte & Shapiro [1999; Shibata & Nakamura 1995) formulation
and its multiples variations, that are extensively used in numerical relativity
(see e.g. Reula 1998; Alcubierre 2005; Shapiro 2005). The main drawback
of these formulations appears in numerical simulations. Since the constraint
equations are not explicitly solved, numerical errors rise which produce viola-
tions of the constraints growing with time. This fact limits their applicability
to perform long time evolution of dynamical spacetimes, particularly in the
presence of curvature singularities.

Constrained evolution formulations: The second approach is based on im-
posing conditions on the three-metric, in such a way to restrict the values
for the lapse. The resulting slicing condition leads to an elliptic equation for
the lapse function, a. Together with the constraint equations(2.25 and [2.26]it
yields a system of five elliptic equations (four physical degrees of freedom + one
slicing condition). The system is completed with two hyperbolic or parabolic
equations, for the remaining two degrees of freedom which take into account
the gravitational waves at large distances from the sources. In this case we have
mixed initial boundary value problem. Examples of formulations of this kind
can be found in Bonazzola et al. (2004) and references therein. Furthermore
this type of formulations has been extensively used for stationary problems,
such as to build equilibrium models of e.g. isolated netron stars in equilibrium,
sequences of binary black holes and binary neutron stars. In these cases, time
derivatives disappear and only four elliptic equations remain. There are also
approximate formulations, that can be used for dynamical spacetimes if the
assumptions done in the approximation are fulfilled in a particular scenario.
Some of these approximate formulations are:

e The post-Newtonian (PN) approximation (see e.g. Misner et al. 1973;
Blanchet, 2002, and references therein), in which all quantities are ex-
panded in powers of v/c¢, truncating the equations at some order. The
gauge used in these calculations is such that low order expansions (up to
2 PN) are purely elliptic, and only at further extensions (from 2.5 PN)
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GWs degrees of freedom appear and, therefore, also hyperbolic equa-
tions. The well-known Newtonian approximation, as a 0 PN expansion,
is a formulation of this kind in which only one elliptic equation, the
Poisson equation, has to be solved.

e The conformally flat condition (CFC) (see below and Isenberg 1978; Wil-
son et al. 1996), that consists in removing degrees of freedom contained
in 7;; and only solving the constraints.

e CFC+ (presented as part of this thesis and in Cerdd-Durdn et al. 2005)
is a post-Newtonian correction to the CFC metric.

e The Minimal no-radiation approximation (Schéfer & Gopakumar|2004),
that tries to maximize the ellipticity of the system of equations, by re-
moving only “hyperbolic” (radiative) degrees of freedom.

These formulations do not have the problem of constraint violation during
a numerical evolution, as constraint equations are solved at each time step,
allowing for more stable and longer evolutions than hyperbolic formalisms.

As a drawback, elliptic equations have to be numerically solved, which
implies more computational effort in the full three-dimensional case. Fur-
thermore, approximate formulations used to perform constrained numerical
simulations of dynamical spacetimes loose some physical content in the ap-
proximation process. For example, CFC, CFC+ and PN approximations up
to order 2, do not contain gravitational wave information. This implies that
the system cannot loose energy or momentum carried away by GWs and that
waveforms cannot be extracted directly from the metric (but can be extracted
in other ways). However, since GW effects are usually small to affect the
dynamics of the systems we study in a significant way, such drawbacks are
innocuous.

2.3 The gauge conditions

2.3.1 General metric decomposition

A general three-metric in the 3 + 1 decomposition can be written as

Yij = " ¥ij + V<> (2.30)
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where 4;; is the flat three metric (in a Cartesian basis 4;; = d;;). The function
¢, the conformal factor, is related to the trace of the three-metric 4% vz, and
Y<ij> is the traceless part of v;;. These quantities are defined as

1. .
V<ij> =i T 3 Mokt iso (2.31)
1.
Pt = g’)’”’)’z’j- (2.32)

For an asymptotically flat space ¢ = 1 and y<;;> — 0 at infinity, to recover
the flat metric 4;;. In the particular case of spherically symmetric spacetimes,
the three-metric becomes conformal to the flat three-metric, although a gen-
eral metric does not show explicitly this behavior but for a specific set of
coordinates, i.e. for some spatial gauge conditions. This special set of coordi-
nates is called isotropic coordinates. In the form of the three-metric given by
Eq. (2.30), a spherically symmetric spacetime in isotropic coordinates is such
that y<;j»~ = 0. This coordinate choice in spherical symmetry is unique. It
can guide the choice of coordinate systems for non spherical spacetimes with
the condition that they reduce to the isotropic coordinates in the particular
case of spherical symmetry. Examples of this kind of spatial gauges are the
quasi-isotropic (QI) coordinates, the Dirac gauge, and the ADM gauge. We
will discuss briefly these three spatial gauges, as they are of special interest
for the work presented in this thesis. In addition to the spatial gauge a slicing
condition must be chosen in order to complete the four gauge conditions. As
we are interested in constrained formulations of Einstein’s equations, we will
describe the maximal slicing condition.

2.3.2 Quasi-isotropic coordinates

In the particular case of axisymmetric spacetimes, a symmetry given by a
spacelike Killing vector exists, and therefore the number of physical degrees of
freedom is reduced to five. In this case it is natural to select the z® coordinate
as the azimuthal component ¢ in the direction of the Killing vector associated
with the symmetry. Thus, the coordinate system becomes {t; z', 2%, p}. The
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metric can be written in this case as

ds® = — &?dt® + vy, (dp — BPdt)? + v11(dz' — B'dt)?
+ Yo2(dz® — B2)% + 2ma(dat — pldt)(da® — f*dt), (2.33)

with eight independent components a, 3%, Yooy Vi1, Y22 and yi2. In this
case it is very useful to use the QI coordinates defined as those in which
the components of the three-metric expressed in an orthonormal basis are
y12 = 0 and 417 = y22. These two conditions together with a slicing condition,
reduce the number of independent variables to the five degrees of freedom of
axisymmetric spacetimes.

2.3.3 Dirac gauge

This gauge was originally introduced by Dirac (1959) in Cartesian coordinates,
and has been extended to a general type of coordinates (e.g. spherical) by
Bonazzola et al. (2004). We define the conformal metric as

nf.) _ __

71-(;0 ) =573y, (2.34)
where 'yz.(;onf') is invariant under conformal trasformations of the three-metric
vij, and where

Y =7/% (2.35)

4 being the determinant of the flat three-metric (in Cartesian coordinates
4 =1). One can then define h* such that
(conf.)ij _ xij ij
vy =4 + hY. (2.36)

Following the terminology of Bonazzola et al. (2004), the generalized Dirac
gauge consists in making the conformal metric transverse, i.e.

@i,y(conf.)ij — @th =0, (237)

where @, is the covariant derivative with respect to the flat metric 4;;. With
this choice, the traceless part of the three-metric y«;;» is asymptotically trans-
verse far from the sources, as the spacetime becomes flat (y — 1).
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2.3.4 ADM gauge

This gauge is defined as the gauge for which the three-metric can be decom-
posed into a conformally flat term plus a transverse traceless term,

vij = 6% + g (2.38)
with N o
hig 49 =0, 4*Vihit =0, (2.39)

where ¢ is the conformal factor, and hz-TjT is transverse and traceless. The
conjugate momentum 7% of ;; is traceless as well:

T4 = 0. (2.40)

Although the ADM gauge is similar to the Dirac gauge, there are important
differences to point out. While in the Dirac gauge 7y«;ij> is asymptotically
transverse, in the ADM gauge v<;> = hj;' is transverse everywhere. This
condition eliminates the three degrees of freedom coming from the traceless but
not transverse part of the three-metric. The ADM gauge has been extensively
used in Post-Newtonian expansions (see Blanchet et al. 1990, and references
therein), hence it is of paramount importance in the development of the CFC+
formalism.

2.3.5 The maximal slicing condition

The three possible gauge choices explained above (QI, Dirac, and ADM), re-
move three non-physical degrees of freedom (QI only removes two, but as it is
used in axisymmetric spacetimes an aditional symmetry condition is imposed).
Therefore, we still need to impose a fourth gauge condition for the lapse func-
tion in order to solve Einstein’s equations. Usually the maximal slicing (MS)
condition is used, i.e. we require the trace of the extrinsic curvature to van-
ish, K = 0. This condition transforms the hyperbolic equation (2.24) for the
evolution of K into an elliptic equation for the lapse

Ao =aR—4ra(3E—-9), (2.41)

where the scalar curvature can be calculated from the Hamiltonian constraint
equation as -
R = Kz'sz] + 167 E. (242)
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Eq. (2.41), together with the three momentum constraints (2.26) under the
assumption of maximal slicing

VK% — 8187 =0, (2.43)

completes the set of four elliptic equations characteristic of constrained evo-
lution formulations of Einstein’s equations. The character of the remaining
equations will depend on the spatial gauge chosen, on the particular choice of
the variables, and on the approximations done.
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Chapter 3

General relativistic
hydrodynamics and
magnetohydrodynamics

In this chapter we describe the equations governing the dynamics of fluids and
electromagnetic fields in general relativity. We cast these equations in forms
which are suitable for their numerical solution. We assume that the fluid has
no viscosity (perfect fluid) and is a perfect conductor of infinite conductivity
(ideal MHD condition). Under these assumptions the equations are greatly
simplified. For a more extended discussion see Font (2003); Antén et al. (2006)
and references therein.

31
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3.1 General relativistic hydrodynamics

3.1.1 Conservation laws

We consider a perfect fluid of rest-mass current J# and energy-momentum
tensor T},

JH = put, (3.1)
Tpu = phuyuu + Pg;w; (32)

where u,, is the four-velocity of the fluid, p the rest-mass density, P the pres-
sure, and h the relativistic enthalpy defined by

h=1+4¢€+ P/p, (3.3)

€ being the specific internal energy. The evolution of the fluid is determined
by the energy-momentum conservation laws and by the continuity equation
(conservation law for the rest-mass current),

Additionally to the conservation equations, one has to consider an equation of
state P = P(p,¢€) in order to close the system.

Following the derivation laid out in Banyuls et al. (1997), if we consider an
Eulerian observer at rest in a spacelike hypersurface ¥;, the three-velocity as
measured by this observer reads

; ui ,BZ

= = 3.6
V=gt (3-6)

and the Lorentz factor, defined as W = au®, satisfies the relation

We__1 (3.7)

N \/1+’Y,'j’l)j’l}'.‘

Upon the introduction of a suitable set of conserved quantities (the relativistic



3.1. GENERAL RELATIVISTIC HYDRODYNAMICS 33

densities of mass, momentum, and energy)

D = —-Jtn, = pW, (3.8)
St = phW?uvi, )
1=E-D=phW?-P-D, (3.10)

defined from the projections E, S¢ of the T*” (Egs. [2.16 and [2.17), it was
shown by Banyuls et al) (1997), that the conservation laws of stress-energy
and rest-mass current can be cast as a first-order, flux-conservative hyperbolic
system of equations [

1 [oAU 6,/_—91?"]
2 = 3.11
N I

with the state vector, flux vector, and source vector given by

U=[D,S;,7], (3.12)
F' = [D¢', ;0" + 61P, 70" + Pu'], (3.13)

1 oyy| Olna
= |0, T £ a(TH —— —T"'T}) 14
L e | HENCEr)

where ¢¢ = v' — §¢/a.
If we integrate the system (3.11) inside a volume V = [ dz®,/7, then

dz® /AU + d:c a‘fF ) dw a/7Q. (3.15)
5,

Applying Gauss theorem on the surface A = 0V enclosing volume V the above
equation reads

9 o
o /V v U+ 7{9 A (aF) = /V AV (aQ), (3.16)

ITo write the conservation laws we have chosen a coordinate basis {e;} = { a‘zi} (see
section 8.4 in Misner et al.|1973). Note that this basis in not normalized, and therefore
some operators, in particular divergence, curl and surface and line elements, are different to
the usual ones in an orthonormal basis. Eqs. (3.19) are a version of these equations in a
general basis.
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where dV = \/Fda?® and dA; = \/5dA; are the volume and surface elements re-
spectively, dA; being the coordinate surface element (e.g. in Cartesian coordi-
nates z', 2, z3 they read dV = da'daz?dz? and dA; = da?da® with i # j # k).
We can interpret Eq. (3.16) as a conservation law for U integrated in V', with
a flux aF over the surface A and sources aQ. Since the metric terms appear-
ing in dV evolve in time, it is better to study the conservation laws inside a
coordinate volume V' = [ dz3. Thus, we define the new conserved quantities
D=, S}, and 7" related to the original ones as

D* = \/4D; St =AS;; ™ =T, (3.17)
so that Eq. reads
3/ dz’U* +]{ dA; F* =/ dz’Q*, (3.18)
ot Ji ov=4 %

where U* = /U, F* = a/7F" and Q" = a,/7Q represent the state
vector inside V, the fluxes over the surface A, and the sources, respectively.
This interpretation is very useful when performing numerical simulations with
finite volume schemes, in which the volumes are going to be cells of constant
coordinate volume V.

3.1.2 The Riemann problem

An important property of the system of Eqgs. (3.11) is that it is hyperbolic for
causal EOS (Anile 1989). To simplify the notation we can rewrite this system
of equations in terms of the conserved quantities inside a coordinate volume,

oU* 1 0yAF™

—_— —— =Q" 3.19
ot + NG A Q" (3:.19)
where the operator acting on F** is the flat nabla operator
-~ 1 0 —

For hyperbolic systems of conservation laws, the associated flux-vector Jaco-
bians in every direction are
., _OF*" _ OF'
B'=_—-=a-—, (3.21)
oUu oU
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since the flux in each direction F** is a function of U*. These Jacobian ma-
trices have real eigenvalues and a complete set of eigenvectors.

Information about the solution of the system propagates at finite velocities
given by the eigenvalues of the Jacobians. Hence, if the solution is known (in
some spatial domain) at some given time, this fact can be used to advance the
solution to some later time (initial value problem, IVP). However, in general,
it is not possible to derive the exact solution for the time evolution of the IVP.
Instead one has to rely on numerical methods which provide an approximation
to the solution. Moreover, these numerical methods must be able to handle
discontinuous (weak) solutions, which are inherent to nonlinear hyperbolic
systems.

The simplest one-dimensional IVP with discontinuous data is called a Rie-
mann problem, in which the initial state consists of two constant states sep-
arated by a discontinuity. The majority of modern finite-volume numerical
methods, the so-called Godunov-type methods, are based on exact or approx-
imate solutions of Riemann problems (see Leveque 1990; Toro 1999, and ref-
erences therein).

As the state vector and the fluxes have five components, the three flux-
vector Jacobians, B* are 5 x 5 matrices. The solution of the associated eigen-
value problem is such that

B'=R'AY(R) ' = RIA'L, (3.22)
A’ being the diagonal matrices of eigenvalues for each spatial direction

N = avt = B, (3.23)

N L{v"(l —c?) (3.24)

1 — viv;c2

fen/0wo)bi - voe) - @RA- I -5 (329

where c; is the sound speed and )\6 has a threefold degeneracy. The right
eigenvectors 7§ ;,r% (columns of R') and the left eigenvectors I ;,I% (rows of
L) can be found in Tbafez et al. (1999); Font (2003).

If one considers now a one dimensional problem in the x direction without
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Figure 3.1: Characteristics Co,+ of the
system, along which the initial value of
[V (t = 0; zini)]o,+ propagates.

1

Xini X

sources (Q* = 0) the conservation laws (3.19) can be written as

ou*  _ oU*
5 B =0 (3.26)

The equations can be completely decoupled in the linear case in which the
eigenvalues, A? (a = 0, ), do not depend on the state vector U*. The resulting
decoupled (advection) equations are

ov ov

AT A

ot + ox
for the new variables V. = R*U*L”. The solution of this linear Riemann
problem is trivial and reads

0, (3.27)

Vo)l =[VE=02-X. ; a=0,+ (3.28)

in which the information at ¢ = 0 propagates along the characteristics z =
xo + A%t as depicted in Fig. [3.11

In the most general nonlinear case in which the system of equations has
sources, the eigenvalues depend on the evolved variables, and the fluxes in the
three directions are considered, the previous solution is only valid locally, but
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is still useful to understand the behavior of hyperbolic systems of conservation
laws. The use of exact Riemann solutions of linearized systems of conservation
laws, and the associated wave information, is at the basis of approximate
Riemann solvers (upwing Godunov methods)(see e.g. Roe 1981; Leveque 1990).
As a conclusion, the characteristic information of the system (eigenvalues and
eigenvectors) gives important information about the behavior of the system,
and, therefore, it is helpful in order to design a numerical method for solving
the conservation laws. How this can be done is discussed in Chapter [7.

3.2 General relativistic
magnetohydrodynamics

3.2.1 Maxwell’s equations

A general description for the electromagnetic field in general relativity is given
by the Faraday tensor F'*”, which is related to the electric field E# and the
magnetic field B* as measured by an observer with four-velocity U*

FW = UFEY — UYE* — e MU, Bs, (3.29)

where e#¥*? is the permutation tensor for the metric g,,. It can be written in
terms of the flat permutation tensor as e#*20 = _L_givAd  where
oy
L’r if pvAd is an even permutation of 0123
gmrdd = ¢ L if yw\d is an odd permutation of 0123 (3.30)

¥
0 otherwise

The dual of the Faraday tensor reads
1
PR = 56”")‘6}7)\5 = U*BY — UYB* + e*" U, F;. (3.31)
In this way the electric and magnetic field measured by U¥ can be calculated

as
E* = F*U,, Bt = *F™U,. (3.32)



38 CHAPTER 3. GRMHD

The corresponding expressions for the comoving observer with four-velocity u*
read
et = F*u,, b = *FHuy,,. (3.33)

In terms of the Faraday tensor Maxwell’s equations read
PR, =0, Fr, =4nJ*, (3.34)

where J*# is the electric four-current, which, under the assumption that Ohm’s
law is fulfilled, reads

T = pgu* + o F*u,, = pgut + oet, (3.35)

pq being the proper charge density and o the electric conductivity.

Maxwell’s equations can be simplified if the fluid is a perfect conductor. In
this case the conductivity of the fluid is infinite 0 — 00 and, to keep the current
finite, the term F*"u, in Eq. must vanish, which results in a vanishing
electric field for the comoving observer e# = 0. This case corresponds to the
so-called ideal magnetohydrodynamics (MHD) condition, or ideal GRMHD in
the general relativistic case. Under this condition the four-vector electric field
E* can be expressed in terms of the four-vector magnetic field B* as

1
E* = Ws”")“su,,U,\Bg. (3.36)

It is very convenient to choose as observer the Eulerian observer, U# = n*, for
which the temporal component of the electric field vanishes

E°=0, E'=—¢;v’' B~ (3.37)
We can rewrite this equation in terms of vectors as
E=—/y7xB, (3.38)

where E, # and B are vectors of components E?, v* and B respectively. The
cross product x in Eq. (3.38) is defined with respect to the flat three-metric
¥i;. Hence, the electric field can always be expressed in terms of the magnetic
field and therefore we only need equations for B?. In this case the first set of
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Maxwell’s equations *F**,, = 0 reduce to the divergence-free condition plus
the induction equation for the magnetic field

0(y/YB?
%7(\(4; ) _ o, (3.39)
1 d(y/B?) 1 9 T

W% = W% [ay7(0'B? — ' B")] . (3.40)

By introducing the following quantities
B* = \/3B¢, (3.41)
v = adt = av' - B (3.42)

we can rewrite the above equations as
V;B* =0, (3.43)
oB*t . N A

o5 = Vi(v"'BY — v B"). (3.44)

Taking into account the property of the triple cross product, A x (é X C_") =

(A-C)-B— (A-B)-C, these equations can be expressed in a vectorial form

V.8 =0, (3.45)
0 5+ Z — 3%
T V x (v x B ) , (3.46)

where the scalar product (-) is defined with respect to the flat metric 4;;. In
the Newtonian limit v™* — v* and B¥* — B!, and the Newtonian induction
equation and divergence constraint are recovered. If we define E*¢ = o E* then
the second equation reads

oB*

X B = 4
5 +V x 0, (3.47)

which is the general relativistic version of Faraday’s law.
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Figure 3.2: The magnetic flux @
through a surface A can be calculated
as the “electric field” E* integrated
along the closed curve C.

3.2.2 Magnetic flux conservation

The total magnetic flux through a closed surface A enclosing a volume V can
be calculated as a surface integral of the “starred” magnetic field as

@szf E*-dﬁ:/@-é*dvzo (3.48)
ot 7

where we have applied Gauss theorem and the divergence constraint given in
Eq. (3.45). This equation implies that no magnetic flux source exists inside the

volume V and therefore, the magnetic flux is a conserved quantity as 83% =0.

If we consider any surface A (without the restriction of enclosing a volume,
see Fig.(3.2), the time variation of the magnetic flux through the surface is

:_/A(éxﬁ*) -dﬁ’:—é:mﬁ*-dz, (3.49)

where we have applied the induction equation and Stokes theorem to
transform the surface integral into a line integral along the curve C' enclosing
A.
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These two properties will allow us to design a numerical algorithm to solve
the induction equation and the divergence constraint in a way ensuring the
congervation of the magnetic flux.

3.2.3 Conservation laws

For a fluid endowed with a magnetic field the energy-momentum tensor is the
sum of that of the fluid and that of the electromagnetic field

™ = Tyga + Tiews (3.50)

where Thy .4 is given by Eq. (3.2) for a perfect fluid, and THy; can be obtained
from the Faraday tensor as follows:

1
T = F*2FY — 29" FX Fy, (3.51)

which, in ideal GRMHD, can be written in terms of the magnetic field b*
measured by a comoving observer as

1 .
Tk = (u”u” + 59’“’) b’ — b, (3.52)

where b*> = b#b,,. The total energy-momentum tensor is thus given by

T = pht u*u” + Ppgh” — bHb”, (3.53)
with the definitions
b2
PT=P+E=P+Pmag, (3.54)
b? P
hr=h+— =1+ep+ —, (3.55)
p P
b2
eTr =€+ % = € + €mag, (3.56)

2, . 2, .
where Ppag = % is the magnetic pressure and €mag = g—p is the specific mag-
netic energy.
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The evolution of the fluid is determined by the energy-momentum conser-
vation laws and the continuity equation given in Egs. (3.4) and (3.5). Following
Antén et al. (2006), in order to account for the magnetic field the conserved
quantities are chosen in a similar way to the pure hydrodynamical case

D = pW, (3.57)
S; = phrW?2v; — ab;b°, (3.58)
T=E - D = phyW? — Py — o?(b°)? - D. (3.59)

With this choice the system of conservation equations for the fluid and the
induction equation for the magnetic field can be written as a first-order, flux-
conservative, hyperbolic system, as Eq. (3.11), with the state vector, flux vec-
tor, and source vector given by

U= [DJ Sj7T7 Bk]; (360)
i _ s @i Sip. bB' i °B" ik _ sk
F' = |Dv", S;0" + 65 Pr W , 70" + Prov' — a W ,0'B” —9"B*| , (3.61)
| p— o0 v 0 k
Q = |:0, §TH W, a <TH W - T” FI“’ ,0 . (362)

We note that in these expressions appear components of the magnetic field as
measured by both a comoving observer and an Eulerian observer. These are
related by

Bz’ X Bz 3
po = Bui _ WBwi (3.63)
a !
. Bi+abu? B+ WZAIBIp
bz = = . 3-64
W W (3.64)
Finally, the modulus of the magnetic field can be written as

B2 2(10)2 B2 2 zB 2

b= pup, = BT O B A W) (3.65)

w2 w2 ’

where B?2 = B‘B;. Note that b’ is not a three-vector but the spacial compo-
nents of the four-vector b, and hence the index can not be lowered with the
three-metric.
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3.2.4 Riemann problem

By defining the conserved quantities U*, fluxes F** and sources Q* in the
same way as in the previous section (but now considering that each vector has
seven components), we can rewrite the above equations in a similar way as in

Eq. (3.19).
U™ + V;F*' = Q*. (3.66)

The associated Jacobians in every direction, Eq. (3.21), are 7 X 7 matrices, and
the solution of the eigenvalue problem (Antén 2006) leads to seven types of
waves that can appear when solving the Riemann problem for each direction 4:

e Entropic wave:

A= av' — . (3.67)
o Alfven waves:
iL= M, (3.68)
b0 + /Cu®

where C = ph + B2

o Magnetosonic waves: There is no analytic expression for the magne-
tosonic waves. Instead, they must be computed as the solution of the
quartic equation

ALyt + AL(n')® + AL (n')® + Aln' + Af =0, (3.69)

with

(3.70)

3.
1l
R
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The coeflicients of Eq. (3.69) read (Antén 2006):

i 22 (09
Al =1- Q%% — i (3.71)
, . 02 2002
i _ i 2 i S
A3——4'U (I—Q )—Z’UW-FW, (372)
i i it i 0? ((BO)Q’Yii - (Ei)2)02
A = 6(01)2(1 = 0%) = (7 = (1)) gz + ———Lrg =, (3.73)
. . . QZ 25051’,71'1'02
i \3 2 i S
i i i, 0 ? (l_’i)z’)’iic2
Af = ()1 -0%) —4"%(v )QW + W: (3.75)
where
. o . b2
VP =ci+c2—-cc, = a (3.76)
and Bi
b’ =W ('B;), b = W + W (v Bj)v'. (3.77)

Among the magnetosonic waves, the two solutions with maximum and
minimum speeds are called fast magnetosonic waves A}, and the two

solutions in between are the so-called slow magnetosonic waves A%, .
The seven waves can be ordered as follows
VIR SV SVEES RS E S TR SN (3.78)

which is also depicted in Fig. 3.3.

3.2.5 The passive field approximation

For many astrophysical scenarios, e.g. in the collapse of weakly magnetized
stellar cores, it is a good approximation to consider that the magnetic field
entering in the energy-momentum tensor of Eq. (3.53) is negligible when com-
pared with the fluid part, i.e. Ppag < P, €mag < €, and the components of the
anisotropic term of T+ satisfying b#b” < phutu” + Pg*”. With such simpli-
fications, the magnetic field evolution, given by the induction equation (3.46)),
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Ct- Ca- Cs- Ce Cs+ Ca+ Crs

T

Xini X

Figure 3.3: Characteristics C., Ca+, Cs+ and Cy+ of the GRMHD system, corre-
sponding to the entropic wave , the Alfven waves and the slow and fast magnetosonic
waves, respectively.

does not affect the dynamics of the fluid, which is governed solely by the hydro-
dynamics equations (3.11). However, the magnetic field evolution depends on
the fluid evolution, due to the effect of the velocities in the induction equation.

In this particular case of a “test magnetic field” (or passive field hereafter)
approximation, the seven eigenvalues of the GRMHD Riemann problem reduce
to three

)‘6 hydro — )‘2 = )‘fm:l: = )‘izl:’ (379)
/\zt hydro — )‘}:ta (380)

where Ay g0 and Xy g, are the eigenvalues of the Jacobian matrices of the
hydrodynamics equations given in Egs. (3.23) and , respectively.
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Chapter 4

CFC

The conformally flat condition (CFC) approximation for the 3+1 Einstein’s
equations was originally proposed by Isenberg (Isenberg 1978). It was later
revisited by Wilson and Mathews (Wilson et al. 1996) in the context of numer-
ical simulations of the merging of two neutron stars. CFC assumes that the
three-metric is conformal to the flat metric. In this chapter we will justify this
approximation and will write Einstein’s field equations under this approxima-
tion. Note that although in the previous chapter the discussion was restricted
to a perfect fluid embedded in an electro-magnetic field, all the considerations
made in this chapter apply to any form of the energy-momentum tensor, and
thus are completely general.

4.1 The conformal flat condition

In Chapter[2 we have established the formalism of Einstein’s equations that we
will use in this thesis. We have selected the 3+1 split to foliate the spacetime,
we have chosen maximal slicing, and we have described the general features
that we require of the spatial gauge. The three-metric can be decomposed into
a conformally-flat part and a traceless part as

Yij = 6" %5 + V<ij>- (4.1)
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The spatial gauge is chosen is such that (i) far from the sources, (ii) for weak
gravitational fields, (iii) or in spherical symmetry, the traceless part of the
three-metric vanishes, v<;;5 — 0. Therefore, a natural approximation of the
three-metric when dealing with sources with moderate gravitational fields or
sources whose morphology is close to spherical symmetry, is to impose y<;j> =
0. Then, the three-metric is conformal to the flat metric

AFC = 15, (4.2)

Under this approximation the three spatial gauges described in Section 2.3, i.e.
the QI coordinates, the Dirac gauge, and the ADM gauge, become equivalent
to the isotropic coordinates. The only free parameters of the CFC metric are
a, B¢ and ¢. If one considers the limits of weak gravitational fields or very far
from the sources, then o — 1, 8* = 0 and ¢ — 1, and one recovers the flat
metric. But in the limit of spherically symmetric spacetimes, only components
of B¢ orthogonal to the radial direction vanish, i.e. 3% — 0 and 8¢ — 0 (in
spherical polar coordinates), while all other functions (a, ¢ and 8") have to
be calculated. In this case (spherical symmetry) the CFC metric is exact and
the CFC equations describe the system without approximations in the full
general relativistic regime. Furthermore, in a general case without symme-
tries, the traceless part of the three-metric is a quantity that first appears at
second-order terms in a post-Newtonian expansion of the metric. Therefore,
the CFC metric behaves as a first post-Newtonian approximation for highly
non-spherical sources (Kley & Schéfer 1999).

These properties make the CFC approximation very attractive when deal-
ing with quasi-spherical systems with moderately large gravitational fields,
such as neutron stars. The main physical restriction of this approximation is
that, as the traceless part of the three-metric is set to zero, all gravitational
wave content of the system is lost. Thus, one cannot use the CFC metric to
extract gravitational waves or to study the loss of energy and momentum by
GWs. The last feature imposes an additional restriction to the use of the CFC
metric: this approximation is only valid for dynamical timescales, where the
smallness of the h.;;» ensures that gravitational radiation reaction is negligi-
ble. But for secular time scales, the accumulated energy and momentum lost
of the system could lead to noticeable effects.
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4.2 Conformal scaling

Under the assumption of CFC the three-metric becomes diagonal. This sim-
plifies Einstein’s equations. The square root of the determinants of the three-
metric and the four-metric are easily calculated as:

Vi=dVis Veg=ayy (4.3)
VA= % = ¢5. (4.4)

In the same way that the three-metric is conformally scaled to the flat three-
metric with a factor ¢*, all tensor quantities defined at the hypersurfaces scale
in a similar way. One can thus define quantities calculated with respect to
the flat metric, which are easily related to the corresponding quantities with
respect to the three-metric by the conformal factor. For example:

1 (5 84 8 R
Aag) = 7 ($A(ag) +2779:(00)¥;6) (46)
V,S = @js, (4 7)
Kij = %KJ K9 = %K”, (4.8)

s being a scalar function, and tilde denoting quantities related to the flat
three-metric. Using these properties one can simplify Einstein’s equations
transforming v;; and the operators Vi and A = V,; V', into the flat metric 4;;
and the flat operators V; and A = V,; V¥, respectively.

4.3 The CFC equations

The four constraint equations together with the equation for 9; K = 0, lead to
a system of five elliptic equations for the free parameters of the CFC metric.
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They form a system of five nonlinear Poisson-like equations for , ¢ and

o KU
Ap = —2m¢® (E + M) ) (4.9)
167
X KK
Alag) = 2nag® (E +25 + 74) , (4.10)
167
~ . NN 1..4
ABi = 16magtSt + 2KV, (%) - VLBt (4.11)

Note that as V and A are flat operators, i.e. defined with respect to the flat
three-metric 9;;, the metric does not appear in its definition. Appendix (Al
presents explicit expressions for these operators acting on different quantities,
written in spherical coordinates. These equations have to be complemented
with an expression for the flat extrinsic curvature

1 [ A 2
Kij =5 (Vzﬂj +V;Bi - g’mvkﬂk> : (4.12)

Alternatively the conformal factor can be calculated from an evolution equa-
tion

O = %vkﬂk. (4.13)

This equation will be helpful in the implementation of the numerical scheme
to solve the fluid equations (see Section [7.1), while Egs. (4.9), (4.10) and
(4.11) will be used to calculate the metric. As these equations have to be
solved numerically it is interesting to formulate them in a way that lead to
numerically stable evolutions. With this purpose we define the variables

E* =/3E = ¢°E, (4.14)
S* = /38 = ¢% S, (4.15)
S* = /78 = ¢°8S, (4.16)

which are directly related with the conserved quantities of the fluid evolution
(see Chapter [3). With these definitions and making explicit the dependence
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on ¢, the CFC equations are transformed into

Ag = —2r <¢—1E* + ¢—7%§“) — oY), (417)
A(ag) = 2ra [q&l(E* +25%) + ¢7%1 =01, (4.18)

!
¢°
where the sources of the equations behave at least as ¢~1'. This property

ensures the convergence of the numerical method for solving these equations
for large values of ¢, for example close to the formation of a black hole.

Aﬂi=1em¢—2s*i+2f%“%( )—%@"%ﬁ’“ =0(47%), (4.19)
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Chapter 5

CFC+H

This chapter presents the CFC+ approximation as an extension of CFC. Ein-
stein’s field equations are formulated, as well as related expressions necessary
for their numerical solution. The work presented in this chapter has been
published in |Cerd4-Durén et al. (2005).

