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Abstract—This letter presents a semisupervised method based
on kernel machines and graph theory for remote sensing image
classification. The support vector machine (SVM) is regularized
with the unnormalized graph Laplacian, thus leading to the
Laplacian SVM (LapSVM). The method is tested in the challeng-
ing problems of urban monitoring and cloud screening, in which
an adequate exploitation of the wealth of unlabeled samples is
critical. Results obtained using different sensors, and with low
number of training samples, demonstrate the potential of the
proposed LapSVM for remote sensing image classification.

Index Terms—XKernel methods, manifold learning, regulariza-
tion, semisupervised learning (SSL), support vector machines
(SVMs).

I. INTRODUCTION

IN REMOTE sensing image classification, we are usually
given a reduced set of labeled samples to develop the clas-
sifier. Supervised classifiers such as support vector machines
(SVMs) [1], [2] excel in using the labeled information, being
(regularized) maximum margin classifiers also equipped with
an appropriate loss function [3], [4]. Nevertheless, these meth-
ods need to be reformulated to exploit the information con-
tained in the wealth of unlabeled samples, which is known
as semisupervised classification. In semisupervised learning
(SSL), the algorithm is provided with some available super-
vised information in addition to the unlabeled data.

The SSL framework is very active and has recently attracted a
considerable amount of research [5], [6]. Essentially, two differ-
ent classes of SSL algorithms are encountered in the literature.
First, generative models involve in estimating the conditional
distribution by modeling the class-conditional distributions
explicitly, such as expectation-maximization algorithms with
finite-mixture models [7], [8]. Second, discriminative mod-
els, in contrast to generative models, estimate the conditional
distribution directly, and one does not have to specify the
class-conditional distributions explicitly. The following two
subgroups of SSL algorithms can be distinguished within these
models: 1) low-density separation algorithms maximize the
margin for labeled and unlabeled samples simultaneously, such
as transductive SVM (TSVM) [9], [10], and 2) graph-based
methods, in which each sample spreads its label information to
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its neighbors until a stable state is achieved on the whole data
set [11], [12].

In the last years, TSVM and graph-based methods have
captured great attention. However, some specific problems are
identified in both of them. In particular, TSVM is sensitive to
local minima and requires convergence heuristics by using an
(unknown) number of unlabeled samples. Graph-based meth-
ods are computationally demanding and, generally, do not yield
a final decision function but only prediction labels.

In this letter, we present a recently introduced semisuper-
vised framework that incorporates labeled and unlabeled data
in any general-purpose learner [13]. We focus on a semisu-
pervised extension of the SVM, which introduces an addi-
tional regularization term on the geometry of both labeled and
unlabeled samples by using the graph Laplacian [11], thus
leading to the so-called Laplacian SVM (LapSVM) [13]. This
methodology follows a noniterative optimization procedure, in
contrast to most transductive learning methods, and provides a
closed-form classification function for testing on novel samples
not used in the training phase (out-of-sample predictions), in
contrast to graph-based approaches. In addition, hard-margin
SVM, directed-graph methods, label propagation methods, and
spectral clustering solutions [3], [5] are obtained for particular
free parameters of the LapSVM.

The performance of the LapSVM is illustrated in two chal-
lenging problems: the urban classification problem using mul-
tispectral [Landsat Thematic Mapper (TM)] and radar (ERS2
SAR) data [14] and the cloud-screening problem using the
Medium Resolution Imaging Spectrometer (MERIS) instru-
ment onboard the ESA Environmental Satellite [15]. On the
one hand, the classification of heterogeneous urban areas is
an important yet complex problem, particularly when different
sensor sources are used, as they induce a highly variable input
feature space. On the other hand, the amount of images acquired
over the globe every day by Earth Observation satellites makes
inevitable thé presence of clouds. However, very few labeled
cloud pixels are typically available, and cloud features change
to a great extent depending on the cloud type, thickness, trans-
parency, height, or background. In addition, cloud screening
must be carried out before atmospheric correction, being the
input data affected by the atmospheric conditions.

