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Abstract

Earth Observation systems monitor our Planet by measuring, at different wavelengths, the

electromagnetic radiation that is reflected by the surface, crosses the atmosphere, and reaches the

sensor at the satellite platform. In this process, clouds are one of the most important compo-

nents of the Earth’s atmosphere affecting the quality of the measured electromagnetic signal and,

consequently, the properties retrieved from these signals. This Thesis faces the challenging prob-

lem of cloud screening in multispectral and hyperspectral images acquired by space-borne sensors

working in the visible and near-infrared range of the electromagnetic spectrum. The main objec-

tive is to provide new operational cloud screening tools for the derivation of cloud location maps

from these sensors’ data. Moreover, the method must provide cloud abundance maps –instead

of a binary classification– to better describe clouds (abundance, type, height, subpixel coverage),

thus allowing the retrieval of surface biophysical parameters from satellite data acquired over

land and ocean. In this context, this Thesis is intended to support the growing interest of the

scientific community in two multispectral sensors on board two satellites of the European Space

Agency (ESA). The first one is the MEdium Resolution Imaging Spectrometer (MERIS), placed

on board the biggest environmental satellite ever launched, ENVISAT. The second one is the

Compact High Resolution Imaging Spectrometer (CHRIS) hyperspectral instrument, mounted on

board the technology demonstration mission PROBA (Project for On-Board Autonomy). The

proposed cloud screening algorithm takes advantage of the high spectral and radiometric resolu-

tion of MERIS, and of the high number of spectral bands of CHRIS, as well as the specific location

of some bands (e.g., oxygen and water vapor absorption bands) to increase the cloud detection

accuracy. To attain this objective, advanced pattern recognition and machine learning techniques

to detect clouds are specifically developed in the frame of this Thesis. First, a feature extraction

based on meaningful physical facts is carried out in order to provide informative inputs to the

algorithms. Then, the cloud screening algorithm is conceived trying to make use of the wealth

of unlabeled samples in Earth Observation images, and thus unsupervised and semi-supervised

learning methods are explored. Results show that applying unsupervised clustering methods over

the whole image allows us to take advantage of the wealth of information and the high degree of

spatial and spectral correlation of the image pixels, while semi-supervised learning methods offer

the opportunity of exploiting also the available labeled samples.
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Overview

Earth Observation (EO) covers those procedures and scientific methodologies focused on mon-

itoring our Planet by means of electromagnetic radiation sensors located on space-borne or air-

borne platforms. The information these sensors provide represents spatial and temporal scales

completely different to those obtained from ground measurements. Particularly, optical passive

remote sensing lies on the study of the surface by means of the solar radiation reflected by the

observed target and transmitted through the atmosphere to the sensor.

Materials in a scene reflect, absorb, and emit electromagnetic radiation in different ways

depending on their molecular composition and shape. Remote sensing exploits this physical fact

and deals with the acquisition of information about a scene at a short, medium, or long distance.

The radiation acquired by a sensor is measured at different wavelengths, and the resulting spectral

signature (or spectrum) is used to identify a given material or to retrieve surface biophysical

parameters from it. The field of spectroscopy is concerned with the measurement, analysis, and

interpretation of such spectra.

However, EO from remote sensing data implies accounting for the coupling between atmo-

sphere and surface radiative effects. If there were no atmosphere around the Earth, the solar

radiation would only be perturbed when it reached the surface. Therefore, incoming radiation

would provide a direct representation of the surface nature and the associated dynamics when

registered by a space-borne sensor. Nevertheless, the atmospheric influence on the visible (VIS)

and infrared (IR) radiation is strong enough to modify the reflected electromagnetic signal, caus-

ing the loss or corruption of part of the carried information. The interaction of the solar radiation

with the atmospheric components consists of absorption and scattering processes. The absorption

decreases the intensity of the radiation arriving at the sensor, which causes a loss of the brightness

of the target, while the scattering mainly acts modifying the propagation direction.

In this scenario, clouds are one of the most important components of Earth’s atmosphere, and

constitute the core focus of this work. The presence of clouds affects dramatically the quality

and reliability of the measured electromagnetic signal and thus the retrieved surface properties.

The corresponding cloud influence depends on the cloud type, cloud cover, cloud height, and

cloud distribution in the sky. For instance, thick opaque clouds impede the incoming radiation

reaching the surface, while thin transparent clouds contaminate the data with photons scattered



in the observation direction or attenuates the signal by the removal of photons in their travel to

the sensor. As a result, any set of remote sensing images needs for cloud screening in the initial

processing steps before exploiting the data to ensure a maximal accuracy in the results. This is

the fundamental basis of cloud screening in optical remote sensing: the detection of the clouds in

the observer’s line of sight in order to identify the usefulness of the signal reflected by the target.

Accurate identification of clouds in remote sensing images is a key issue for a wide range of

remote sensing applications, especially in the case of sensors working in the visible and near-

infrared (VNIR) range of the electromagnetic spectrum. The amount of images acquired over the

globe every day by the instruments on board EO satellites makes inevitable that many of these

images present cloud covers, whose extent depends on the season and the geographic position of

the study region. It is estimated that more than 60% of the globe is covered by clouds. Therefore,

from an operational point of view, undetected clouds are the most significant source of error for

ground reflectance retrieval, affecting a wide range of remote sensing applications.

One the one hand, clouds can be viewed as a source of contamination that makes the image

partly useless for assessing landscape properties. Without an accurate cloud masking, undetected

clouds in the scene are the most significant source of error for true ground reflectance estimation,

and thus for biophysical parameter retrieval over both water and land covers. By masking only

those image areas affected by cloud covers, the whole image must not be necessarily discarded,

increasing usability of remote sensing data or making multitemporal studies possible. On the

other hand, global scale monitoring of clouds is a key requirement for an adequate modeling

of the Earth’s climate. Having a global scale monitoring of clouds is becoming more and more

important in climatological aspects: clouds contribute significantly to the global radiation budget

with its role in the direct radiative forcing, and thin clouds are responsible for the atmospheric

greenhouse effect. Therefore, clouds can be viewed as a source of contamination that makes

the image partly useless for assessing landscape properties, or as a source of information for

measuring important climatological parameters. In both cases, an automatic and accurate method

for cloud screening in optical remote sensing is required. As a result, cloud screening represents

an important preprocessing task for any EO image in order to ensure a maximal accuracy and

reliability in the results inferred by the latter exploitation of the data.

Under the light of the aforementioned needs and demands, the present Thesis addresses the

crucial problem in the remote sensing of environment of developing an operational, accurate and

automated set of tools for the discrimination of clouds. We can clearly state different objectives

in this work:

1. To analyze the problem of cloud detection under different perspectives. The intrinsic multi-

disciplinary nature of this work (in the intersect of Physics, Thermodynamics, Telecom-

munications, Computer Science and Machine Learning) will allow us to extract different

features for better understanding and modeling the problem.

2. To better understand signals provided by ENVISAT/MERIS (Rast et al., 1999) and PROBA

xiv



/CHRIS (Barnsley et al., 2004) imaging spectrometers. In particular, PROBA is a tech-

nology demonstration satellite whose sensor CHRIS provides minimally preprocessed data.