5.1 Preliminary considerations

So far, we have tried to preserve the metric formulation as general as possible.
But before presenting the CFC+ approximation some considerations should
be done. The CFC+ approach involves a post-Newtonian expansion of the
traceless part of the three-metric, adding new degrees of freedom to the CFC
metric. As the metric will be now more general, it is necessary to be more
explicit in the choice of spatial gauge. We will impose the ADM gauge (see
section [2.3.4) as it is of common usage in post-Newtonian calculations. The
traceless part of the three-metric becomes then transverse. It is denoted h};-T,
where the TT superscript will be used hereafter to denote transverse and
traceless quantities. Hence, the three-metric takes the form (see Eq.[2.38)

~ij = ¢"4ij + hET. (5.1)
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The second consideration involves the energy-momentum tensor T},,. In order
to facilitate the post-Newtonian calculations we will consider a perfect fluid,
for which the energy-momentum tensor is given by Eq. (3.2). As variables for
the post-Newtonian expansion we choose the “starred” conserved variables D*
and S}, as these quantities are known directly from the fluid evolution.

5.2 The natural extension of CFC

One of the most important features of the CFC approximation is that it is
more accurate the closer the system is to spherical symmetry, in which case
the CFC equations are exact. But for a general non spherically symmetric
scenario CFC behaves as a first post-Newtonian approximation, i.e. the CFC
three-metric differs in O(1/c*) with respect to the exact one

N 1 1
Yij = ¢4’Yij +0 (c_4> = W’S'FC +0 (c_4> . (5.2)

Therefore, Eq. for the three-metric differs in O(1/c%). Hence, for strong
enough gravitational fields, even small deviations from sphericity should pro-
duce differences with respect to the exact solution. The natural way of im-
proving the CFC approximation is through a post-Newtonian expansion of the
traceless part of the three-metric

. 1
vij = "% + iy =i O + [h?}’N +0 (0—5)] , (5.3)

hii’N being the leading order in the expansion of hf;". Note that this is not
an expansion of the three-metric, but of its traceless part. By expanding the

whole three-metric instead of its traceless part we obtain:

1 1
vij = [+ ()N + ()N + 0 (C—e)] ij + [hzgij +0 (c_5>]

C;C 'FI‘
N X N 1
= du + 8T + [ + 140 (5 ). (5.4)

OPN 1PN 2;N
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If this expression is truncated at first post-Newtonian level we do not recover
the CFC metric, but only the first post-Newtonian approximation of the three-
metric. In this case the exact solution for spherical symmetry is not recovered.
If Eq. (5.3) is truncated at second post-Newtonian terms in the traceless and
transverse part, we obtain the CFC+ metric

75FC+ = ,YgFC + h?]PN. (5.5)

The main features of this approximation are that :

o CFC+ becomes exact for spherically symmetric spacetimes, as CFC,
since in this case the TT part vanishes.

e In a general non spherical spacetime, CFC+ behaves as a second post-
Newtonian approximation of the metric.

5.3 Equations of motion in the ADM formalism

After the basis of the CFC+ approximation has been introduced, we have to
calculate the metric under this approximation. The approach leading to the
CFC+ equations is to build up the new approximation by modifying the CFC
equations. In this way, any method previously used to numerically solve the
CFC equations will be straightforwardly applicable to the modified equations
of CFC+. By adding second post-Newtonian terms the CFC equations are
changed in two ways:

hLt

1. As new degrees of freedom are added to the system, given by the h;;",

additional equations are needed for these new quantities.

2. The equations for the lapse function «, shift vector 8¢ and, conformal
factor ¢ change with respect to the CFC equations due to the addition
of the ;"

We will proceed next to obtain the CFC+ equations, and to design a procedure
for solving these equations.
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5.3.1 Equations for A"

The derivation of the h;l;-T equations up to second post-Newtonian order can
be achieved in the Hamiltonian framework of ADM (Arnowitt et al. 1962) in
two steps:

1. Calculate the ADM Hamiltonian in terms of the canonical variables of
the system and its conjugate momentum. To do that one has to consider
terms up to second post-Newtonian order.

2. Use the variational principle to calculate the equations of motion for
hi;" from the Hamiltonian, and check that they only include terms up
to second post-Newtonian order.

The original canonical variables are chosen to be the three-metric v;; and
its conjugate momentum

md, = )(167C); 7 = —FKY - KAY). (5.6)

Here 7% is used instead of the “true” conjugate momentum because of his-
torical reasons. Once the coordinate system has been fixed, only 6 physical
degrees of freedom are left. Four of this six remaining field degrees of freedom
are eliminated by imposing the Hamiltonian constraint and the three
momentum constraints (2.26). These four field degrees of freedom correspond
to the conformal factor ¢ and to the symmetric trace-free part m’ (longitu-
dinal)of the tensor 2A~1(3*V, V;7i!) — A-2(5m4inV ViV, Vpr®) /2 | re-
spectively. Only two transverse trace-free (TT) field variables are left, namely
hiit = 7ij — ¢*4i; on the one hand, and m¢y = %/ — 7’ on the other. By
construction, we have:

AL RET = 0, AIREE =0, (5.7)
ﬁﬂrfle =0, 5’1’17‘}.le =0. (5.8)

The reduced Hamiltonian H is obtained by substituting all metric variables
by its dependence on Al T and 724 in the Hamiltonian of general relativity for
asymptotically flat spacetimes. The contributions of the super—Hamiltoniarﬁ

1See Chapter 21 in Misner et al. (1973), for differences between Hamiltonian and Super-
Hamiltonian.
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and super-momentum densities vanish, so that H[matter variables, b1, 757 ]

is given by the surface integral defining the ADM mass “on a shell”,

ct 281 fandk [ Y
e / d*5 /Ay (mG —mG)
C4 3 ~ A
=g [ Vi, (5.9)

where the surface element dS? /A refers to the flat metric. The reduced Hamil-
tonian (5.9) contains the full dynamical information about the system. In par-
ticular, as shown by |Regge & Teitelboim (1974), the field evolution is governed
by the equations of motion

167G | pp O0H

TT _
167G _;; oH
Oty = — = %ZTkléhElT’ (5.11)
with
) 1 . .
’Y;I;-Tkl =3 (55 — Akp A lvlvp) (5; — AlaA 1vjvq)
1 . .
+3 (5; — 4k A lv,vp) (55 — AlA lv,vq)
1/ e o\ forr e s e
-3 (’Yij _A lvivj) (,ykl _,Ykp,quA 1vpvq) ’ (5.12)

and a similar formula for ﬁffrokl. The role of these operators is to ensure
the transverse trace-free projection of the Fréchet derivative §H/dmh and
SH/ShJT, respectively. The calculation of H in terms of D*, S}, P, as well
as the field variables hZT and 7., can be done essentially by eliminating
¢ in Eq. (5.9) with the help of the Hamiltonian constraint (2.25). This is
achievable in perturbative treatments such as the post-Minkowskian or the
post-Newtonian ones, consisting of the formal expansion of all quantities at
play in powers of the gravitational constant G or of the inverse of the square
of the speed of light 1/c2.



98 CHAPTER 5. CFC+

2PN Hamiltonian constraint

In the course of eliminating ¢ we use the Hamiltonian constraint
R+ K? - K;jKV —167E =0 (5.13)

in a more explicit form, by expressing it as a function of ¢ and hj;". We check
one by one the three terms in the equation.
We first expand the 3-curvature R. By making extensive use of the relations

'Yij@l’yjk = _'ij@l%'j (5.14)
and
V¥ = (37Y) Vs, (5.15)
the combination 43R can be written as (cf. Schwinger 1963)

~

A~ - 1 ~ . 1 . ~
V'R =-7ViV; (177) + 5Vir'V; (1Y) = 7 (1) Vv,

1 oA N 2 1 . Oy &
=37 (37 Vi (™) Vi + 2 (*) (37") ViAVirm
1 o o 1, . .
+ 37 () Ve (07) Vi = 7 (107) (37%) ViV (5.16)

By definition, the determinant ¥ is equal to the antisymmetric sum of products
314PL429531 Yoo vrs = APIEAIL4KI i y0 vk on a Cartesian grid, the square
brackets denoting antisymmetrization of non-underlined indices. Its explicit
expression is given, e.g., by Schafer (1985). Similarly

’7’7ij =it (Ermn'?jr'?mp'?nq'ypk’)’ql)/% (5.17)
where %! is the permutation operator. From the identity e™*¢ jp, = 3! (5?6'3162

TT
ij

it is straightforward to obtain 4;19;;79* as a function of ¢ and A
oA 1, pma N
i r™ = 6% — AR b | 4 — ¢*hiG

+ A gy gt (5.18)
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After inserting the relations for 4 and 4% in the right-hand side of Eq. (5.16),
it is expanded in powers of h;FjT and truncated consistently at the post-Newtonian

level of hi;"hy", denoted as O(h?). At this point we have an expression for
AR as a function of Acﬁ,

_8¢31 A(ZS
+ 467 (Vi3 — 3VigV;6) 55 RLT

;y ,?zm,?]n@kh'ZIJ‘T@lhTTn’{L_i_ A( klAz]hTTh )

l\?lb—l ..J;H—l
l\le—‘

2
ViV, (3 4miAm pEL pt )+O(h—). (5.19)

c2

In addition to R, there is a second contribution to the left-hand side
of the Hamiltonian constraint surviving in the absence of matter, namely

KK — K? = [7r;7rf - —( 1)2 ]/'y In the ADM formulation, the momen-

tum 7% decomposes into 73/ +n. The first term 7/ is of order 1/c?, being a
sum of derivatives of Poisson inverse operators acting on V7w = O(V;K#),

which is itself O(1/¢®) according to the momentum constraint equation. The

second term, linear in h};T, is transverse and trace-free, hence ¥;;mr = 0 .

Moreover, the ADM gauge condition implies %ﬂrij = 5 7r£j = 0. This yields

V7 (KiK' - K?)

. 1, . » h h?
= (’Yik%’l - 5%‘;’%1) M+ O (0—6) +0 (0—2)

= FirYji (Wijﬁfl +2np whly + WZTJTW%)
h h?
co(2)-o(2)

Finally, we consider the matter source term E in the Hamiltonian con-

2This condition is also satisfied by the ADM gauge condition
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straint. The corresponding density E* = /yE may be written as

167G _, 167G " —damn
G- 10 {th)+¢

1oy SISTN 0P
* (1_ 2V ape ) T

+o(h)+0<h2) (5.21)

This yields the Hamiltonian constraint as an elliptic equation for
V=2(¢—1)=0O(1/c?) up to O(h/c®) and O(h?/c?) corrections:

S* S*:|1/2

—4AV = —4V;¢V ;44T RET
1 .
+ 47“7““ AN kb Vb

_4A (¢ 4V b*A jlh'{lT) A( i 2 klhTTh )

l\DI»—l

1@@ ( 2kl 2 mz nJhTTh )

2
+ Yir Vi <7rL 7TL + 27711 *IEIT +7rfF’T7Tr’flT)
167G . S S 12
+ 1076, 1{[(0 WP+ gty S

1, S; Sy ¢°P
X ( _§7k Vi 2D*2> 2 }
2
+o<h>+o(ﬁ> (5.22)

The 2PN Hamiltonian

Equation gives an expression for the integrand of the equation for
the Hamiltonian. But it has to be expressed only in terms of hl' and wf¥;
g

Therefore, we still need an expression for ¢ = qb[hpq , T
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As the terms containing a factor hj;" or 73 in Eq. (5.22) are proportional
to the coupling constant G/c? of general relativity, it reduces to

AV = —47GD*/ + O(1/ct) (5.23)

at the lowest post-Newtonian approximation. Thus, if we introduce the “New-
tonian” potential U defined as the smooth solution of the Poisson equation

AU = —47GD*, (5.24)
vanishing at spatial infinity, we have V = U/c®* + O(1/c*), plus a possible
harmonic function. Assuming an asymptotically flat spacetime, this function
must tend asymptotically towards zero while being regular, and so it has to be
identically zero. Another important piece of information provided by Eq. (5.22)
is the value of the lowest order contribution to the potential V' that depends
on the field variables. It is given by the equation

. U h
—4v =A™ (—4Vz~vj¢ﬁzk&ﬂh;ﬂT) +0 (C—4>
+ pure matter part, (5.25)

which shows incidentally that ¢ = 14 V/2 is not affected by a non-zero hj;"
at the leading post-Newtonian approximation in the field.

Inserting the resulting expression for the conformal factor into the Hamil-
tonian constraint (5.22), we arrive at

* Q%

. 1 P SESEN
—4AV = -3 (wiUij + 871'G%> yikgatp LT
1 o .
+ Z,Ykl,yzm,y]nvkhiTijlh;I‘na
+ YirTjt (27T£j7f% + W’Z.l“jT”r’I{“lT)
h h?
+o(%)+o(%)
+ total derivative + pure matter part. (5.26)

The pure matter part has been kept aside because it does not enter the com-
putation of hj;'. The total derivative terms are irrelevant for the investigation
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of the field evolution. Indeed, by virtue of relation (5.9), the Hamiltonian
is given by the spatial integral of —c¢*AV/(47@). Thus the dynamics of the
gravitational interaction is described by

¢t 3 —~
i = 5 [ o
1 (e e CHEEAI
x l—c—4 <2V,~Uv,-U +81G " ) A5 b

A (AzmA]nhTT) hTT

NH

(2o + o)
2
+o(h)+o<h> (5.27)
in agreement with Schéfer (1990).

Equations of motion

The Hamilton equations provide the evolution of the field. They take the
explicit form

Bihiyt = 26755 BkmAim (e + wEL)]

+o( )+O<D
= 24kl + O ( . ) +0 (i’) (5.28)

. B 2 /. A g g
3t7T}12T = —C%JTM l—c—4 (VmUVnU + 47TG%> ,?km,?ln

( mAlnhTT)

ro(2) o)

l\DI»—l
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The non-conformally flat part of the 3-metric appears first at the second post-
Newtonian approximation. Its leading order is obtained by inserting the above
expression for 9 into the time derivative of Eq. (5.28). The resulting
equation is of wave type. In the near zone, all terms of order 1/c® may be
neglected, in particular the time derivative contribution to the d’Alembertian
operator. Hence the non-conformally flat part of the 3-metric satisfies

Antt = 'AYZETM <4kale + 167G Sks’ )
+0 (c—6> , (5.30)
which is identical up to second post-Newtonian order to the equation
ARZN = 4T By, (5.31)
where the source Fy; is given by
Fry = -4V, UVU — 167 S;S* (5.32)

This equation has to be solved in order to calculate the second post-Newtonian
correction to the CFC metric.

5.3.2 Modified CFC equations
Equation for the lapse

The equation for the lapse function « is derived from the gauge conditions (2.39,
[2.40) combined with the evolution equation for the extrinsic curvature
K;j. From the identity 774;; = 0, we deduce that the trace is negligible at
this level of approximation:

4] ij h
’YJKij (2\/_'7ZJK ) +0 3
2\/_ c

- gm0 (5)
—0 (cl7> (5.33)
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This implies that the ADM gauge in combination with the CFC+ approxima-
tion restrict the gauge selection, as the only slicing possible is the maximal
slicing. By contracting Eq. (2.24) with the inverse 3-metric v¥, we arrive at

C

v ERPNT 1 1
from which follows that

— ViVia + aR + K* (—2aK;;, + 2Vi8;)

- 4:_46:(_5 +3E)=0 (%8) : (5.35)

Due to the fact that K** is symmetric and trace-free, neglecting corrections of
order O(h/c?), the product K*(—2aK, + 2V;8) can be written as
K*(—2aK i1> + 2V <iBes) + O(h/c8). The terms inside the parentheses
vanish according to the symmetric trace-free version of Eq. (2.23),

1 1
—20K jj> + 2V B> = zat'7<ij> =0 (c_5) ) (5.36)

so that K% (—2aK;, +2V;8;) = O(1/c?). Next, we see from the Hamiltonian
constraint equation that the interaction and field parts of the scalar curvature
R appearing in Eq. are actually of order O(h/ct) = O(1/c?). On the
other hand, we know that E* = O(h/c*)+pure matter terms. We have similar
equalities for E and S = S¢. Therefore, we find

1 - N 1
ﬁvi (\/’:y’y” Vja) =0 (c_8> + pure matter part
=Aa - V;V, a4 *53pLT. (5.37)
At the lowest approximation, we may replace a by (—goo + B:39)1/2 =1 —
U/c®> + O(1/c*). In the end, the elliptic equation for the lapse in the presence
of hi;" is modified to

c

. N | R PN 1
Aa = (Aa)hT‘TZO— —A*A IV ViU + O (c—8> (5.38)
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This is the desired CFC+ metric equatlon for the lapse function a. Since U/c?
is Newtonian, w“‘fyﬂhTTVleU /c? corresponds to the second post-Newtonian
order for the dynamlcs

Equations for the shift and the conformal factor

The equation for the shift can be obtained in principle by contracting the 3-
metric evolution with the help of the Euclidean metric 4%. However, with
respect to the conformally flat case, the new terms are proportional to a prod-
uct of the type K (or 3) times h};-T. They are therefore negligible at the second
post-Newtonian level and will not be computed here. As already pointed out,
the equation for the conformal factor remains unaffected at that level as well.
Thus in general, all CFC equations, except the one for the lapse function,
remain unaltered.

5.4 Calculation of hj;'
Once we know the equation for AT up to second post Newtonian order, we
have to invert Eq. (5.31). We proceed in three steps:

1. We make the action of 4;;"* explicit in Eq. (5.31). The result is in-

tegrated formally by means of the Poisson integral operator A-1. By
virtue of its linearity property, we obtain a weighted sum of Poisson po-
tentials of generic type A- lan (up to possible index contractlons) or
super-potentials of the form A2V, V;Fpn = A"Y(A-'V,V,F,,,) and
A- 3V,V] ViFmn.

2. We transform the super-potentials into simple Poisson potentials in order
to get rid of all derivatives acting directly on the sources.

3. We insert the resulting quantities into the transverse traceless tensor
A14LTHEy and perform some additional manipulations that lead to
the final expression.

These steps are performed in detail in the following.
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5.4.1 Inversion of the equation for A

It is straightforward to expand the operator '?ET“ defined in Eq. and
to apply it to the source Fy; given in Eq. (5.32). Taking the symmetry in the
two indices k and [ into account, inverting the tensor Poisson equation (5.31)
then yields

hng — A—l (’?;"I;Tlekl)

A_3@i@j@k@l (ﬁMk’?anmn) . (5.39)

As the Poisson integral A—1Fy converges, all other (super-)potentials enter-
ing Eq. (5.39) are also well defined. However, they cannot be handled easily.
For instance, quantities such as A=2F,,,, or A 3 Fyurn are a priori meaningless,
which shows that the derivatives cannot commute with the integrals. In or-
der to operate on the sources without meeting any serious restrictions, it is
convenient to resort to the tool of Hadamard finite part regularization (see Ap-
pendix[B)) This allows us to write the potentials and super-potentials in a form
suitable for numerical integration. For this purpose, we can recourse to fairly
standard techniques, some of which were used in particular by Blanchet et al.
(1990) to deal with the derivative of the Newtonian super-potential. With the
help of Eq. (B.6) and the commutation relation A&B Wi = V;AZ! , we transform
the expression of the (super-)potentials A=2V,;V; jFri or A~ V V ViViFon,
entering the non-conformal part of the 3-metric (with possible index contrac-
tions). By doing this, we try to minimize the number of free indices that remain
inside the integral and, for numerical reasons, to get rid of all spatial deriva-
tives of the densities D* or S in the final expressions. The transformation of
A‘zﬁzijkl, for instance, is achieved in four steps: (i) We let both derivatives
commute with the integration symbol, A”@i@ijl = @,WJA; 2Fp, (ii) we
rewrite AZ2Fy; according to Eq. (B.5) with p = 2, (iii) we make one of the
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derivatives act on the kernel | —z'|'*Z so that there remains only one uneval-

uated spatial derivative operating on a linear combination of simple Poisson
integrals, and (iv) we let the derivative act. This yields

. 1. .. X L
A™?V,V,;Fy = 2 [%’jAmlel + Ajmx™ VAL Fiy

— Vil (Bjma™ Fu) | (5.40)

The respective transformation of 5_3@1-@1' @kan is very similar:

1o P’ 7
2 —A4nrf
1. /dSm’ﬂ[A . (@P —a'?)(z? — 2'7)
FALY R

“ag |V |z — |

|£E _ ml|3+Ban

[3’?(ij’7k)p$pA;1Fm" — 3'3’(1']”7]@)1)5;1 (mmen)

— 23p(%5)g 2 VAL (@ Frun)

AR50 E kA

+Fip¥ia VEAS" (mpqumn)] - (5.41)

5.4.2 The intermediate potentials

, i.e. the inversion of the tensor Poisson equation (5.31

The computation of h3} ™

by means of the Poisson integral operator A1, is simplified by the introduc-
tion of intermediate potentials S, S;, 7i, Ri, and S;j, which are solutions of



68 CHAPTER 5. CFC+

the following scalar /vector /tensor-Poisson equations:

AS = —4r 2_) zizd (5.42)
= [ — VUV, U] (5.43)

= [ ] 4Ryt (5.44)

= Vi(V; UVkU:v’ By, (5.45)

ASij = —4n D* —%U%U. (5.46)

These equations are designed in such a way that their source terms approach
zero like r—® when r = |z| tends towards infinity, which ensures the existence
of the corresponding Poisson integrals. With the help of these potentials we
are now able to deduce the expression for h};-T up to second post-Newtonian
order,

1 A 5 N
h'iTjT = 58“ _ 3xkv(i8j)k + Zﬁjmxmv' (Alekl)

1

+ 72*2'ViV;Su + 3V S)) — _xkv V;Sk
e 5
+ViViS - ZVﬂ;‘ - sz’Rj
o [1s I e

+ %ij |:Z’Ykl8kl + 254"V St — A Vi S

+0 (%) . (5.47)

The explicit expressions needed to write the above equations in spherical co-
ordinates can be found in Appendix

5.4.3 Multipole expansion of the intermediate potentials

Due to the specific type of elliptic solvers employed in our computer code (see
Chapter 8), it is not possible to use the inverse image method to evaluate the
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intermediate potentials up to spatial infinity. We instead solve Eqs. (5.42H5.46)
assuming specific boundary conditions. These are determined from the multi-
pole expansion M of the intermediate potentials S, S;, T;, Rs, and S;;. The
derivation of the multipole expansion is done by means of the formula (C.9) of
Blanchet & Poujade (2002) specializing the matching relation first established
in Blanchet (1998) for retarded quantities.

For any generic source f which admits outside the system a multipole
expansion of the form M(f) = > 7° fp(m)r? with n = z/r and py < -2,

p=—00

the multipole expansion of the Poisson integral A7 s given by

I r
=0
3.0 /7 1\ B
X FPB:O/ d’z Y (T_> :L'”“ mlilf
—47 70
+ AT M(F). (5.48)

In the special case where the source f has compact support, M(f) is identically
zero and thus the last term above vanishes. We recover the standard multipole
formula used in electrostatics for spatially limited systems.

At this stage, the multipole expansions of all our elementary potentials
may be derived by application of Eq. (5.48). We start with S;; which goes to
zero at the highest order. It involves the monopole integral with non-compact-
supported source [ d*z+/3V,;UV;U/(—4r). Remarkably, this integral admits
an alternative expression whose source has compact support, which is a very
useful feature for the numerical calculations. To perform the transformation,
we first replace the second potential U in the integrand V;UV;U/(—4x) by
Ax/2, where x denotes the Newtonian super-potential y = J &3z |x — 2'|D*.
Next, we integrate this Laplacian by parts, being careful to keep all contribu-
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tions from the derivatives of rB. The result is

Bz VA X\ & «
FPp_ BV A\V.AU
B=0 47rr0 ( ) ’
d?’(l:\/_ ~
=FPp_ B+ 1)r82vV,U
B=0 yp— [ (B+1)r J

+2BrB k7, ka]v (;‘) (5.49)

We remark here that the second finite part on the right-hand side vanishes.
Indeed, the integration does not generate any pole in B which is able to com-
pensate for the cancellation of the pre-factor B itself. Consequently, after a
last integration by parts, we arrive at the equality

Bz /A
/ 0 VUVU———/d3m\/_D ViVix. (5.50)

It is not difficult to check that V;x = 4;52* A~1 (=4nD*)— A~ (—4n4;z* D*)
by virtue of relation (B.6). Using an integration by parts of the type

[#a iy = [@ayhgaty, (5.51)
we are finally able to show that
BrvVie o
- 1
—/d3$ \/’T)’D* (’?jk.’ﬂkviU—}- 5’%1[]) . (5.52)

Inserting the latter relation into the general formula (5.48) specialized for
f=—4nS;S3/D* —V;UV;U, we get

S; S}
M(S;;) /d3m fD* (D*2 + Yirx V U+ 'YzJU)
+ M (—4 D V UV, U) (5.53)
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When examining the second term in the above equation, one immedi-
ately observes that M(S;S}/D*) = 0 as the source (S;S5/D**)D* has com-
pact support. Furthermore we notice that M(V;U @jU ) = O(1/r*), hence
A M(V;UV,;U) = O(1/r?) according to dimensional analysis. It may also
be checked directly with the help of the Matthew formula A5t (n<i .. .n#>r?) =
n<h . nt>rat2 [[(a+ 2 —1)(a+ 3 +1)].

We go on by calculating M(S ) The part of its source with non-compact
support essentially amounts to #*V;UV,U. The integral of the latter quantity

may be transformed with the same technique as the one used to establish
Eq. . We find that

FPgp_o / ‘ﬁ rBak V,UV,U

— Ay 0
= —FPB O/d :I:ﬁ B( k@kxﬁi(—ﬁlﬂ'D*)

+ 2’)/761619)(?1@,'(]). (5.54)

We may then perform an integration by parts affecting the derivative V,;D* of
the first term and the derivative Vi x of the second term. The contribution of
VirE is proportional to B. It can give rise to a definite non-zero result only
when it is multiplied by the factor 1/B coming from the radial integration of
1 / r°. As the correspondlng angular integral vanishes, so does it. Noticing that
Axv ;U = 2UV;U = V;U?, we see that the resultlng integral reads

1 . .
3 /d3:1: \/'TyD* (m’“V,-ka + ViX)
B
—FPBZO/d%ﬁ (}) VU2, (5.55)
0

After integrating the second term by parts, we get an integral whose source is
proportional to B. Following the same argument as before, it can be shown
to be zero. Expressing again the super-potential as a combination of Poisson
integrals, and performing other integrations by parts including those of the
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form (5.51), we arrive at
ﬁ B

— 7T7'0
- / Bz \/3D*4; (ij n xﬂ'mkmU) . (5.56)

On the other hand, the source 2#*V;UV U behaves as M?3;n* [r3 =
—M?V;(r=2/2), where M is the baryonic rest mass density defined as

M= /dSm\/ZyD*. (5.57)

A direct integration leads to the relation AE Y(1/r?) = Inr + const., which
can also be seen from a dimensional argument, so that Ag' M (zFV;UV,U)
decreases asymptotically as —M 2V, (Inr)/2. Therefore, we have proved the
approximate equality

FPg_o oV, UVLU

1 . N
M(S;) = ;/dg-’ﬂ VAD* [mkSz'Sk + 45527 (U + mkaU)]

M2, 1
+ oy kT +0 <r_2> . (5.58)

In the multipole expansion of 7;, the only term entering its composition that
is generated by a quantity with non-compact support is the Poisson potential
A~ (44 ﬂklarf ViUV U ). Its monopole part is composed of an 1ntegra1 over the
source, which simplifies by virtue of the relation 2fylek UV, U = AU2—2UAU
to

Bz ~(r\° /. u IS e
FPp_o Tmﬁ(a) (353429 VUVID)
=— / Pa/AD* 2" U, (5.59)

and of a contribution originating from the Poisson inverse operator applied to
MFii AR IV UV U) = =M?V;(r=2/2) + O(1/r*). We thus have

. R M2 1
Ag* M3 AH IV, UV U) = —?%nf +0 (72) ) (5.60)
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The treatment of the leadmg term in the multipole expansion of R; is
similar. The integral of V;(zF2!V,UV,U ) is s1mp1y zero by virtue of the
Gauss theorem, and the monopole part of — A=1V,(zF 2!V, UV, U) is the same
as that of 29;;% ST UV U

We conclude with the multipole expansion for the potential S. Since its
source is already of compact support, it can simply be expanded with the help
of the standard multipole formula mentioned after Eq. (5.48).

In the end this yields the desired multipole expansions of the elementary
potentials in the second second post-Newtonian expansion,

M(S) = /d3 ( E57 x) (5.61)

M(S;) = /d3 VAD* (D*? z +7,J$J(U+$kaU)>

M2
+ 2_72377/ ) (5.62)
— . kls*S*
M(ﬂ)z—/d%ﬁD ( D*2l +U>
M?
+_%J ) (5.63)
M?23,;:n
M(R;) = % (5.64)
3 * S*S*
M(Si5) = /d z /4D D*2 + 'yUU+'y,km o;U), (5.65)

modulo O(1/r?) corrections. By evaluating the above expansions at a finite
radius outside the star we obtain the necessary boundary conditions for S,
Si, Ti, Ri, and S;j, which are used in the numerical procedure to solve the
intermediate potentials.
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5.5 CFC+ in a nutshell

The procedure to calculate the CFC+ metric can be summarized in the fol-
lowing steps:

1. Calculate “Newtonian” potential (1 Poisson eq.):
AU = —47GD*

2. Calculate intermediate potentials (16 Poisson egs.):

AS = —47r%xiwj,
. SISy o . ;
AS; = | 4w D -V,UV;U| 2,

* Q%

A SJSk v v ~iks ol
A'EZ —47 D+ —VijkU Y Yax,

AR; = Vi(V;UV Uz z?),
. SiSy ..
ASij = —4r D* - szV]U

3. Calculate h;l;-T:

1 A 5. md [~
h;-IJ‘-T = 58” — 3$kV(iSj)k + Z’ijil? V, (fyk’Skl)

1 PN A 1 .~ =
+ —:Ek.’l?lViVjSkl + 3V(i8j) — §$kvivj'3k

AN

PN ~ 1.
ViV;S — gvm - JViR,;

. 1. S T
+ Yij Z’Yklskl + P4V S — A VRS
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4. Calculate modified CFC equations (5 nonlinear Poisson-like egs.):

" K
Aag) = 2nag® (E +2S + M)
167

1. A
- C—Z’YZk’YJl hiT ViV,

KK )

A¢p = —21¢" (E + =5

@i@kﬂka

| =

A . A A o
At = 16mag*St + 2KV (ﬁ) -
with

N . 2
Kij = o (Vz'/Bj + V6 — g’)’i]vkﬂk)
S
KinZJ = WKUK”

5. Calculate the metric:
9ij =vi; = ¢ + BT,
Joo = 'Yijﬂjﬂi - 062,
goi = Bi-




76

CHAPTER 5. CFC+



Chapter 6

Gravitational waves

6.1 Introduction

Gravitational waves can be “loosely” defined as fluctuations of the curvature
of spacetime which propagate as waves. We can classify the different regions of
spacetime around an isolated source depending on the distance to the source r,
and the reduced wavelength of the gravitational waves X. Close to the source,
where r < X, the curvature of spacetime is directly affected by the energy
momentum distribution of the source. Gravitational waves in this region couple
nonlinearly with the background metric and themselves as they move away
from the sources. One has to wait until GWs reach the wave zone, defined
as the region where r > X, to have real waves travelling in a background
Minkowski spacetime. The objective of this chapter is to present the theoretical
framework to calculate the GWs in the wave zone from the information of the
source evolution, and the spacetime surrounding it (see Blanchet 2002, for a
review in this kind of formulations of the gravitational waves.).

As we aim to describe GWs as perturbations of the Minkowski metric 7,
we will express the metric as

Juv = Nuv + Buu, (61)

where BW is the perturbation. Note that this does not imply any assumption
on the smallness of the perturbation, since, close to the sources, h,, can be

7
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arbitrary large compared to the Minkowski metric. In some suitable radiative
coordinate system (see Misner et al. (1973), sect. 36.9), Einstein’s equations

read B
Or* = —167 (TH +t*Y), (6.2)

where [ is the D’ Alambertian operator, and t#* is the effective energy-momentum
tensor of the gravitational field, i.e. a pseudo-tensor that is non-zero outside
the source. The direct integration of this equation leads to divergent integrals
due to the non-compact support of the source t*” (See however Pati & Will
2000). Fortunately, if one considers that h*” are small perturbations of the
Minkowski metric, a multipole decomposition of the linear contribution can be
performed (Thorne 1980)

2G 1
hi2d(t, ) ZEPET M {Mz Wt (T2 kit + M3 ki

1 1 1
+c—2[.73kz+/\/l4kl] +0 (0—3)}4‘0 (r_2> ) (6.3)
where P, Tk stands for the algebraic transverse traceless projector

Pi?Tkl =YitpVa)j [(npnk - ’Aypk) (”qnl - 'S’QI)
— (nPnt — 59) (nbal — 44) /2], (64)

and M, and J, are terms including n-th time derivatives of mass and
current multipoles (n = 2 is the quadrupole, n = 3 the octupole, n = 4
the hexadecapole ...). Note that this expression is exact, since it keeps the
nonlinear contributions to the waveform (denoted as O (1/r?) terms), and the
higher order multipoles (denoted as O (1/c?®)). But the integrals appearing in
the multipoles present in M, x; and 7, ; still have to be calculated. If a post-
Newtonian expansion of the GW sources is possible, then these integrals can
also be expanded in the various contributions of the different post-Newtonian
orders as
N 1 1PN 1
Mapki = My + C_QMnkl +0 (_4) ) (6.5)

C

1 1
Tkt = T + C_QJ;IZZN +0 (c_4> ) (6.6)
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where the superscripts N and 1PN denote the Newtonian and first post-
Newtonian contributions respectively. Including these post-Newtonian expan-
sions and reordering the terms consistently with the expansion, one arrives
to

r 2G 1
hi3(t, ) =EP£T M(N) {Mévkl T2 [Tkt + M3]
1 1 1
P L [+ Ml + M + 0 (0—3) } L0 (7) @)

which still is an exact expression for the metric perturbation. This expansion
in terms of 1/c is called the slow-motion expansion (see Misner et al. (1973),
sect. 36.7), and is valid for R < X, R being the size of the source.