These problems constitute clear examples of classification
in complex manifolds.! Learning in these conditions is more
challenging when dealing with ill-posed problems, i.e., working
with less number of labeled samples than the input dimension
of the pixels. The use of LapSVM is motivated in this scenario,

LA manifold is a topological space that is locally Euclidean but in which the
global structure may be more complicated.
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since it permits one to use the labeled samples and efficiently
exploiting the information contained in the high number of
available unlabeled pixels to characterize the marginal dis-
tribution of data. This is particularly interesting in practical
remote sensing applications, since obtaining additional unla-
beled samples is cheap and easy, while labeling is expensive,
difficult, or even impossible. In addition, the LapSVM consti-
tutes a general framework for SSL, in which supervised SVM
and other methods can be regarded just as particular cases. This
letter presents, for the first time, an exhaustive analysis of the
L.apSVM in remote sensing problems.

The rest of this letter is outlined as follows. Section II reviews
the framework of SSL, paying attention to the minimization
functional and the need for different types of regularization.
It also presents the formulation of the LapSVM. Section III
shows the experimental results. Finally, Section IV concludes
und outlines further work.

II. SSL FRAMEWORK

Regularization is necessary to produce smooth decision func-
tions and, thus, to avoid overfitting to the training data. Since
the work of Tikhonov [16], many regularized algorithms have
been proposed to control the capacity of the classifier [1], [17].
The regularization framework has been recently extended to the
use of unlabeled samples [13] as follows.

Notatlonally, we are given a set of [ labeled samples
{%(, yi}i=; and a set of u unlabeled samples {x; }'= % ‘1> Where
% € RN and y; € {—1,41}. Let us now assume a general-
purpose decision functlon f. The regularized functional to be
minimized is defined as

“#l
L= 33 V0w )+l + el flle - O
i=1

Where V represents a generic cost function of the committed er-
rors on the labeled samples, yz, controls the complexity of f in
the associated Hilbert space H, and «yas controls its complexity
in the intrinsic geometry of the marginal data distribution. For
example, if the probability distribution is supported on a low-
imensional manifold, || f[|%, penalizes f along that manifold
\1, Note that this functional constitutes a general regularization
framework that takes into account all the available knowledge.

The previous SSL framework allows us to develop many
different algorithms just by playing around with the loss func-
tlon V' and the regularizers || f||. In this letter, we focus on
tlie LapSVM formulation, which basically uses an SVM as
tle learner core and the graph Laplacian for manifold regular-
{zation. In the following, we review all the ingredients of the
furmulation.

L.apSVM uses the same hinge-loss function as the SVM

V(xi, 95, f) = max {0,1 — 3 f (%)} 2)

where f represents the decision function implemented by the

selected classifier and predicted labels are y, = sgn(f(x.)).
We use as the decision function f(x.) = (w,(x,)) +b

where ¢(-) is a nonlinear mapping to a higher (possibly

infinite) dimensional Hilbert space H, and w and b define
i linear discriminant function in that space. By means of

the Representer Theorem [1], weights w can be expressed
in the dual problem as the expansion over labeled and

unlabeled samples w = S 47% a;p(x;) = ®ar, where & =

[p(x1),...,¢(x14x)]T and @ = [ay,...,0q4y]. Then, the
decision function is given by
I+u

Fx) = 0K (xs,%,) +b 3)
i=1

and K is the kernel matrix formed by kernel functions
K (x4,%;) = (¢(x;), ¢(x;)). The key point here is that, with-
out considering the mapping ¢ explicitly, a nonlinear classifier
can be constructed by selecting the proper kernel. In addition,
the regularization term can be fully expressed in terms of the

kernel matrix and the expansion coefficients
1717 = [w]? = (2a)T (®a) = a"Ka. )

The geometry of the data is modeled with a graph in which
nodes represent both labeled and unlabeled samples connected
by weights W;; [5]. Regularizing the graph follows from
the smoothness (or manifold) assumption and, intuitively, is
equivalent to penalize the “rapid changes” of the classification
function evaluated between close samples in the graph

- o fTLf
I1£1IZe= MZIWzg(f(xz) f(xg))*“(l”) (5)

where L = D — W is the graph Laplacian; D is the diagonal
degree matrix of W given by D;; = H“ 1 Wij, and D;; =
for ¢ # 7; the normalizing coefficient 1 / (l + u)? is the natural
scale factor for the empirical estimate of the Laplace operator
[13]; and f = [f(x1),..., f(X14u)]T = Ko, where we have
deliberately dropped the bias term b.