Appropriate correction and calibration of CHRIS and MERIS data is a key issue for accurate

cloud screening and also for other remote sensing applications.

3. To develop an automatic, robust and operational algorithm for cloud screening. The algo-

rithm should primarily provide a cloud mask interpretable as cloud abundance.

4. To validate the proposed algorithm extensively. This is achieved through two different ways:

comparing the resulting cloud masks with the official MERIS and CHRIS products and with

the multi-temporal classification of cloud-covered image series.

5. To provide the remote sensing community with a set of guidelines and recommendations for

developing further missions and satellite sensors.

This Thesis is organized in four different parts: (1) a thorough literature review, (2) the devel-

opment of a set of robust tools for automated cloud screening, (3) the evaluation of the proposed

algorithms in real situations, and (4) the elaboration of a set of guidelines and recommendations

aimed to be useful for further missions:

Part I reviews the fundamental basis of passive remote sensing, cloud physical and optical prop-

erties, along with a compilation of state-of-the-art cloud screening methods. This first step

identifies strengths and weaknesses of the most representative algorithms to date.

Part II addresses the proposed methodology for cloud product generation. In particular, to

obtain cloud probability masks and knowledge from the extracted cloud features.

Part III deals with the validation of the proposed methodology and cloud products. A wide

database of images has been included in the study in order to take into account their

different characteristics: type of cloud (cumulus, cirrus, stratocumulus); geographic location

(latitude/longitude); date (season); and surface types. The validation of cloud detection

algorithms is not an easy task because there is no independent measurement with the same

spatial resolution. For this reason, significant effort has to be done in order to validate

results by using different techniques.

Part IV summarizes the accomplished objectives, discusses the main conclusions, and provides

guidelines and recommendations to improve cloud screening for multispectral imaging spec-

trometers in future EO missions.
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Chapter 1

Remote Sensing from Earth

Observation Satellites

Passive optical remote sensing relies on solar radiation as the source of illumination. This

solar radiation travels across the Earth atmosphere before being reflected by the surface and

again before arriving at the sensor. Thus, the signal measured at the satellite is the emergent

radiation from the Earth surface-atmosphere system in the sensor observation direction.

The reflectance of the observed target should be the parameter of interest since it characterizes

the surface independently of atmospheric effects and seasonal and diurnal differences in solar

position. However, the estimation of the surface reflectance from the radiance measured at the

satellite –also known as atmospheric correction– requires an accurate estimation of the parameters

used to model the atmospheric effects and then to compensate them using a proper radiative

transfer model. The main problem is that, radiative transfer modeling for surface reflectance

retrieval assumes cloud-free data in order to estimate atmospheric parameters from the data

themselves. Thus, results over clouds have no physical interpretation and a previous accurate

cloud screening is required. Hence, cloud screening is the first processing step after noise reduction

and radiometric calibration.

We must state here that atmospheric correction procedure is out of the scope of this Thesis.

Nevertheless, since cloud screening is carried out before the atmospheric correction is done, inter-

action between the atmosphere and the radiation will be taken into account in order to quantify

the atmospheric effects on the measured signal. Moreover, an accurate formulation of the atmo-

spheric effects on the retrieved signal allows us to estimate useful features to discriminate clouds

from surface.

In this chapter, a brief introduction to the solar electromagnetic radiation and its interaction

with the Earth atmosphere is given. The absorption and scattering processes affecting the solar

electromagnetic radiation in its path across the atmosphere until reaching the sensor are described.

The acquisition and operation mode of common multispectral imaging spectrometers is detailed.
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Finally, a brief description of ENVISAT/MERIS and PROBA/CHRIS satellite sensors is included

together with discussion about current opportunities and identified problems that justify the

selection of these sensors and cloud screening to be studied in the present Thesis.

1.1 Electromagnetic Radiation and Radiative Transfer

1.1.1 Electromagnetic Radiation

Electromagnetic radiation (EMR) travels through space in the form of periodic disturbances

of electric and magnetic fields that simultaneously oscillate in planes mutually perpendicular

to each other and to the direction of propagation through space at the speed of light (c =

2.99792458 × 108 m/s). The electromagnetic spectrum is a continuum of all electromagnetic

waves arranged according to frequency or wavelength, which are defined as the number of wave

peaks passing a given point per second and the distance from peak to peak, respectively. Thus,

both frequency, ν (Hz), and wavelength, λ (m), of an EMR wave are related by its propagation

speed, c = λν. The energy carried by EMR is contained in the photons that travel as a wave,

being the energy in a photon proportional to the frequency, E = hν = ~ω, where h is the Planck’s

constant (h = 6.626 × 10−34 J s) and ~ = h/2π is called the reduced Planck’s constant.

The spectrum is divided into regions based on wavelength ranging from short gamma rays,

which have wavelengths of 10−6 µm or less, to long radio waves which have wavelengths of many

kilometers. Since the range of electromagnetic wavelengths is so vast, the wavelengths are often

shown graphically on a logarithmic scale (see Fig. 1.1 for a detailed classification of the electro-

magnetic spectrum). Visible light is composed of wavelengths ranging from 400 to 700 nm, i.e.

from blue to red. This narrow portion of the spectrum is the entire range of the electromag-

netic energy to which the human visual system is sensitive to. When viewed through a prism,

this range of the spectrum produces a rainbow, that is, a spectral decomposition in fundamental

harmonics or frequency components (colors). Just beyond the red-end of the visible (VIS) region

there is the region of infrared (IR) energy waves: near-infrared (NIR), shortwave-infrared (SWIR),

middle-infrared (MIR), and the thermal-infrared (TIR).

The VIS and IR regions are commonly used in remote sensing. In particular, passive optical

remote sensing is mainly focused in the VIS and NIR spectral region (VNIR), and in the SWIR

since it depends on the Sun as the unique source of illumination. The predominant type of energy

detection in the wavelength regions from 400 to 3000 nm (VNIR and SWIR) is based on the

reflected sunlight.

1.1.2 Solar Irradiance

Energy generated by nuclear fusion in the Sun’s core is the responsible for the electromagnetic

radiation emitted by the Sun in its outer layer, which is known as the photosphere. It is the

4
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Figure 1.1: Electromagnetic spectrum classification based on wavelength range.

continuous absorption and emission of EMR by the elements in the photosphere that produces

the light observed emanating from the Sun. The absorption characteristics of these elements

produces variations in the continuous spectrum of solar radiation, resulting in the typical solar

irradiance spectral curve. It must be stressed that 99% of the solar radiative output occurs within

the wavelength interval 300-10000 nm.

The rate of energy transfer by EMR, the so-called radiant flux, incident per unit area is termed

the radiant flux density or irradiance (W/m2). A quantity often used in remote sensing is the

irradiance per unit wavelength, and is termed the spectral irradiance (with units W/m2/nm). The

total radiant flux from the Sun is approximately 3.84 × 1026 W and, since the mean Earth-Sun

distance is 1.496 × 1011 m, the total solar irradiance, over all wavelengths, incident at the top of

the atmosphere (TOA), at normal incidence to the Earth’s surface, is

F0 =
3.84 × 1026

4π(1.496 × 1011)2
= 1370 W/m2, (1.1.1)

which is known as the the solar constant, although it presents a considerable variation with time.