If one assumes (i) that the GWs amplitude is small enough for the linear
approximation to be valid, and (ii) that the slow motion approximation is
valid for the sources, then h§;-‘d can be approximated by the leading term in
the multipole expansion, i.e. the Newtonian quadrupole moment

r 2G
hz’?d(t’w) “EPET M (N) My (6.8)

This formula is called the Newtonian quadrupole formula. Note that, although
only Newtonian contributions to the source affect the waveform at this level of
approximation, this is a 2.5 PN formula, because it is a 1/c¢* contribution to
the three-metric, and therefore a 1/¢® contribution to the power loss equations.
The explicit form of this formula depends on the way the post-Newtonian
expansion of the sources is done, in particular on which variables are chosen
for the expansion, although the calculated waveform has to be independent of
this fact, as long as the approximation is fulfilled.

6.2 Newtonian quadrupole formula in the ADM
gauge
The equation for null outgoing geodesics in the ADM gauge reads ¢t — r/c —

2MapmGIn[r/(cn)]/c® + O(G?) = const., where Mapy = M + O(1/c?) is the
ADM mass and 7 an arbitrary positive constant with the dimension of time.
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For r large enough compared to the typical wavelength, this equation also
gives the link between the time ¢ and the distance r of a field point x located
near future null infinity Z*. In the post-Newtonian framework, r/c is regarded
as a small quantity (with respect to t), which precisely reflects the fact that
the post-Newtonian metric is not accurate in the wave zone. Therefore, the
expression (5.47) for h;" cannot be used there. Instead, we should consider
the post-Minkowskian version of Eq. (5.30), where all quantities are expanded
in powers of the gravitational constant G. Higher order terms in 1/c?> must
not be neglected a priori, as long as they appear at a level of approximation
below the one we want to reach.

In general, this approach is not guaranteed to lead to a well-defined pertur-
bative scheme in the ADM gauge in the sense that the contribution of order
G™*! may become greater than the contribution of order G™ in the neighbor-
hood of Z*. It is worthwhile briefly pointing out the origin of the possible
problem. Once the field h,;" is known at the nth post-Minkowskian (nPM)

nz]
level, the next approximation hn+1;ro is determined by the wave-like equation
of the type Clhni1y;' = A5 ¥ Ant1, (hTT) + O(G™+?) obtained by combing
Egs. (5.10) and (5.11) as explained in Chapter 5. The source A,1,; depends
nonlinearly on h” , which can thus be replaced by its nPM value hn;flT. In
the end, the solution of the previous wave equation is the retarded integral of
A5 TH Ap i1y (BTT), which we denote in short as (3~ V;ST“AHH 4 The trans-
verse traceless projector can itself be written as a converging integral with the
help of a modified version of Eq. (B.6), in which the derivatives are applied to
the kernel |x —x'|*T5+2P with o = —1. Even if the retarded integral converges,
it may be conveniently replaced by its Hadamard finite part. The numerical
result is not affected, but the integral appearing under the operator FPp—g
can now be shown to commute with the integral defining hn+1;l;T after an

appropriate analytic continuation. As a consequence, the finite part of 4;;"*

(regarded as an integral operator, which may be referred to as 4;;"* with-
out any ambiguity) can be pulled out from the d’Alembertian inverse symbol:
B M A1y = A58 Angayy. The behavior of Apy;;(hn' ") when
r — +oo follows from a formula extending Eq. to the case where the
quantity to be calculated is a retarded integral. In particular, the multipole

expansion of hf;" involves the retarded integral of the multipole expansion of
the source, regularized by means of the Hadamard finite part Og IM(AnHi j).
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This contribution turns out to generate terms tending towards zero as (Inr)?/r
at the 2PM order, which are thus out of control. The structure of the field has
not been investigated yet at higher PM order in ADM gauge, but a similar
phenomenon is likely to happen in that case too.

Fortunately, the previous problem can be cured at the post-linear level
either by moving to some radiative gauge where u = t — r/c is a confor-
mal coordinate, or by absorbing the logarithms into the arguments of some
multipole moments. In harmonic gauge, the logarithms occurring in the post-
Minkowskian iteration were shown (Blanchet 1987) to be removable to all
orders. In ADM gauge, the possibility of such an elimination has been checked
explicitly at the post-linear level by Schéfer (1990) from a formula adapting
the derivation of Chapter 5/in order to include in the Hamiltonian the relative
Newtonian part of the 2PM corrections to all terms quadratic in hj;" (or wy).
The new wave equation for the field variable reads

. 4 .
ChiT = AT [Fk, +3 (—27rGD har

+ 4™, UV, BET 4 UAhE,T)]
BTT 0 pTIT 1
+0<%) +0<%> +0((1)?). (6.9)

The Green function method provides the required solution, but the computa-
tion is rather delicate. The result is a retarded integral, to which it remains

to apply the transverse trace-free projector ¥5*. The action of the sec-

ij
ond spatial derivatives V;V; on a quantity of the form f(t —r/c)/r leads to
the “monopole” term Ay,yinPnif(t — r/c)/(rc?), each dot denoting a time
derivative, plus 1/r2 corrections. It follows that A=V, V[f(t — r/c)/r] =
YipFignPnd f(t — r/c)/r + O(1/r?). Similarly, it is not difficult to check that
A2V Vi VeVilf(t = r/e) /1] = FipYigTer usnPnin'n® f(t = r/c) [r + O(1/r?).
This implies that the operator , applied to a term f(t — r/c)/r, reduces
to the projector P;;'*. Using the latter property, we recover the well-known
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relation

hTT PTTkl

£ (w0 (1)) (3)
+(’)(G2)] +0 (?)} +0 (%) , (6.10)

with M;;(t) = [d3z/3F;;j/(—4m) being the Newtonian monopole moment
associated to the source Fj;.

Because of the algebraic transverse traceless projection, we may substitute
Mcij> by M;; without affecting the outcome in the above relation. Since
we still work at the 2PN level, we do not need to include any higher or-
der corrections in the expression of M;;. The retarded argument ¢t — r/c —
2GMapm/c Infr/(en)] + O(G?) coincides with the null radiative coordinate.
It can be viewed as the actual retarded time ¢, of the field variable at Z1 up
to the 1PM order. Taking the preceding into account, we arrive at

M . 1
BIT & PR 7“1:('5 ) | o (72) . (6.11)

We now improve the formula for M;; by making use of Eq. , which leads
to

St
Meijs = —/d3m V4D* ( e Ly fyk<ZVj>U) ) (6.12)

Excluding 1PN errors, this integral equals 4G [ d*x /3D (Jxi g0 <Fv'>
+mk%<i@j> U)/c*. This is proportional to (twice) the second time derivative
of the Newtonian quadrupole 2Qij at this level, as can be checked with the
help of the relation

%/d%c VAD* f(z,t)
= /d3m \/§D* (’Uzﬁz + 615) f(w,t), (6-13)
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which is valid for any C! function f. We have thus derived the Newtonian
quadrupole formula )
2GQmu

TT ., pauad _ pTTkl
hi- ~ by =P — 4

(6.14)

in the neighborhood of future null infinity.

6.3 The stress formula

The Newtonian standard quadrupole formula has been extensively used in
numerical simulations to calculate the emitted waveforms without having to
consider the full evolution of the spacetime. However, the particular form in
which Eq. (6.14) is expressed leads to numerical difficulties since a second time
derivative appears. A way to circumvent this problem is to eliminate all time
derivatives using the equations of motion. Following Blanchet et al. (1990)
one can arrive to an expression for @ with no explicit appearance of time
derivatives. This is the so-called stress formula

Qij ~ STF {2 / d*x\/4D* (@,-k APt + 2F A %U)} (6.15)

where STF means symmetric and traceless part. This formula has proved to
be numerically more accurate than the original formula (Finn 1989) and hence,
we use it in this thesis to numerically extract gravitational waveforms.

In the case of a magnetized fluid in the ideal MHD case, the gravitational
wave is also affected by the energy content of the magnetic field. Kotake et al.
(2004b) have derived an extension of the quadrupole formula for such case.
In a similar way, it is possible to calculate the corresponding stress formula
(Obergaulinger et al. 2005) which reads

Qij ~STF {2 / d*z\/5 [D* (%k i vFot + o Ay %U) - @ik&j,bkbl] } .
(6.16)

Note that in the limit of weak magnetic fields the original stress formula is
recovered. We use this formula in the magnetized core collapse simulations of
Chapter [10 to numerically calculate the contribution of the magnetic field to
the waveforms.
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6.4 Near-zone far-zone link for gravitational waves

It is now possible to investigate the asymptotic behavior of hff N'in a simi-
lar way as we did for the intermediate potentials. The computation does not
present any particular subtleties in contrast to that of the full field variable
dominant contribution. The operator 4;;"* commutes with the Poisson inte-
gral so that M(A-14TTR Fy ) = TTRA(A-LFy) = 4ETE My /r)+O(1/72).
The action of the transverse trace-free projector is computed with the help of
Eq. (B.3), which gives

3. . 3k
h?})N(w,t) = |:E'Y(z'j’7kl) + Z5fﬂj)pnln”

+ se A g nintn!

5 ,. Kkl A o~
~16 (Fign*nt + 4M33,44mP "q)]

« Ma®) o (%) , (6.17)

T

with M5 = 2GQ;;/c'. By applying the operator P1T* on both sides of

Eq. (6.17), we find that PJTHpiN = IDi}?Tk’Gle/(4rc4). As a conclusion,
comparing with the Newtonian quadrupole formula, (6.14), we have

1
PR (@ trer) ~ gh ™ (e, 1), (6.18)
or in components,
1
h2PN (2, trey) ~ ghiuad(:c,t), (6.19)
1
B2PN (@, tret) ~ gh‘i“ad(w,t). (6.20)

In spherical coordinates hiPN can be trivially calculated from the combination

hy = (hgg — hgg)/2, whereas b is equal to hgp™.

We see that the two polarizations extracted directly from hfjp N'in the wave
zone of the true waves differ from the quadrupole waveforms by (i) a factor 8
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and (ii) the absence of retardation. The gravitational waveforms can thus be
evaluated directly from A2FN and hZPN even though there are no propagating
gravitational waves in the CFC+ spacetime (which just means that there is no
radiation back-reaction due to energy losses caused by gravitational waves).
Furthermore, the wave amplitude can be deduced solely from h%"N in the
axisymmetric case.
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Chapter 7

Solving the
magneto-hydrodynamics
equations

The code used for the relativistic simulations presented in this thesis is an
extension of the code described in Dimmelmeier et al. (2002a,b), and was
discussed in |Cerd4-Durén et al. (2005). We start by describing the magneto-
hydrodynamical piece of the code. In this respect our code extends Dim-
melmeier’s code, which did not include any treatment of magnetic fields,
through the incorporation of a number of new features:

e A general treatment for the metric appearing in the (magneto-) hydro-
dynamics equations, as the assumption of a diagonal three-metric is not
hardwired in the code.

e An extension of the recovery algorithm for the primitive variables in
order to include more general equations of state other than polytropes
or ideal gas equations of state.

e Inclusion of an evolution equation to advect a second species (e.g. elec-
tron fraction) with the fluid.
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e Incorporation of additional Riemann solvers (HLL) and high-order, sym-
metric schemes (KT).

e Inclusion of evolution equations for the magnetic field in the ideal GRMHD
approximation.

The equations are implemented in the code using spherical polar coordi-
nates {t,r,6,p}, assuming axial symmetry with respect to the rotation axis
and symmetry with respect to the equatorial plane at § = 7/2. The compu-
tational grid to perform the simulations is composed of n, radial zones and
ng equidistant angular zones, whose specific values for the simulations depend
on the particular application (see Part IV). For convenience the radial cell-
spacing is chosen equidistant for evolutions of equilibrium neutron stars and
logarithmically spaced when simulating core collapse. As in the original code
(Dimmelmeier et al.2002a) the part of the grid outside the star is filled with an
artificial atmosphere as customary in finite difference codes similar to ours (see
Font et al. 2002; Duez et al) 2002; Baiotti et al. 2005). This atmosphere obeys
a polytropic equation of state and has a very low density such that its presence
does not affect the dynamics of the star (see Dimmelmeier et al. 20024, for de-
tails). Moreover, an extended grid containing no matter is used beyond the
atmosphere for the CFC+ metric calculations, namely to properly capture the
radial fall-off behavior of the metric potentials and to extract the gravitational
radiation using components of h};-T in the wave zone (see Sect.[9.3.2).

7.1 Hydrodynamics and magneto-hydrodynamics
solver

The hydrodynamics and magneto-hydrodynamics solver performs the numer-
ical integration of the corresponding system of conservation equations
using a high-resolution shock-capturing (HRSC) scheme. Since these schemes
are described in a number of references (e.g. Leveque 1990; Toro 1999; Mart{
& Miiller 2002; Font 2003), only the basic aspects of our implementation will
be presented here. The interested reader is addressed to the existing literature
for details. As the equations for the evolution of the magnetic field also require
the fulfillment of the divergence constraint (3.45), the specific features of the
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numerical solution of these equations are described in the next section, while
this section is devoted to general issues having to do with numerical solution
of systems of conservation laws.

HRSC methods ensure numerical conservation of physically conserved quan-
tities and a correct treatment of discontinuities such as shocks. In such meth-
ods a local Riemann problem needs to be solved at each cell interface, as a
result of the discretization process, which requires the reconstruction of the
primitive variables (p,v?, €, B’) at such interfaces.

In the purely hydrodynamical case we use the relativistic expression of the
PPM method of Colella & Woodward (1984) for the reconstruction (see Marti
& Miiller 1996), which yields third order accuracy in space. The solution of
the family of Riemann problems provides the so-called numerical fluxes at
cell interfaces. In order to obtain this solution, the characteristic structure
of the Jacobian matrices of the hydrodynamics equations is explicitly needed
(Banyuls et al. 1997). We note that in contrast to CFC in the CFC+ approxi-
mation the metric has non-vanishing off-diagonal elements. Hence, we use the
most general expression of the eigenvalues and eigenvectors of the general rel-
ativistic hydrodynamics equation as reported in Ibéfiez et al. (1999). Once the
spectral information is known, the numerical fluxes are computed by means of
Marquina’s approximate flux formula (Donat & Marquina 1996).

In the magneto-hydrodynamical case, following Antén et al. (2006), we use
a linear reconstruction procedure with a minmod slope limiter, which yields
second order accuracy in space. To calculate the numerical fluxes at cell in-
terfaces, we use “incomplete” approximate Riemann solvers, i.e. solvers that
do not need the full characteristic information of the system. This kind of
solvers are particularly useful in GRMHD, where the full eigenspeeds of the
flux-vector Jacobians are not known in a closed form (see Antén et al. 2006).
We have implemented the HLL single-state solver of Harten et al. (1983) and
the symmetric scheme of Kurganov & Tadmor (2000) (KT hereafter). Both
solvers have proved to yield results with an accuracy comparable to complete
Riemann solvers (with the full characteristic information) in simulations in-
volving purely hydrodynamical special relativistic flows (Lucas-Serrano et al.
2004) and general relativistic flows in dynamical spacetimes (Shibata & Font
2005). Test of both solvers in general relativistic magnetohydrodynamics sce-
narios have been recently reported by Antén et al. (2006). To calculate the
fluxes with the HLL or KT solver we need the eigenvalues of the system, in
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particular the maximum and minimum value for the HLL scheme and only the
maximum absolute value for the KT scheme. We note that as in the GRMHD
simulations reported in this thesis we adopt the passive field approximation,
the eigenvalues of the GRMHD system reduce to those of the hydrodynamics
system (see Chapter(3). The numerical procedure to calculate the eigenvalues
in the general case can be found in Antén et al. (2006).

The time update of the conserved vector U is done using the method of
lines in combination with a Runge—Kutta method with second order accuracy
in time. Once the conserved quantities (D*, S}, 7*, B*/) are updated in time,
the primitive variables need to be recovered. This is done through an iterative
Newton-Raphson method, as these variables cannot be obtained in closed
form from the conserved variables. This recovery scheme has been improved
to handle general equations of state of the form P = P(p,¢,Y,), where Y, is
the fraction of the fluid that belongs to the species a, advected with the fluid.

We note that the sources @ of the hydrodynamic equations have been
implemented in the code using a general form for the metric, although they
can be simplified for a metric with vanishing nondiagonal terms in the three-
metric as, for example, in CFC.

7.2 Magnetic field evolution

The magnetic field evolution is given by the induction equation (3.46) and the
divergence constraint (3.45). If we were to follow a naive approximation to
solve the induction equation we could take the same approach as for the fluid
variables, as the equations can be cast as conservations laws (3.11). Unfortu-
nately, this leads to numerical schemes that do not preserve the divergence free
condition for the magnetic flux. A possible explanation of this failure is that
the conservation of the magnetic field inside a volume has no physical mean-
ing. Instead, the main physical implication of the divergence constraint is that
the magnetic flux through a closed surface is zero. Therefore, we can use this
conservation law to build a numerical scheme which preserves the magnetic
flux. Among the numerical schemes that fulfill this property (see Téth (2000)
for a review), the constrained transport (CT) scheme (Evans & Hawley 1988)
is very appropriate to perform accurate simulations of magnetized flows.
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Figure 7.1: Schematic representation of the numerical cell. The time derivative of
the magnetic fluxes ®; over the r interface (a), the 6 interface (b) and the ¢ interface
(c) can be written as line integrals along the corresponding closed path a-b-c-d.

7.2.1 The constrained transport scheme

In order to implement the CT scheme in our numerical code, in which we
assume axisymmetry and use spherical polar coordinates (r,6, ), we have
to analyze how the magnetic flux behaves at the surface of a numerical cell.
Therefore, we apply Eq. (3.49) for the magnetic flux evolution to the interfaces
in each of the directions of the coordinates (see Fig.[7.1). To do this we assume
that B*? is constant over each cell surface, and E; is constant along each cell
edge. In the r direction (Fig.[7.1]panel a) this yields
09, 0

o = A8, 58" = [E5 ALy, — [EAlL], (7.1)

keeping in mind that the axisymmetry condition imposes that [EfAls], =
[E;Aig]d. We define AA; = I dA; as the surface of the cell interface perpen-
dicular to the 4 direction and Al; = J di; the length of the cell edge in the ¢
direction.
In the 6 direction (Fig.[7.1 panel b) the variation of the magnetic flux is
given by
0%y 0

5 = AAy EB*G = [E3Al]e — [E3 Al (7.2)
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Figure 7.2: Schematic representation
of the grid, where (i j) denote cell cen-
ters, (i + 12 j) radial cell interfaces, 1 ¢ ) e 0
(i § + 1/2) angular cell interfaces and et i
(i+ 12 j+ 1/2) edges in the ¢ direction
(which is suppressed in the plot). ° °

where axisymmetry implies that [E} Afr]b = [E:Air]d. Finally, in the ¢ direc-
tion (Fig. 7.1 panel c)

6(p<.0 _ 1 0 *Q __ * AT * AT
S = Ady 5B = [FIALL — [F7AL L,

+ [E; Algla — [E; Al (7.3)

We represent all these quantities in the numerical grid (Fig.[7.2), in which
the radial direction is discretized in n, zones and the angular (6) direction
in mg zones , giving a total number of n, x ny points (cell centers) labelled
(1), with i =1...n, and j = 1...ng. Cell interfaces between neighbouring
cells are denoted as (i + 12 j) for the radial ones and (i j + 1) for the
angular ones. The indices (i + 1/ j + 1/2) hence denote cell edges in the ¢
direction. In order to implement the CT scheme we do not define the poloidal
magnetic field cell-centered but at the interfaces, i.e 1*11 b j and B:j9+1 b As we
assume axisymmetry we work with a cell-centered toroidal field B;; because
this component does not play any role in the CT scheme (see below). With
such considerations the above equations for the magnetic flux time evolution
lead to equations for the magnetic field evolution (CT scheme). The poloidal
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components yield:

*

[E:‘; Al},] i+l j—1f - [Ew Aiw] i+l j+1f

8B*7‘
- (T4
Ot iy 5 Adriiy 5
. E* Al - |Ex Al
6B [/ . [ %2 ‘P]i+1/2 JERYA [ "4 ij|i—1/2 FERYA 75
ot N AAy; ’ (7.5)
i j+i 0 i j+

while the toroidal component yields

oB*¥
ot

- AAlr ij {[E: A[TL prevel [E: A[T]i i

RN 2 I SR

The total magnetic flux through the cell interfaces is given by
Prij=Pr iy = Pricry i+ Poi gy — Ro i jo1ps (7.7)

where we have taken into account that the total flux in the ¢ direction is zero
owing to the axisymmetry condition. The time evolution of the total magnetic
flux evolved with the CT scheme satisfies by construction that

0%y |
| =0 (7.8)

iy

and therefore every numerical scheme constructed on the basis of the CT
scheme will conserve magnetic flux up to machine accuracy. If we are able to
generate initial conditions which satisfies the divergence constraint, i.e. with
&1 = 0 at each numerical cell, then, the constraint will be preserved during
the numerical evolution. The way of constructing such initial data is explained
in Chapter

The next step is to choose a discretization of the integrals by making explicit
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the values of the interface surfaces and the edge lengths. The latter read

Aly iy, = / dr

= AT’Z', (79)
i j+if

= Ti+1/2A0j, (710)
i+l j

Alg i1, 5= /rda

Al}, Y Y = /rsin0d<p = ripy,sind; 1y Ag, (7.11)

i+l j+1fe

where Ar; = rip1, — 11y, A; = 641, —0;_1, and Ay is arbitrary as we
have axisymmetry and the cell size on the ¢ direction does not play any role
in the numerical scheme. Correspondingly, the interface surfaces read:

AA, vy, 5= /r2 sin 6 df dp = —rf+1/2 A(cos8); Agp, (7.12)

i+ j
1
AAg i jpy = /rsinedr dy =3 sin@; 1, Ar? Ay, (7.13)
i j+e
1
AA, ;= /rdrdG =3 Ar? AY;, (7.14)
ij

where Ar} =17, —r? ; and A(cos®); = cosf;i1, — cosb; 1,. Taking the
above expressions into account, the evolution equations for the magnetic field
read

0B*" _ sinOiiap By iy gy —S05vy B iy 5oy, (7.15)
0t iy 5 Titis j Acosb); ’
o5 _ o Tt o iy srvp =T By i s (7.16)
ot |; i+ AT? ’
oB*¥ QATZ' « «
ot | - AG;Ar? [ vk~ Br j—l/z]
_ Airz [ml/z By oy s — iy B, j] : (7.17)

These expressions are used in the numerical code to evolve in time the magnetic
field. The only remaining aspect is to give an explicit expression for the value
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of E}. The time discretization of the equations is performed in the same way
that for the fluid evolution equations.

7.2.2 The numerical fluxes

So far, no characteristic information of the Jacobian matrices of the system
has been used to numerically solve the magnetic field evolution equations.
However it is important to include this information since discontinuities can
also appear in the magnetic field. The missing link comes through the electric
field. The electric field can be calculated from Eq. (3.38) and is related to the
numerical fluxes,Egs. (3.61), for the magnetic field. For the r and 6 direction,
their components simply read

* _ *0 % * *0 _ [
E}; jyy,=—[v"'B"¥ —v"“B ]ij+1/2_(F )Y it (7.18)
B iy ;= — WP BT — 0B, = —(FN)E, ), (7.19)

where (F¥)! denotes the numerical flux in the k direction that appears in the
equation for B*. As all quantities are evaluated at cell interfaces, the numeri-
cal fluxes can be calculated by solving the Riemann problem at the interfaces.
In fact, as E; and Ej only appear in the evolution of the ¢ component of the
magnetic field, this equation can be solved in the usual way that is done for
conservation laws using HRSC schemes. On the other hand, the value of EJ
reads

_ 0 0

E:; i+ Y = [’U*TB* — ¥ B*T] 1 41 (720)
which needs to be evaluated at cell edges, where the numerical fluxes are not
defined. A practical way to calculate E* from the numerical fluxes in the

adjacent interfaces (Balsara & Spicer (1999)) is
* 1 [4 [
B ivp e =77 [(Fr)i i T F )i g

where the fluxes are obtained in the usual way by solving the Riemann problem
at the interfaces. The combination of the CT scheme and this way of calcu-
lating the electric field is called the flux-CT scheme.This scheme is what we
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will use in all numerical simulations reported in this thesis involving magnetic
fields.



Chapter 8

Solving the metric
equations

The starting point to solve the metric equations has been the general relativis-
tic code developed by Dimmelmeier et al. (2002a,b) in the CFC approximation.
In this thesis we have improved the metric calculation to account for the ad-
ditional metric potentials of the CFC+ approximation (Cerd4d-Duran et al.
(2005)).

As described in Chapters 4/ and 5, the main feature of the approximations
we are using for the metric (CFC and CFC+) is that only elliptic equations
have to be solved to update the metric at each time step. In our approxi-
mate scheme we solve the equations hierarchically (see Section [5.5). First, a
solution of the Poisson equation (5.24) for U is obtained. Then we solve the
equations (5.42-/5.46) for the intermediate potentials S, S;, Ti, R;, and S;;,
which we need to calculate h;' in Eq. (5.47). Finally, we use k' to solve
the modified CFC equations for ¢, 3%, and «a, Egs. 4.19, . For each
step we use different methods according to the mathematical character of each
equation.
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8.1 Poisson solver

The equation for the Newtonian potential U is a linear Poisson equation with
compact support sources. Hence, standard methods for such equations, like
integral solvers, can be used to obtain a numerical solution. For an equation
of the form R

Au(z) = f(=), (8.1)

the solution for the potential u can be expanded in axisymmetry as

u(m):—%/dzgw’\/?y f(il))

[z — ']
1 oo
= =32 A (v @) + ul (@) (8:2)
=0
where
1
u (@) = g [ dr'du' f@) R, (8.3)
|z’ |<R
1
uld(@) =o' [ dr'dp f(a')— P(). (8.4)
|='|>R r

Here P, are the Legendre polynomials, and g = cos §. We numerically integrate
Eqgs. (8.3}/8.4) by assuming f (') to be constant inside each computational cell,
integrating over ' and 6’ analytically within each cell, and then adding up the
partial integrals to obtain the solution at every grid point of the computational
domain. This method has been described and tested in Miiller & Steinmetz
(1995) and Zwerger (1995), and successfully used by Zwerger & Miiller (1997)
to calculate the Newtonian potential in axisymmetric core collapse simulations.

8.2 h;l;-T metric solver

The equations (5.42H5.46) for the intermediate potentials, which are needed
to compute the second post-Newtonian corrections to CFC, can in general
be solved separately as a scalar Poisson equation for S, three vector Poisson
equations for S;, 7;, and R;, and a tensor Poisson equation for S;;. In the
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axisymmetric case we can take advantage of some additional simplifications:
The ¢-component of the vector-Poisson equations decouples from the r- and
f-components, and the r¢- and fp-components of the tensor-Poisson equation
decouple from all other components, even though e.g. AS; # (AS); (similar
for the other vectors and tensor), which means that the various components
in general couple to each other. Therefore, the equations can be grouped
into 9 sets of linear elliptic equations: four sets of one equation, four sets of
two equations, and one set of four equations, with coupling only within the
respective set.

The discretization of each of the equations on the {r,8}-grid leads to 9
sparse linear matrix equations of the type

Au = f, (8.5)

where u = ufj is the vector of unknowns with 4, j labeling the grid points and &
ranging from 1 to 1, 2, or 4 depending on the number of coupled components.
The vector of sources is respectively denoted as f = fikj, and A is a matrix
which does not depend on wu, as the original system is linear. The linearity of
the equations allows us to avoid an iteration scheme and to use instead the LU
decomposition method to invert ,A. The main advantage of the LU method
is that the decomposition itself (which is the most time consuming step) only
has to be done once at the beginning. Then it can be used to calculate the
solution for different source vectors f during the metric computations, which
is computationally very fast and efficient. The LU decomposition is performed
using standard LAPACK libraries for banded matrices. We use the monopole
solution of Egs. (5.61H5.65) as explicit outer boundary condition for the in-
termediate potentials. This procedure is only accurate far from the sources,
and the matching of the metric to a monopole solution deteriorates if it is
performed too close to a strongly gravitating nonspherical star. As a con-
sequence when calculating the components of the spacetime metric we use a
grid which extends well beyond both the boundary of the star and also the
atmosphere, and apply the boundary condition at the outer boundary of this
extended vacuum grid. An example of the influence of the location where the
boundary condition is applied on the accuracy of the metric solution is pre-
sented in Sect. Although the nonlinear metric equations for ¢, a, and
B have source terms with noncompact support, the location of the outer grid
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boundary has much less influence on the accuracy of the numerical solution
(see Dimmelmeier et al. 2005b).

8.3 CFC metric solver

At this stage we have a numerical solution for h;l;.T and are ready to solve the
CFC+ metric equations for the conformal factor ¢, the shift vector 3%, and
the lapse function «, Eqs. (4.17,(4.19] and [5.38). For the comparison between
CFC and CFC+ presented in Sects.[9.2 and[9.3, we also need to solve the CFC
metric equations, which, we recall, are equivalent to the CFC+ equations up to
corrections in the metric equation for a (4.18). As both systems of equations
are 5 nonlinear elliptic coupled Poisson-like equations, we can apply the same
methods to solve them. In either case, we can write them in compact form as

Au(z) = f(;u(=)), (8.6)

where u = u* = (¢, a¢, 47), and f = f* is the vector of the respective sources.
These five scalar equations for each component of u couple to each other via
the source terms that in general depend on the various components of u.

We use a fix-point iteration scheme in combination with the linear Poisson
solver (8.2) described above to solve these equations. The value of u at each
iteration s, denoted by u®, is set constant in the sources f to calculate a new
value u®t!,

wt(@) = A f (2500 (). (8.7)

As a result the 5 previously coupled nonlinear equations reduce to a decou-
pled set of 5 linear scalar Poisson equations. The solution vector u**! at each
iteration step is obtained by solving the associated 5 Poisson equations of the
type separately. After the computation of w®*!, the right-hand side of
Eq. is updated by replacing u® — u®*!, which is used as a new starting
value for the next iteration. Convergence to the desired numerical solution u is
achieved when the relative variation |u®*t!/u® — 1| of the numerical solution of
u between two successive iterations is smaller than a certain threshold, which
we set to 107%. In the simulations reported here the metric solver successfully
converges when using the flat metric as initial guess in each metric computa-
tion. However, to accelerate convergence, during the hydrodynamic evolution



8.3. CFC METRIC SOLVER 103

we take the metric from the previous metric computation as starting value for
the subsequent one. Furthermore, we cut the Legendre polynomial expansion
in Eq. (8.2) at I = 10. For the CFC metric equations in axisymmetry the
above method was recently discussed in detail in Dimmelmeier et al. (2005b).
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Chapter 9

CFC+: Core collapse
dynamics and gravitational
waveforms

In this chapter we present the results of numerical simulations of neutron star
evolution and core collapse to neutron star in the CFC+ approximation to the
general relativistic Einstein’s field equations. We compare the improved CFC+
dynamics and gravitational waveforms with the CFC approximation and with
previous general relativistic simulations. These results have been published in
Cerd4-Durén et al. (2005).

9.1 Initial models

As initial models for describing either rotating neutron stars or rotating stellar
cores at the onset of gravitational collapse, we construct uniformly or differen-
tially rotating relativistic polytropes in equilibrium. These are obtained using
Hachisu’s self-consistent field (HSCF) method as described in Komatsu et al.
(1989a,b), which solves the general relativistic hydrostatic equations for self-
gravitating rotating matter distributions, whose pressure obeys the polytropic
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relation
P=Kp", (9.1

where K is the polytropic constant and v the adiabatic index. The gauge
used in the HSCF method is maximal slicing with quasi-isotropic coordinates
(MSQI). The most general metric to describe these objects in the MSQI gauge

1S
ds? = —e2di2 + 28 (di? + 72dH2) + €272 sin 62 (dp — wdi)?, (9.2)

where {£, 7, 6, @} are the coordinates in the MSQI gauge, and 7, &, B, and & are
metric potentials. Throughout this chapter quantities with a tilde are in the
MSQI gauge, and all other quantities are in the ADM gauge. The hydrostatic
equilibrium equations can be numerically integrated by prescribing a value for
the central density p. and the rotation rate (selected by setting a ratio of polar
radius r, to equatorial radius re), and by choosing a rotation law. As it is usual
practice we use a rotation law given by

A2

Bt

(9.3)
where ) is the angular velocity of the fluid as measured from infinity,
its value at the center, and w = rsinf the distance to the rotation axis.
The positive constant A parametrizes the rate of differential rotation, with
A — oo for a rigid rotator and A < r. for differentially rotating stars. The
interested reader is addressed to Stergioulas (2003) for a comprehensive review
on rotating relativistic stars.