By plugging (2), (4), and (5) into (1), we obtain the regular-
ized function to be minimized

. T T T
min { ;§z+'yg,a Ka+(l+ oK Lch} (6)

acRhitu

subject to y,(zl"'“ o; K (xi,%5)+b) >1-¢& and & >0,
=150, where &, are slack variables to deal with commit-
ted errors in the labeled samples. Introducing restrictions into
the primal functional (6) through Lagrange multipliers, 3; and
7;, and taking derivatives with respect to b and &;, we obtain

: 1 4 27 T
- K LK
Tﬁl{za (27‘5 MN(EThTh

l
~aTKITYB+ Y ﬁz} )

i=1

where J = [I 0] is an ! x (I + u) matrix with I as the [ x [
identity matrix (the first [ points are labeled) and Y =

diag(y1, ..., y). Taking derivatives again with respect to cx,
we obtain the solution [13]
-1
™M T %
=(2vI+2——=LK)] J'YB". 8
o= (’YL + 0+ u)? ) B8 (€]
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Now, substituting again (8) into the dual functional (7), we
obtain the following quadratic-programming problem [13]:

, o 1
B = max {Zﬁi - §ﬁTQﬁ}

i=1

)

subject to S0, Biys =0 and 0 < B < (1/1), i=1,...,1,
where

-1
- ™ T
Q=YJK (2%51—1-2(12 TEnY LK) J5Y (10)
Therefore, the basic steps for obtaining the weights c; for the
solution in (3) are as follows: 1) build the weight matrix W
and compute the graph Laplacian L = D — W 2) compute the
kernel matrix K; 3) fix regularization parameters v and yas;
and 4) compute c using (8) after solving (9).

The LapSVM is intimately related to other unsupervised
and semisupervised classifiers. This is because the method
incorporates both the concepts of kernels and graphs in the
same classifier, thus having connections with transduction,
clustering, graph-based, and label propagation methods. The
minimizing functional used in the standard TSVM consid-
ers a different regularization parameter for labeled and unla-
beled samples, which is the case in the proposed framework
[cf. (1)]. In addition, LapSVM is directly connected with the
soft-margin SVM (yas = 0), the hard-margin SVM (yvr — 0,
A =0), the graph-based regularization method (v —0,
~as >0), the label propagation regularization method (v —0,
~ar — 0,7as > 1), and spectral clustering (ym = 1). Incon-
clusion, by optimizing parameters 7y and yy OVer a wide
enough range, the LapSVM theoretically outperforms the afore-
mentioned classifiers [13].

LapSVM is formulated for binary classification problems.
Extensions to multiclass problems can be devised by using clas-
sical one-against-one or one-against-all strategies. However, the
following considerations have to be taken into account. On the
one hand, when using one-against-one strategy, one analyzes
each pair of classes separately by removing the other classes
from both the labeled set and the unlabeled set. However, this
approach is not realistic for real-world multiclass SSL, since the
labels of unlabeled data are (obviously) unknown. On the other
_hand, the one-against-all strategy can be easily implemented for
multiclass problems, as in [13].

III. EXPERIMENTAL RESULTS

This section presents the experimental results of the proposed
method in two challenging scenarios: urban monitoring and
cloud screening. These two examples are well suited, because
efficient exploitation of unlabeled samples becomes strictly
necessary to attain satisfactory results.

A. Model Development and Experimental Setup

We used both the linear kernel, K(x;,X;)= o078 ) 8
and the radial basis function (RBF) kernel, K (xi,%5) =
exp(—||x; — x;|2/20?), where o € R* is the kernel width for
the SVM, LapSVM, and TSVM, which is used in order to
compare results provided by a related semisupervised SVM.
The graph Laplacian L consisted of [+ u nodes connected

IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 5, NO. 3, JULY 2008

Kappa statistic, x

T+

Fig. 1. Tlustrative example of a kappa statistic surface over the validation set
for the LapSVM as a function of regularization parameters 7z, and yar.

using k nearest neighbors and compute the edge weights Wy,
using the Euclidean distance among samples.

For the experiments, we generated training and validation
sets consisting of I = 400 labeled samples (200 samples per
class) and added u = 400 unlabeled (randomly selected) sam-
ples from the analyzed images to the training set for the
LapSVM and TSVM. We focus on the ill-posed scenario and
vary the rate of both labeled and unlabeled samples inde-
pendently, ie., 2%, 5%, 10%, 20%, 50%, and 100% of the
labeled/unlabeled samples of the training set were used to train
the models in each experiment. In order to avoid skewed con-
clusions, we run all experiments for a number of realizations,
where the used training samples were randomly selected. All
classifiers are compared using the overall accuracy (OA, in
percent) and the estimated kappa statistic x as a measure of
robustness in the classification.