The observed variations at the Sun are due to localized events on the photosphere known as

sunspots and faculae1. An increased number of these events occurs approximately every 11 years,

a period known as the solar cycle. However, the largest source of variation in the incident solar

irradiance at the TOA is the orbit of the Earth around the Sun, due to the variable Earth-Sun

distance that varies with the day of year.

Space-borne instruments allow us measuring the spectral variation in solar irradiance at the

TOA without the effects of the Earth’s atmosphere which, depending on the wavelength of the

1Sunspots are dark areas on the photosphere which are cooler than surrounding regions. They have lifetimes

ranging from a few days to weeks and are accompanied by strong magnetic fields. Faculae are regions of the

photosphere which are hotter than their surroundings. They often occur in conjunction with sunspots and also

possess strong magnetic fields and similar lifetimes.

5



Chapter 1. Remote Sensing from Earth Observation Satellites

200 400 600 800 1000 1200 1400 1600 1800 2000 2200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

wavelength (nm)

S
ol

ar
 Ir

ra
di

an
ce

 (
W

/m
2 /n

m
)

 

 
Thuillier et al. (2003)

Figure 1.2: Solar spectral irradiance at the top of the Earth’s atmosphere.

radiation, can reduce the intensity of the measured radiation. In this Thesis, the used solar

spectral irradiance curve, F0(λ), comes from Thuillier et al. (2003), where the ultraviolet (UV),

visible, and infrared spectra from the ATmospheric Laboratory for Applications and Science

(ATLAS) and the EUropean Retrieval CArrier (EURECA) missions were merged into a single

absolute solar irradiance spectrum covering the 200 to 2400 nm range. In particular, the SOLar

SPECtrum (SOLSPEC) and the SOlar SPectrum (SOSP) spectrometers, on board ATLAS and

EURECA missions respectively, were used to carry out the solar spectral irradiance measurements.

Figure 1.2 shows the solar spectral irradiance at the top of the Earth’s atmosphere (Thuillier et al.,

2003).

It can be shown that the solar intensity curve resembles that of a Planck’s distribution, B(λ, T ),

for a blackbody at a temperature T = 5777 K (Fig. 1.3):

B(λ, T ) =
2~c2

λ5(exp( ~c
kBTλ) − 1)

, (1.1.2)

where, kB is the Boltzmann’s constant (kB = 1.38×10−23 J/K). The maximum emission intensity

of the curve occurs around 500 nm. This fact is consistent with Wien’s displacement law, which

states that the wavelength (λmax) corresponding to the peak in Planck’s curve for a blackbody

radiating at a temperature T are related as follows:

λmaxT = 2.898 × 106 (nm K). (1.1.3)

Finally, the Stefan-Boltzmann law states that the total power emitted by a blackbody, per unit

surface area of the blackbody, varies as the fourth power of the temperature:

F = π

∫ ∞

0
B(λ, T )dλ = 5.671 × 10−8T 4 (W/m2) (1.1.4)
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Figure 1.3: Blackbody emission of objects at typical temperatures.

Because the Sun and Earth’s spectra have a very small overlap (Fig. 1.3), the radiative transfer

processes for solar and infrared regions are often considered as two independent problems.

1.1.3 Earth Atmosphere

The Earth’s surface is covered by a layer of atmosphere consisting of a mixture of gases and

other solid and liquid particles. The principal gaseous constituents, present in nearly constant

concentration, are nitrogen (78%), oxygen (21%), argon (1%), and-minor constituents (<0.04%).

Water vapor and an ozone layer are also present. The atmosphere also contains solid and liquid

particles such as aerosols, water droplets (clouds or raindrops), and ice crystals (snowflakes).

These particles may aggregate to form clouds and haze.

The vertical profile of the atmosphere is divided into four main layers: troposphere, strato-

sphere, mesosphere, and thermosphere. The tops of these layers are known as the tropopause

(10 km), stratopause (50 km), mesopause (85 km), and thermopause, respectively. The gaseous

materials extend to several hundred kilometers in altitude, though there is no well-defined limit

of the atmosphere.

All the weather activities (water vapour, clouds, precipitation) are confined to the troposphere.

A layer of aerosol particles normally exists near to the Earth’s surface, and the aerosol concen-

tration decreases nearly exponentially with height, with a characteristic height of about 2 km. In

fact, the troposphere and the stratosphere together (first 30 km of the atmosphere) account for

more than 99% of the total mass of the Earth’s atmosphere. Finally, ozone exists mainly at the

stratopause.

The characteristic difference between molecules and aerosols in the atmosphere is their respec-

tive size or radius (D’Almeida et al., 1991). Molecules have a radius on the order of 0.1 nm, while

7
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Figure 1.4: Relative atmospheric radiation transmission. Gray denotes absorption bands and blue areas

denote atmospheric windows (transmission peaks).

aerosols can have a range of radii from 100 to 1000 nm. Both molecules and aerosols are opti-

cally active, causing the absorption and scattering of the electromagnetic radiation, respectively.

Therefore, when the EMR from the Sun reaches Earth’s atmosphere, it may be (Hapke, 1993):

• Absorbed : incident radiation is taken in by the medium. A portion of the radiation is

converted into internal heat energy that is emitted or radiated back at longer thermal

infrared wavelengths.

• Scattered : incident radiation is dispersed or spread out by the particles suspended in the

medium unpredictably in all directions. Radiation is absorbed and subsequently reemitted

at about the same wavelength without energy transformation, changing only the spatial

distribution of the radiation.

• Transmitted : incident radiation passes through matter with measurable attenuation (ab-

sorbed or scattered).

• Reflected : incident radiation bounces off the surface of a substance in a predictable (specular

reflection) or unpredictable (diffuse reflection) direction. Reflection consists in the scattering

of the EMR by an object.

The overall effect is the removal of energy from the incident radiation. The amount of radiant

energy that the atmosphere either removes or adds to that emitted or reflected from the Earth’s

surface depends on:

• the constituents of the atmosphere,

• the path length of radiation (function of the geometry of the illumination, the surface, and

the observation),

• the reflectance of the surface target area and the surrounding scene.

8
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Figure 1.5: Solar irradiance at the top of the atmosphere and at the sea level, and blackbody emission

spectrum at 5900 K.

Each type of molecule (constituent) has its own set of absorption bands in various parts

of the electromagnetic spectrum (D’Almeida et al., 1991). Absorption by atmospheric gases is

dominated by that of water vapor (H2O), carbon dioxide (CO2), and ozone (O3) with smaller

contributions of the methane (CH4), carbon monoxide (CO) and other trace gases. CO2 and

CH4 are essentially uniformly distributed in the atmosphere, hence the effect of their absorption

bands can be predicted reasonably well, while the water vapor distribution is rather variable in

both location and altitude. Figure 1.4 shows the relative atmospheric radiation transmission of

different wavelengths. A first consequence of the atmospheric effects is that wavelength bands

used in remote sensing systems are usually designed to fall within these atmospheric transmission

windows, outside the main absorption bands of the atmospheric gases, to minimize the atmospheric

effects.

Figure 1.5 shows the spectral features of the solar radiation outside the atmosphere (external

line) and at the sea level (internal line). The maximum is located at 0.47 µm, being about 20% of

the solar energy in wavelengths lower than that, and a 44% in the visible band, between 0.40 µm

and 0.76 µm. It is evident that water vapor is the most important absorber in the solar NIR

spectrum, which contains about 50% of the solar energy.