For the study of rotating neutron stars, we choose the polytropic EOS (9.1)
with K = 1.456 x 105 (in cgs units) and v = 2. We construct a sequence of
uniformly rotating models with a central density p. = 7.95 x 10 g cm ™3,
and a ratio rp/re of polar to equatorial coordinate radius ranging from 1.00
(spherical model; labeled RNSQ) to 0.65 (rapidly rotating model near the mass-
shedding limit; labeled RNS5). A summary of important quantities specifying
these models is given in Table[9.1l Note also that models with this choice of
parameters are of widespread use in the literature (see e.g. Font et al. 2002
or Dimmelmeier et al. 2005b and references therein) and will be used in this
work for comparison with previous results obtained with independent codes.
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Table 9.1: Equatorial radius r., axis ratio rp/re, angular velocity €2, and ADM
mass Mapwm for a sequence of uniformly rotating neutron stars used in this work.
Along the sequence the rotation rate increases from the spherical model RNSO0 to the
most rapidly rotating model RNS5, which rotates near the mass shedding limit at
Qx = 5.363 kHz.

Model 71e [km] 7p/re Q/Qx  Mapm [Mg)

RNSO 14.1 1.00 0.00 1.40
RNS1 16.2 0.95 0.42 1.44
RNS2 17.3 0.85 0.70 1.51
RNS3 18.7 0.75 0.87 1.59
RNS4 19.6 0.70 0.93 1.63
RNS5 20.7 0.65 0.98 1.67

On the other hand, to model a stellar iron core as initial model for sim-
ulating rotational stellar core collapse to a neutron star we again utilize the
HSCF method with the EOS parameters K = 4.897 x 10'* (in cgs units) and
~v = 4/3, chosen to approximate the pressure profile in a degenerate electron
gas. The initial central density is set to peini = 10'°© g em™3. Again each
initial model is further determined by its rotation profile parameter A and the
rotation rate, which is specified by the axis ratio r,/re or equivalently by the

ratio of rotational energy and gravitational potential energy, 8 = T/|W]|.
Following Dimmelmeier et al. (2002a) we use a hybrid EOS in the core
collapse simulations. This EOS consists of a polytropic part B, = Kp” plus
a thermal part P = (Yh — 1)€th, where ven = 1.5 and e = € — €,. The
thermal contribution is chosen to take into account the rise of thermal energy
due to shock heating. Gravitational collapse is initiated by slightly decreasing
~ from its initial value to v1 < 4/3. As p reaches nuclear matter density
Praue = 2.0 x 10 g em ™3, we raise v to 72 = 2.5 and adjust K accordingly
to maintain monotonicity of the pressure. Due to this stiffening of the EOS
the core undergoes a bounce. In Table[9.2] we present the main properties of
models A1B3G3, A1B3G5, A2B4G5, and A4B5G5 used in this work to study
core collapse. These models are identical to those with the same labels in the
comprehensive core collapse study performed by Dimmelmeier et al. (2002b).
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Table 9.2: Parameters used in the core collapse simulations. The initial models are
differentially rotating stellar cores specified by the parameter A controling the degree
of differential rotation (cf. Eq. (9.3)) and the ratio of rotational to potential energy,
B = T/|W|. The collapse is initiated by reducing « from its initial value 4/3 to 7.
Additionally, the values for the initial equatorial radius r. and the initial ADM mass
Mapwm are given. The label AxByGz of each model is a combination of the initial
rotation parameters A and 8 (AxBy) and the value of 1 during collapse (Gz).

Model A ﬂ Te MADM Y1
[10° km] [%] [km] [Mo]
A1B3G3 50.0 0.89 2247 1.46 1.31
A1B3G5 50.0 0.89 2247 1.46 1.28
A2B4G1 1.0 1.81 1739 1.50 1.325
A4B5G5 0.5 4.03 1249 1.61 1.28

We note that when evolving the initial models constructed on the basis of
the HSCF method (which uses the MSQI gauge) with the CFC+ evolution
code (which uses the ADM gauge), we have to consider that in general the
two gauges differ. This could potentially lead to an unsuitable matching of the
data describing the initial models when evolved with the numerical code. Let
us consider the most general metric in a generic dynamic scenario,

Yij = 6 i + hi;" (ADM gauge), (9.4)
Fig = 6" %5 + F<ij> (MSQI gauge),

In general y<;j> is not transverse, so that the ADM gauge and the MSQI
gauge differ. To quantify the differences between both gauges it is relevant to
compare the traceless part of the 3-metric y<;;> and the trace 4%7~;; = 3¢*
itself. For an equilibrium stellar model constructed within the MSQI gauge
one obtains

~ ~ ~ . 11 2
Y<ij> = (Grr — Fpp) diag (5, 37 —g) . (9.6)

In Fig. 9.1 we plot equatorial profiles of Y., — Fu,|/(794:;) for (i) the
equilibrium model A1B3 used as initial data for core collapse simulations (lower



9.2. ROTATING NEUTRON STARS 111

_2 T T TTTTT T T T TTTTT 4 T T TTTTT T T T TTTTT

1 IIIIIII 1 1 IIIIIII 3I IIIIIIII 1 IIIIIIII

1 10 100 1000
r [km]

Figure 9.1: Deviation from conformal flatness along the equatorial plane for a typical
rotating stellar core initial model (model A1B3; solid line), and for a typical rotating
neutron star in equilibrium with axis ratio rp/re = 0.7 (model RNS4; dashed line).
The vertical dotted line indicates the equatorial stellar radius for the neutron star.

curve; cf. Table[9.2), and for (ii) the equilibrium rotating neutron star model
RNS4 (upper curve; cf. Table[9.1). In both cases, but especially in the (only
weakly relativistic) collapse initial model, we observe that deviations from
conformal flatness are negligible, which makes the initial models built with
the HSCF method suitable for time evolution in the CFC approximation. It
also shows that the differences between both gauges are very small, namely
of the same order of magnitude as J<;;». Consequently, the use of initial
models computed in the MSQI gauge for evolutions using the ADM gauge is
entirely justified since the differences are negligible and only appear at the
second post-Newtonian order.

9.2 Rotating neutron stars

9.2.1 Effects of the boundary on the metric solution

As mentioned in Chapter (8] the location where the boundary conditions for
the CFC+ intermediate potentials are imposed can have a significant impact
on the accuracy of the metric solution. Additionally, the extension of the
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Figure 9.2: Effects of the outer boundary conditions on the equatorial radial profile
of the intermediate potential S, (top panel) and the metric component he (bottom
panel) for the rotating neutron star model RNS4. Zero-value boundary conditions are
imposed at 62 km (dashed line), at 10* km (dashed-dotted line), at 10° km (dashed-
dot-dotted line), and at 10"" km (solid line). Alternatively, monopole boundary con-
ditions are imposed at 62 km (open boxes) and at 10° km (filled circles). Overplotted
to S, is the monopole behavior (dotted line).

numerical grid is also of paramount importance for numerically solving the
CFC equations to obtain the conformal factor, the shift vector, and the lapse
function. As the sources of these equations have non-compact support, it is
necessary to integrate out far enough in radius to obtain the desired accuracy
for the numerical solution.

To accomplish this we use an extended (vacuum) grid going far beyond



9.2. ROTATING NEUTRON STARS 113

the actual stellar boundary. Monopole behavior at the outer boundary of this
vacuum domain has been checked by comparison with calculations done im-
posing zero values for the potentials as outer boundary conditions at extremely
large distances (see Fig.[9.2). Convergence tests with different parameters for
the outer grid (number of cells, distance of the outer boundary, amplification
factor of the grid) were performed. The conclusion of these tests is that for
simulations of rotating neutron stars we need to use a numerical grid con-
sisting of ng = 30 angular cells and n, = 250 radial cells (of which 100 are
equally spaced inside the neutron star and 150 are logarithmically spaced for
the atmosphere) to correctly capture the conformally flat part of the metric.
In order to impose outer boundary conditions for the CFC+ metric potentials,
an extra grid of 70 radial cells extending out to 10 km needs to be added.

9.2.2 CFC+ corrections to the 3-metric

We now turn to measure the magnitude of the CFC+ corrections to the met-
ric of our sample of rotating neutron star models (cf. Table[9.1). First, from
the distribution of the hydrodynamic variables in the equilibrium models pro-
vided by the HSCF method we recompute the CFC+ metric components. For
equilibrium configurations, i.e. in an axisymmetric stationary spacetime, the
components h;} and h; ) vanish. All other components are shown in Fig.[9.3
for different models with increasing rotation rate. Note that as discussed in
Sect. [9.1 the ADM gauge is not quasi-isotropic in the CFC+ approach, be-
cause b5t # 0 and AT # hlL. Therefore, a direct comparison with the full
general relativistic metric calculated in the MSQI gauge is not possible. As
expected, hj;" vanishes for the spherical case RNS0, in which both CFC and
CFC+ agree exactly with general relativity, and their metrics have no traceless
and transverse part. As we increase the rotation rate from RNS1 to RNS5, the
value of h;l;-T increases, resulting in a departure of the metric from conformal
flatness. As h;;" is a correction to the conformally flat 3-metric (which is of
order unity, ¢ ~ 1), it can be shown that even in our most extreme case RNS5,
which is very near to the mass shedding limit, the values of h};-T amount to a
correction of only about 1%. Therefore, qualitative differences with respect to
the CFC approximation are not expected in the dynamics of such objects.
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Figure 9.3: Radial profiles at the equator of the non-vanishing components of hz-TjT for
the sequence of models RNSO to RNS5. The strength of the correction h}}T increases
with the rotation rate. The equatorial radius of each model is given in Table[9.1]

9.2.3 Oscillations of rotating neutron stars

A further test of the new approximation for the metric is provided by studying
pulsations of rotating neutron stars. To this aim we perturb the neutron
star models described in Sect. [9.1 with a density perturbation of the form
Ppert = p[1 + acos(mr/(2re))], where a is an arbitrary parameter controlling
the strength of the perturbation. The perturbed models are evolved in time in
two different ways, either considering coupled evolutions for the hydrodynamics
and the metric, or evolving only the hydrodynamics in a fixed background
metric corresponding to the metric provided by the elliptic solvers at the first
time step (an approximation commonly referred to in the literature as the
Cowling approximation). Both metric approximations, CFC and CFC+, are
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Figure 9.4: Time evolution of the central density p. (upper panel) and its Fourier
transform (lower panel) for model RNS1 in the CFC+ approximation with coupled
evolution of spacetime and hydrodynamics.The amplitude of the Fourier transform
is normalized to the F mode amplitude.

used to compare the respective results.

The oscillations of the stars can be observed in various hydrodynamic and
metric quantities. In particular we monitor the central density p. (see upper
panel of Fig. [9.4), the radial velocity v, at half the stellar radius, and the
gravitational wave amplitudes AL? extracted with the standard quadrupole
formula. When Fourier transforming the time evolution of these quantities,
distinctive peaks appear at the same (discrete) frequencies for any of these
variables (see lower panel of Fig.[9.4). Those frequencies can be identified
with the quasi-normal modes of pulsation of the star, as described in Font
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Table 9.3: Frequencies of small-amplitude quasi-radial pulsations for model RNS4.
We compare the frequencies obtained from simulations with the present code (using
either the CFC or the CFC+ approximation) with those obtained independently
from a 3D full general relativistic code (GR). The results are extracted from time
evolutions where the spacetime metric is kept fixed (Cowling approximation). The
relative differences between the CFC+ and the GR code are shown in the last column.

Mode fCFC fCFC+  ¢GR  Rel. diff.
[kHz] [kHz] [kHz] (%]
F 2.48 2.48 2.468 0.5
H1 4.39 4.39 4.344 1.1
H2 6.30 6.30 6.250 0.8

et al. (2000). To further validate our approach we present the quasi-normal
modes calculated in the CFC and CFC+ approximation in comparison with
those reported by Font et al. (2002), which are calculated with a 3D code in
full general relativity (without any approximation).

Table shows the mode-frequencies for the fundamental mode (F), as
well as for the first (H1) and second (H2) harmonics obtained in evolutions
of model RNS4 in which the spacetime metric is kept fixed (Cowling approx-
imation). The accuracy in the frequency values depends on the total time of
the evolution, increasing as the evolution is extended. We evolved all models
for 30 ms, finding no significant deviations in the hydrodynamic profiles with
respect to the original profiles of the equilibrium models (see fig. [9.5).

For such an evolution time the FFT yields a maximum frequency resolution
of 0.03 kHz. Table shows that no differences can be observed between the
mode-frequencies computed with CFC and CFC+, and that, in addition, there
is very good agreement with the general relativistic results, since the reported
values are within the affordable resolution in frequency.

The corresponding results for the case of coupled evolutions of the space-
time metric and the hydrodynamics are shown in Tables [9.4] and [9.5 for the
fundamental mode and the first harmonic, respectively. In these simulations,
for the sake of computational efficiency and without affecting the dynamics,
the metric is calculated every 100th hydrodynamic time step and extrapolated
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in between, as explained in Dimmelmeier et al. (2002a). As in the Cowl-
ing simulations, all models are evolved for 30 ms. Even for the more rapidly
rotating models, no differences in the frequencies from the CFC and CFC+
simulations can be found. This result can again be explained by the smallness

of the components of h;l;-T, which does not modify the dynamics considerably.

Table 9.4: Fundamental mode frequency fr of small-amplitude quasi-radial pulsa-
tions for a sequence of rotating polytropes with increasing ratio of polar to equatorial
radius 7, /r.. We compare the frequencies obtained from simulations with the present
code using either the CFC or the CFC+ approximation with those obtained indepen-
dently from a 3D full general relativistic code (GR). The results are extracted from
coupled spacetime metric and hydrodynamic time evolutions. The relative differences
between the CFC+ and the GR code are shown in the last column.

Model 7p/re  fEFC  fEFOT fER O Rel. diff.
[kHz] [kHz] [kHz] [%]
RNSO 1.00 143 143 1.450 14
RNSI 095 140 140 1411 0.8
RNS2 085 134 134 1350 0.7
RNS3 075 1.27 127 1265 04
RNS4 070 1.24 124 1.247 0.6
RNS5 065 1.21 121 1.195 1.0
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Table 9.5: Same as Table [9.4 but for the frequency fu: of the first harmonic mode.
In the model RNS5 this harmonic was not sufficiently excited by the perturbation
chosen for a clear identification of its frequency.

Model r,/re  fSFC  fECt  fSR Rel diff.
[kHz] [kHz] [kHz] [%]
RNSO 1.00 3.97 3.97 3.958 0.3
RNS1 095 3.87 387 3852 0.5
RNS2 085 395 395 3867 2.0
RNS3 0.75 3.98 3.98 4.031 1.3
RNS4 0.70 4.02 402 3887 20
RNS5 065  — — 3717 —

Furthermore, the results agree to high precision with the GR results of Font
et al. (2002) within the limits set by the temporal and spatial resolution (see
Dimmelmeier et al. (2005) for a recent study of mode-frequencies of rotating
stars in CFC).

We emphasize that, for accurately extracting the oscillation mode frequen-
cies, the code has to maintain the initial equilibrium configuration in a hydro-
dynamical evolution for many rotation periods (usually several tens of peri-
ods). Irrespectively of the approximation assumed for the metric (either CFC
or CFC+) and the (small) gauge mismatch, we tested that our code is able to
perform that task successfully.

9.3 Rotational core collapse to neutron star

We now present results of simulations of rotational core collapse to neutron
stars. The core collapse models we have selected (see Table[9.2) are represen-
tative of the different types of collapse dynamics and gravitational radiation
waveforms observed in the CFC simulations of Dimmelmeier et al) (2002a):
A1B3G5 as type I (regular collapse), A2B4G5 as type II (multiple bounce
collapse), A1B3G5 as type III (rapid collapse), and A4B5G5 as a case with
extreme rotation, i.e. a strongly and highly differentially rotating core with
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an initial torus-like structure which is strongly enhanced during collapse. We
use a numerical grid consisting of ng = 30 equally spaced angular cells and
n, = 300 logarithmically spaced radial cells covering the star. In order to cal-
culate h;;" and extract waveforms, an extra grid of 300 radial cells extending

out to 10! km needs to be added (600 cells for model A2B4G1).

9.3.1 Collapse dynamics

In Figs.[9.6/t0[9.9]we compare the time evolution of selected matter and metric
quantities for all four collapse models considered using both the CFC and the
CFC+ approximation. We show the time evolution of the central density pc,
which is a representative quantity of the hydrodynamic evolution. We present,
pe for all models except model A4B5G5 for which the time evolution of the
maximum density pmax is used instead. In this model the density maximum is
not attained at the center due to the strong differential rotation. The evolution
of the central density in models A1B3G3 and A1B3G5 (see Figs.[9.6 and [9.7
) shows a distinctive rise during collapse until p. reaches its maximum at the
time of bounce t, (at t, ~ 49 ms and #, ~ 30 ms, respectively). Later on,
the density oscillates around the new equilibrium value of the compact rem-
nant (which can be identified with the new-born proto-neutron star). These
oscillations are highly damped due to the presence of an extended stellar en-
velope surrounding the proto-neutron star. Note that in models A2B4G1 and
A4B5G5 (see Fig.[9.8 and [9.9), the collapse is stopped by rotation before
nuclear matter density is reached, as strong centrifugal forces build up during
the collapse. As a result, the evolution of model A2B4G1 is characterized by
consecutive multiple bounces, while the centrifugal hang-up in model A4B5G5
causes a single bounce below nuclear matter density, leaving a low density
proto-neutron star behind.

The top panels of Figs.[9.6 to[9.9 also show the central lapse function a,
(dashed line; labels on the right vertical axis). In the CFC+ approach the
new hj;" terms couple directly to the metric equation (5.38) for a, while they
couple indirectly to the metric equations for ¢ and 3% through « itself. The
evolution of the lapse closely mirrors that of the density, decreasing while the
density increases, i.e. while the star contracts, and vice-versa.

For the four collapse models considered here, there is no direct visual evi-
dence of discrepancies between the CFC and CFC+ results. The corresponding
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Figure 9.6: Time evolution of hydrodynamic and metric quantities for the regular
collapse model A1B3G3. The top panel shows the central density p. (solid line)
and lapse function a. (dashed line). Both the CFC and the CFC+ results overlap.
Nuclear matter density pnuc is indicated by the horizontal dotted line. The second
panel from the top displays the relative difference o of p. (solid line) and a. (dashed
line) between the simulation using CFC and CFC+. In the third panel the CFC+
evolution of the absolute values of h;," (solid line), hgg (dashed line), hj: (dashed-
dotted line), as well as the trace of h;l;-T (dotted line) are shown, all measured at the
center of the star. Note that AT and hE:f cannot be discerned, as they practically
overlap. The bottom panel depict the evolution of the maximum absolute values
of hyg (solid line), h,, (dashed line), and h;li;F (dashed-dotted line), respectively.
Again the latter two quantities closely coincide. The vertical dotted line in all panels
marks the time of bounce t.
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Figure 9.7: Same as Fig.[9.6 for the rapid collapse model A1B3G5.

curves for CFC and CFC+ in the top panels of Figs. 9.6 to[9.9 coincide per-
fectly in the case of both the lapse function and the density. Therefore, as no
appreciable differences are visible, we plot the relative differences o of these
two quantities between CFC and CFC+ in the second panels (from the top)
of these figures. Maximum differences of the order of ~ 1% are found in the
density evolution (solid line) for the strongly differentially rotating models
A2B4G1 and A4B5G5 (see Fig. 9.8 and ). In the two other models the
differences are two orders of magnitude smaller. The lapse function (dashed
line) shows even smaller differences between CFC and CFC+, the maximum
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Figure 9.8: Same as Fig.[9.6]for the multiple bounce collapse model A2B4G1. This
model centrifugally bounce before reaching pnyc.

values of ¢ being smaller than 0.1% even for the rapidly rotating models. This
is simply due to the fact that hj;" arises at the 2PN order in the 3-metric while
it appears with a pre-factor 1/c% in the source of a. In fact, the relative differ-
ence roughly coincides with the one expected naively from the post-Newtonian
approximation level, i.e., bi;" ~ (U/c?). By contrast, for slowly rotating col-
lapses described by models A1B3G3 and A1B3G5 , the non-conformally flat
contribution is one order of magnitude smaller than (U/c?). The factor 1/10
may be interpreted as coming from the proximity of spherical symmetry.
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Figure 9.9: Same as Fig.[9.6 for the extremely rotating collapse model A4B5G5. This
model centrifugally bounce before reaching pnuc. Note that we plot the maximum
density pmax instead of pc, as this model has a toroidal density configuration.

The time evolution of the diagonal components of h};-T at the center (r = 0)
are also plotted in Figs. 9.6 to [9.9 (third panels from the top), along with
the trace of h;FjT. Correspondingly, the maximum absolute values of the off-

diagonal terms of h;l;-T are displayed in the panels at the bottom. As ex-
pected, the various components of h;ro appear and increase with deviations

from sphericity. The profiles show that in all collapse simulations, hj;" is quite
small in comparison to the isotropic part which is of order unity. It can be
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Table 9.6: Summary of various quantities that characterize the different core collapse
models. The table shows the time of bounce t1,, the maximum density at bounce pu,
the maximum density reached after the bounce ps, the gravitational wave amplitude
at bounce |A§02 |b as measured using the quadrupole formula, the dominant frequency
fmax of proto-neutron star oscillations, the radius ref of the star after bounce and
ringdown (defined as the radial location along the equator where the density first
falls below 10% of the maximum density), the size of the near zone \/(2w), and the
distance rex at which gravitational waves are extracted from hiTjT.

Model ty Pb 143 |A’42EO2 |b Jmax Tef % Tex
x10'  x10™ x103

[ms]  [;% oz]  [em]  [Hz]  [km] [km] [km]

A1B3G3 48.89 4.23 3.22 1223 674 13 71 2.6
A1B3G5 30.25 4.65 3.93 131 890 9 52 2.6

A2B4G1 101.60 0.60 0.27 936 54 34 884  40.0
A4B5G5  31.23 1.78  0.096 3757 142 60 334 20.0

seen that models with strong gravity but small asphericities (such as model
A1B3G3) and models with weaker gravity but more apparent deviations from
sphericity (such as models A2B4G1 or A4B5G5) all reach values for hiTjT of

similar magnitude. Note that the components ), and hg rapidly decrease
after the bounce, because a quasi-equilibrium configuration is reached in the
new-born proto-neutron star. In all cases considered the trace of h;l;-T is much
smaller than the h;" components themselves, i.e. numerically hj;" is traceless
to high accuracy and also remains traceless during the entire evolution. In ad-
dition, we checked the transverse character of hj;T, i.e. V/hj" = 0. The latter
expression is found to be compatible with zero, as the dimensionless quantity
r Vihi" is much smaller than A"

The radial profiles of h};-T are very similar for all collapse models we have
analyzed except for model A4B5G5 that collapses off-center with a torus-like
structure. In Fig.[9.10 we compare this model to a model in which the max-
imum density is reached at the center (A1B3G3). The profiles are depicted
at the instant of maximum density (f, = 48.9 ms for model A1B3G3 and
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Figure 9.10: Radial profiles of h};-T at the equator for model A1B3G3 (left) and model
A4B5G5 (right) at the time of maximum density (upper panels) and at the final time
of the simulation (lower panels). The curves plotted correspond to A" (solid line),
hgg (dashed line), hTI (dotted line), and the trace of h ;" (dashed-dotted line),

respectively.
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t, = 31.2 ms for model A4B5G5) and at the end of the simulation, when
the system has reached equilibrium. For the spheroidal model A1B3G3, the
maximum values of kj;' are reached at the center, and the components Ay

and hyl have local maxima inside the star. However, in the toroidal model
A4B5G5 the maximum values are off-centered, while the three components
exhibit their peak value inside the torus. Note that the strong deviations from
sphericity in model A4B5G5 generate larger values of h;FjT as compared to
model A1B3G3 at the time of bounce, but once the torus collapses to the final
oblate star, the values become smaller than for the regular collapse model.

Table[9.6 summarizes the results of all collapse simulations, including rel-
evant information to calculate the size of the near zone A/(27) needed for the
gravitational wave extraction we discuss next.

9.3.2 Gravitational radiation waveforms

Gravitational waves from the collapse simulations discussed in the preceding
section were calculated for both the CFC and the CFC+ approximation of
the field equations, using the quadrupole formula. In addition, in the case
of CFC+ they were also extracted directly from h};-T evaluated in the wave
zone. The radial extension of the near zone \/(27) can be calculated from the
approximate size of the source r and the typical timescale of gravitational wave
emission 1/ fmax- Results for each collapse model are listed in Table[9.6] which
also gives the distance rex at which the waveforms are actually extracted from
h;l;-T. In our simulations we extract the waveforms at a distance r ~ 50\/(27)
in the equatorial plane. This ensures that we are indeed in the wave zone of
the true waves where the Newtonian quadrupole formula applies. We checked
that h%PN o sin® @/r there, so that the gravitational wave amplitude A7 is
approximately constant independent of the radius r or angle § (except near
the rotation axis where A2FN vanishes). Due to the smallness of h3N for
r > A/(2w), some numerical error appears because of the cancellations of the
different terms in Eq. (5.39). That yields an offset in the gravitational wave
signal that can be corrected as follows:

2PN corrected __ 32PN ~17 1,2PN
h% =hy " —af h; . (9.7

Although the term 4% hZF'N should be zero in principle, it is numerically com-

parable to h2FN

i | in the wave zone; the parameter a corrects the offset in the
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waveforms.

The gravitational waveforms are displayed in the top panels of Figs.
and [9.12. The waveforms extracted using the quadrupole formula (solid lines)
are very similar for CFC and CFC+ and would not be discernible in the figures.
Thus, only the CFC+ waveforms are plotted, along with the absolute differ-
ences oaps with respect to CFC (shown in the bottom panels of each figure).
For all collapse models considered the differences are smaller than 0.1% of the
signal maximum. This is expected from the fact that the quadrupole formula
involves an integral of hydrodynamic quantities, and from the observation that
the modifications in the collapse dynamics between CFC and CFC+ are not
significant, as mentioned in Sect.[9.3.1.

Concerning the waveforms extracted directly from h};.T (dashed and dotted
lines in Figs.[9.11 and[9.12), it can be seen that when directly using Eq. (6.19)
to calculate the wave amplitude A52, the resulting signals are larger at bounce
for all models. After bounce these signals show an offset for the models with
stronger gravity (A1B3G3 and A1B3G5, see Fig. [9.11), where the waveform
amplitude should actually approach zero, because the pulsations of the new-
born proto-neutron star are rapidly damped and the star tends towards a
state of equilibrium. If the signals are corrected by means of Eq. (9.7), the
offset disappears and the gravitational wave amplitude agrees remarkably well
with the waveforms calculated with the quadrupole amplitude. Although the
extraction methods are not really independent, the agreement found between
the two ways of calculating waveforms in the CFC+ approach is a consistency
check for the calculation of the h;l;-T, because the asymptotic behavior given
by Eq. (6.19) can be assessed numerically this way.

The agreement holds for all cases except for model A2B4G1, where the
amplitudes obtained by the quadrupole formula and from the hj;" differ by
about 50% both at the main bounce and at the subsequent bounces even after
the offset correction is applied. For this particular model the size of the near
zone is very large, A/(2m) = 884 km; therefore, an accurate extraction of the
waveforms can only be performed at a radius very far away from the star. We
thus set the extraction radius rex = 4 x 10* km. As a consequence the ex-
tended grid needs to be covered with at least 600 radial zones in order to avoid
too extreme logarithmic cell spacing, which would be the source of numerical
inaccuracies in the fall-off behavior when solving the elliptic equations with
finite difference methods.
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Figure 9.11: Gravitational wave amplitude A% computed with the CFC+ approxi-
mation of the spacetime metric for the regular collapse model A1B3G3 (left) and the
rapid collapse model A1B3G5 (right). Depicted in the top panels are the waveforms
extracted using the quadrupole formula (solid line) and extracted directly from h;l;-T
with (dashed line) or without (dashed-dotted line) corrections for the offset after core
bounce. The lower panels show the absolute difference o,1s of the quadrupole wave-
forms obtained using the CFC+ and CFC approximation of the spacetime metric.
The vertical dotted line marks the time of bounce ¢.
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Figure 9.12: Same as Fig.[9.11 for the multiple bounce model A2B4G1 (left) and the
extremely rotating collapse model A4B5G5 (right).

9.4 Collapse of cores with extreme rotation

The last issue in this Chapter is the study of the collapse of an extremely
rotating core, very near to the mass-shedding limit, and which also has a
high degree of differential rotation. The goal of this simulation is to compare
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the CFC and the CFC+ approaches in a highly nonspherical scenario, as the
CFC+ corrections to the CFC metric take into account the deviations from
sphericity. We note that this is likely an academic model, as the rotation rates
considered are hardly justified, as state-of-the-art stellar evolution calculations
predict much smaller values (Heger et al. 2005). However, in some scenarios
those values could be realistic, as in accretion induced collapse (see Fryer &
New 2003, and references therein), high rotation rates could be achieved as
the NS accretes matter from a companion star and spins up.

Therefore, we extend the parametric study of Dimmelmeier et al. (2002a,b)
with a new rotating initial model, labeled A4B6G5. In this model the parame-
ters are the same as for the A4 and G5 models but the rotation rate is such that
rp/re = 0.4. The resulting star has an initial equatorial radius of r. = 1306
km, a mass M = 1.846M, and 8 = 7.2%, and its initial structure is almost
toroidal. To correctly simulate the evolution of the star we use a resolution of
n, = 400 and ngy = 50.

The time evolution of the maximum density, pmax, the lapse function at
the center, «, and the h};-T components of the CFC+ metric are plotted in
Fig. [9.13] in comparison with the results in the CFC approximation. The
relative differences between both approximations, as well as the values for h;ro,
are, despite of the more extreme rotation rates involved in the present model,
of the same order than for the previous collapse models. In fact they are very
similar to those for model A4B5G5. This is due to the fact that, although this
model is much more aspherical than the other ones, the densities at bounce
are much smaller, ppnax ~ 6 x 1013 g cm™2. The gravitational waveform (see
Fig.[9.14) is also similar to that of model A4B5G5, with similar amplitude.

As the rotation rate is very extreme, the collapse proceeds slower, t, = 40.5
ms, than for all other models of the G5 series, with ¢, ~ 30 ms. The region
near the axis has very low density. Indeed, most of this “funnel” is treated by
the code as atmosphere as its density is below the atmosphere threshold. The
bounce of the torus is produced by centrifugal forces, but before the maximum
density is reached, at t ~ 37 ms, the compression of the torus produces a shock
at the inner edge, travelling inwards. Due to the restriction of axisymmetry,
the shock reflects at the center (r = 0) and thereafter follows a natural path
to leave the system, that where it finds less obstacles to progress, along the
axis where the matter density is the lowest (see Fig.[9.15). In addition the
density and pressure gradients in this region are very steep which helps to
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Figure 9.13: Same as Fig.[9.6 for the extremely rotating collapse model A4B6G5. We

plot the maximum density pmax instead of p., as this model has a toroidal density
configuration.

accelerate the shock. We call this the “toothpaste” effect. As the axis is
a low density region surrounded by higher densities, the shock is collimated
through a sequence of reflections in the funnel and the axis, reaching easily
the surface of the star in about 5 ms, where it rapidly expands into some kind
of fireball (see the accompanying movies on the CD). The velocities of this jet
are an important fraction of the speed of light, with a Lorentz factor of about
W ~ 1.5 in the funnel, which accelerates in the exterior to W ~ 2.4 before
leaving the computational domain. At the same time, at t, = 40.5 ms, the
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Figure 9.14: Gravitational wave ampli- 1 1
tude AE? computed with the CFC+ 2,0/\b R\wf
approximation of the spacetime met- ool 1
ric for the extremely rotating collapse ]
model A4B6G5. Depicted in the top
panel is the waveform extracted using "< | 1
the quadrupole formula. The lower pan- ol 3
els show the absolute difference o,1,s of [
the quadrupole waveform obtained us-
ing the CFC+ and CFC approximation
of the spacetime metric. The vertical
dotted line marks the time of bounce
(2

A1B6G5 1

maximum density is reached and the torus bounces back forming the usual
shock travelling outwards. This shock has a very aspherical shape, as it is
mostly concentrated at the equator, and its velocity is much smaller than that
of the jet. The remaining torus oscillates several times producing small shocks
propagating alternatively outwards and inwards. The latter ones produce by
the end of the simulation a flow along the funnel with small velocities and
densities.

Although this scenario is not itself a jet formation mechanism, such tooth-
paste effect could play a role in jet formation scenarios. In such an scenario,
the combined collimation effects of a high magnetic field and of the neutrino
emission at the funnel, can enhance this effect, powering a highly relativis-
tic continuous jet. On the other hand, the high rotation rates present in the
model could lead to three-dimensional instabilities that break axisymmetry,
hence affecting at some degree the toothpaste effect.
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Figure 9.15: Formation of a mildly relativistic jet in model A4B6G5. The left panels
show the logarithm of the density, in g cm ™2, and the right panels the logarithm
of the specific internal energy, in erg. The velocities, normalized to the maximum
value at each time (white arrows), are shown in the left panels. The upper panels
correspond to time ¢ = 34.8 ms, the middle panels to ¢ = 37.4 ms, and the lower
panels to t = 42.4 ms. All axes are in km.
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Chapter 10

Magnetorotational core
collapse

10.1 Initial data

The magnetic field structure and strength of the core-collapse progenitors,
needed as initial conditions for our numerical simulations, is still an open
question in astrophysics. Models from stellar evolution predict that magnetic
field strengths in iron cores probably do not exceed 10° G and that the toroidal
field component is expected to be much stronger than the poloidal one (Heger
et al. 2005). Therefore, for such weak fields (Pyag < P), the passive field ap-
proximation (see Chapter [3) is sufficient to perform core collapse simulations,
as the magnetic fields are not going to affect the fluid evolution for the time
scales involved. We note however, that, as mentioned in the introduction of
this thesis, there could be various amplification mechanisms operating during
core collapse (e.g. the so-called magneto-rotational instability (Balbus & Haw-
ley [1991)), which might increase the amplitude of the magnetic field to values
were the passive field approximation is no longer valid. The results presented in
this chapter have to be considered, hence, as part of a broader program aimed
at simulating relativistic, magnetized core collapse with no approximations in
the dynamics. Those simulations will be presented elsewhere.