Free parameters 7y, and yy were varied in steps of one
decade in the range of [104,10%], the number of neighbors &
used to compute the graph Laplacian was varied from three
to nine, and the Gaussian width was tuned in the range o =
{10-3,...,10} for the RBF kemel. The selection of the best
subset of free parameters was done by cross validation. Fig. 1
shows & as a function of the regularization parameters 7yr
and ~y)s obtained by a LapSVM in the validation set for

an illustrative example. This figure clearly shows that the

best classification results are obtained with yz, > va/(u + %3

which suggests a preference for the regularization of the clas-
‘sifier (supervised information) than for the regularization of =

the geometry of the marginal data distribution (unsupervised
information). Regarding the number of neighbors, the analysis

of the results revealed a low sensitivity to k in most of the

experiments, but for small training sets, lower k values were
chosen.

B. Urban Monitoring

1) Data Description: The image used in this first ex-
periment was collected in the Urban Expansion Monitoring |
ESA Project (for further details, visit: http://dup.esrin.esa
int/ionia/projects/summaryp30.asp). The considered test sit
was Naples, Italy, where images from ERS2 SAR and Landsa
TM sensors were acquired in 1999.
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Fig. 2. Results for (top row) the urban classification and (bottom row) the cloud-screening problems. (Left) Overall Accuracy (OA, in percent) and (middle)
Kappa statistic « over the validation set as a function of the rate of labeled training samples used to build models. (Right) Kappa statistic surface over the validation
set for the best RBF-LapSVM classifier as a function of the rate of both labeled and unlabeled training samples.

The available features were the seven Landsat bands, two
SAR backscattering intensities (0-35 days), and the SAR inter-
ferometric coherence. Since these features come from different
sensors, the first step was to perform a specific processing
and conditioning of optical and SAR data and to coregister all
images. After preprocessing, features were stacked at a pixel
level (for full details, see [14]).

2) Model Comparison: Fig. 2 (top) shows the validation
results for the analyzed SVM-based classifiers. Several conclu-
sions can be obtained from this figure. First, LapSVM classi-
fiers produce better classification results than SVM in all cases
(note that SVM is a particular case of the LapSVM for vy, = 0)
for both the linear and the RBF kernels. LapSVM also produces
better classification results than TSVM when the number of
labeled samples is increased. Differences among methods are
numerically very similar when a low number of labeled samples
is available. On the right plot, the x surface for the LapSVM
highlights the importance of the labeled information in this
problem.

3) Visual Inspection: The best LapSVM classifier was used
to classify the whole scene, which consists of a scene of -
200 x 200 pixels with urban and nonurban labeled samples.
The classification map is shown in Fig. 3. Excellent classifica-
tion accuracy is obtained, and uniform classification covers can
be observed, even with so few labeled training samples.

C. Cloud Screening

1) Data Description: Experiments were carried out using
fwo MERIS Level 1b (L1b) images taken over Barrax, Spain,
which are part of the data acquired in the framework of the
SPECTRA Barrax Campaigns 2003 and 2004 (ESA-SPARC
Project, Contract ESTEC-18307/04/NL/FF). These two images
were acquired on July 14 of two consecutive years (2003 and
2004). For this letter, we used as input 13 spectral bands
(MERIS bands 11 and 15 were removed, since they are af-

Fig.3. (Top left) Landsat TM RGB color composite, (top right) SAR intensity
map, (bottom left) true map, and (bottom right) classification map of the urban
scene, indicating (gray) “urban” and (white) “nonurban” classes. (Black) Pixels
masked out in classification maps correspond to pixels where the available
ground truth does not provide the class label, and they were rejected in order to
estimate the classification accuracy.

fected by atmospheric absorptions) and six physically inspired
features extracted from MERIS bands in a previous work [18]:
cloud brightness and whiteness in the visible and near-infrared
spectral ranges, along with atmospheric oxygen and water
vapor absorption features.