1.1.4 At-Sensor Radiance

Signal measured at the satellite is the emergent radiation from the Earth surface-atmosphere

system in the sensor observation direction. The incoming solar radiation, F0(λ), that we use for

the observation of the surface, travels throughout the complex Earth atmosphere medium before is

reflected by the surface, and the reflected signal travels again throughout the atmosphere before

it arrives at the sensor. The measured at sensor radiance is called TOA radiance, and is the

information we have to deal with when working with remote sensing data before atmospheric

9
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correction. The absorption and scattering processes affecting the solar electromagnetic radiation

in its path across the atmosphere can be summarized as follows:

• Atmospheric absorption, which affects mainly the visible and infrared bands, reduces the

solar radiance within the absorption bands of the atmospheric gases. The reflected radiance

is also attenuated after passing through the atmosphere. This attenuation is wavelength

dependent. Hence, atmospheric absorption will alter the apparent spectral signature of the

target being observed.

• Atmospheric scattering is important only in the visible and near infrared regions. Scattering

of radiation by the constituent gases and aerosols in the atmosphere causes degradation of

the remotely sensed images. Most noticeably, the solar radiation scattered by the atmo-

sphere towards the sensor without first reaching the ground produces a hazy appearance of

the image. This effect is particularly severe in the blue end of the visible spectrum due to

the stronger Rayleigh scattering for shorter wavelength radiation.

• Furthermore, the light from a target outside the field of view of the sensor may be scattered

into the field of view of the sensor. This effect is known as the adjacency effect. Near

the boundary between two regions of different brightness, the adjacency effect results in an

increase in the apparent brightness of the darker region, while the apparent brightness of

the brighter region is reduced.

In this section, the interaction of the solar irradiance with the molecules and aerosols in the

atmosphere is described by a simplified version of the radiative transfer equation in order to

quantify the different contributions to the measured signal.

Radiance and Irradiance

We describe radiation in terms of energy, power, and the geometric characterization of power

(Fig. 1.6). The radiant power, Φ, is the flux or flow of energy in the stream of time, hence power

is represented in watts (W). Flux density is the amount of radiant power emitted or received in

a surface region. In fact, radiant intensity, irradiance, and radiance are different flux densities

obtained by integrating the radiant power over the area, A, and/or the solid angle, ω, of the

surface2:

• Irradiance, F , is defined as the received radiant power per unit area: F = dΦ/dA (W/m2).

• Intensity, I, is an angular flux density defined as the power per unit solid angle: I = dΦ/dω

(W/sr).

2The area measures the surface region of a two- or three-dimensional object in square meters (m2), while the

solid angle is the projection of an area onto a sphere, or the surface area of the projection divided by the square of

the radius of the sphere, which is measured in stereoradians (sr).

10
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Figure 1.6: Illustration of the geometric characterization of the incident irradiance, radiant intensity, and

radiance.

• Radiance, L, is an angular-area flux density defined as the power and unit area per unit

solid angle (W/m2/sr).

The fundamental radiometric quantity is the radiance that is the contribution of the electro-

magnetic power incident on a unit area dA by a cone of radiation subtended by a solid angle dω

at an angle θ to the surface normal. It has units W/m2/sr, although spectral radiance (radiance

per unit wavelength, W/m2/nm/sr) is also commonly used, and is expressed mathematically as,

L(λ, θ, ψ) =
d2Φ(λ)

cos(θ)dωdA
. (1.1.5)

where θ and ψ are the zenith and azimuth angle3, respectively. Irradiance and intensity can

be computed from the radiance, with appropriate integration: Irradiance is the integral of the

radiance over all solid angles, and Intensity is the integral of the radiance over all areas.

If the radiance from the Sun incident at the TOA is denoted L0, then the at-sensor solar

irradiance described in section 1.1.2 is obtained by integrating over all possible zenith angles and

azimuth directions, that is,

F0(λ) =

∫ 2π

0

∫ π/2

0
L0(λ, θ, ψ) cos(θ) sin(θ)dθdψ, (1.1.6)

where dω is expressed in spherical polar coordinates as sin(θ)dθdψ.

Defining µ = cos(θ), which is the inverse of the so called optical mass, (1.1.6) can be rewritten

as

F0(λ) =

∫ 2π

0

∫ 1

0
L0(λ, θ, ψ)µdµdψ. (1.1.7)

If a radiation field is termed isotropic, then at any point in the field the intensity of measured

radiation is independent of the direction of observation (i.e., independent of θ and ψ). In this

3A zenith angle is a vector’s angular deviation from an outward normal to the Earth’s surface and azimuth is

the horizontal angular variation of a vector from the direction of motion or true North.
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case,

F0(λ) = πL0(λ), (1.1.8)

which can be rearranged to give the expression for radiance,

L0(λ) = F0(λ)/π, (1.1.9)

If the illuminating radiation is composed of parallel beams emanating from the direction (µ0,ψ0),

then

L0(λ, θ, ψ) =
F0(λ)

π
δ(µ− µ0)δ(ψ − ψ0), (1.1.10)

which is equivalent to the isotropic case when µ = µ0 and ψ = ψ0.

Radiation extinction

The energy transfer in a complex medium, such as the atmosphere, is generally affected

by absorption, scattering and emission (Hapke, 1993). In the case of the Earth atmosphere

and optical remote sensing, the emission process can be neglected due to the low atmosphere

temperature (150-300 K), which corresponds to a blackbody emission centered in the thermal

infrared wavelengths. Therefore, the two dominant mechanisms affecting the propagation of EMR

of wavelengths between 400-2500 nm in the terrestrial atmosphere are absorption and scattering

(Lenoble, 1993). The absorption (mainly corresponding to the gases, since aerosol absorption is

comparatively marginal) acts decreasing the radiation in a given direction, while the scattering

(the molecules and aerosols) may increase or decrease the intensity in the same direction, by

means of the deviation of the radiation propagating towards other directions or, on the contrary,

modifying the direction of the radiation into the considered direction.

The absorption and the scattering associated to the loss of energy in the considered direction

can be treated as two separate events, and their combined effect is known as extinction. The

extinction action on the radiation can be formulated by means of the Bouguer-Lambert-Beer law,

which is defined by a simple differential equation considering that the radiance loss is proportional

to the total energy amount and to the crossed distance. If we consider a layer of thickness dz in

an absorbing and scatterer medium perpendicular to a radiation beam of radiance L, the radiance

has been changed to L+ dL, so the variation is given by

dL = −βeLdz, (1.1.11)

where βe is the volume extinction coefficient, which is the sum of the volume absorption and

scattering coefficients. If we integrate between two positions, z1 and z2

L(z2) = L(z1) exp

(

−
∫ z2

z1

βe(z)dz

)

= L(z1)e
−τ (1.1.12)

where τ is called optical thickness. Eq. 1.1.12 is known as Beer’s exponential extinction law and

provides the expression of the transmittance T (z1, z2) of the layer between z1 and z2 along the
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direction of propagation by

T (z1, z2) =
L(z2)

L(z1)
= e−τ . (1.1.13)

The optical thickness (often referred to as optical depth) serves as a measure of the opacity or

turbidity of the atmosphere for a given wavelength of EMR. From an altitude z above the Earth’s

surface to the TOA, the total optical depth is calculated as

τtot(λ) =

∫ ∞

z
βe(λ, z)dz =

∫ ∞

z
κtot(λ)δatm(z)dz, (1.1.14)

where κtot(λ) is the total extinction coefficient (which can be specified for each of the molecular

species in the atmosphere) and δatm(z) is the density of the intervening atmosphere between z and

the TOA. For the absorbing and scattering atmospheres we have respectively the absorbing and

scattering optical thicknesses τabs(λ) and τdif(λ). The solar intensity measured at the Earth’s sur-

face assumes the form of the extinction Bouguer-Lambert-Beer law, Ls(λ) = L0(λ) exp(−τtot(λ)).