135
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10.1.1 Stationary models

In order to perform numerical simulations of magnetized core collapse, we have
to build initial conditions for the magnetized initial cores. Keeping in mind
that our ultimate goal is to calculate the gravitational radiation from such
events, it is interesting to come up with a parametrized sample of models,
spanning the relevant range of variation of significant quantities, such as rota-
tion rate, and magnetic field distribution. Therefore, we proceed in a similar
way that we did in Chapter [9 with unmagnetized models. The main problem
of such an approach however is that if one tries to impose similar symme-
tries to the magnetized case, one finds that restrictions on the magnetic field
structure immediately arise. If one imposes that no meridional flux is allowed
in the equilibrium model and the flow is isentropic, then the magnetic field
has to be purely poloidal, i.e. with no toroidal component (see Bekenstein &
Oron|1979). The reason is that, otherwise, the circularity condition is violated
(Carter 1979). Stationary models of magnetized stars have been computed un-
der these assumptions by Bocquet et al. (1995). In the general case in which
meridional circulation is allowed, a toroidal component of the magnetic field
may exist, but the method to calculate stationary models is far more com-
plicated (Gourgoulhon & Bonazzola 1993; Ioka & Sasaki 2003, 2004). When
one considers ideal MHD, the condition is relaxed, and also purely toroidal
magnetic fields maintain the circularity condition (Oron 2002), and therefore
it is possible to generate stationary models without meridional components.
Finally, in the case that magnetic pressure does not exceed the hydrostatic
pressure, Oron (2002) has shown that stationary models with mixed toroidal
and poloidal component approximately accomplish the circularity condition.

The last case matches with our adopted passive field approximation. As the
energy-momentum content of the magnetic field is set to zero in comparison
with the fluid component, no magnetic field components appear in the equi-
librium equations. Hence, the method described in Section [9.1 can be used
unaltered to generate equilibrium models for the fluid variables. The only
additional aspect to consider in our equilibrium models is to generate a mag-
netic field that preserves the divergence-free constraint, and remains constant
in time (in the passive field approximation).

If we consider a rotating axisymmetric configuration with no meridional
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flows the components of the velocity field can be written as

o = 0,
,U*H — O,
v* =7 Q"siné, (10.1)

where Q* = Q*(r,0) is the rotation law. In axisymmetry and using spherical
coordinates the induction equation (3.46) reads, under the above conditions

6?,5 =0, (10.2)
*0

8% =0, (10.3)

oB*® 10, , . wpery L 1O * xt

7_;5(7' sinf Q*B )+;%(rsm09 B*Y). (10.4)

The equation for the evolution of the ¢ component can be expanded as

oB* . . 1 0(rB*") 1 9(sin6B*?)
gr ~ rsind [r_2 or  Trsmé 00
: *7 onr *01@
+rsiné [B B +B 50 ] , (10.5)

where the first term vanishes by means of the divergence constraint (3.45)
yielding
OB*%
ot
By integrating this equation one shows that, in the passive field approximation,
the toroidal magnetic field component increases linearly with time as

=rsinf B* - VQ*. (10.6)

B*(t) = B*(t = 0) + t rsinf B* - V. (10.7)

This amplification mechanism of the toroidal magnetic field is the so-called
Q-dynamo (Meier et al. 1976). If meridional flows are also considered, i.e. non
vanishing v*" and v*?, the toroidal magnetic field can be transformed back into
the poloidal component via the a-{2-dynamo, which is a full three-dimensional
process not allowed in axisymmetry.
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Eq. (10.6) shows that an equilibrium solution can be found in three cases:
(i) a purely toroidal magnetic field, i.e. B*" = B*Y =0, (ii) a rigid rotator i.e.

—

VQ* = 0 and therefore Q* = const., and (iii) the special case in which B* L

VQ*. Note that the rotation law given by Eq. (9.3), as well as any rotation
law given by Q@ = Q(w) (w being the distance to axis), fulfills condition (iii)
if the magnetic field is parallel to the axis. Using these properties we can
construct stationary models with non-evolving magnetic fields. This is of the
great interest in order to design numerical tests of the code (see Section 10.2)
and to build initial models in equilibrium (see below).

10.1.2 Magnetic field configurations

Aiming to generate parametrized magnetic field configurations we have first to
design a method to build divergence-free configurations in general relativity.
The particularity of curved spacetimes is that the condition (3.39) in the mag-
netic field B? involves the covariant derivative, and hence the metric appears in
this condition. A way to overcome this problem is to work with the “starred”
magnetic field B*!, for which flat-metric operators apply (3.46). Once we have
a divergence-free magnetic field B*! we can easily calculate the physical one B?
using the metric. To ensure the divergence constraint we work with a vector
potential /I*, such that the magnetic field generated by it

B* =V x A%, (10.8)

is divergence-free by construction. As we assume axisymmetry, the toroidal
component of the magnetic field does not affect the divergence constraint, be-
cause  derivatives vanish, and therefore we do not need to construct the B*¥
component from the vector potential. In spherical coordinates and axisymme-
try the above condition for the poloidal field reads

*r 1 9 : *
B = m% (Sln@Aw) , (109)
10
*0 __ *

Given a value for the vector potential A7, we have designed a numerical method

well suited to our numerical description of the divergence-free equation. The
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Figure 10.1: Logarithm of the rest mas density (log p, color coded) and magnetic field
(B?) lines in a homogeneous B** field configuration, for a typical rotating neutron
star of about 1.4My (left panel) and a typical rotating iron core (model A1B3 in
Table[9.2) used for the collapse simulations (right panel). The magnetic field lines
have been calculated as isocontours of the vector potential. The axis scale is in km
and the density in c.g.s. units.

components of the magnetic field at the interfaces can be discretized as

B o 1 sin9j+1/2 A:; AR YRS ER YA - sian,l/Q A:; i+l =1 (10 11)
i+ J Tit1), A(cosb); ’ '

B o't Ay iy e = izt A i 10.12
i j+1/2 - AT2 - ( - )

%

With this prescription and the surface elements given by Egs. (7.14), the total
numerical flux ®t over a cell is zero (up to round off error) as

1 =B;1), ; AS, iy, 5 — B"y, ; AS, iy,

R ASp i j_1, =0, (10.13)

*0 Q *
+B; it ASy i jy1, — B j

and will remain zero during a numerical evolution using CT schemes (see
Chapter 7).

Throughout this chapter we use the following three magnetic field config-
urations:
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Figure 10.2: Same  as
Fig. [10.2 but for a rotating
iron core (model A1B3 in
Table 9.2) with the mag-
netic field generated by a
circular loop current in the
equatorial plane of radius
Tmag = 400km.

e Homogeneous “starred” magnetic field (B*¢) of the form

log rha

B*" = Bj cos b,
B*? = B} sin#, (10.14)

where B§ is the magnetic field at the center (r = 0). Note that this
configuration describes a homogeneous B*! field, but not a homogeneous
physical magnetic field B?, as metric components are involved in the
relation (3.41) between both. In fact, a homogeneous B? field only is
possible in the limit of Newtonian gravity where the three-metric is flat.
Fig. 10.1 shows how such magnetic field looks like as we increase the
compactness of the star and hence the curvature of the spacetime.

Magnetic field generated by a circular current loop of radius rmag in
the equatorial plane (Jackson (1962)), that can be calculated from the
only non-vanishing component of the vector potential A7, as

L 25 i (=1)™(2n — 1)t p2nHt

A* — "mag A D)L 2 P} .1 (cosb), (10.15)

v

2 n=0
where r« = min(r, rmag), 7> = max(r,rmag), and Bj is the magnetic
field at the center. The resulting magnetic field (see Fig.[10.2) does not
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have a toroidal component. In the limiting case of r < rmag or 6 < 1
the magnetic field is homogeneous and parallel to the axis

B*" ~ Bj cosé,

B*? ~ B} sin#, (10.16)

while in the limiting case of r > rma, the magnetic field is dipolar

. Lcosf
BT~ 2Bj
«0 _ peSind
B*? ~ By —-. (10.17)
e Toroidal magnetic field of the form
B¢ = pr_ 'ms (10.18)
e Trznag - w?’ ‘

where B is the central magnetic field, and its maximum value is reached
at W = Tmag-

10.1.3 Summary of initial models

As the magnetic field is not going to affect the equilibrium models, we choose
as initial models for the core collapse simulations suitable combinations of
the models given in Table with the magnetic field configurations of the
previous section. Aiming at comparing our results with the recent numerical
simulations performed by Obergaulinger et al. (2005) in Newtonian gravity,
a subset of our models (those with purely poloidal magnetic field) have been
selected as general relativistic counterparts of their models. Our initial data
are described in Table [10.1. Note that the models of |(Obergaulinger et al.
(2005) are not stationary in the sense of Section [10.1.1. Only models labeled
A1l are approximately stationary since they are almost rigidly rotating. All
models with purely toroidal field (labeled T) are stationary.
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Table 10.1: Initial models used in the magnetized core collapse simulations. The
magnetic field configuration can be the poloidal field generated by a circular loop
(CL) or the purely toroidal field (T) given by Eq. (10.18). In all cases rmag = 400
km. The models are labeled following the notation of Obergaulinger et al. (2005)
with “T” instead of “D” for the toroidal configurations. The label “M0” indicates
that we use the passive field approximation. The specific parameters corresponding
to the hydro model can be found in Table [10.1. Last column gives information of
the stability of the magnetic field configuration (see text for details).

Model Hydro model magnetic field stationary
A1B3G3-D3MO A1B3G3 CL approx.
A1B3G5-D3MO A1B3G5 CL approx.
A4B5G5-D3MO A1B3G5 CL no
A1B3G3-T3MO A1B3G3 T yes
A1B3G5-T3MO A1B3G5 T yes

10.2 Tests

We have designed several tests in order to check the accuracy of our numer-
ical code when solving the induction equation with the numerical methods
described in Chapter [7l The “toroidal test” is designed to assess the ability
of the code to maintain equilibrium magnetic field configurations (TTA and
TTB) and to correctly calculate the amplification of the toroidal magnetic
field as it is wound up by a rotating fluid (TTC). On the other hand, the
poloidal test (PT) is designed to check whether the code can correctly com-
pute the compression of the poloidal magnetic field in a spherical collapse, and
its ability to handle the presence of radial shocks.

10.2.1 Toroidal test

In a stationary case, in which the fluid does not evolve in time, and only an
azimuthal component of the velocity is allowed, i.e. v*" = 0, v*Y = 0 and
v*? #£ 0, the analytic solution in the passive field approximation is known.
It is given by Eq. (10.6) for the toroidal magnetic field, while the poloidal



10.2. TESTS 143

component does not change with time. In order to test whether the numerical
code is able to recover this solution, we investigate three particular cases of
this solution. For the three tests, we consider a non evolving fluid of constant
density p = 10 g em~3 filling the computational domain, and an equally-
spaced grid in both the angular and radial direction. The radial boundary
is located at 20 km. We consider a static background spacetime with a flat
metric. The tests performed are the following:

e Toroidal test A (TTA): In this test we consider the purely poloidal mag-
netic field generated by a circular current loop given by Eq. (10.15), with
Tmag = 6 km. The fluid rotates rigidly, * = €1, in such a way that the
velocity at the numerical boundary is 0.1 ¢. With this configuration the
toroidal magnetic field should remain zero. We evolve the magnetic field
only, keeping fixed the fluid and spacetime evolution, during a total time
of 1 ms (10 rotations for the chosen Qf),at which time we calculate the
global error with respect to the analytic solution (B(‘ih)(t) =0) as

o(B¥) = /Z Tij, oij = BY — By, (10.19)
ij

where o; ; is the local error at a given cell and the sum extended over all
cells of the numerical grid.

e Toroidal test B (TTB): In this test we consider the second nontrivial
configuration for a stationary magnetic field according to Eq. (10.6). We
use a purely poloidal field, homogeneous and parallel to the rotation axis,
as given by Eq. (10.14), in combination with a rotation law depending
only on the distance to the axis w. In particular we use for Q*(w)
the law given by Eq. (9.3), with the same value for Q¥ as in TTA, and
A =6 km. For a total time evolution of 1 ms, the fluid rotates ten times
at the center, and only once at the outer boundary, while the magnetic
field should not evolve. We calculate the error at the final time, o(B¥),
in the same way as in the TTA case.

e Toroidal test C (TTC): In the last test, we do not consider a stationary
configuration, but an evolving one. We choose the homogeneous poloidal
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field of case TTB, and the rotation law given by

. Ao
Q* = yEEL (10.20)
where A is a parameter controlling the degree of differential rotation.
Note that this rotation law does not depend on the distance to the axis
w, but on the distance to the center r. The same values for A and Q} as
in TTB are also adopted in this test. Acording to Eq. (10.6) the toroidal
magnetic field is given by the analytic expression

A2 2
"L sin2p. (10.21)

B2 (t) = =By s
(t) 0 c(A2 +T2)

(th)
We calculate the error after a total evolution time of 1 ms, o(B%), in the
same way as in the TTA case.

For numerical scheme of order N the numerical representation fuum(r,8)
of a given function f(r,#) differs by o with respect to the true value of the
function

f(r,0) = foum(r,0) + 0 (Ar?,A0%), p+qg=N, (10.22)

where ¢ depends linearly on Ar? and A8 7. The test simulations are performed
with equidistant grids in both r and 6,

™
Ar = — Al = — 10.23
ny’ 2ng’ ( )
where R is the outer radius of the numerical domain. If we consider a reference
(low resolution) grid nyref X Ngret With an error oref, and a subsequent grid with
a factor f higher resolution, i.e. n, = fn.er and ng = fngrer, then the error
on the new grid, oy, is related to the error on the reference grid as

1 N
Of = Oref (?> . (10.24)

By fitting the values of o as a function of 1/f we can easily calculate the
convergence order N. For our test simulations we consider a reference grid of
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Table 10.2: Convergence order N for
Test Reconst. N 9320x40 the three tests performed (TTA, TTB
TTA  minmod 235 1.2010°° and TTC) and for different recon-
TTA MC 2.16 2.3710°¢ struction procedures (minmod, MC and
TTA PPM 2.24 2331079 PPM). The error a320x40 on the higher

TTB  minmod 2.64 7.6610-° resolution grid is also given.
TTB MC 2.53 1.1910°°
TIB PPM 255 1.20107°
TTC minmod 1.54 7.99107°

TTC MC 1.48 7.03107°
TTC PPM 1.46 6.39107°

80 x 10 cells (f = 1) , and higher resolution grids of 160 x 20 (f = 2) and
320 x 40 (f = 4) cells respectively. Figures[10.3/ and [10.4 show the resulting
oy for the three tests versus 1/f. The convergence orders, N, resulting of the
fit of these data to a power law, as well as the errors for the finest grid are
given at Table[10.2.

Our results show that (i) the orders of convergence and the errors are almost
independent of the reconstruction scheme, (i) the order for the TTC test is
smaller than for the TTA and TTB tests, and (iii) the order for cases TTA
and TTB is N > 2, and hence higher than the theoretical expectation (second
order, since limited by the time discretization, a second order Runge-Kutta
method of lines).

In all tests we obtain similar results for the linear reconstruction (minmod
and MC) and for the PPM reconstrution, as the order of the scheme is limited
by the second order discretization in time. In fact, linear reconstruction with
minmod slope limiter yields the most accurate results. The main difference
between the case TTC and the cases TTA and TTB, is that in the first case
there is a component of the magnetic field, B*¢, evolving in time (growing
linearly), while in the other cases this component does not evolve. The results
for the latter cases are more accurate due to exact cancellations in the numer-
ical scheme used in these particular tests. Their high order can be explained if
we calculate the local convergence order, i.e. the convergence order obtained
when computing the errors of each numerical cell, g;;, instead of the global
error o. To do that, we average the errors in the high resolution grids, f = 2
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Figure 10.3: Global error in the
toroidal magnetic field, o(B¥), af-
ter 1 ms time evolution of test
TTA (+ for minmod and x for
MC) and TTB (circles for minmod
and squares for MC), as a func- -~ 0.0001
tion of 1/f for a sequence of mod- @

els with grid resolution: 80 x 10 ©

(f = 1), 160 x 20 (f = 2) and

320 x 40 (f = 4). Thin and thick 1606
lines represent the best fit of the

test TTA and TTB, respectively,
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Figure 10.4: Global error in the 0.001

toroidal magnetic field, o(B¥), af-
ter 1 ms time evolution of test
TTC as a function of 1/f and
its best fit, for both minmod (+

and solid line) and MC (x and <
dashed line). Also plotted are =
the global errors for high angu- ©

& & ang 0.0001

lar (radial) resolution grids with
increasing radial (angular) resolu-
tion as a function of 1/f. (1/fe)
with circles (squares), and its fits
to Eq with solid (dashed) 0.1

lines.
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and f = 4, to the 80 x 10 reference grid, and then we calculate the order of
convergence at each cell. The results for the three tests and the three recon-
structions used are displayed in Figs.[10.5,(10.6, and [10.7. Tt can be seen, that
at some particular locations the order of convergence is larger than two, while
at most locations of the grid it remains around two. These scattered points
cause the high global order of convergence, but in general the second order
convergence of the code is well achieved. It can also be noted that the order
drops at the outer boundary, where boundary conditions are imposed, and in
some cases near the center (r = 0), where symmetries are imposed.

Additionally, if we consider a reference grid with high resolution in the
angular direction, we can set Af,, . — 0, and thus ¢ ~ o(Ar®"). For a
grid with a factor f, times higher radial resolution, i.e. with grid resolution
Ny = frlprer and ng = ngeer, the error is related to the error in the reference
grid with high angular resolution (oyef ) according to

1\
Of., = Oref r f_ , (1025)
r

where N, represents the order of convergence when increasing the radial res-
olution at fixed high angular resolution, which can be calculated fitting data
to the above equation. In an equivalent way, we can also define a convergence
order for the angular direction Ny, if we consider a reference grid with high
resolution in the radial direction.

We have calculated both the radial convergence order N, and the angular
one Ny for the TTC case with MC linear reconstruction. To compute N,
we take a grid with high angular resolution (80 x 40) as reference (f, = 1),
and then we increase the radial resolution by taking 160 x 40 (f, = 2) and
320 x 40 (fr = 4) zones. If we then fit the errors (see Fig. to Eq.
we can calculate N,. In a similar way we calculate Ny, from the sequence of
grids 320 x 10 (fy=1), 320 x 20 (fy=2) and 320 x 40 (fy=4). The resulting
values are N, = 0.89 and Ny = 0.51. In both cases the values obtained
are smaller than the order of convergence obtained in the case of increasing
both the radial and the angular resolution (N = 1.48). As N, > Ny, the
solution will converge faster if we increase the radial resolution than if we
increase the angular resolution. As a result, in order to obtain more accurate
results under the (practical) constraint that we can not afford to increase
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Figure 10.5: Local order of convergence (color coded) in the TTA test after a total
time evolution of 1 ms, for three different reconstruction schemes: linear reconstruc-
tion with minmod slope limiter (upper panel), MC slope limiter (middle panel), and
PPM reconstruction (lower panel). White color is used for values bigger or equal
than 3.0. The axes represent the number of cells of the reference grid in the radial
and angular direction.

the resolution in both directions, it is more efficient from a computational
point of view, to increase the radial resolution than the angular resolution.
Therefore, although the angular resolution plays a crucial role in order to
correctly evolve the magnetic field, we should also take into account the radial
resolution. Using this information we will design the grids for the magnetized
core collapse simulations (see below), in such a way that they have sufficient
radial resolution, especially the inner regions where the proto-neutron star will
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Figure 10.6: Same as Fig. but for the case TTB.

form.

10.2.2 Poloidal test

We consider now a test in which only radial velocities of the fluid are allowed,
i.e. v*" #£0, v* =0 and v*¢ = 0. We also consider initially a purely poloidal
magnetic field. In this case, it can be easily shown from the induction equa-
tion (3.46) and the continuity equation (3.11) that the following equivalence
holds in the equatorial plane

8 ( D* w10 ( D
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Figure 10.7: Same as Fig. but for the case TTC.

which is an advection equation for D*/B*? with velocity v*" at the equator.
Since only radial velocities are allowed, it is possible to define a Lagrangian
coordinate system, in which the value D*/ B%* does not change with time. The
easiest way of checking this condition is to calculate [D*/B?*] (m), i.e. as a
function of the mass enclosed within a radius r defined as

m(r) = 4w /OT r2dr' D* (r"). (10.27)

If the magnetic field is correctly evolved with our numerical code, this quantity
should remain constant in time.

We perform simulations of spherical collapse in which the above conditions
are satisfied. The initial magnetic field is homogeneous as described in Sec-
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tion [10.1} The initial equilibrium model for the fluid variables consists of a
spherical 4/3-polytrope with central density p. = 10'® g cm=3. We induce the
collapse by reducing the initial adiabatic index from v =4/3 to y; = 1.28. As
the equation of state stiffens at nuclear matter density (see Chapter [9), the
star bounces, a shock forms and travels outward. We calculate the error o
in the collapse phase by applying Eq. (10.19) to the quantity [D*/B*] (m),
assuming that the theoretical value is the initial one. In Fig.[10.8 we show the
evolution of the error during the collapse for different linear reconstructions
(minmod and MC) and for different (r,6)-grid resolutions (80 x 10, 300 x 30,
and 400 x 60). The resulting errors for the MC slope limiter are slightly better
than for minmod, decreasing in both cases with resolution. In any case the
errors are below 1% even for the coarsest grid.

The resolutions employed are the same that will be used in the magnetized
core collapse simulations. The cells are equally-spaced in the angular direction,
while they are logarithmically spaced in the radial direction, except for the
inner 100 radial grid points (in the 300 x 30, and 400 x 60 cases), which are
equally-spaced. This guaranties sufficient resolution in the region where the
proto-neutron star forms. After the shock forms the deviations from the initial
profile increase as the order of reconstruction decreases locally to one.

In order to check our numerical code we plot [D*/B%*] (m) in Fig. 10.9,
at time ¢t = 35 ms, for three different grid resolutions and the minmod slope
limiter. The initial profile given by the dotted curve. The effect of the travel-
ling shock is seen as a small spike, that becomes narrower as the resolution is
increased. On the other hand, deviations from the initial profile occur near the
proto-neutron star boundary (where the density exceeds nuclear matter den-
sity). We interpret this small effect as a numerical error, as it is reduced when
increasing the resolution. This feature also tends to disappear when using the
MC slope limiter or the PPM reconstruction. However, we do not include these
(still preliminary) results for two reasons: first, Antén et al. (2006), whose nu-
merical scheme we use, performed an extended set of tests for the case of
linear reconstruction with minmod slope limiter. Since no tests have yet been
done for the MC slope limiter, nor with higher order reconstructions, we defer
the use of such numerical schemes to a future investigation. Second, we have
observed that the use of the MC slope limiter and PPM introduces point to
point errors (high frequency noise) close to the center of the proto-neutron star
after the bounce, while minmod does not. This feature appears even in the
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Figure 10.8: Error in the poloidal test (PT) as a function of time, for three different
grid resolutions and two different linear reconstructions. Only the infall phase has
been considered.

non-magnetized case but tends to dissapear with increasing resolution. In the
magnetized case such point to point oscillations translate through the veloci-
ties to the magnetic field, which is very sensitive to this kind of noise, i.e. a
small error in the velocities is magnified in the magnetic field by the induction
equation. Although these effects have to be studied in detail in the future,
to try to develop higher order schemes without this pathology, for the present
work we have taken the practical decision of using the same approach as Antén
et al. (2006) did, namely linear reconstruction with minmod slope limiter.

We have performed tests using both the HLL approximate Riemann solver
and the KT symmetric scheme, finding almost identical results (in agreement
with Lucas-Serrano et al. 2004; Shibata & Font 2005; Antén et al. 2006). As KT
gives slightly better results (concerning the point to point error at the center
for MC and PPM), we choose this Riemann solver for all our magnetized core
collapse simulations discussed next.
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Figure 10.9: The quantity D*/B%* versus m at t = 35 ms for the poloidal test (PT).
Three different resolutions are plotted, in comparison with the initial value (dotted
curve). The location of the proto-neutron star boundary (dashed vertical line) and
location of the shock (dotted vertical line) for the highest resolution model are also
shown.

10.3 Magnetized core collapse

We present in this section results from simulations of rotational magnetized
core collapse to neutron stars. The dynamics of the models we have selected
(see Table[10.1) is identical to the dynamics of the non-magnetized ones, since
the passive field approximation is used. Therefore, we will not describe once
again the morphological features of the hydrodynamics (see Chapter [9). We
pay more attention instead to the magnetic field evolution. In all our simu-
lations an initial magnetic field strength of Bf = 10'° G is considered. As
we adopt the passive field approximation, all results given for this magnetic
field strength can be rescaled to other values of Bj by using the adequate
factors. Note however that such rescaling is only valid in the passive approxi-
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mation regime, as for strong enough magnetic fields (not considered here), the
dynamics of the system wold be affected by magnetic effects.

We perform simulations of both, models labeled D3M0 and T3MO0. For the
former case the simulations are carried out in two resolutions (n, xny): regular
resolution with 300 x 30 zones and high resolution (400 x 60 zones). In both
cases the radial grid is equally spaced for the first 100 points, the first radial
cell center being located at 50 m from the origin (r = 0). The remaining radial
zones are logarithmically spaced to cover the outer parts of the star and the
exterior atmosphere. We have checked that regular resolution is sufficient to
correctly compute the evolution of the hydrodynamical quantities and of the
magnetic field when this has toroidal topology. However, high resolution is
needed to achieve similar accuracy in the evolution of the magnetic field with
a poloidal component. Since models T3M0O do not have poloidal magnetic
field components, we perform simulations only with the regular resolution grid
for this case. Unless otherwise mentioned, the results presented belong to
simulations with the highest resolution available.

10.3.1 D3MO models

Fig.[10.10 shows the evolution of the energy parameters for the magnetic field,
Bmag, and for the rotational kinetic energy, Brot- They are defined as the
ratio of magnetic energy, Ep,ag, and the rotational kinetic energy, E,ot, to the
potential energy, respectively, E,o. Each of these energies are calculated in
general relativity as:

W b?
Emag = /d3x R (10.28)
a 9% S}
By = /d3x Tw (10.29)
Epot = Mgrav - Mproper — Bt — Ema.g: (1030)

where Mg,,, is the gravitational mass, and Mj;qper the proper mass.

The evolution of Bro¢ and Bmag allows us to quantify the amount by which
rotation and magnetic fields would affect the dynamics of the system. Ef-
fects due to high .4 are discussed later in the thesis, in Chapter[12. As the
magnetic fields considered are weak enough not to affect the dynamics, the
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resulting Bmag is much less than unity. In order to analyze the growth of the
magnetic field, we separate the effect of the different components of the mag-
netic field into B, for the toroidal component, and Bpolo = Bmag — By, for the
poloidal component. As the collapse proceeds, the magnetic field grows by at
least two reasons . First, the radial flow compresses the magnetic field lines,
amplifying the existing poloidal and toroidal magnetic field components. We
call this effect radial compression, hereafter. Second, during the collapse of
a rotating star differential rotation is produced, even for rigidly rotating ini-
tial models (as A1B3G3-D3MO or A1B3G5-D3MO0). Hence, if a seed poloidal
field exists, the 2-dynamo process acts (see Section [10.1) winding up poloidal
field lines into the toroidal component. This amplification process generates a
toroidal magnetic field component, even from purely poloidal initial configu-
rations. We note, however, that the conversion of toroidal magnetic field lines
back into poloidal components by means of the a-2-dynamo (Spruit 1999) is
not possible in our simulations, since this is a three-dimensional effect and our
simulations are axisymmetric. The toroidal component of the magnetic field
is affected by the two effects, namely by the radial compression and the by
Q-dynamo, while the poloidal field is only amplified by the first effect. Thus,
even if the initial magnetic field configuration is purely poloidal, the toroidal
component dominates after some dynamical time. This effect can be seen in
Fig.[10.10 as 3, (dashed line) grows much faster than f;,1, before the time of
bounce.

The general features of the amplification of the magnetic field during the
collapse and its posterior evolution are described next. As nuclear matter den-
sity is reached, the star bounces back forming a shock wave propagating out-
wards, and leaving the newly formed proto-neutron star behind. At this time,
the radial compression of the magnetic field lines stops, and the Q-dynamo
process dominates the amplification of the magnetic field. Hence, Bp01o almost
stops growing, only a small growth can be seen due to the accretion of material
onto the central regions. In model A4B5G5-D3MO (Fig.[10.10, lower panel),
Bpolo decreases after the bounce, becoming nearly constant thereafter due to a
small re-expansion of the star prior to reach a final quasi-equilibrium state. On
the other hand 3, keeps growing after bounce because the (-dynamo contin-

1See, however, Section [10.3.4 for a discussion of the possible influence of the magneto-
rotational instability in the magnetic field amplification process.
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Figure 10.10: Time evolution of the energy parameters for models A1B3G3-D3MO0
(upper panels) and A1B3G5-D3MO (lower panels). The left panels show the evolution
of the magnetic energy parameters fBmag (solid line), B, (dashed line), and Byoio
(doted-dashed line), and the right panels show the evolution of the rotational energy
parameter Brot-



10.3. MAGNETIZED CORE COLLAPSE 157

Table 10.3: Values of the poloidal magnetic field component, |B|polo, the toroidal
component, |B|,, and the energy parameters, Brot, Bmag and [y, at the time of
bounce, t1,, for all models studied.

Model |B|Bolo |B|]<27 ﬂlt')ot ﬂrl‘zlag ﬂ:?;
(10 G) (101 G) (107%) (107%) (107®)
A1B3G3-D3MO 1727 4878 4.0 3.2 1.8
A1B3G5-D3MO 1259 1328 1.4 0.83 0.21
A4B5G5-D3MO 1244 3488 9.5 6.9 5.3
A1B3G3-T3MO 0 1597 4.0 0.36 0.36

A1B3G5-T3MO 0 1411 14 0.6 0.6

ues winding up the existing poloidal magnetic field, becoming the dominating
amplification process of the magnetic field in the star. To simplify the in-
terpretation of the results we proceed first to describe the time evolution of
the different models in the equatorial plane, and describe the more complex
morphology of the magnetic field in the r-6 plane afterwards. Animations of
all simulations performed can be found on the CD.

Models A1B3G3-D3M0 and A1B3G5-D3MO have identical initial data for
the hydrodynamics and magnetic field, differing only in the value of ;. There-
fore, significant differences occur in the collapse. Model A1B3G3-D3MO col-
lapses slower (bounce at t = 49.04 ms) than model A1B3G5-D3MO0, bouncing
at t = 30.24. In the first model, the Q2-dynamo acts for a longer time and hence,
the toroidal magnetic field component at the time of bounce is about an order
of magnitude larger at the equator (~ 4 x 10'* G at maximum) than in the
rapidly collapsing one (thick-dashed lines in the upper panels of Figs.
and [10.12). As the poloidal component of the magnetic field is amplified only
by the compression of the magnetic field lines, similar values of this component
are found at the time of bounce in both models (thin-dashed lines), because
similar maximum densities are reached in the collapse. Detailed values for
these quantities at bounce can be found in Table[10.3. The distribution of the
magnetic field in the equatorial plane is also similar for both models. While
most of the poloidal component of the magnetic field is confined to the in-
ner region, inside the radius at which the shock is formed, the toroidal field
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Figure 10.11: Radial profiles along the equator for model A1B3G3-D3MO0. Depicted
are the poloidal magnetic field, |Bpolo| (thin lines in the upper panel), the toroidal
component, |B¥| (thick lines in upper panel), the radial velocity, »" (thick lines in
lower panel), and the angular velocity, €2, (thin lines in lower panel). The dashed
lines represent these quantities at the time of bounce, ¢, = 49 ms, and the solid lines
at the end of the simulation, ¢ = 60 ms.

reaches its largest value in the region where the angular velocity gradients are
larger, i.e. where the shock forms. This structure is crucial for the posterior
amplification of the toroidal field via the Q-dynamo. Due to Eq. (10.7), the
amplification is more effective where the €2 gradients and the poloidal field are
stronger, i.e. at the outer layers of the newly formed proto-neutron star (thick
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Figure 10.12: Same as Fig.[10.11 but for model A1B3G5-D3MO.

solid lines) extending from the location of the shock formation (r &~ 10 km), to
the outer edge of the PNS (r ~ 50 km). Outside this region the poloidal field is
too weak to generate strong toroidal fields. In the inner ~ 10 km, the angular
velocity is approximately constant, and the amplification becomes slower.