2) Model Comparison: Fig.2 (bottom) shows the validation
results for the considered methods. Again, LapSVM models
produce better classification results than SVM in all cases. In
fact, LapSVM performs particularly better than the standard
SVM for the RBF kernel when a low number of labeled samples
is available, and unlabeled samples help in estimating the
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Fig.4. RGB color composite and classification maps for the analyzed MERIS
multispectral images using the best LapSVM classifiers.

geometry of the manifold. The linear kernel seems to be more
appropriate for the presented cloud-screening application if the
number of labeled samples is low, while the difference between
the linear and the RBF kernels decreases as the number of
labeled samples increases. It is well known that simple (linear)
decision functions are more appropriate in extremely ill-posed
situations. As in the urban classification problem, LapSVM
produces better classification results than TSVM when a mod-
erate number of labeled samples is used (both methods provide
similar classification accuracies when a low number of labeled
samples is available). Finally, the « surface for the LapSVM in
Fig. 2 (bottom right) confirms, in general terms, the importance
of both labeled and unlabeled information in this problem.

3) Visual Inspection: We used the best LapSVM to classify
the whole scenes, which consist of MERIS L1b images of
1153 x 1153 pixels (reduced to around 500000 useful pix-
els after the projection in latitude/longitude coordinates). The
classification map for the 2003 and 2004 images are shown in
Fig. 4. In this figure, we use as -ground truth a cloud classifica-
tion made by an operator following the methodology described
in [18]. Excellent classification accuracy of 95.51% and 96.48%
are obtained for the 2003 and 2004 images, respectively. The
value of & is 0.78 for both images and reflects the misclassifi-
cation of a significant number of false cloud pixels, while all
cloud pixels are correctly classified, suggesting that LapSVM
benefits from the inclusion of unlabeled samples and obtains
a reliable estimation of the marginal cloud data distribution.
The committed errors correspond to high-altitude locations and
bright bare-soil covers which are not well represented in the
small randomly selected training set.

IV. CONCLUSION

A semisupervised method has been presented for the clas-
sification of urban areas and clouds. This method brings to-
gether the ideas of spectral graph theory, manifold learning,
and kernel-based algorithms in a coherent and natural way to
incorporate geometric structure in a kernel-based regularization
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framework. The solution of the LapSVM constitutes a convex-
optimization problem and results in a natural out-of-sample
extension from the labeled and unlabeled training samples
to novel examples, thus solving the problems of previously
proposed methods. Results showed an increase on the LapSVM
classification accuracy with respect to the standard SVM, both
with linear or RBF kernels, and the TSVM, suggesting that
considered problems hold a complex manifold.

This letter has also revealed the potential of this classification
method in remote sensing image classification, when reduced
training sets are available. In particular, it has accurately iden-
tified urban areas in multisensor imagery and located cloud
covers in MERIS multispectral images. In both classification
problems, it becomes very difficult to obtain a representative
training set for all possible situations, thus motivating the
introduction of a semisupervised method exploiting the un-
labeled data.
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About the Cover: DInSAR mean deformation velocity map (in color) relevant to an area located in central Nevada, extending for
about 600 x 100 km. The presented map, superimposed on an SRTM DEM (gray scale) of the zone, has been obtained by combining
datarelevant to six contiguous standard ERS SAR frames (track: 442, frames: 2781-2871) and by subsequently applying the SBAS-
DInSAR algorithm to the overall data set composed by 264 frames (44 data sets for each frame). The investigated time period spans
the 1992-2000 interval, and the spatial resolution of the DInSAR products is of about 200 x 200 m. The presented five plots show the
deformation time series relevant to some of the main deformation patterns revealed by the SBAS-DInSAR analysis: (a) Lone Tree
Gold Mine: subsidence due to water pumping in support of open-pit gold mining at the Lone Tree gold mine. (b) Crescent Valley:
similar processes than for the Lone Tree Gold Mine occurring here at the Cortez Gold Mine. (c) Antelope Valley: subsidence due to
water pumping in support of agricultural exploitation. (d) Eureka Valley Earthquake (M6.1 May 17, 1993). (e) Coso Geothermal
Area: deformation associated with geothermal production and intense microseismicity. For more information, please see ‘‘SBAS-
DInSAR Analysis of Very Extended Areas: First Results on a 60 000-km? Test Site,”” by Casu et al., which begins on page 438.
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DInSAR results obtained by applying the Small BAseline Subset (SBAS) technique to a dataset of 264 ERS SAR frames relevant to an area of 600 x 100 km,
located in central Nevada. (a) Retrieved mean deformation velocity map (in color) superimposed on an SRTM DEM (gray scale) of the zone.
(b)—(f) DInSAR deformation time series for the pixels marked in (a) by triangles and labeled by the letters from B to F.

< IEEE