TOA Signal Formulation

A simple but accurate formulation of the TOA signal measured by the space-borne sensor in

terms of surface reflectance and atmospheric optical parameters is necessary for the evaluation

of TOA radiance (Liou, 2002). In this formulation, the TOA radiance is expressed as a sum of

radiative terms from different processes, such as the radiation scattered by the atmosphere into

the sensor line of sight, or the direct radiation multiply scattered between the atmosphere and

the surface.

Specifically, the contribution of the target to the upward TOA radiance can be decomposed as

the sum of five terms, which are shown in Fig. 1.7: (1) the photons reflected by the atmosphere

before reaching the surface, (2a) the photons directly transmitted from the Sun to the target and

directly reflected back to the sensor, (2b) the photons scattered by the atmosphere then reflected

by the target and directly transmitted to the sensor, (3a) the photons directly transmitted to the

target but scattered by the atmosphere on their way to the sensor, and, finally, (3b) the photons

having at least two interactions with the atmosphere and one with the target.

In this formulation, the direction of propagation of EMR incident at the TOA or Earth’s

surface from the Sun will be denoted by the illumination zenith and azimuth angle, θs and ψs.

Similarly, the direction of EMR emerging from the Earth’s surface-atmosphere system is denoted

by the viewing zenith and azimuth angle, θv and ψv .

The TOA radiance signal registered by a sensor looking at an homogeneous Lambertian4

surface would be given by the following simplified radiative transfer equation (Tanré et al., 1979;

4In Lambertian surfaces the reflected radiance is isotropous or perfectly diffuse. Thus, the reflected field is the

same for all of the points in the surface, and independent of the view angle.
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Figure 1.7: Contributions to TOA signal from surface and atmosphere (from Verhoef and Bach, 2003).

Vermote et al., 1997; Renzullo, 2004; Guanter, 2006):

LTOA = Lp +
1

π

ρs(Fdirµs + Fdif)T↑
1 − sρs

(1.1.15)

where LTOA is the TOA radiance; Lp is the atmospheric path radiance, component of the radi-

ance emerging from the TOA that is independent of surface reflectance; µs is the cosine of the

illumination zenith angle, measured between the solar ray and the surface normal; Fdirµs and Fdif

are the direct and diffuse fluxes arriving at the surface, respectively; s is the atmospheric spherical

albedo, reflectance of the atmosphere for isotropic light entering it from the surface; T↑ is the total

atmospheric transmittance (for diffuse plus direct radiation) in the observation direction; and ρs

is the surface reflectance.

In (1.1.15), one can appreciate the complexity of the retrieval of the surface reflectance ρs,

which is usually the parameter of interest since it characterizes the surface independently of

atmospheric effects and seasonal and diurnal differences in solar position. The estimation of the

surface reflectance from the TOA radiance measured at the satellite (also known as atmospheric

correction), requires an accurate estimation of the parameters quantifying the atmospheric effects

and then to compensate them using a proper radiative transfer model. However, in order to

estimate atmospheric parameters from the data themselves, which is out of the scope of this

Thesis, a previous accurate cloud screening is required. This is a vicious circle. Hence, an

acceptable compromise is to use the TOA apparent reflectance instead of surface reflectance to

perform cloud screening. TOA reflectance is estimated according to Vermote et al. (1997):

ρTOA =
πLTOA

µsF0
, (1.1.16)

which allows us to remove the dependence on particular illumination conditions (day of the year
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and angular configuration) and illumination effects due to rough terrain (cosine correction). It is

worth noting that illumination effects are usually higher than the atmospheric effects depending

on the geometric configuration. Think for example in the huge contrast that can be appreciated

on a spherical object illuminated at an angle with a lamp (Gómez-Sanchis et al., 2008d). One

can see that ρTOA becomes the surface reflectance ρs under the following conditions: atmospheric

path radiance Lp = 0; diffuse illumination Fdif = 0; direct illumination equal to the TOA solar

irradiance Fdir = F0; atmospheric spherical albedo s = 0; and total atmospheric transmittance

T↑ = 1. That is, when the Earth’s atmosphere completely disappears.

1.2 Multispectral and Hyperspectral Imaging Spectrometers

As shown in previous sections, materials reflect, absorb, and emit electromagnetic radia-

tion in different ways depending on their molecular composition and shape. Remote sensing

exploits this physical fact and deals with the acquisition of information about a scene at a

short, medium, or long distance. The radiation acquired by a sensor is measured at different

wavelengths, and the resulting spectral signature (or spectrum) is used to identify a given ma-

terial or to retrieve surface biophysical parameters by means of regression and inversion models

(Gómez-Chova et al., 2001; Gómez-Chova, 2002; Camps-Valls et al., 2005, 2006c, 2008b). The

field of spectroscopy deals with the measurement, analysis, and interpretation of such spectra

(Richards and Jia, 1999); and it is worth noting that it can be applied to a broad range of

problems not related to Earth observation, such as industrial applications (Calpe et al., 2003;

Calpe-Maravilla et al., 2004b, 2005, 2006; Vila et al., 2005; Vila-Francés et al., 2005, 2006b) or

food engineering (Gómez-Sanchis et al., 2008c,a,b). Figure 1.8 shows the application of imaging

spectroscopy to perform satellite remote sensing. In imaging spectroscopy or hyperspectral remote

sensing (Goetz et al., 1985; Schaepman et al., 2006), the resulting multispectral image consists of

a simultaneous acquisition of spatially coregistered images, in several, spectrally contiguous bands,

measured in calibrated radiance units, from a remotely operated platform.

Clear examples of multispectral sensors on-board satellite platforms are Landsat/TM, SPOT/

HRV, TERRA/ASTER or IKONOS, which present a few spectral bands and with broad band-

widths (Capolsini et al., 2003). Recent satellite sensors are capable of acquiring images at many

more wavelength bands. For example, the NASA’s TERRA/MODIS (Salomonson et al., 1989)

or ESA’s ENVISAT/MERIS (Bezy et al., 1999; Rast et al., 1999) sensors acquire tens of spectral

bands with narrow bandwidths, enabling the finer spectral characteristics of the targets to be

captured by the sensor. This kind of sensors are commonly called superspectral sensors. Finally,

a hyperspectral image consists of about a hundred or more narrow and contiguous spectral bands.