The full structure of the magnetic field for models A1B3G3-D3MO and
A1B3G5-D3MO can be seen in Figs 10.13110.18. The general trends already
discussed for the equatorial plane profiles are also followed in the -6 plane. At
the time of bounce, the initial poloidal configuration of the magnetic field (see
Fig.10.2) is highly distorted by the radial compression of the magnetic field
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Figure 10.13: Configuration of the inner region of the star near the time of bounce,
t = 49.4 ms, for model A1B3G3-D3MO0. The upper left panel shows the logarithm of
density, log p, in g cm ™2 (color coded), and the distribution of the velocity field, v’
(white arrows). The upper right panel shows the logarithm of the specific internal
energy, loge, in erg (color coded and contours). The lower left panel shows the
logarithm of the poloidal component of the magnetic field, log|Bpolo|, in G (color
coded), and the magnetic field lines in the r-6 plane (lines). The lower right panel
shows the logarithm of the toroidal component of the magnetic field, log |B?|, in G
(color coded). All axes are given in km.
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Figure 10.14: Same as Fig [10.13] but for model A1B3G3-D3MO0 at the end of the
simulation, ¢ = 60 ms.
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Figure 10.15: Magnetic field lines for model A1B3G3-D3MO0 near the time of bounce,
t = 49 ms (left panel), and at the end of the simulation, ¢ = 60 ms (right panel).
The box represents the region above the equatorial plane, and the axes are in km.

lines (see Figs.10.13 and[10.16), while a toroidal component has been formed
surrounding the inner core. The shock wave travelling otwards can be seen in
the hydrodynamical quantities and in the magnetic field components. Until the
end of the simulation (see Figs.[10.14]and the toroidal component of the
magnetic field is mostly confined to the outer layers of the PNS, while the inner
region is dominated by the poloidal component. In model A1B3G5-D3MO the
configuration of the toroidal field is more compact than in model A1B3G3-
D3MO, as inferred from the color coding. The distribution of the velocity
field shows that convective motions occur outside the innermost regions and
near the pole. These meridional flows are responsible for the winding of the
poloidal magnetic field in the r-6 plane, especially in model A1B3G5-D3MO.
As a consequence, the drastic change of direction of the poloidal field in this
region makes the product B* . VQ* in Eq. (10.7) to change its sign. Hence,
for model A1B3G5-D3MO, the Q-dynamo produces a change in the sign of
the toroidal magnetic field in this thin shell, B¥ > 0, surrounded by toroidal
field in the usual direction, B? < 0. Until the end of the simulation (¢ = 60
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30,4000 ms

Figure 10.16: Same as Fig[10.13 but for model A1B3G5-D3MO0 near the time of the
bounce, t = 30.4 ms.
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Figure 10.17: Same as Fig[10.13 but for model A1B3G5-D3MO at the end of the

simulation, ¢ = 58 ms.
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Figure 10.18: Same as Fig. [10.15, but for model A1B3G5-D3MO0 near the time of
bounce, ¢t = 30.4 ms (left panel), and at the end of the simulation, t = 58 ms (right
panel).

ms), this configuration is maintained, resulting in a linear amplification of the
toroidal magnetic field in this region. The three-dimensional structure of the
magnetic field lines has been computed and is shown in Figs.[10.15/and [10.18.
The magnetic field lines have been calculated by integrating the equation

di B

— ==, 10.31

d\ |B ( )

where Z()) is the equation of the line as a function of the parameter A. In
spherical coordinates this equation reads,
@ _ B a9 _1B° dp _ 1 B*
d/\_|§|’ d/\_r|§|’ dA_rsin0|§|'

(10.32)

We first select the domain in which we want to calculate the lines (box in
Figs. 10.15 and [10.18), and then we integrate the equations from the outer
limits of the box at ¢ = 0 (red dots in CD animations), to the points at
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Figure 10.19: Same as Fig.[10.11 but for model A4B5G5-D3MO.

which lines leave the box (blue dots). It can be seen that outside the PNS the
magnetic field is approximately poloidal while a shell of entwined toroidal field
lines forms formed around the inner core of the PNS. The poloidal structure
of the innermost region can not be seen in these figures because the shell hides
the interior. Simulations covering a longer time interval are needed to establish
whether this configuration is stable, or whether it is a transient.

Model A4B5G5-D3MO rotates faster initially than the models previously
described, and is also differentially rotating initially. Therefore, the 2-dynamo
is stronger, and, for a similar collapsing time as model A1B3G5-D3MO, the re-
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Figure 10.20: Same as Fig[10.13 but for model A4B5G5-D3MO0 near the time of the
bounce, t = 31.4 ms.
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Figure 10.21: Same as Fig[10.13| but for model A4B5G5-D3MO0 at time ¢ = 36 ms.
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Figure 10.22: Same as Fig. [10.15, but for model A4B5G5-D3MO0 near the time of
bounce, t = 31.4 ms (left panel), and at time ¢ = 36 ms (right panel).

sulting toroidal component of the magnetic field is about an order of magnitude
larger at the equator (see the thick-dashed line in the upper panel of Fig.[10.19),
even though the radial compression effect is weaker in this case, since the col-
lapse is stopped at densities below nuclear matter density. The distribution
of the magnetic field in the equatorial plane (see Fig is completely dif-
ferent to the distribution of models A1B3G3-D3M0 and A1B3G5-D3MO. In
model A4B5G5-D3MO the matter distribution at the time of bounce reaches
its maximum off center, due to the strong centrifugal forces acting on it. Both,
the poloidal and toroidal magnetic field components at the time of bounce are
not confined inside the shock location, at a distance of about 30 km from the
center, but they extend outside to more than 100 km. As the shock travels
outwards, the magnetic field is transported with the shock spreading it. In the
inner “hole” of the toroidal-like configuration of the star (the innermost 10 km
at the time of bounce) the magnetic field is very weak, since no matter flows
have transported any magnetic field lines into this region and the Q-dynamo
does not act efficiently in such low-poloidal field regions. After the shock
formation, the quasi-toroidal star re-expands and settles down in a quasi sta-
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tionary equilibrium the maximum density being located at about 45 km. This
state is reached after a couple of bounces which are strongly damped by the
surrounding material. Angular momentum and magnetic field are transported
in the innermost region during bounce, producing a region with high angular
velocity (see the thin-solid line in the lower panel of Fig.[10.19). This leads
finally to an amplification of the poloidal magnetic field via the Q2-dynamo in
the inner region and in the outer layers of the star. As the final maximum den-
sities reached for this model are smaller than in models A1B3G3-D3MO0 and
A1B3G5-D3MO, the final rotation rates are also smaller producing a smaller
amplification.

The structure of model A4B5G5-D3MO in the r-6 plane (see Figs. 10.20
and is far more complicated than in the previous cases. The strongest
magnetic field is reached outside the shock location at the time of bounce
(see Fig[10.20), the shock dragging the magnetic field along its path. Near
the rotation axis, the matter falls nearly parallel to the axis, while off the
axis, the post-shock flow is in almost perpendicular direction, i.e. away from
the axis (see the upper left panel of Fig[10.20). This flow twists the field
lines in the r-6 plane in a similar way as convection does in model A1B3G5-
D3MO. As a consequence similar regions with positive toroidal magnetic field
are formed (see Fig[10.21). The three-dimensional structure of magnetic field
lines is shown in Fig.[10.22. It consists of a series of windings and twists of
the magnetic field lines by the action of the Q-dynamo and the meridional
flows, respectively. Note that in these regions, the magnetic field has large
variations in small scales, and therefore finite conductivity effects such as field
line reconnection colud be necessary, since the magnetic diffusion term in the
evolution equation for the magnetic field is proportional to V2B. Close to the
equatorial plane there exist regions where the magnetic field is almost purely
toroidal, and hence circular closed lines can be found.

The models of this series, A1B3G3-D3M0, A1B3G5-D3M0 and A4B5G5-
D3MO, can be compared with models A1B3G3-D3M10, A1B3G5-D3M10 and
A4B5G5-D3M10, respectively, of (Obergaulinger et al. (2005) who have re-
cently performed a comprehensive parameter study of magnetized rotational
core collapse in Newtonian gravity and MHD. Since we use the passive approx-
imation, the comparison can only be done with the low magnetic field models
of Obergaulinger et al. (2005), namely their “M10” models. In general, both
sets of models show similar qualitative behavior, although some differences are



10.3. MAGNETIZED CORE COLLAPSE 171

Table 10.4: Values of the energy parameter for the magnetic field, ﬂﬁag, at the time ¢
reported in table D.1 of Obergaulinger et al. (2005), compared with the corresponding
values for CFC, ,ngg at the same time.

Model t (ms) PR, (107%)  BEFC (10~9)
A1B3G3-D3M10 66.16 20.0 4.0
A1B3G5-D3M10 48.33 1.8 0.8
A4B5G5-D3M10  64.00 3.3 1.0

found. As shown by Dimmelmeier et al. (2002b) in purely hydrodynamical
core collapse simulations, the main difference between using CFC and Newto-
nian gravity is that higher densities are reached in the former case and thus,
higher rotation rates. Our magneto-rotational collapse simulations show that
the magnetic field structure is very similar, although the values reached for
Bmag are smaller for the CFC case (compare Fig. [10.10 with Fig. 3 in Ober-
gaulinger et al. (2005)). In Table we compare the values of Bnag at the
time t reported in Table D.1 of the Newtonian simulations of Obergaulinger
et al. (2005) with our results in the CFC approximation. Note that for models
A1B3G3-D3M10 and A4B3G5-D3M10 we have no data for that time, and the
values correspond to an extrapolation using the fit of Section[10.3.5. Very re-
cently Obergaulinger et al. (2006) have performed numerical simulations of the
same models but using a modified Newtonian potential which mimics general
relativistic effects (TOV models hereafter). From all our performed simulations
only model A1B3G3-D3MO has its correspondence in TOV gravity (A1B3G3-
D3M10-T). Their result for the energy parameter of the magnetic field at
t = 85.1 ms is ooy = 107 (extracted from Obergaulinger et al. (2006))
while our result for the same time (extrapolated) is Snhs = 1.68 x 1075, Since
our comparison is restricted to a single model further investigation is needed
to asses whether the smaller values attained for Bmaz in CFC compared with
TOV and Newtonian gravity is a general trend.
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Figure 10.23: Time evolution of Bmag (left panels) and of the maximum poloidal
magnetic field, |B¥| (right panels), for models A1B3G3-T3M0 (upper panels) and
A1B3G5-T3MO (lower panels). These graphics are depicted in solid lines. Overplot-
ted with dashed lines are the corresponding values for models A1B3G3-D3MO0 (upper
panels) and A1B3G5-D3MO (lower panels).

10.3.2 T3MO models
The time evolution of Bmag for models A1B3G3-T3MO and A1B3G5-T3MO is

presented in Fig.[10.23| In order to get a better understanding of the evolution
of the magnetic field in these models, the evolution of the maximum value for
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Figure 10.24: Radial profiles of the toroidal magnetic field, |B¥| for models A1B3G3-
T3MO (thin lines) and A1B3G5-T3MO (thick lines). Dashed lines depict those quanti-
ties near the time of bounce while solid lines correspond to the end of the simulation.

the magnetic field is also presented. To this end we compare these models,
which initially have a purely toroidal magnetic field, with their counterparts
with initial poloidal magnetic fields (A1B3G3-D3MO0 and A1B3G5-D3MO0). As
no poloidal field is present in the T3M0 models, toroidal fields can not be
amplified via the 2-dynamo. Furthermore, since we impose axisymmetry, no
poloidal field can be formed along the evolution, and thus the toroidal com-
ponent of the magnetic field is the only one evolving. The only amplification
process in the collapse is the radial compression of the field lines. This mech-
anism is much slower than the {-dynamo and thus, the toroidal magnetic
field at the time of bounce is larger in the D3MO models than in the T3MO0
models, despite the fact that D3MO0 models do not have a toroidal component
initially. The fraction of magnetic energy in models T3MO decreases during
the collapse as the magnetic energy grows slower than the potential energy.
As a consequence, although the magnetic field grows, the final PNS is “less
magnetized” than its progenitor, i.e. the effects of the magnetic field on the
dynamics become smaller in a collapse if the only amplification mechanism is
the radial compression.

At the time of bounce most of the toroidal field is confined to the in-
ner region, inside the shock location (see Fig.[10.24). This is very similar to
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Figure 10.25: Logarithm of the toroidal magnetic field for model A1B3G3-T3M0
near the time of bounce, ¢t = 49.4 ms (left panel), and at the end of the simulation,
t = 60 ms (right panel).

Figure 10.26: Logarithm of the toroidal magnetic field for model A1B3G5-T3MO0
near the time of bounce, ¢t = 30.4 ms (left panel), and at the end of the simulation,
t = 58 ms (right panel).
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Figure 10.27: Absolute value of the gravitational wave amplitude A5; (solid line) for
models A1B3G3-D3M0/T3MO0 (left panel) and A1B3G5-D3M0/T3MO0 (right panel).
For the low magnetic field strengths considered, the magnetic contribution in the
waveform is negligible, and the signals of both series D3M0 and T3MO coincide
with the pure hydrodynamical waveform. For clarity, the magnetic component of
the waveform, Aggmag, is also plotted for models A1B3G3-D3MO (left panel, dashed
line), A1B3G3-T3MO0 (left panel, dotted line), A1B3G5-D3MO0 (right panel, dashed
line), and A1B3G5-T3MO0 (right panel, dotted line).

what happens for the poloidal field in models D3MO, as in both cases the only
amplification process at work (in the passive approximation) is the radial com-
pression. As the shock propagates outward, the toroidal field remains in the
inner core, yielding the final quasi-equilibrium state. Only a small growth of
the magnetic field can be seen, as the accreting material transports magnetic
field onto the proto-neutron star. As the potential energy does not grow in
the quasi-equilibrium, the growth of the magnetic field leads to a slow growth
of Bmag- Figs.[10.25 and [10.26] display the strength of the toroidal magnetic
field, |B¥| in the r-6 plane for both T3MO0. At the time the shock forms, a
jump in the magnetic field appears (left panels) which propagates outwards.
The final state (right panels) is almost stationary, most of the magnetic field
being concentrated in the innermost region of the star.
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Figure 10.28: Absolute value of the
gravitational wave amplitude AR2 (solid
line) for model A4B5G5-D3MO, and the
corresponding magnetic component of
the waveform, A55,,.,, (dashed line).

10.3.3 Gravitational waves

We calculate the gravitational wave output from our CFC magnetized core col-
lapse simulations using the Newtonian quadrupole formula given in Eq.
which includes the magnetic terms. In order to understand how the magnetic
field affects the waveforms, we have also computed the component correspond-
ing to the magnetic field, Ag(?mag, separately. The resulting waveforms can be
found in Figs. [10.27 and [10.28. As the magnetic field is very low, b? < p,
therefore the magnetic component of the gravitational wave is several orders
of magnitude smaller than the total one.

After bounce, the star reaches a quasi-equilibrium state, and thus, the
hydrodynamic component of the waveform decreases. At the same time, for
models D3MO, the magnetic field increases linearly with time. Such behaviour
in the magnetic field produces a signal that grows with time. However, at the
end of the simulation, the magnetic field component of the waveform is still
negligible in comparison with the hydrodynamical component. It is expected
that at later times, as the amplification of the magnetic field reaches saturation,
the effects on the waveform become significant, due to the changes in the
dynamics and due to the effect of the magnetic field itself 2. For models T3MO,
on the other hand, the magnetic field component of the waveform is even

2We note that the effect of the MRI, discussed in the next section, may lead to noticeable
changes in the waveforms, as it is the most efficient mechanism to amplify the magnetic
field.
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smaller than for the D3MO0 models. This is due to the inefficient amplification
of the magnetic field via the radial compression. After bounce, the magnetic
component of the waveforms in models T3MO0 does not grow, and hence it is
not expected to dominate the waveform later in the evolution, unless other
processes amplificating the magnetic field are present.

10.3.4 Magneto-rotational instability

The magneto-rotational instability (MRI) is a shear instability that generates
turbulence and an amplification of the magnetic field in rotating magnetized
plasma (Balbus & Hawley 1991, 1992), transporting angular momentum in
the star. In this section we analyze whether the magnetized collapse models
studied in this thesis are susceptible of developing such an instability. If one
neglects buoyancy effects, and the magnetic field strength is very low, as in our
case, then the condition for the instability to occur, in the Newtonian limit, is
(Balbus & Hawley|1991):

dN?

dlnw

<0. (10.33)

If this condition is fulfilled, and the magnetic field has a poloidal component,
the instability grows exponentially in time. The time-scale of the fastest grow-

ing unstable mode is
-1

| (10.34)

dlnw

T™™RI = 47

which is independent of the magnetic field configuration and strength. The
instability saturates when the magnetic field energy is of the order of the
rotational energy (Akiyama et al. 2003), i.e. at similar saturation value, BY,,
as for the 2-dynamo (see below).

As the MRI needs a back reaction of the magnetic field onto the dynamics,
we cannot study this effect in our simulations within the passive field approx-
imation. Nevertheless, in order to estimate how this effect could change our
results if it were taken into account, we have determined the regions where the
condition (10.33) if fulfilled. Inside these regions we calculate the timescale
of the fastest growing mode. In Fig. [10.29] we show the results for the D3MO0
models. During the collapse, there appear regions near the rotation axis where
the MRI is possible, but as the timescales are much larger (> 10 s) than the
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duration of the collapse itself, the instability cannot affect the dynamics nor
the magnetic field strength in that phase. After core bounce, the region be-
low the shock becomes unstable with mygr ~ 10 ms, and as it propagates
outward, the timescale of the MRI grows, reaching values of myr; ~ 1 s at
the end of the simulation. At the same time, regions inside the PNS become
unstable with myr; ~ 1 ms, affecting both the inner core of the PNS and the
surrounding material. At the end of the simulation for models A1B3G3-D3M0
and A1B3G5-D3MO, the region surrounding the PNS,; at about 100 km, re-
mains unstable with myrr ~ 10 ms. Therefore, a significant fraction of the
newly-formed PNS, as well as the region behind the shock at the moment of
its formation are going to be affected by the MRI. As a result, the magnetic
field is going to grow exponentially on dynamical timescales and will reach
saturation in those regions, becoming important for the dynamics. In these
regions the passive field approximation is not a valid approximation, and the
full magnetic field treatment is needed. We conclude that, although the MRI
does not affect the collapse dynamics (i.e. during the infall phase), the evo-
lution after core bounce will be dominated by this instability. Therefore, the
conclusions extracted in this chapter are likely to be modified once the effects
of the MRI are accounted for the dynamics. Such simulations will be presented
elsewhere.

On the other hand, in models T3MO the instability cannot appear since
the poloidal component of the magnetic field is not present. Therefore, the
results from these models in axisymmetry, despite the assumption of the pas-
sive field approximation, are completely valid. However, in a real collapse the
axisymmetry condition is not exactly satisfied, and the toroidal field can be
transformed easily into poloidal field via the a-Q2-dynamo. In this case the MRI
can act, and the results for the T3MO models could be subject to important
changes.

10.3.5 Long-term evolution of the magnetic field.

The long-term evolution of the newly formed proto-neutron star highly de-
pends on the final magnetic field configuration, and on the rotation profiles.
A detailed study of this issue is out of the scope of the work reported in this
thesis, but, nevertheless, we can still provide here some estimates. We note
that in Chapter [11] details about the long-term evolution of non-magnetized
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proto-neutron stars are given.

We can divide our simulations into three groups depending on the final
state. First, in models A1B3G3-D3MO0 and A1B3G5-D3MO, the PNS has a
compact inner core of nuclear matter with stable magnetic fields, surrounded
by a shell where the toroidal magnetic field is amplified via the 2-dynamo pro-
cess. The final quasi-stationary structure of these two models can be found in
Figs.10.301and [10.31. Second, in model A4B5G5-D3M0, nuclear matter den-
sity is not reached, and both the magnetic field and the density have a extended
structure. The 2-dynamo mechanism acts in some regions near the equatorial
plane, outside the star. Third, in models A1B3G3-T3M0 and A1B3G5-T3MO0,
no poloidal magnetic field is generated, and therefore the Q-dynamo does not
act. Hence, these two models will not be considered in the following analysis.

If no other processes other than the {:-dynamo were acting to amplify
the magnetic field strength, the poloidal component should become steady
for the quasi-stationary state of the star. This configuration of the magnetic
field would prevail as long as the passive field approximation were valid, but
it would break up when the toroidal component became too strong for the
approximation to be valid. During this steady phase one can assume fixed
angular profiles and poloidal magnetic field distribution, and from Eq. (10.7)
the toroidal field has to grow linearly with time,

B?(t) = B?(to) (1 41 ;Qt°> , (10.35)

where t( is the time at which the quasi-equilibrium configuration is reached,
and 7q is the typical timescale of the growth of the toroidal magnetic field via
the Q-dynamo mechanism. Therefore, Bag has to grow roughly as

Brang (£) 7 Bunng (f0) (1+ t‘t(’) . (10.36)

Q

We fit the values of Bnag obtained in our simulations after core bounce (see
Fig.[10.32) to calculate 7o in models A1B3G3-D3MO (t9 = 50 ms), A1B3G5-
D3MO (tg = 35 ms), and A4B5G5-D3MO (o = 40 ms). The resulting values
are given in Table [10.5. For models reaching nuclear matter density we also
calculate the rotational and magnetic energy contained in the region where
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Figure 10.30: Details of the inner region of the star at the end of the simulation,
t = 60 ms, for model A1B3G3-D3MO0. The upper left panel shows the logarithm of
density, log p, in g cm™2 (color coded), and the direction of the velocity field, v°,
(white arrows). The upper right panel shows the angular velocity, £ (color coded).
The lower left panel shows the logarithm of the poloidal component of the magnetic
field, log |B|polo, in G (color coded), and the magnetic field lines in the r-6 plane
(lines). Finally, the lower right panel shows , log B¥ /|Bpolo| (color coded). All axes
are in km.
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Figure 10.31: Same as Fig. [10.30 but for model A1B3G5-D3MO0 at the end of the
simulation, ¢ = 58 ms.

time = 580000 ms

log (ﬂzBgj /1B p0|0|)
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Figure 10.32: Evolution of fBrot (solid thin line), and Bmag (solid thick line) for
model A1B3G3-D3M0. Dashed lines represent an extrapolation of the computed
values assuming that a quasi equilibrium state has been reached at the end of the
simulation: Brot + Bmag is assumed to remain constant (dashed thin line) and fBmag
to grow as Eq. (10.36) (dashed thick line). We calculate the saturation time, tsst, as
the time at which Bmag reaches a value of a 10% of Brot (dotted line).

p > pruc- We define 7 and f1, . as the corresponding energy fractions with
respect to the total potential energy.

The Q-dynamo mechanism works by transforming rotational energy into
magnetic energy. As the toroidal magnetic field is amplified the energy in the
magnetic field grows, becoming at a certain time comparable to the rotational
energy (it is actually sufficient to reach about a 10% (Obergaulinger et al.
2005)). At this point, the effects of the magnetic field on the dynamics be-
come important and thus, the passive field approximation breaks down. While
the PNS rotates gradually slower, owing to SBrot — 0 (see Fig.[10.32), the mag-
netic field saturates, because the (2-dynamo can not extract more energy from
rotation. This effect can drive the PNS to a complete halting, and even to
exchange its sense of rotation (retrograde rotation). In the final state, the
exchange of rotational and magnetic energy can make the PNS behave as a
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Table 10.5: Fitted parameters for the long-term evolution of the star under the as-
sumption that the Q-dynamo mechanism is the only amplification process at work.
Values for supra-nuclear density regions (labeled with superscripts n) are also re-
ported for completeness. From left to right the columns report: timescales of the
Q-dynamo (7o and 7§ ), rotational energy parameters at the end of the simulation
(Brot and Bryy), saturation times of the amplification process (tsaty and t3,;), and value
of the magnetic field at saturation (B, and Bf}). * In model A1B3G5-D3MO the
fit for the inner region gives values for 75 between 17 ms and 137 ms, since the slope
of its evolution is very small. The resulting tg,; can be affected in a similar way.

Model TQ T Brot  Brot  tsat  teas DBeax Bt
x1072 %1073 x101%  x10'®
[ms]  [ms] [s] [s] [G] [G]

A1B3G3-D3M0 248 77 3.9 4.0 0.6 66" 1.15 0.001
A1B3G5-D3MO 173 53 2.2 1.0 22 26 03 0.29
A4B5G5-D3M0O 126 - 7.0 - 3.6 - 2.5 -

torsion pendulum. We calculate the time of saturation, ts,;, and the magnetic
field at this time, B&;, by imposing Bmag(tsat) = 0.1 Brot, in Eq. (10.36). The
results are given in Table [10.5] In addition, we calculate the corresponding
values, 7 and tj,, for the nuclear matter region.

In order to rescale all these quantities for other values of the initial magnetic
field, i.e. for other Bj, we need the following expressions:

. . B*
B =B, (ﬁ) , (10.37)
B: \°
Bmag = Bmag 10 (W) , (10.38)
TQ = TQ 10, (10.39)

10
10 G) , (10.40)

tsat A tsat 10 (
*
BO
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where quantities with subindex “10” are the corresponding quantities for By =
10'°G. Note that the typical growth time of the -dynamo mechanism, 7q, is
independent of the strength of the magnetic field provided this is low enough
to fulfill the passive field condition. Expression (10.40) is an approximation
only valid if tg,¢ > 70.

The results of this section rely heavily on the condition (unlikely) that the
Q-dynamo is the only amplification process at work on the system. Unfor-
tunately, other processes can amplify the field in shorter timescales, and this
condition is probably not fulfilled at all if the passive field approximation is
relaxed. As discussed in the previous section, the MRI is probably going to
amplify the magnetic field in a few ms, to values of the order of 1014-101% G,
acting on the overall dynamics by transporting angular momentum outwards.
Additional processes not considered here can affect both the dynamics and the
magnetic field structure as well: the a-{2-dynamo mechanism is going to trans-
form toroidal magnetic field into poloidal one, the diffusion of the magnetic
field also needs to be considered in the long term evolution, and the cooling
of the PNS as it transforms into a cold and compact NS (see Chapter [11).
Therefore, the timescales reported in this section cannot be taken as realistic
values of the amplification of the magnetic field of the PNS, but as an estima-
tion of the amplification via the 2-dynamo only. The comparison with other
amplification mechanisms shows that it is slower, which stresses the necessity
of relaxing the passive field condition to be able to account for other processes
such as MRI.
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Chapter 11

Evolutionary sequences of
rotating proto-neutron
stars

Protoneutron stars are born following core collapse supernovae. Initially hot
and rich in leptons, they become neutrino—free, cold, and more compact stan-
dard neutron stars in less than one minute. In this Chapter we study the evo-
lution of rigidly and differentially rotating protoneutron stars by calculating
evolutionary sequences of stationary axisymmetric configurations in general
relativity. The knowledge of the evolution of these configurations, obtained
by solving Einstein’s equations coupled to a finite temperature, relativistic
equation of state, allows us to discuss the possible appearance of dynamical
instabilities, which are possible sources of gravitational waves, and that are
discussed later in Chapter The material discussed in this Chapter has
been published in Villain et al. (2004).
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11.1 Introduction

During the first minute of their life, non-rotating protoneutron stars (PNS),
remnants of successful core collapse supernovae, evolve from initial hot, lep-
ton rich objects to cold (T < 10'° K) catalyzed neutron stars. This process,
studied in detail in the last two decades (Burrows & Lattimer 1986; Keil &
Janka 1995; Pons 1999), can be summarized in three main stages: i) mantle
contraction with fast cooling of the outer regions in about 0.5 s, and proba-
bly significant accretion; ii) deleptonization and consequently heating of the
internal core as energetic neutrinos diffuse out leaving most of their chemical
energy on the way out; and iii) cooling by means of diffusion of (mostly) ther-
mal neutrinos, resulting in a decrease of temperature from about 40-50 MeV
to below 2-4 MeV, point at which the star becomes transparent to neutrinos.

Little is known about the early evolution of rapidly rotating PNSs, since
a fully consistent study requires solving the neutrino transport equations in
at least 2-dimensions, coupled to general relativistic hydrodynamics that de-
scribes the fluid motion in rotating relativistic stars. Moreover, the micro-
physics would also have to be treated carefully: internal consistency between
the equation of state (EOS) and the neutrino opacities describing the interac-
tion between neutrinos and matter is needed to achieve reliable results (Pons
1999).

A few attempts to treat this problem in simplified ways exist (e.g. Goussard
et al. 1997, 1998; Strobel et al.[1999) based on the study of temporal sequences
of quasi-equilibrium models that mimic the temporal evolution. The quasi—
static approximation is well justified, since the hydrodynamical timescale (10>
s) is much smaller than the timescale in which substantial thermodynamical
changes occur (diffusion timescale = 1 s). In all previous studies, constant tem-
perature, entropy and/or neutrino fraction profiles were used. Hence, without
doing a complete study, the previous works can be improved in several aspects.
First, instead of isentropic or isothermal models, we use realistic profiles, which
come from 1D diffusion simulations, rescaling temperature and chemical pro-
files as functions of density; second, we do not restrict ourselves to the rigid
rotation case, including differential rotation in the analysis; last but not least,
we checked whether fixing the baryonic mass and the angular momentum along
the evolution results in some reasonable time dependence of the integrated rel-
evant physical quantities such as the gravitational mass, which has to agree
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with the loss of energy due to neutrino luminosity. A more detailed description
of the results presented here can be found in Villain et al. (2004).

11.2 Numerical solution of Einstein’s equations
for stationary axisymmetric spacetimes

In the quasi—stationary approximation the evolution consists of a collection
of stationary and asymptotically flat snapshots, each one being a solution of
Einstein’s equations, but with a different stress-energy tensor. More explicitly,
the fluid is described by non-trivial thermodynamical profiles rescaled from
1-D simulations (Pons 1999), while the spacetime is solved employing a fully
relativistic spectral code (Bonazzola et al.[1993). This code uses the same
formalism as the code used in Section [9.1 to calculate initial models for the
core collapse and for neutron stars, but has some improvements such as a
compactification of the grid outside the star or the use of spectral methods to
increase the spatial accuracy. We describe next some of the features of this
code.

The 3 + 1 formulation of general relativity is used, in MSQI coordinates,
with the assumption that matter is free of convective motions. This hypothesis
implies the circularity of the stationary axisymmetric spacetime (Carter 1979)
which greatly simplifies the calculations. Under these approximations, the
metric is written (cf. Eq. (9.2))

ds? = —(a® — B, B%)dt* — 28, dtdp
4
+ % (dr® + r?d6* + B*r? sin?0dy?) , (11.1)

where the functions A and B depend only on r and 6.

The version of the code that we use is based on the C++ library LORENE!,
a software package for numerical relativity freely available under GNU license.
This code solves the system of elliptic partial differential equations for the met-
ric, plus the algebraic equation resulting from the conservation of the energy-
momentum tensor. Indeed, the conditions for the existence of stationary so-
lutions of Einstein’s equations in the presence of a rotating perfect fluid make

! http://www.lorene.obspm.fr
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the relativistic Euler equations, derived from the conservation of the energy-
momentum tensor projected into a space-like three-surface, to be reduced in
the case of stationary rotating motion to

1 OP 0 [ln(;;/)] o0

; - =-F— 11.2
e+ P Ozt + Ozt Oz’ ( )

where e = p(1 + €) is the total energy density as measured in the comoving
frame, @ = u®/u’ the angular velocity, and F = u,, u’.

In general, Eq. (11.2) does not admit a first integral for arbitrary thermody-
namics or rotation profiles Q(r, ), but it does in some simple cases. Concerning
rotation, the right hand side of Eq. is an exact derivative if either Q is
constant in space (rigid rotation), or the function F' can be locally written as
F = F(Q). The latter leads to a relation between 2 and the coefficients of the
metric, which allows the determination of the profile of angular velocity. For

differential rotation, we adopt the law proposed by Komatsu et al. (1989b)
F(Q) = A%2(Q. — Q), (11.3)

where . is the limit of Q on the rotation axis and A is a parameter with
the dimension of length. In the next section we verify that, despite its sim-
plicity, this law gives reasonable rotation profiles qualitatively similar to those
obtained from core collapse simulations.

Concerning the EQS, it can be shown that isentropic or isothermal pro-
files are sufficient conditions for Eq. to be integrable. Yet another less
restrictive possibility exists: assuming that the total energy density e can be
written as an effective function of the pressure e = e(P). Indeed, in this
case, even if the actual EOS is not barotropic, assuming that the EOS is a
one—parameter function ensures the existence of the first integral

/6(1;;1% + In (%) + /F(Q) dQ) = const., (11.4)

with suitable boundary conditions. Hence, at each evolutionary time, we use
the results from 1D diffusion calculations to obtain the temperature and com-
position profiles as functions of the baryon density np only. In this way, the
EOS is effectively barotropic.
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11.3 Choice of the initial models

One of the first issues that must be addressed to study the early evolution of
neutron stars is the initial model. In Pons (1999) it was shown that for spher-
ical models the overall evolution is not very sensitive to modifications of the
initial thermodynamical profiles, while the total mass of the star is the param-
eter that affects mostly the subsequent evolution. It seems therefore natural
to choose a canonical star with a baryon mass of 1.6 Mg, that corresponds
to a gravitational mass of the old, cold configuration of about 1.44 M. For
completeness, we have also studied a model with a baryonic mass of 1.2 Mg,
Notice that one cannot use the effective barotropes obtained for a PNSs with
a given mass in the calculations of sequences with a different mass, because
the thermodynamic properties are different.