The precise spectral information contained in a hyperspectral image enables better characteriza-

tion and identification of targets (Gómez-Chova et al., 2001, 2004a; Calpe-Maravilla et al., 2004a;

Camps-Valls et al., 2003, 2004a, 2007b). Figure 1.8 shows a typical example of an hyperspectral

image consisting of over a hundred contiguous spectral bands, forming a three-dimensional (two
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Figure 1.8: Principle of imaging spectroscopy.

spatial dimensions and one spectral dimension) image cube. Each pixel is associated with a

complete spectrum of the imaged area.

Currently, space-borne hyperspectral imagery is not commercially available. There are only ex-

perimental satellite-sensors that acquire hyperspectral imagery for scientific investigation such as

NASA’s EO1/Hyperion (Ungar et al., 2003) and ESA’s PROBA/CHRIS (Barnsley et al., 2004;

Cutter, 2004b). However, future planned Earth Observation missions (submitted for evalua-

tion and approval) point to a new generation of hyperspectral sensors (Schaepman et al., 2006):

EnMAP (Environmental Mapping and Analysis Program, GFZ/DLR, Germany) (Stuffler et al.,

2007; Kaufmann et al., 2008), FLEX (ESA Earth Explorer proposal) (Stoll et al., 2003; Moreno,

2006), HyspIRI (NASA GSFC proposal) (Green et al., 2008a,b), SpectraSat (Full Spectral Land-

sat proposal), ZASat (South African proposal, University of Stellenbosch), HIS (Chinese Space

Agency), etc. Figure 1.9 shows a comparison of current multi- and hyperspectral systems in terms

of information content, spatial resolution, and number of spectral bands.

In particular, coming hyperspectral instruments on-board EnMAP (Kaufmann et al., 2008)

and FLEX (Moreno, 2006) missions, in addition to acquire a set of spectrally contiguous bands

in the spectral region of interest for the mission applications, include dedicated bands specifically

designed to perform an accurate cloud screening. This fact remarks the increasing importance of

cloud screening in operational EO missions.
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Figure 1.9: Comparison of multispectral and hyperspectral data and instruments (credits:

http://www.enmap.de/). Left : Comparison of multispectral and hyperspectral measuring data. Right :

Performance comparison of main air- and space-borne multi- and hyperspectral systems in terms of spec-

tral and spatial resolution.

1.3 Push-broom Imaging Spectrometers

Many of the multispectral and hyperspectral sensors are push-broom imaging spectrometers.

Push-broom line imagers consist of an optical system that focalizes the light coming from a portion

of the Earth’s surface onto the focal plane where the sensor is placed. The system includes a long

and narrow slit that limits the area being imaged to a stripe aligned with one of the sensor’s axis,

while a diffractive medium (prism, grid, etc.) forms a spectrum of the line along the orthogonal

axis. Usually, the detector is a charge coupled device (CCD) two-dimensional array whose rows

separate wavelengths and columns separate resolved points in the Earth image (Mouroulis et al.,

2000). Figure 1.10 shows the push-broom operation mode for the acquisition of spectral images.

The optical system collects the light arriving from a long and narrow strip of the surface below by

means of a thin slit. The slit is oriented perpendicularly to the direction of motion of the sensor,

and the sequential acquisition of lines generates the image as the platform moves forward. The

image of the land strip is spectrally spread out (diffracted for gratings and dispersed for prisms),

separating the different wavelengths, and projected onto a properly aligned CCD array, so the

line is parallel to the horizontal axis (spatial) while the spectral spread out is produced along the

perpendicular axis (spectral).

Therefore, a hyperspectral image consists of two spatial dimensions (along-track and across-

track) and one spectral dimension (wavelength). This hyperspectral image is registered by the

instrument in a data-cube where: the along-track dimension at the Earth surface, y, corresponds

to the image-lines dimension l (distributed in the vertical direction of the image); the surface

across-track dimension, x, corresponds to the line-pixels dimension p (distributed in the horizon-
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Figure 1.10: Design of a push-broom imaging spectrometer that shows its operation mode.

tal direction of the image and CCD); and the spectral dimension, λ, corresponds to the image

band b (distributed in the vertical direction of the CCD). These correspondences among Earth

surface, instrument CCD, and hyperspectral data-cube are depicted in Fig. 4.3. The size of the

hyperspectral data-cube can be written in the form Nl×Np×Nb, where Nl is the number of image

lines, Np is the number of pixels per line, and Nb is the number of spectral bands. The incoming

radiance is integrated over the spatial and spectral response of the system for a given detector

element (p, b) of the CCD array. The relation between the incoming at sensor radiance from

the Earth surface, L(x, y, λ) (W/m2/sr), and the registered value by the CCD, I(l, p, b) (Digital

Number, DN), can be defined as:

I(l, p, b) = S(p, b)

∫

y∈l

∫

x∈p

∫

λ∈b
L(y, x, λ)H(x, λ)dydxdλ+ S0(l, p, b) , (1.3.1)

where H(x, λ) represents the optical system response, S(p, b) is the CCD sensitivity, and S0(l, p, b)

contains all the analog offset errors and random noise. In this equation, it is worth noting that

the vertical dimension of the image is related to the time when the image line, l, was acquired.

In addition, the image values, I, and CCD sensitivity, S, are expressed as a function of the image

pixels and bands, (p, b). Hence, assuming a one-to-one correspondence between the image pixels

and bands and the CCD columns and rows, respectively. However, usually a certain number of

CCD columns or rows are binned to form the final image (e.g. reducing the spatial or spectral

resolution to increase the radiometric accuracy). In this case, some lines and columns of I(l, p, b)

would be summed, but all the presented formulation is still valid.

The physical interpretation of satellite data needs an accurate sensor calibration that converts

the recorded digital number (DN) of I(l, p, b) into radiance values as close as possible to the true
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radiance L(l, p, b). Most of existing CCD sensors allow an accurate correction of dark current

offsets, thus making S0(l, p, b) negligible (remaining only a zero mean, low amplitude random

noise). Therefore, the calibration procedure consists in finding a set of calibration coefficients to

retrieve the true radiance:

L(l, p, b) = a(p, b)I(l, p, b) , (1.3.2)

where a(p, b) is the calibration coefficient at band b on the pixel p, which depends on the optical

system response, H, and the CCD sensitivity, S.

If the instrument works correctly (Mouroulis et al., 2000), the spatial and the spectral dimen-

sions (orthogonal dimensions of the CCD), are independent and they can be processed separately.

Therefore, the optical system response can be expressed as H(x, λ) = H(x)H(λ), where H(x)

represents the slit response and H(λ) represents the instrument chromatic response, which in

turn defines the wavelength and bandwidth of each band. Thus, the slit response is constant for

all the lines and bands of a given image, and independent from pixel-to-pixel. This is known as

uniformity.

Assuming a smooth optical response, the integral of the incoming radiance over the optical

response of the system in (1.3.1), which represents the radiance at the focal plane array of the

CCD, can be approximated as:
∫

y∈l

∫

x∈p

∫

λ∈b
L(y, x, λ)H(x)H(λ)dydxdλ = L(l, p, b)Hx(p)Hλ(b) (1.3.3)

where Hx(p) and Hλ(b) represent the contribution of the spatial and spectral response to the

calibration coefficient of the detector element (p, b). Then, the relation between the incoming

radiance and the registered value by the CCD of (1.3.1) can be written as:

I(l, p, b) = L(l, p, b)Hx(p)Hλ(b)S(p, b) + S0(l, p, b) , (1.3.4)

and the different contributions to the ideal calibration coefficients (S0(l, p, b) ≃ 0) would be:

a(p, b) =
L(l, p, b)

I(l, p, b)
=

1

Hx(p)Hλ(b)S(p, b)
. (1.3.5)

Summarizing, the complete optical design is optimized so that monochromatic images of the

slit fall on straight CCD rows, and line spectra of resolved ground areas fall on CCD columns. In

this case, each pixel in a line of the image at a given wavelength has been acquired by a different

element of the CCD; while every column of the image for that wavelength has been measured by

the same element of the CCD. Would be the CCD and the slit ideally built then all the CCD

elements would have the same sensitivity and response, producing even and noise-free images.

However, in real devices, deviations from these design conditions produce the following problems:

• Optical aberrations and misalignments in the CCD integration with optics cause the spec-

trometer entrance slit image to be projected as a curve on the detector array. This causes a

bending of spectral lines across the spatial axis and of the spatial lines across the spectral

axis (Goetz et al., 2003).

19



Chapter 1. Remote Sensing from Earth Observation Satellites

Figure 1.11: ENVISAT/MERIS system. Left : Location of MERIS on ENVISAT. Right : MERIS instru-

ment. (Credits: ESA)

– Deviations of the monochromatic images of the slit from the CCD rows are known

as smile (curved up) or frown (curved down). It causes a non-linear variation in the

wavelength in the across-track direction, which results in a spectral shift from nominal

spectral band positions along the CCD columns.

– Deviations of the line spectra of resolved ground areas from the CCD columns are

known as chromatic keystone. It causes images of the slit at different wavelengths to

differ in length depending on where the ray propagates with respect to the center of

the lens.

• Sensitivity variations between neighboring elements of the CCD and variations on the width

of the slit along its length results in the intensity of an homogeneous area to be slightly

different in each column of the CCD array (Barducci and Pippi, 2001).

– The effect of these imperfections in the resulting image is a vertical pattern known as

vertical striping.

A more detailed description of the sensor calibration and the proposed correction of presented

errors is given in chapter 4 for the imaging spectrometers used in this Thesis.

1.3.1 The MEdium Resolution Imaging Spectrometer (MERIS)

The MEdium Resolution Imaging Spectrometer (MERIS) instrument (Rast et al., 1999) is

mounted on board the ENVIronmental SATellite (ENVISAT) Earth Observation Satellite launched
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Figure 1.12: MERIS band locations (red) superimposed to a reflectance spectra of healthy vegetation

(green), bare soil (black), and the atmospheric transmittance (blue).

by the European Space Agency in March 2002. MERIS on ENVISAT is a programmable medium

resolution imaging spectrometer operating in the VNIR spectral range (400-900 nm). The EN-

VISAT/MERIS system is depicted in Fig 1.11.

The instrument scans the Earth’s surface in a push-broom mode. The satellite’s motion

provides scanning in the along-track direction, and the scene is imaged simultaneously across

the entire spectral range through a dispersing system onto a CCD array, resulting the spatial

sampling in the across-track direction. MERIS is designed so that it can acquire data over

the Earth whenever illumination conditions are suitable (illumination angles below 80◦) with

high radiometric (1% to 5%) and spectrometric (1 nm) performance. Fifteen spectral bands can

be selected by ground command, each of them has a programmable width and location in the

390 nm to 1040 nm spectral range (Merheim-Kealy et al., 1999). However, a fixed set of bands

was recommended by the Science Advisory Group and frozen before launch. It is presented in

Table 1.1 and depicted in Fig 1.12. The Level 2 ESA products are being developed and will be

validated for this set of bands, although it is possible to use alternative band sets for experimental

campaigns of a few weeks duration.

The MERIS’ 68.5◦ field of view (FOV) around nadir covers a swath width of 1150 km at a

nominal altitude of 800 km. It allows global coverage of the Earth in 3 days. The instantaneous

FOV is divided into five segments, each of them is imaged by one of the corresponding five

cameras.A slight overlap exists between the FOVs of adjacent optical cameras. An area CCD

detector is used, with an instantaneous detector element FOV of 1.149 arcmin.

MERIS provides either full spatial resolution data (FR) or reduced spatial resolution data

(RR). These two spatial resolutions, for the nominal orbit are:

• Full spatial resolution: 260 m across track, 290 m along track. Full FR scenes have

2241×2241 pixels and cover 582 km (swath) by 650 km (azimuth). Quarter scenes have

1153×1153 pixels and cover 300 km (swath) by 334 km (azimuth).

• Reduced spatial resolution: 1040 m across track, 1160 m along track. A reduced spatial

21



Chapter 1. Remote Sensing from Earth Observation Satellites

Table 1.1: MERIS fixed set of bands.

# Band centre Bandwidth Application

(nm) (nm)

1 412.5 10 Yellow substance and detrital pigments

2 442.5 10 Chlorophyll absorption maximum

3 490 10 Chlorophyll and other pigments

4 510 10 Suspended sediment, red tides

5 560 10 Chlorophyll absorption minimum

6 620 10 Suspended sediment

7 665 10 Chlorophyll absorption and fluorescence reference

8 681.25 7.5 Chlorophyll fluorescence peak

9 708.75 10 Fluorescence reference, atmosphere corrections

10 753.75 7.5 Vegetation, cloud

11 760.625 3.75 O2 R-branch absorption band

12 778.75 15 Atmosphere corrections

13 865 20 Vegetation, water vapor reference

14 885 10 Atmosphere corrections

15 900 10 Water vapor, land

resolution pixel is obtained by averaging the signal of 16 full spatial resolution pixels. More

precisely, 4 adjacent pixels across-track for 4 successive pixel lines along-track are used.

Resolution scenes have 1121×1121 pixels and cover 1165 km (swath) by 1300 km (azimuth).

1.3.2 The Compact High Resolution Imaging Spectrometer (CHRIS)

The Compact High Resolution Imaging Spectrometer (CHRIS) instrument (Barnsley et al.,

2004) is mounted on board the European Space Agency small satellite platform called PROBA

(Project for On Board Autonomy) launched on 22 October 2001 (Fig. 1.13). PROBA is a

technology-proving experiment to demonstrate the on-board autonomy of a generic platform suit-

able for small scientific or application missions.

The platform provides pointing in both across-track and along-track directions, as well as a

fixed scanning speed on the ground during imaging in order to increase the CHRIS integration

time, thus increasing the radiometric resolution. In this way, the system CHRIS/PROBA has

multiangular capabilities, acquiring five consecutive images at time when the satellite projection

on the surface is closest to the target. This position corresponds to a minimum zenith observation

angle (MZA), that is negative in the case of target locations East of the ground track. The images

are acquired from a set of Fly-by-Zenith Angles (FZA): 0◦, ±36◦, and ±55◦, which are related to

the actual view zenith angles by the MZA. The sign refers to along track position. The acquisition

geometry is depicted in Fig. 1.14. The CHRIS imaging spectrometer system has been designed

mainly to provide remote sensing data for land applications, and it is intended to demonstrate

that low cost compact imaging spectrometers can be viable instruments when combined with
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Figure 1.13: Left : Artistic image of the PROBA platform. Right : CHRIS picture. (Credits: SIRA)
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Figure 1.14: Pointing capabilities of the PROBA platform in both across-track and along-track directions.

agile small satellite platforms (dimensions: 200 × 260 × 790 mm; weighting under 14 kg; power

consumption less than 8 W).