More difficult is to guess the particular rotation properties of a newly born
neutron star. Newly born neutron stars are expected to rotate differentially, as
opposed to old neutron stars where various viscous mechanisms had sufficient
time to turn it into a rigid rotator. Even in the case that the iron core of the
supernova, progenitor was rigidly rotating (a quite reasonable assumption, since
it is an old massive star), the process of collapse would generate a significant
amount of differential rotation. Indeed, recent calculations of stellar evolution
indicate that the iron core of a massive star is rotating almost rigidly (Heger
et al. 2000, 2004), and this approximation is used in most recent simulations
of rotational core collapse (Miiller et al. 2004). Based on these works, we
have decided to study a few models from Dimmelmeier et al. (2002b) (DFM
hereafter), and to run some more simulations of similar models of stellar core
collapse varying the total initial angular momentum. Our models correspond
to those labeled by Al in DFM, i.e., the iron core of the progenitor is almost
rigidly rotating. In Figure [11.1, we show profiles of the angular velocity (left
panel) and density (right panel) of the inner 150 km, as a function of the
equatorial radius, immediately after the PNS is formed. The different lines
correspond to models with a different amount of initial angular momentum,
the ratio of rotational and gravitational potential energy (|T/W]) being of
0.9% (models B3 in DFM), 0.5% (B2), 0.25% (B1) and 0.05%, respectively.
We include the last lower value because it is more realistic (Heger et al. 2004;
Miiller et al.2004) than those studied in DFM. In the figure we also show, with
dotted curves, simple fits to the rotation law Eq. (9.3), which corresponds to
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the Newtonian limit of Q consistent with Eq. (11.3). From this limiting case
we infer that A is the value of the radius at which, in the equatorial plane
(¥ = 7/2), the angular velocity is half its limiting central value, Q.. Although
this fact is only strictly valid in the Newtonian case, it approximately holds for
relativistic stars, too. For all four models we set A2 = 50 km?2, with Q. equal
4500, 3500, 2600, and 1300 rad/s, from top to bottom. The agreement between
the simple law and the results from simulations is quite acceptable. In all
the models the spatial scale of variation of the angular velocity (A) is the same,
because the density profiles are very similar (see Figure [11.1, right panel).
Varying the EOS might lead to a different density distribution: One should
expect a smaller A for softer EOSs (more compact PNS), and a larger A for
stiffer EOSs. We note again that our assumption of stationary axisymmetric
configurations implies that the function F' on the r.h.s. of the equation of
stationary motion (11.2) is only a function of the angular velocity. In the
Newtonian case, this is equivalent to say that the angular velocity depends
only on the distance to the axis (rsin@). In the relativistic case, there are
small corrections but the overall distribution of the angular velocity is nearly
cylindrical, as can be seen in Fig. [11.2.

In reality, immediately after core collapse and bounce, there is no reason
to expect that the distribution of angular velocity corresponds to that of sta-
tionary equilibrium, and it may take several rotation periods for the star to
relax to some stationary solution. A more detailed analysis of all these issues
requires a parametric study of rotating core collapse simulations. However,
for the purpose of this chapter, which is to understand which range of pa-
rameters one should expect when using Eq. (11.3), the conclusion is that a
reasonable realistic model with differential rotation should be consistent with
A being of the order of 10 km. Considering that there might be a number of
processes that could lead to rigid rotation on a dynamical timescale, such as
shear or magneto-rotational instabilities, we study both cases, with substan-
tial differential rotation and with rigid rotation. Notice that previous works
(Goussard et al. 1997, 1998) on differentially rotating PNSs have focused on
the parameter space region corresponding to A & 1 km, which seems to be too
low according to our results.
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Figure 11.1: Equatorial profiles of angular velocity (left panel), and density (right
panel) of PNSs from axisymmetric simulations of stellar core collapse (DFM). The
four models correspond to a different amount of angular momentum of the iron core,
namely, |T/W/| = 0.9% (solid), 0.5% (dashed), 0.25% (dashed-dotted), and 0.05%
(dashed-3 dotted). The dotted lines in the left panel are fits to the simple law (9.3)
with A? = 50 km?.

11.4 Time evolution of rotating PNS

In our analysis, different thermodynamical profiles corresponding to different
epochs of the early evolution of PNSs are used. We also cover situations from
rigid rotation to quite strong but realistic differential rotation in agreement
with core collapse simulations, i.e., A is in the range from 10 km (significant
differential rotation) to 50 km (almost rigid rotation).

A first and already known effect of differential rotation (Baumgarte et al.
2000; Yoshida et al. 2002) that we have verified is the fact that for a given EOS,
differential rotation enables a star to contain more angular momentum and to
reach higher values of the ratio of rotational and gravitational potential energy
B = |T/W|. Thus, we find that the central angular velocity can be up to a
factor of 5 to 10 larger in the case of differential rotation, but the maximum
angular momentum is only about fifty percent larger than for rigid rotation.
More important is the variation of the maximum of |T'/W|. While for rigidly
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Figure 11.2: Surfaces of constant angular velocity (projected in a transversal plane)
of a differentially rotating star with A = 100 km, for t =1 s, and rotating with
Q = 354 rad/s. (2/Qx = 0.995). The surface is marked by the thick solid line.
Because of relativistic effects, the stationary solution does not show exact cylindrical
symmetry.

rotating stars 8 ~ 0.1, in PNSs with a large degree of differential rotation it
can be as high as 0.2. The latter value, however, does not exceed the dynamical
instability threshold (= 0.27), but it is sufficiently large to allow the growth of
either the secular, gravitational wave driven, instability (CFS, Chandrasekhar
(1970); Friedman & Schutz (1978)) that happens between 0.07 — 0.14, the
lower value being for more compact stars (Stergioulas & Friedman 1998), or
the recently proposed low |T/W| dynamical instabilities (see Shibata et al.
2002, and Chapter [12).

Since the initial angular momentum of a PNS is not well-known, the occur-
rence of these instabilities is still questionable. Indeed, recent stellar evolution
calculations suggest that the specific angular momentum of the inner 1.7 Mg
of a 15 Mg, star can be as high as 3 x 10'% cm?/s if magnetic braking is ne-
glected, or 10'% cm? /s if magnetic torques are included in the evolution (Heger
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et al.|2004). This corresponds to J/M in the range J/M = (0.2 — 6) GMg/c.

To illustrate the influence of the rotation profile on the fate of an evolving
newly born PNS, we shall now look at the time evolution of a star with given
angular momentum (J = 1.5 GM2 /c), and fixed baryonic mass 1.6Mg. This
value of the angular momentum is considerably smaller than the maximum
value predicted by stellar evolution calculations, but as can be seen in the left
panel of Fig. a rigidly rotating PNS with such an angular momentum
would contract and spin up to the point where its angular velocity reaches the
mass shedding limit Qg , where the star starts to eject matter at the equator.
Notice that, in this case, |T/W| stays always below the threshold values for
secular instability (above 0.1, because the star is still not very relativistic) and
far below the limit of dynamical instability (~ 0.27). Instabilities could arise
if neutrino transport cannot redistribute and remove a substantial fraction
of the initial angular momentum. Whether this can happen is unclear and
needs multidimensional transport simulations for clarification. In general, it is
assumed that the angular momentum is approximately constant during this era
of a PNS’s life, and that it only varies on timescales longer than the diffusion
timescale. If this were the case, PNSs born with a large angular momentum
could not loose it via neutrino diffusion with the same efficiency as the binding
energy, and this may result in a significant mass loss after reaching the mass
shedding limit even for PNSs that are not born maximally rotating (as in the
chosen case).

To see the influence of the rotation profile, we consider the same model
(same total baryonic mass and initial angular momentum) but for differentially
rotating PNSs with A = 10 or 20 km. The right panel of Fig.[11.3 shows the
temporal evolution of the central angular velocity (top) and of |T'/W| (bottom).
As in the case of rigid rotation, |T'/W| increases as the star contracts and loses
its binding energy in a neutrino diffusion timescale of about 10 s. Yet, the mass
shedding limit is not reached while higher values of |T'/W| are. Thus, if there
are no significant losses of angular momentum, the various types of dynamical
instabilities associated to critical values of the rotation parameter may again
not be encountered at the very beginning, but several seconds after formation.
Moreover, only at this moment the star is compact enough to apply relativistic
criteria (lower thresholds for instability), which makes the star more unstable.

Hence, we expect that if the angular momentum at the birth of a PNS
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Figure 11.3: Left panel: Time evolution of the angular velocity /Qx and the ro-
tation parameter |T'/W| for rigidly rotating PNSs. Right panel: Time evolution of
the central angular velocity €. and the rotation parameter |T/W| for differentially
rotating PNSs with A = 10 km (solid line) and 20 km (dashed line). In both cases
the total angular momentum is 1.5 GM3 /c and the baryonic mass Mg = 1.6 M.

happens to be such that J/M > 2, centrifugal forces would stop the collapse
before the PNS is formed, while intermediate values (J/M = 1) may result in
the formation of a rapidly rotating PNS that becomes unstable several seconds
after birth. An observational evidence of this scenario would be the detection,
with a delay of a few seconds, of a neutrino burst and a gravitational wave
burst, in the event of a galactic supernova. Ultimately, if magnetic braking is
very efficient during the evolution of a massive star, J/M < 0.5, the PNS will
be formed after collapse without reaching extreme values of |T/W/|.

Finally, let us mention that as a consistency check of our assumptions and
simplifications, we made a simple estimate of the neutrino luminosity consid-
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ering that the variation in the gravitational mass of the PNS is equal to the
neutrino luminosity. We found that within our approach, both the order of
magnitude and the exponential decay of the luminosity during 10 seconds are
consistent with the results of detailed simulations with neutrino transport in
spherical symmetry (Pons 1999). Therefore, imposing conservation of angular
momentum and baryonic mass, and building a sequence with fixed A is not vi-
olating conservation of energy, and therefore provides a reasonable qualitative
approach to the real case.



198 CHAPTER 11. EVOLUTIONARY SEQUENCES OF PNS



Chapter 12

Bar mode instabilities

It has been recently argued through numerical work that rotating stars with
a high degree of differential rotation are dynamically unstable against bar-
mode deformation, even for values of the ratio of rotational kinetic energy
to gravitational potential energy as low as (J(0.01). This may have implica-
tions for gravitational wave astronomy in high-frequency sources such as core
collapse supernovae. In this Chapter we present high-resolution simulations,
performed with an adaptive mesh refinement hydrodynamics code, of such low
T/|W| bar-mode instability. The complex morphological features involved in
the nonlinear dynamics of the instability are revealed in our simulations, which
show that the excitation of Kelvin-Helmholtz-like fluid modes outside the coro-
tation radius of the star leads to the saturation of the bar-mode deformation.
While the overall trends reported in an earlier investigation are confirmed by
our work, we also find that numerical resolution plays an important role during
the long-term, nonlinear behaviour of the instability, which has implications
on the dynamics of rotating stars and on the attainable amplitudes of the as-
sociated gravitational wave signals. The work presented in this chapter has
been submitted for publication (Cerda-Durdn et al. 2006).
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12.1 Introduction

Neutron stars following a core collapse supernova are rotating at birth and can
be subject to various nonaxisymmetric instabilities (see e.g. Stergioulas 2003,
for a review). Among those, if the rotation rate is high enough so that the ratio
of rotational kinetic energy T to gravitational potential energy W, g = T'/|W|,
exceeds the critical value 84 ~ 0.27, inferred from studies with incompressible
Maclaurin spheroids, the star is subject to a dynamical bar-mode (I = m = 2
f-mode) instability driven by hydrodynamics and gravity. Its study is highly
motivated nowadays as such an instability bears important implications in
the prospects of detection of gravitational radiation from newly-born rapidly
rotating neutron stars.

Simulations of the dynamical bar-mode instability are available in the liter-
ature, both using simplified models based on equilibrium stellar configurations
perturbed with suitable eigenfunctions (Tohline et al. 1985; Houser et al. 1994;
New et al. 2000; Shibata et al. 2000), and more involved models for the core
collapse scenario (Rampp et al. 1998a; Shibata & Sekiguchi 2005; [Saijo 2005;
Ott et al. 2005), and in either case both in Newtonian gravity and general rel-
ativity. Due to its superior simplicity the former approach has received much
more attention, notwithstanding that the conclusions drawn from perturbed
stellar models may not be straightforwardly extended to the collapse scenario.

Newtonian simulations of triaxial instabilities following core collapse were
first performed by Rampp et al. (1998a). These showed that the bar-mode
instability sets in when > 0.27 and when the progenitor rotates rapidly and
highly differentially. Such conditions are met when the (artificial) depletion
of internal energy to trigger the collapse is large enough to produce a very
compact core for which a significant spun-up can be achieved. More recently,
three-dimensional simulations of the core collapse of rotating polytropes in
general relativity have been performed by Shibata & Sekiguchi (2005). These
authors studied the evolution of the bar-mode instability starting with axisym-
metric core collapse initial models which reached values of 5 ~ 0.27 during the
infall phase. These simulations showed that the maximum value of § achieved
during collapse and bounce depends strongly on the velocity profile, the total
mass of the initial core, and on the equation of state. In agreement with the
findings from the Newtonian simulations of Rampp et al. (1998a), the bar-
mode instability sets in if the progenitor rotates rapidly (0.01 < 8 < 0.02) and
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has a high degree of differential rotation. In addition, the artificial depletion
of pressure and internal energy to trigger the collapse, leading to a compact
core which subsequently spins up, also plays a key role in general relativity for
a noticeable growth of the bar-mode instability.

Whether the requirements inferred from numerical simulations are at all
met by the collapse progenitors remains unclear. As shown by Spruit & Phin-
ney (1998) magnetic torques can spin down the core of the progenitor, which
leads to slowly rotating neutron stars at birth (~ 10— 15ms). The most recent,
state-of-the-art computations of the evolution of massive stars, which include
angular momentum redistribution by magnetic torques and spin estimates of
neutron stars at birth (Heger et al. 2005; |Ott et al. 2006), lead to core col-
lapse progenitors which do not seem to rotate fast enough to guarantee the
unambiguous growth of the canonical bar-mode instability. Rapidly-rotating
cores might be produced by an appropriate mixture of high progenitor mass
(M > 25Mg) and low metallicity (N. Stergioulas, private communication;
Woosley & Janka 2005). In such case the progenitor could by-pass the Red
Supergiant phase in which the differential rotation of the core produces a mag-
netic field by dynamo action which couples the core to the outer layers of the
star, transporting angular momentum outwards and spinning down the core.
According to Woosley & Heger (2006) about 1% of all stars with M > 10Mg
will produce rapidly-rotating cores.

On the other hand, Newtonian simulations of the bar-mode instability from
perturbed equilibrium models of rotating stars have shown that 8q ~ 0.27
independent of the stiffness of the equation of state provided the star is not
strongly differentially rotating. The relativistic simulations of Shibata et al.
(2000) yielded a value of 8 ~ 0.24 — 0.25 for the onset of the instability, while
the dynamics of the process closely resembles that found in Newtonian theory,
i.e. unstable models with large enough 3 develop spiral arms following the
formation of bars, ejecting mass and redistributing the angular momentum.
As the degree of differential rotation becomes higher Newtonian simulations
have also shown that 84 can be as low as 0.14 (Centrella et al. 2001). More
recently Shibata et al. (2002, 2003) have reported that rotating stars with an
extreme degree of differential rotation are dynamically unstable against bar-
mode deformation even for values of  of 0(0.01).

Given its recent discovery and its potential astrophysical implications for
post-bounce core collapse dynamics and gravitational wave astronomy, we
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present in this chapter high resolution simulations of such low T'/|W| bar-mode
instabilities. This work is further motivated in the light of the few numerical
simulations available in the literature. Our main goal is to revisit the simula-
tions by Shibata et al. (2002) on the low T'/|W| bar-mode instability, and par-
ticularly to check how sensitive the onset and development of the instability is
to numerical issues such as grid resolution. To this aim we perform Newtonian
hydrodynamical simulations of a subset of models analyzed by Shibata et al.
(2002) using an adaptive mesh refinement (AMR) code (Quilis 2004) which
allows us to perform such three dimensional simulations with the highest res-
olution ever used. Our simulations reveal the complex morphological features
involved in the nonlinear dynamics of the instability, where the excitation of
Kelvin-Helmholtz-like fluid modes influences the saturation of the bar-mode
deformation. We advance that while the overall trends found by Shibata et al.
(2002) are confirmed by our work, the resolution employed in the simulations
does play a key role for the long-term behaviour of the instability and for the
nonlinear dynamics of rotating stars, which has implications on the attainable
amplitudes of the associated gravitational wave signals. We note that we plan
to upgrade the existing AMR code to account for the effects of magnetic fields
in order to attempt the current study in a more realistic setup. The present
work is a step towards that goal.

As the framework of this chapter differs from the rest of the thesis, because
Newtonian gravity is used, we briefly describe the theoretical formalism and
the numerical schemes used, before presenting the results of the performed
simulations.

12.2 Mathematical framework

The evolution of a self-gravitating ideal fluid in the Newtonian limit is de-
scribed by the hydrodynamics equations and Poisson’s equation:

ap

5% +V-(pv) =0 (12.1)

ov 1
5 +(v-V)v= —;Vp - Vo (12.2)
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OE
5 TV (E+pV]=—pvVe (12.3)
V2¢ = 4rGp (12.4)
where x, v = ‘é—’; = (vg,vy,v;), and ¢(t,x) are, respectively, the Eulerian

coordinates, the velocity, and the Newtonian gravitational potential. The total
energy density, £ = pe + % pv? | is defined as the sum of the thermal energy,
pe, where p is the mass density and e is the specific internal energy, and the
kinetic energy (where v* = v} + v} 4 v?). Pressure gradients and gravitational
forces are the responsible for the evolution. An equation of state p = p(p,€)
closes the system. We use an ideal gas equation of state p = (I' — 1)pe with
I'=2.
The hydrodynamics equations, Eqgs. (12.1-12.3), can be rewritten in flux-
conservative form:
Ou 4 Of(u) 4 Og(u) n Oh(u)
ot ox oy 0z

where u is the vector of unknowns (conserved variables):

= s(u) (12.5)

u = [p, pug, puy, pvz, E] . (12.6)

The three fluz functions F* = {f, g, h} in the spatial directions z, y, z, respec-
tively, are defined by

f(u) = [pvza pv?} + D, pUzVy, PUL VU, (E + p)vz] (12'7)
g(ll) = [pvyapvzvyapvz +p7 pUyUZ> (E +p)vy] (128)
h(w) = [pvs, pusvs, po,0s, 002 +p, (B + p)u] (12.9)
and the source terms s are given by
_ 9 99  0¢
S(ll) - 05 p%a Pa—y: P&a
o¢ o9 o¢
— e — PUy—=— — PUz—=— | - 12.1
Progy P, TPV, (12.10)

System (12.5) is a three-dimensional hyperbolic system of conservation laws
with sources s(u).
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Table 12.1:  Overview of the initial models and results of the simulations. The
rows report the name of the model, the ratio of equatorial-to-polar radii (re/rp), the
degree of differential rotation (A), the ratio of kinetic to potential energy (T'/|W|),
the size of the computational grid (L) and the location of the corotation radius (r.)
for the two resolutions used: high (AMR H) and low (AMR L). In models R1H and
R2H the corotation radius lies outside the star. The real (frequency) and imaginary
(growth rate) parts of the bar-mode o2 are shown, for the low and high resolution
simulation in comparison with the numerical results and linear analysis by Shibata
et al. (2002). Note that for model D3 no linear analysis results are available.

Model D1 D2 D3 R1 R2
Te/Tp 0.805 0.605 0.305 0.305  0.255
A 0.3 0.3 0.3 1.0 1.0
T/|W| 0.039 0.085 0.149 0253  0.275
L/r, 4.06 3.73 3.21 4.25 4.03
Te/Te AMR L 0.38 0.47 0.58

AMR H 0.36 0.48 0.56 - -
Re(Uz)/Qo AMR L 0.76 0.58 0.41

AMR H 0.81 0.55 0.43 - 0.82

Shibata 0.80 0.60 0.45 0.92 0.75

linear 0.80 0.58 - 0.92 0.75
Im(os)/Q AMR L 0.0042 0.0154  0.0200

AMR H 0.0089 0.0190  0.0240 0.0005 0.1960

Shibata  0.009-0.013 0.019-0.021 0.013 <0.002 0.23
linear 0.015 0.021 - <0.002  0.20
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12.3 Numerical approach

For our study of the low T'/|W| bar-mode instability we perform high-resolution
simulations of rotating neutron stars using a Newtonian AMR hydrodynamics
code called MASCLET (Quilis 2004). The implementation of the AMR technique
in the code follows the procedure developed by Berger & Colella (1989). The
hydrodynamics equations are solved using a high-resolution shock-capturing
scheme based upon Roe’s Riemann solver and second-order cell reconstruction
procedures, while Poisson’s equation for the gravitational field is solved us-
ing multigrid techniques. The accuracy and performance of the MASCLET code
has been assessed in a number of tests (Quilis 2004). We note that the code
was originally designed for cosmological applications, and here it is applied to
simulations of self-gravitating stellar objects for the first time.

The simulations are performed with two different grid resolutions. The low
resolution grid consists of a box of size L with 128% zones, yielding a fixed
resolution of L/128. We note that the effective resolution of our coarse grid is
comparable to that used by Shibata et al. (2002). Correspondingly, the high
resolution grid consists of a base coarse grid of 1282 cells, and one level of
refinement composed of patches with maximum size of 643 cells (322 coarse
cells). This yields a grid resolution on the finest grid of L/256. This resolution
is enough to resolve the structures simulated, and hence no deeper refinement
levels are needed. The patches are dynamically allocated covering those re-
gions of the star where the highest resolution is required (highest densities).
Typically only one patch is needed for spheroidal models, and 4-8 in models
with toroidal topology. The use of AMR techniques in our high resolution
simulations, allows us to save about a factor 4 in CPU time and memory with
respect to a unigrid simulation with 2563 cells. No symmetries are imposed
in the simulations. To the best of our knowledge, in the investigations of the
bar-mode instability performed by previous groups, grid resolutions as high as
the ones we use here were never employed.

As customary in grid-based codes the vacuum surrounding the star is filled
with a tenuous numerical atmosphere with density p/pmax ~ 107!2 and zero
velocities, pmax being the maximun density. Every grid cell with p/pmax <
107% is reset to the atmosphere values. A correct treatment of the atmosphere
is essential for an accurate description of the stellar dynamics and correct
computation of the growth rates of unstable modes. We have checked that
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values for the atmosphere higher than those we chose or a free evolution of
the atmosphere altogether, lead to remarkable changes in the mode behaviour,
growth rates, and frequencies.

12.4 Results

12.4.1 Initial data

Differentially rotating stellar models in equilibrium are built according to the
method of Eriguchi & Miiller (1984), and used as initial data for the AMR
evolution code. The stars obey a polytropic equation of state P = Kp' with
index T' = 2. As Shibata et al. (2002) the profile of the angular velocity (2 is
given by

0 A2

Q= e —
(@/re)? + A?

(12.11)

where 7, is the equatorial radius of the star, () is the central angular velocity,
w is the distance to the rotation axis, and A parametrizes the degree of differ-
ential rotation, from A< 1 for highly differentially rotating stars to A — oo
for rigidly rotating stars. For comparison purposes these parameters are cho-
sen as in some of the models of Shibata et al. (2002), and are summarized in
Table[12.1. Models labelled D rotate with a high degree of differential rotation,
as A = 0.3, and may therefore be subject to the low T'/|W| bar-mode insta-
bility. We also consider models almost rigidly rotating, labelled R, prone to
experience the “classical” bar-mode instability. Labels L and H in the models
refer to low and high resolution respectively.

Following Shibata et al. (2002) we perturb the initial density profile p(®)
according to

2 .9
p=p® (1+5m T2y ) (12.12)

e

the perturbation of the pressure given by the equation of state accordingly.
A perturbation amplitude § = 0.1 is used in all our simulations. As we show
below this form of the perturbation excites the I = m = 2 bar-mode. In
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addition, grid discretization can leak small amounts of energy to all other
possible modes, which could in principle grow provided they were unstable
and the simulations were carried on for sufficiently long times.

12.4.2 Stability analysis

To compare with Shibata et al. (2002) we calculate the distortion parameters
n+ and 0y (and n = (92 +n%)'/?) defined as

Lo — Iy 21,
S L T =_ "o 12.13
=TT, =TI (12.13)

where I;;(i,j = z,y, z) is the mass-quadrupole moment
L = /dx3p;t:".7:j. (12.14)

For the study of the growth rate and interaction of the different angular
modes within the star is useful to calculate the global quantity

Ay, = /dx3p(x) e~ime, (12.15)

and A, = A,,/A¢. We follow the time evolution of modes with m ranging
from 1 to 8. Since our initial equilibrium models are axisymmetric and have
equatorial plane symmetry, all A,, are zero initially, but once perturbed all
initial models exhibit a dominant m = 2 component. Assuming that the modes
behave as e~ {omt=m¢) the real part of o, can be obtained by Fourier trans-
forming A,,. In particular Re(o2), the bar-mode frequency, can be extracted
from either A, or 5 as both represent the same mode. This is the dominant
mode in all our simulations and its frequency and growth rate are given in
Table 12.1. The latter corresponds to the imaginary part of o2, which is cal-
culated fitting an exponential to the peak values of 1 in the growing phase of
the evolution until the modes saturate. Other modes are also identified in the
simulations for values of A,, with lower amplitudes. We have checked that
these modes are harmonics of the [ = m = 2 mode so that they follow to good
accuracy the relation o, = mop, o, being the pattern frequency, calculated
as op = 02/2. This is shown for model D3H in Fig. 12.1 which displays the
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Figure 12.1: Power spectra of A,, from m = 1 to m = 8 for model D3H.

The vertical

spectrum of A,, from m = 1 to m = 8 (in arbitrary units).

dashed lines in this figure indicate the location of the integer multiples of the

pattern frequency o, their values indicated on the axis at the top of the figure.
Each spectrum for each mode is normalized to its own maximum for plotting
purposes. Note that the lower the mode amplitude the noisier the spectrum

and the less accurate the relation oy,

mop.

For the models of our sample subject to the “clasical” bar-mode deforma-
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tion (R1H and R2H), our simulations yield a value of 3 between 0.253 and
0.275, in good agreement with the critical value for the onset of the dynamical
bar-mode instability. Model R1H is stable and model R2H is unstable. The
growth rates and frequencies reported in Table 12.1 agree with those of Shi-
bata et al. (2002). Note that for model R1H, which is stable, the frequency for
the m = 2 mode cannot be computed. The time evolution of 7 for these two
models is displayed in Fig. For the unstable model R2H, our simulations
show the formation of a bar (See Fig. [12.3) which saturates for values of 7,
and 7y close to 1, i. e. in the full nonlinear regime.

Fig.[12.4 shows the time evolution of n for models D in our sample, prone
to suffer the low T'/|W| bar-mode instability. Solid lines correspond to high
resolution simulations and dashed lines to low resolution. For all three models
the pattern frequencies o, are such that there exists a corotation radius inside
the star, i.e. a radius at which the bar-mode rotates with the same angular
velocity as the fluid. The location of the corotation radius for all models of
our sample is reported in Table [12.1l As recently discussed by Watts et al.
(2005) the existence of such corotation radius is a potential requirement for
the ocurrence of the instability. As becomes clear from Fig. [12.4, all models
are unstable but grid resolution has an important effect on the saturation of
the instability once the nonlinear phase has been reached, as well as in the
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long-term dynamics of the stars.

In the linear phase of models D1H and D2H, the growth rates and fre-
quencies agree with the results of Shibata et al. (2002) in both, the numerical
simulations and the linear analysis (see Table [12.1). In the linear phase of
model D3H, our frequencies are similar to the numerical results of Shibata
et al. (2002), although our growth rates are about a factor two larger. We
emphasize that no results are reported in the linear analysis for this model in
the work of [Shibata et al. (2002), and therefore this discrepancy can be an
effect of the resolution used or of the characteristics of each numerical code.
Increasing resolution leads to similar results in the frequencies but to higher
growth rates.

In the nonlinear phase, models D1 and D3 behave similarly for the two
resolutions used (see Fig. [12.4), and also similarly to the results by Shibata
et al. (2002) (compare with Fig. 3 of that paper). For model D2 we observe
a radical change of behavior in the nonlinear phase of the mode evolution
depending on the grid resolution. This has implications on the long-term
dynamics of the star and, in particular, on the attainable amplitudes of the
gravitational radiation emitted, as we discuss below.

It is worth mentioning the possibility that the unstable mode at the start of
model D2H might excite some other mode in the corotation band, which could
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not otherwise be excited for lower grid resolution. As discussed by Watts
et al. (2003, 2004) in their study of differentially rotating shells, there are
many zero-step modes in the band, so that the whole continuous spectrum
could potentially be excited. In such case these modes would have very slow
power-law growth.

For all our models we have checked mass conservation along the evolution.
The worst results are obtained for model D3H, for which mass is conserved
within 2.5% error when the instability saturates. At the end of the simulation
(after 48 orbital periods and 25000 iterations in the coarsest grid) the error
has grown to only 6%. For all other models mass conservation is even more
accurate. Note that these errors are within the round-off error of the code, and
it is not related to the conservation properties of the numerical scheme itself.
For a regular grid with 1282 cells and a simulation employing 25000 iterations,
the accumulated round-off error (binomial distribution) using single-precision
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Figure 12.5: Evolution of |A;,| for model D3 with low resolution (top) and high
resolution (bottom). The m = 2 mode is represented with thick solid line, m = 4
with thin solid line, m = 6 with dashed line, n = 8 with dot-dashed line, and all
other odd m with dotted lines.
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Figure 12.6: Effects of the artificial displacement of the center of mass (of only one
numerical cell) on the time evolution of |A; | for model D2H. The thin solid line shows
a fictitiuos evolution resulting from the numerical artifact originated by the center
of mass displacement.

arithmetics, is about /1283 x 25000 x 10~ = 0.0023 = 0.23%. Correspond-
ingly, for a 256 grid (with twice the number of iterations for the simulation)
the error is about 0.9%. Taking into account that this error affects the nonlin-
ear evolution of the system, it is not surprising to have an error at the level of
a few percent by the end of our high resolution simulations, for all conserved
quantities.

Figure shows the evolution of A, for model D3 and for m ranging
from 1 to 8 for our two resolutions. According to this figure, the only two
modes relevant for the dynamics of the star are m = 2 and m = 4. All other
modes have smaller amplitudes and play no role in the dynamics. Note that
for odd m modes, the value of the integrated quantity A,,, if close to zero, is
extremely sensitive to very small numerical asymmetries, which are induced
by the patch creation scheme of our AMR code. This explains the resolution
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differences in the initial values for odd m modes in Fig.[12.5 (at t = 0 they start
off at 10~8 level for the low resolution simulation), although they saturate at
the same value irrespective of the resolution.

An important diagnosis for the accuracy of the results is the location of
the center of mass during an evolution. The round-off error of the numerical
code imposes controlled errors in mass and linear momentum, which results
in tiny displacements of the center of mass. However small (one numerical
cell in our runs) this unphysical displacement may hinder the correct analysis
of the mode growth rates. For this reason all integrated quantities shown in
Fig.12.5 are computed after correcting for the displacement of the center of
mass, Xnew = Xold —XCM, il a post-processing stage of the data analysis. Were
this not done, a one-armed m = 1 mode would grow much faster than it should
to bring up fictitious features in the plots. This is shown for model D2H in
Fig. [12.6. The thick solid line in this figure corresponds to the evolution of
the m = 1 mode taking into account the correction for the center of mass
displacement, while the thin solid line is the corresponding evolution of this
mode without the correction.

12.4.3 Gravitational waves

The growth and saturation of the instability is also imprinted on the gravita-
tional waves emitted. The gravitational waveforms hy and hy for models D1,
D2, and D3, computed using the standard quadrupole formula, are shown in
Fig. [12.7\ For a source of mass M located at a distance R those waveforms
can be calculated from the dimensionless waveform amplitudes a4 and ax as

.2 2
sin“ § M
hy x = a; x o (12.16)

using G = ¢ = 1 units. The resulting chirp-like signal in all the models, partic-
ularly apparent for model D2L, indicates the presence of a bipolar distribution
of mass within the star (see Sec.[12.4.4).

As mentioned before, the effects of grid resolution on the evolution of the
nonlinear phase of the bar-mode are imprinted on the gravitational waveforms.
Thick solid lines in Fig. are the waveforms which correspond to the low-
resolution models, and thin solid lines to the high-resolution counterparts. The
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Figure 12.7: Gravitational waves for models D1 to D3 extracted using the standard
quadrupole formula. Thick (thin) solid lines correspond to low (high) resolution.
Only the dimensionless waveform amplitude a4+ is plotted.
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evolution of n for model D3, displayed in Fig.[12.4, shows little deviations with
grid resolution, and this translates into very similar gravitational wave patterns
(bottom panel of Fig. 12.7), the differences becoming more noticeable in the
nonlinear phase following saturation (Qt > 75). For model D1 (top panel),
the differences also become more apparent at later times during the evolution,
in good agreement with the dissimilar behaviour of the matter dynamics in this
model, as encoded in the evolution of 7 in Fig. [12.4. As happens for model
D3 the first few cycles of the gravitational waveform, when the mode is still in
the linear phase, are accurately captured for both resolutions.

The major dependence of the waveform on the grid resolution is found
for model D2. Again, the linear phase for the growth of the bar deforma-
tion is accurately captured irrespective of the resolution (and agrees with the
perturbative results of Shibata et al. 2002). This is signalled in the perfect
overlapping of both gravitational waveforms during the first three cycles (see
the middle panel of Fig. 12.7). However, the different nonlinear dynamics
of the bar-mode deformation for this model, shown in the middle panel of
Fig. [12.4, is severely imprinted on the gravitational waveform. Model D2H
emits gravitational waves which have roughly one order of magnitude smaller
amplitude than those computed for the corresponding low resolution model.

12.4.4 Morphology

We next describe the morphological features encountered during the evolution
of some representative models. Fig.[12.8/shows three snaphsots of the evolution
of model D3H for the density (top), the azimuthal component of the vorticity,
@W® = (V x #)° (middle), and the specific angular momentum, | = 7 x @
(bottom). From left to right the snapshots correspond to the initial time
(Qot = 0), a time when the bar-mode instability is growing (Q¢t = 33.6), and
the time when the instability saturates (Qot = 70.4). Only the equatorial plane
of the stars is shown in all these plots. Animations of all simulations performed
can be found on the CD. We note that our AMR code is able to dynamically
place patches (e. g. between 4 and 8 in the D3H model) and evolves the system
with continuous matching between patches, as exemplified in Fig.

The evolution of model D3H shows that as the m = 2 mode grows the
star develops an ellipsoidal shape which remains spinning beyond saturation.
Since the low 8 m = 2 mode saturates at lower values (n ~ 0.1) than the
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Figure 12.8: Snapshots of the density, vorticity, and specific angular momentum,
for model D3H, at three representative instants of the evolution. All snapshots show
slices of the stars in the equatorial plane. Quantities are normalized as follows:
/P, rew? [0 and 19 /(r.v{?), where v{? is the initial velocity at the surface of

the star.
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Figure 12.9: Resolution comparison between models D2L and D2H once the insta-
bility has saturated. Only slices of the stars in the equatorial plane are shown.
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Figure 12.10: Snapshots of the density perturbation at the equatorial plane for mod-
els D2H and D3H. The white solid curves indicate the location of the corotation
radius.

classical bar-mode instability (5 ~ 1), no clear bars are visible in the density
plot. At late times (20t > 100) a “boxy” structure becomes apparent as the
m = 4 mode has grown to almost similar amplitude as the m = 2 mode (see
animations and Fig. 12.5). No other global features can be seen, consistent
with the fact that |A4,,| < 1 for all modes other than m = 2 and 4. The
vorticity plot shows that the m = 2 mode at Qpt = 33.6 adopts the form of a
two-armed spiral winding up around the central parts of the star. As the mode
begins to saturate (ot = 70.4) the spirals break apart into the outer layers
in a turbulent flow reminiscent of the (shear) Kelvin-Helmholtz instability,
and shock as they reach the atmosphere. These trends are also visible in the
specific angular momentum plot.

The presence of a corotation radius, at r/r. = 0.56 for model D3H, seems
to play a role in the growth and saturation of the instability, in agreement
with the recent findings of Saijo & Yoshida M) As the bar-mode grows,
pressure waves carry angular momentum outside the corotation radius, which
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is deposited in the outer layers of the star. This excites Kelvin-Helmholtz-like
instabilities in the fluid that break the mode outside the corotation radius.
When this happens the m = 2 instability stops growing and no more angu-
lar momentum is extracted. Figure [12.10 shows late-time snapshots of the
equatorial plane distribution of the density perturbation, i.e. (p — p(®)/ pgg;)ix,
for models D2H and D3H. The times are chosen well inside the nonlinear and
saturation phase of the instability. This figure helps to interpret the mode
dynamics and its saturation along the lines mentioned before: During the evo-
lution the density perturbations are shed in waves from the center towards
the outer layers of the star. At late times, when the instability saturates, such
shedding stops, and the density perturbation reaches the largest values outside
the corotation radius (depicted with white solid lines in Fig.[12.10), for either
model.

We note in passing that the corotation radius in all our high resolution
models lies well inside the outer boundary of the finest box set up by the
AMR refinement pattern. This rules out the possibility of a numerical artifact
resulting from the patch creation scheme of our AMR code being the cause
for the different long-term evolution between low and high resolution models,
particularly noticeable for model D2 in Fig.[12.4]

Finally, Fig. [12.9 shows a comparison between models D2L and D2H at
Qot = 101 (i.e. well within the nonlinear phase), to highlight the effects of
the numerical resolution on the morphology. From top to bottom this panel
shows a schlieren plot (|Vlogpl|) , W%, and I. The resolution differences in
the evolution of model D2 become apparent from this figure. In particular,
the “boxy” structure becomes much more clearly visible in the low resolution
simulation (D2L), indicating an excessive growth rate of the m = 4 mode. The
presence of pressure waves is emphasized in the schlieren plot, very accurately
captured in model D2H. Those waves, once the flow is driven to turbulence
past the corotation radius, redistribute the angular momentum in the outer
layers of model D2L in a much more pronounced way than for model D2H.
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Chapter 13

Summary and outlook

The final chapter summarizes the results presented in this thesis for the differ-
ent scenarios that have been studied: core collapse, evolution of proto-neutron
stars, and bar-mode instabilities of neutron stars. Where applicable we men-
tion possible extensions of the work presented to be carried out in the future.

13.1 Core collapse simulations

We have presented results for the collapse of rotating stellar cores incorporating
two main improvements with respect to previous studies: the CFC+ approx-
imation to the Einstein’s field equations, and the evolution of ’test’ magnetic
fields in dynamical spacetimes. We summarize next our main results on these
two issues, and we provide an outlook on future work on core collapse.

13.1.1 CFC+: improved dynamics and waveforms

In Chapters/5/and [9/we have presented a new approximation for the Einstein’s
field equations, which we call CFC+. We tested its suitability for simulations
of rotating neutron star spacetimes, both for equilibrium models and for con-
figurations formed after gravitational core collapse. This approach is based
on second order post-Newtonian corrections to conformal flatness, i.e. CFC+

223
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represents an extension of the CFC (or Isenberg—Wilson-Mathews) approxi-
mation. The derivation of the extended system of equations has been presented
in great detail, as well as the boundary conditions to apply when numerically
solving them. All CFC+ field equations are elliptic, since at second post-
Newtonian order the hyperbolic character of Einstein’s equations disappears.
This is a consequence of the fact that the time derivatives of h};T appear first
at the 2.5th post-Newtonian order.

We note in passing that solving elliptic equations ensures numerical sta-
bility of the solution and avoids numerical problems sometimes encountered
in long-term evolutions of strongly gravitating systems when using the 3 + 1
formulation of general relativity. On the other hand, the price to pay for using
this approximation is that gravitational radiation reaction on the dynamics,
caused by gravitational waves carrying away energy and angular momentum
from the system, is absent. However, in the case of models where a comparison
of our results to fully general relativistic results is possible, we checked that the
absence of gravitational back-reaction does not significantly affect the results.
In scenarios such as the merging of compact binaries (not investigated here),
this effect would indeed be important, but only at late times. Hence, CFC+
should also be a good approximation for modeling phenomena occurring on
dynamical timescales, such as the final stages of the plunge and merger.

We compared the new CFC+ approximation with the CFC approach used
by Dimmelmeier et al. (2002a,b) in two different scenarios, oscillating rela-
tivistic stars and core collapse to a neutron star. In the case of pulsating
neutron stars, we find that there are no differences in the calculation of the
quasi-radial normal mode frequencies of those objects, even in the most ex-
treme situations considered when the star is rotating at the maximum allowed
rate (i.e. at the mass-shedding limit). It has been possible to compare our
results directly with fully general relativistic computations and, again, a very
close agreement is found. Furthermore, our simulations of stellar core collapse
to neutron stars covered the basic morphology and dynamics of core collapse
types studied by Dimmelmeier et al. (2002b), including the extreme case of a
core with strong differential rotation and torus-like structure. Once more, no
significant differences between the two approximations are observed. There-
fore, we can conclude that second post-Newtonian corrections to CFC do not
significantly improve the results when simulating the dynamics of core collapse
to a neutron star as well as when investigating the evolution of neutron stars
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in equilibrium.

Regarding the gravitational wave extraction we also did not observe any
substantial differences between CFC and CFC+ either. The comparison has
been carried out using the quadrupole formula, commonly employed in the
literature to extract gravitational waveforms. In addition we also calculated
the gravitational waves directly from the h;FjT components, which permits a
straightforward use of the spacetime metric to study the gravitational wave
generation mechanism from the near zone to the wave zone. Although the
waveforms computed with the latter approach cannot be regarded as an inde-
pendent way of calculating gravitational wave signals, it nevertheless provides
a good consistency check of the CFC+ approximation that has served to vali-
date the numerical scheme we use to calculate hT.

The main conclusion of Chapter 9 is the assessment of the CFC approx-
imation as a highly suitable alternative to the full Einstein’s equations in
axisymmetric scenarios, involving rotating neutron stars in equilibrium and as
end states of core collapse. These findings are supported by two facts: First,
we demonstrated that second post-Newtonian corrections do not play an im-
portant role in either the dynamics or the gravitational radiation waveforms of
core collapse. This suggests that higher order post-Newtonian corrections will
be completely insignificant at least on dynamic timescales. Second, the direct
comparison of the CFC approach with exact fully general relativistic simula-
tions of pulsating neutron stars yields normal-mode frequencies in excellent
agreement. Furthermore, comparisons of the CFC approach with fully general
relativistic simulations were also reported recently by |Shibata & Sekiguchi
(2004) in the context of axisymmetric core collapse simulations. Again, the
differences found in both the dynamics and the waveforms are minute, which
highlights the suitability of CFC (and CFC+) for performing accurate simu-
lations of those scenarios without the need for solving the full system of the
Einstein equations.

13.1.2 Magnetized core collapse

In Chapter/10 we have presented simulations of the collapse of rotating magne-
tized stellar cores, as well as tests assessing our numerical approach to solving
the ideal general relativistic magneto-hydrodynamics equations.

We have designed a method for calculating stationary configurations of
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weakly magnetized stars in general relativity, with either toroidal or poloidal
(or both) magnetic field components. As a first step we have used the “test”
passive field approximation for these initial models, for which the magnetic
pressure in all cases considered is several orders of magnitude smaller than the
fluid pressure.

We have performed tests to check the accuracy and convergence properties
for the GRMHD extension of our code. We have found an order of convergence
larger than one in the magnetic field in all of the performed tests. In the
stationary cases (TTA, TTB) the order of convergence obtained is higher than
two. These results are consistent with the second-order accuracy, in space
and time, of our numerical scheme, only reduced to first order at shocks.
The resolution needed to correctly evolve the magnetic field in a core collapse
simulation has been established. The errors in all of the cases in which the
theoretical solution is known are below 0.1%, except at shocks, which are
correctly captured within a couple of numerical cells due to the use of HRSC
schemes.

Regarding simulations of magnetized core collapse in the CFC approxi-
mation, we have considered cases with initially purely poloidal magnetic field
(series D3MO) and with initially purely toroidal magnetic field (series T3MO),
in the passive field approximation. The D3MO0 models are a general relativistic
extension of a subset of the cases considered by Obergaulinger et al. (2005) in
Newtonian gravity and MHD. Our aim has been to compare the dynamics and
gravitational waveforms with those previous results. No qualitative differences
have been found in the models studied, although the strength of the magnetic
field at bounce and after the collapse is consistently smaller (50 — 80%) in the
CFC case than in the Newtonian case.

In each series of models the amplification of the magnetic field proceeds in
a very different way. While in the D3MO0 models the winding up of the poloidal
magnetic lines into toroidal magnetic field lines due to differential rotation (£2-
dynamo) is the main amplification mechanism in the collapse, in the T3MO0
models the magnetic field is amplified only due to the radial compression, as
poloidal magnetic fields are absent in the evolution. We have found that, for
our particular models, the 2-dynamo is much more efficient in amplifying the
magnetic field than radial compression. Therefore, the final toroidal magnetic
field in the T3MO models is weaker than in the D3MO models, in which no
toroidal component was present initially.
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At the end of our simulations the fluid variables reach a quasi-equilibrium
state. For the D3MO models the formed proto-neutron star has a core/shell
structure. Inside the core, where nuclear matter density is reached, the domi-
nant magnetic field is poloidal and the rotation profiles are almost flat, i.e. the
PNS core rotates rigidly. On the other hand, the surrounding shell rotates dif-
ferentially and, hence, toroidal magnetic fields dominate this region due to the
Q-dynamo mechanism. This effect produces a sustained linear growth of the
toroidal component after the bounce. If no other processes act, the magnetic
field is expected to saturate after ~ 1 s with values of about BY ~ 10'° G.
For the models T3MO0 the 2-dynamo is not active, since no poloidal magnetic
field is present. Therefore, when the PNS reaches a quasi-equilibrium state,
the magnetic field remains stationary.

Other amplification mechanisms can act if no passive magnetic field ap-
proximation is considered or if the axisymmetry condition is removed. We
have estimated the effect of the amplification mechanism that is more likely
to dominate, that is, the magneto-rotational instability. We have found that
during the collapse, the typical timescale of the fastest growing mode of the
MRI is about 1 s, and hence it will not affect our results in the infall phase.
However, after the bounce two regions are susceptible to develop MRI, the re-
gion behind the shock wave and the convective region surrounding the PNS. In
both regions the estimated timescale, ~ 1 ms, is of the order of the dynamical
timescale. In simulations without the passive field approximation and with
sufficiently high resolution, the MRI is expected to develop in these regions,
and to dominate their dynamics within a few ms.

13.1.3 Going further

Our results show that a numerical code based on CFC is a very useful tool for
investigating core collapse to neutron stars in general relativity. Hence, the
CFC approach (as well as CFC+) is suitable to form the basis of a future core
collapse supernova code which can be gradually extended in various directions
to incorporate additional physics such as realistic equations of state, magnetic
fields fully acting on the dynamics, and eventually neutrino transport. In the
near future we plan to further validate the CFC+ equations in other scenarios
where higher densities are present (e.g. collapse to a black hole), as well as in
the fully three-dimensional case (namely to investigate the merging of neutron
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stars). Such scenarios are in principle beyond the range of applicability of the
CFC approximation, but can possibly still be handled in a satisfactory way
with the new CFC+ approach presented in this thesis. Some of the immediate
extensions we are working on are briefly described next.

GRMHD: active field

The passive approximation for the magnetic field has shown to be very useful
in the study of the evolution of weakly magnetized objects as core collapse
progenitors. However, the absence of a reaction of the magnetic field on the
matter dynamics prevents some instabilities to develop, such as the MRI, which
amplifies the magnetic field exponentially in time from arbitrarily weak mag-
netic fields. The study of this effect on the post-bounce dynamics is of crucial
importance, as it is going to affect a number of processes: (i) the amplification
of the magnetic field can change the structure of the PNS, in particular its
rotation profiles, which could become constant, preventing the development of
three-dimensional instabilities (e.g. bar-mode instabilities), which are strong
sources of gravitational waves. (ii) The turbulence generated in the dynam-
ics could lead to detectable gravitational wave signals in a similar way as the
convective unstable regions described by Miiller et al. (2004). (iii) The ampli-
fication of the magnetic field behind the shock can enhance the effect of the
neutrinos to power the delayed explosion of the supernova.

Furthermore, in other gravitational collapse scenarios such as jet-like ex-
plosions or the collapsar model for GRBs, strong magnetic fields could play an
important role in the collimation of the matter flows leaving the system along
the axis.

With all those scenarios in mind we have already extended the GRMHD
code reported in this thesis to the general case without the passive field ap-
proximation. To this end we have taken advantage of the numerical schemes
developed in Antén et al. (2006) and Antén (2006) to build a robust code
with the capability of solving the ideal GRMHD equations within a dynamical
spacetime in the CFC/CFC+ approximation. A version of this code is just
finished, although some tests still have to be done.
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I I

6L
«E i Figure 13.1: Time evolution of the cen-
S a- tral density in a spherical core collapse
| using the LS EOS (see text) with re-
= alistic initial models (solid line) and
@2k adapted polytropes as initial models
(dashed line). For comparison we have
| plotted the evolution for the case of the
ol— hybrid EOS with similar initial models.

Realistic equation of state

We are currently working towards the inclusion in the collapse modelling of
more realistic equations of state than the one used in this thesis. We have
obtained preliminary results for spherical core collapse using the equation of
state of Lattimer & Swesty (1991) (LS hereafter). Although the initial models
are spherically symmetric, we do not impose this restriction in the simulation
in order to test if the 2D code is able to handle the collapse. To choose the
initial models we follow two approaches. First, we collapse the inner iron core
of a realistic model from stellar evolution (Heger et al. 2000). A reduction of
the internal energy of the model is necessary in order to begin the collapse.
The second approach consists in generating an initial model with a polytropic
equation of state such that the density and the specific internal energy distri-
butions are as close as possible to those of realistic models. The initial electron
fraction is selected to be constant and with values near the realistic models.
Our future plan is to generate in a systematic and consistent way, initial mod-
els based on polytropes but with similar features (same central density and
pressure, and same electron fraction and temperature profiles) as the realistic
models from stellar evolution. This will allow us to perform parametric stud-
ies for the more general case of rotating core collapse, possibily including a
simplified treatment for neutrino transport.

As an example, in Fig we show preliminary results for spherical core
collapse with the LS equation of state compared with the collapse with the
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Figure 13.2: Time evolution of the central density (left panel, thin lines), the lapse
function (left panel, thick lines), and the gravitational wave amplitude (right panel)
for the collapse model M7c5 using the CFC approximation (solid lines) and the CFC+
approximation (dashed lines). In the left panel both curves almost coincide.

hybrid equation of state used in this thesis. The time of bounce in the three
cases is different since the way of triggereing the collapse is in all cases arbitrary.
In the case of the LS EOS with realistic initial models ¢}, = 213 ms, in the case
of polytropic initial models with the LS EQS for the evolution ¢, = 86.4 ms,
and in the case of hybrid EOS t, = 30 ms.

Rotational core collapse to a black hole

In order to validate the CFC/CFC+ approximation in scenarios involving
higher densities, we plan to study the case of black hole formation, where
the differences between CFC and CFC+ should become more visible. Direct
comparisons with full general relativistic simulations using the CACTUS/WHISKY
code will help us to establish which is the limit of applicability of the CFC and
CFC+ approximations, and if they are adequate at all to study the rotational
collapse to black holes.

Following this line of research we have performed simulations of the col-
lapse of massive stellar cores to either neutron stars or black holes. Those
simulations comprise a subset of the axisymmetric simulations performed by
Shibata & Sekiguchi (2005). Our results in the CFC and CFC+ approxima-
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tion are very similar to those of [Shibata & Sekiguchi (2005) with differences
in the evolution of the maximum density of about 2%, with the exception of
the extreme model M8c4 where the differences are ~ 30%. In all cases we ob-
tain the same final object as Shibata & Sekiguchi (2005), i.e. a neutron star,
a black hole, or a neutron star that undergoes delayed black hole formation
after a certain time. Fig[13.2 shows the evolution of model M7¢5 of Shibata
& Sekiguchi (2005) which forms a neutron star as end product. The evolution
of the central density, p., and central lapse function, a., are shown for both
the CFC and the CFC+ approximation. Although the differences in these
quantities are small, the resulting waveforms display visible differences in the
maximum amplitude. More details about these simulations are reported in
Dimmelmeier et al. (2005a).

In the near future we plan to perform simulations of the collapse of neutron
stars to black holes with detailed comparisons of the different approaches used:
CFC, CFC+ and full general relativity (withint the BSSN framework). We also
plan to include an apparent horizon finder for the black hole formation, and
eventually to implement a BH excision algorithm in the numerical code. The
final goal is to study scenarios including black holes and magnetic fields such as
thick accretion disks and tori, jet formation, and the collapsar model of GRB,
which are of great interest for astrophysics in general, and in the detection of
gravitational waves in particular.

Post-Newtonian quadrupole formula

The Newtonian quadrupole formula (NQF) is nowadays the usual way of cal-
culating the gravitational waves from core collapse simulations (the only ex-
ception is the work of Siebel et al. (2003)). The validity of this formula for the
compact objects involved in the collapse is still unclear. It has been shown in
general relativistic simulations (Dimmelmeier et al. 2002a,b) that the dynam-
ics of the sources differs from the Newtonian case, and hence, the waveforms
calculated with the NQF also differ. In order to be consistent with the dy-
namics, general relativistic effects have also to be taken into account in the
quadrupole formula itself.

When considering the NQF to extract the GWs from core collapse simula-
tions there is a usual ambiguity related with the definition of the quadrupole
moment of a general relativistic object. In the Newtonian limit the mass
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Figure 13.3: Gravitational wave amplitude calculated with the Newtonian
quadrupole formula (dashed line) and the 1PN quadrupole formula (solid line). The
contribution of the 1PN correction is also plotted (dotted line).

quadrupole is used, i.e. the integrand involves the density p, but in general
relativity the magnitude appearing in the integrand of the quadrupole moment
depends on the particular variables used in the post-Newtonian expansion of
the sources. Usually p or D* are used but more complicated forms includ-
ing metric factors and energy terms are in some cases included (Nagar et al.
2005). Each of these choices is in principle valid and all forms of the NQF
should give the same result in the range of validity of the NQF. The results
from numerical simulations of rotating core collapse show that the waveform
extracted with the NQF can differ within a few 10% when using different forms
of the NQF'. This fact strongly suggests that core collapse dynamics may be out
of the range of validity of the NQF (slow motion), and that post-Newtonian
corrections should be included.

We are currently working on a 1PN quadrupole formula, which includes
terms of first post-Newtonian order in the expansion of the sources. To this
end we are adapting the formalism of [Faye & Schifer (2003) to design a method
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which allows us to calculate the 1PN correction to the mass quadrupole, in a
way well adapted to numerical simulations. In Fig.13.3 we present preliminary
results of the corrected waveforms in a rotational core collapse, namely model
A1B3G5. These preliminary data show that the 1PN correction (solid line)
is about 20% of the signal extracted with the NQF. The 1PN correction also
introduces a phase shift in the signal in some cases.

13.2 Evolutionary sequences of rotating PNS

In Chapter[11 we have addressed the problem of the evolution of rotating proto-
neutron stars by constructing evolutionary sequences of axisymmetric, station-
ary configurations in General Relativity. The thermodynamical structure and
evolution have been extrapolated from simulations in spherical symmetry that
included neutrino transport. Although this is a crude simplification, it al-
ready gives an interesting insight about how the different relevant quantities
can evolve as the rotating PNS loses its lepton content and its excess binding
energy, and contracts. Moreover, we have found that the luminosity estimates
are not very different from what one expects.

A special effort has been made to understand where in the parameter space
a realistic case should be located. The biggest uncertainty concerns the ro-
tation law that PNS have at birth. By analyzing results from simplified core
collapse simulations, it seems that a typical scale for variations of the angular
velocity is about 10 km, and that conservation of angular momentum during
the collapse of a stellar core (initially rigidly rotating) does not seem to allow
for angular velocities varying on a length—scale shorter than a few km. Less
is known about the angular distribution, except that most recent simulations
show the presence of important meridional currents and some turbulent mo-
tion. For simplicity, we restricted ourselves to the stationary case. Stationarity
implies a quasi-cylindrical distribution (with deviations due to relativistic cor-
rections) of the angular velocity. This stage can only be reached after several
dynamical and rotation periods, after the PNS had time to relax. Therefore,
one must be aware that the first 0.5 s are probably far from stationarity, but
after that evolution proceeds in a quasi-stationary way, except for low velocity
convective motions. From our study of quasi-stationary sequences we can draw
a few interesting qualitative results.
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i) For each instant in the evolution, stars with strong differential rotation
can have 5 to 10 times larger central angular velocities, and accommodate
about a 50% more angular momentum. The maximum specific angular mo-
mentum J/M varies between (1—2) GMg /c ~ (0.5—1)x 106 cm? /s, depending
on the degree of differential rotation.

ii) The maximum value of |T'/W| obtained in the case of differential rotation
is about 0.2, while for rigid rotation it is ~ 0.11. Thus, differentially rotating
PNSs might undergo the CFS instability, which arises at =~ 0.14 and, in any
case, the recently discussed low |T//W| instability (Shibata et al.|2002, 2003;
Watts et al.[2003) is plausible to happen.

iii) More interestingly, we found several situations in which, even if the
initial model is well below the critical value of |T/W|, as the star contracts on
a neutrino diffusion timescale of 5-10 s, it speeds up entering the window of
instability. An observational evidence of this effect could be a few seconds delay
between the neutrino luminosity peak and a gravitational wave burst in the
event of a galactic supernova. Ultimately, this depends on the initial amount of
angular momentum, which is approximately equal to the angular momentum
of the iron core of the progenitor. Recent stellar evolution calculations suggest
that the specific angular momentum of the inner 1.7 Mg of a 15 Mg star can
be as high as 3 x 10'® ¢cm?/s if magnetic braking is neglected, or 10'% cm?/s
if magnetic torques are included in the evolution (Heger et al.|2004). This
corresponds to J/M = (0.2 — 6) GMg/c. If the angular momentum happens
to be large (J/M > 2), centrifugal forces would stop the collapse before the
PNS is formed. Intermediate values (J/M = 1) may result in the formation
of a rapidly rotating PNS that enters the instability region several seconds
after the birth. If magnetic braking is very effective during the evolution of a
massive star, J/M < 0.5, and the PNS will be formed after collapse without
reaching extreme values of the angular velocities and |T/W|.

The next natural step to improve this work is to include possible mecha-
nisms to transport angular momentum between the different layers of the star,
that may involve neutrino transport, turbulent transport, magnetic fields, neu-
trino viscosity, convective motion, and/or angular momentum losses by gravi-
tational wave emission. Unless the star is born with almost maximum angular
velocity, some or all of these dissipative mechanisms can modify our current
vision of PNS evolution.
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13.3 Low T'/|WW| bar-mode instability of neutron
stars

In Chapter [12 we have presented AMR. high-resolution simulations of the low
T/|W| bar-mode instability of extremely differentially rotating neutron stars.
Our main motivation has been to revisit the simulations by Shibata et al.
(2002), assessing how sensitive the onset and development of the instability is
to numerical issues such as grid resolution. We have addressed the importance
of a correct treatment of delicate numerical aspects which may spoil three-
dimensional simulations in (Cartesian) grid-based codes, always hampered by
insufficient resolution, namely the handling of the low-density atmosphere sur-
rounding the star, the correction for the center of mass displacement, and the
mass and momentum conservation properties of the numerical scheme. Our
simulations have revealed the complex morphological features involved in the
nonlinear dynamics of the instability. We have found that in the nonlinear
phase of the evolution, the excitation of Kelvin-Helmholtz-like fluid modes
outside the corotation radii of the stellar models leads to the saturation of the
bar-mode deformation. While the overall trends reported in the investigation
of Shibata et al. (2002) are confirmed by our work, the resolution used to per-
form the simulations may play a key role on the long-term behaviour of the
instability and on the nonlinear dynamics of rotating stars, which has only
become apparent for one specific model of our sample (namely model D2).
This, in turn, has implications on the attainable amplitudes of the associated
gravitational wave signals.

The work reported in this chapter is a first step in our ongoing efforts
of studying the dynamical bar-mode instability within the magnetized core
collapse scenario.
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Appendix A

Flat operators in spherical
coordinates

In Chapter [5 we presented a new approach to the metric, the CFC+ approx-
imation, that is briefly described in Section [5.5. However, to implement the
resulting formalism in our numerical code, one has to express all equations
in spherical coordinates. We present here all the possible contractions ap-
pearing in the Eqgs. (5.4205.46) for the intermediate potentials, and Eq. (5.47)
for the value of ;" in CFC+, needed for the implementation of the CFC+
approximation in a numerical code:

[] Wi = VzS
W, =0,8 (A1)
1
Wy 2;695 (A.2)
1
® rsinf ¥ (A-3)
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° ij = .’L'kl'lvz'v]'Skl

Wyr =12 805y (A.4)
Wyo = — 28, +28Spg —409Sr9 + Og9Syr + 1 0pSpr (A.5)
Wep =284, —2Spr —4csc00,S,, + csc? 6 O Srr

+ ot (—4 Spg + B3Sr) + 7 0,Sp (A.6)
Wyg =Wyr = 2Srg — 09Spr — 21 0r.Srg + 7 0roSrr (A7)

Wro =Wepr =28, —csc8 0,8y, —2r 0,Spy +1¢5¢00,,5,, (A.8)
W9<p =W<p0 =2 cotGSw + 2 S.g‘p — 2695r<p

+cscl (—cot§ 0,5, — 20,579 + 0ppSrr) (A.9)
o Wi = ViS;
Wy = 0,5, (A.10)
Woo = (S, + 0050) (A.11)
W :% (Sr +cotfSg+cscb0,S,) (A.12)
W9 = 0,59 (A.13)
Wor = (= Sy + 005) (A.14)
Wyp = 0,5, (A.15)
Wer =% (— Sy +csch0,S,) (A.16)
Woy =% 09 S, (A.17)

1
Woo = (—cotf S, + csch Dy, Sp) (A.18)
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1
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1
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1
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1
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Appendix B

The Hadamard finite part
regularization

It is beyond the scope of this appendix to review all properties of the Hadamard
finite part regularization. However, as it is used intensively in Chapter
we recall its definition for completeness, as well as those features needed in
our derivation of the CFC+ equation. When a function f(z), x € R®, is
smooth outside a finite number of singularities, locally integrable, but not in-
tegrable on R®, we can instead consider the new integrand (|z — xo|/r0)2 f (),
where B is a complex number, r¢g a positive number, and where |z — x|
denotes the Euclidean norm of & — x¢, with x¢ being an arbitrary vector
of R®. The integral f\m—mobro d3z (|x — zo|/r0)B f(x), defined by means of
the natural measure d®z = dz' dz? dz® in Cartesian coordinates, converges
for B belonging to an appropriate domain D of the complex plane. It can
be regarded as a holomorphic function on D. It is then possible to extend
I;(B) = [ &z (Jz — xo|/r0)B f(x) by analytic continuation as close to the
point B = 0 as desired, and to obtain its Laurent expansion ), (I 7)pBE
there, as explained by Blanchet & Damour (1986). The zeroth order coeffi-
cient (Iy)o is often referred to as the finite part integral of f(z), which in our
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notation reads

FPBZO/dsm NG (@) ) = 1o (B.1)

The finite part integral of f may depend on the arbitrary radius rg; in fact,
this will typically happen when the result contains logarithms. Nonetheless,
as long as f is integrable, its finite part integral coincides with [d®z f and
does not show any dependence on rg.

An important property of the Hadamard regularization is that the finite
part Poisson integral of a smooth function always exists, whereas the simple
Poisson integral may not. The covariant expression of this finite part reads

r/z [ B ]
FPA;lf:FPB=0/d3f4f (|w _m0|> [@) ; (B.2)

0 Tq |z — /|

where the Euclidean volume element has been written as d®x /¥ in an arbi-
trary coordinate system. When A~ f exists, it satisfies FP A;(]l f=A"1f. In
any case, the regularized Poisson integral is the particular solution of a Poisson
equation of the type Ag = f. Thus, the operator FP A1 constitutes a gen-
uine generalization of the ordinary Poisson operator A~" and will be denoted
as A;(]l henceforth. It has the important property that it commutes with the
spatial derivatives @i, which allows us to work on the form of the elementary
(super-)potentials of Chapter [5/by applying simple and systematic rules.
An important formula related to the Hadamard regularization is the one
giving the generalized Poisson integral of the distance to the field point x,
|$ _ (1:'|A+2
(A+2)(A+3)’
for an arbitrary complex exponent A # —2,—3. Notably, it can be used to
evaluate the action of the operator Az! = FPo—g [ d3z" /7/(—4nr§ |z —2"|)
on the “r®”-potential FPp—q [ d*z' 3|z — z'|** B f/(—4rrf) with a € Z. By
permuting the two triple integrals, we obtain the relation
A Bz’ /A
A;l FPp_g / Tg'w - ;1;'|a+Bf
f d3.’13' \/ny|a: _ $’|a+B+2f
—4mrf(a+B+2)(a+B+3)

At e — 2|t = (B.3)

=FPgB—g
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The result has the same form as the source. If we make A~! act on it, we arrive
at a quantity of the same type. This prov1des a straightforward procedure
to determine the action of A= = (A=1)?, p € N, on the original integral
iteratively. In this way, we find:

3 !
A= 2P FPp— o/d \/_| ’|a+Bf

d3 i
= FPy—o 7‘{;@ +B+1+2p)"
—4mrg
x(a+B+2p)t...(a+B+2)""
X |z —a'| B (B.5)

If the usual “r®”-potential with source [ exists, the pth iterated Poisson in-
tegral A L of its pth derivative also exists. It is equal to V“ @,p applied
to the rlght hand side of Eq. (B.5). When we put all derivatives under the
integration symbol, we end up with a convergent integral. At this stage, one
no longer needs regularization, so we may take B = 0 if none of the terms
(a+2p+1), (a+2p), ..., (a+2) vanish. Finally, we pull the coefficients
(a+1+2p)~ta+2p)~t...(a+ 1+ p)~! out of the integration symbol and
reintroduce the finite part. We have then proved the formula giving the explicit
action of AP on arbitrary sources,

3 !
A;pFPBzo/d \/—| '[PV, LV, f

@il - @Z’p FPB:() d’x \/_|w _ ml|a+B+2pf
- ) B.6
(a+1+2p)(a+2p)...(a+2) (B.6)

to be valid for a +2p+1 ¢ N.
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