The CHRIS instrument is a conventional push-broom imaging spectrometer with a telescope

forming an image of the Earth’s surface onto the entrance slit of a spectrometer, and an area-

array detector at the spectrometer focal plane. The detector is a thinned, back-illuminated,

frame-transfer charge coupled device, with the CCD rows being assigned to different wavelengths

and the CCD columns to separate resolved areas on the Earth’s surface. From a 600 km orbit,

CHRIS can image the Earth in a 13.5 km swath with a spatial resolution of 17 m (at perigeo,

this is somewhat variable as the altitude varies around the orbit from 688 km to 553 km). Using

PROBA’s agile steering capabilities in along- and across-track directions enables observation of

selectable targets (Fig. 1.15). CHRIS operates over the VNIR spectral range from 400 nm to

1050 nm and can operate in 62 spectral bands at a spatial resolution of 34 m, or with 18 bands at

17 m, with a spectral sampling interval ranging between 1.25 (@400 nm) and 11 nm (@1000 nm).
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Figure 1.15: CHRIS/PROBA multiangular image acquisition of five consecutive images per surface target.

400 600 800 1000
0

0.5

1

wavelength (nm)

CHRIS Mode1 spectral channels

CHRIS Mode1spectral bands
Atmospheric transmission
Vegetation spectral signature
Bare soil spectral signature

Figure 1.16: CHRIS Mode1 band locations (red) superimposed to a reflectance spectra of healthy vege-

tation (green), bare soil (black), and the atmospheric transmittance (blue).

The instrument is very flexible and different sets of bands can be used for different applications.

There is a trade-off between the number of bands that can be output and the spatial resolution

because there is a finite data transfer rate between the platform and the ground station.

The spatial and spectral resolutions can be altered by binning elements on the CCD detector

array. Data rates can be reduced by limiting the number of across-track pixels output or by

operating at a coarse along track resolution or by reducing the number of spectral channels. The

along track resolution is determined by the detector integration time. By controlling the pitch of

the platform the integration time can be varied so that signal to noise ratio can be increased for

low albedo targets. Each CHRIS image represents about 131 Mbits of data so that the 1 Gbit

of mass memory that is assigned to CHRIS can store several images taken at different view

angles. There are several operation modes, with different band configurations (number, center

location and width) and spatial resolution. The data we have worked with correspond to Mode 1,

consisting of 34 m pixel and 62 bands between 400 and 1000 nm, which are displayed in Fig. 1.16

(see http://earth.esa.int/proba/ for a detailed description of the available operation modes).
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1.4 Motivation

This Thesis is intended to support the scientific and technological interest in MERIS and

CHRIS (or other VIS/IR multispectral sensors) data for Earth observation studies. For an accu-

rate exploitation of remote sensing data provided by these sensors, the ideal situation would be

the availability of additional products containing relevant information about cloud characteristics

simultaneous to the image acquisition and with the same spatial resolution. This can be accom-

plished if cloud detection is achieved directly from the data by means of the measured radiances in

some properly selected wavelengths. Therefore, the main objective is to provide new operational

cloud screening tools for the derivation of cloud location and abundance maps, thus allowing the

retrieval of atmospheric and surface biophysical parameters from satellite data taken over land

and ocean.

Several aspects of these sensors justify the approach. Two of the key features of MERIS are

its temporal resolution (revisit time of 3 days) and its spatial coverage (swath width of 1150 km).

In addition, MERIS also provides data at an unprecedented combination of spectral and spatial

resolutions: 15 narrow bands and 300 m pixel size in full resolution (FR) mode. Therefore, MERIS

has a great potential for multitemporal studies both at regional and global scales. The operational

use of MERIS images is, however, hampered by the presence of clouds because this instrument

works in the VNIR part of the electromagnetic spectrum. On this matter, an automatic and

accurate cloud screening method is essential in order to use partially cloudy images facilitating

the elaboration of MERIS products and also improving the usability of MERIS temporal series.

Two major points motivate the selection of MERIS data and cloud screening to be put together

in this Thesis. On the one hand, MERIS offers a unique spectral configuration for the retrieval

of both atmosphere and surface parameters: two fine bands at the oxygen (O2-A) and water

vapor atmospheric absorptions are combined with other thirteen channels providing high-accuracy

measurements from the blue to the near-infrared spectral regions (see Rast et al. (1999) for further

technical information). The accurate characterization of the O2-A absorption at MERIS band

11 enables the estimation of cloud top height from MERIS data (Preusker et al., 2006). On the

other hand, the lack of operative methods for the cloud screening of MERIS data, as well as

identified problems in the corresponding ESA Official Level 2 cloud mask products, are known

(Santer et al., 1999).

The other sensor included in this study is the CHRIS hyperspectral instrument mounted on

board PROBA. Thanks to the PROBA platform pointing capabilities and small CHRIS spatial

coverage (typical image areas about 13 km2), the acquisition plan of CHRIS tries to avoid acqui-

sitions with cloud coverage, but usually images are partially affected by clouds. In these cases,

users that requested the acquisition have a special interest in an accurate cloud screening in order

to identify the cloud-free areas of the scene. In addition, the high spectral and spatial resolution

of CHRIS makes it a good choice in order to propose and validate cloud detection methodologies

for next generation of satellite hyperspectral instruments.
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Chapter 2

Cloud Screening from Earth

Observation Images

Clouds can be defined as a mass of condensed water vapor or ice particles suspended above

the Earth’s surface. Accurate identification of clouds in remote sensing images is a key issue

for a wide range of remote sensing applications, especially in the case of sensors working in the

VNIR range of the electromagnetic spectrum due to the severe absorption and scattering of cloud

constituents at these wavelengths. The amount of images acquired over the globe every day

by the instruments on board Earth Observation satellites makes inevitable that many of these

images present cloud covers, whose extent depends on the season and the geographic position of

the study region. According to the observational estimates from the International Satellite Cloud

Climatology Project (ISCCP) data set (Zhang et al., 2004), the global annual-mean cloud cover

is around 66%. Other studies report higher rates of cloud covers over the globe analyzing data

from a worldwide meteorological network with a large number of stations at different latitudes

and seasons (Bréon and Colzy, 1999). Figure 2.1 shows the total cloud amount (%) from the

ISCCP-D2 monthly mean dataset for the period July 1983 through June 2005 (products from the

ISCCP-D2 dataset are available and can be generated on-line at http://isccp.giss.nasa.gov).

The presence of clouds drastically affects the measured electromagnetic signal and thus the

retrieved information about the observed target. The corresponding cloud influence depends on

the cloud type, cloud cover, cloud height and cloud distribution in the sky, e.g. thick opaque clouds

impede the incoming radiation reaching the surface, while thin transparent clouds contaminate

the data by photons scattered in the observation direction, or attenuate the signal by the removal

of photons in their travel to the sensor. An important issue here is to stress that, depending on

the remote sensing application, clouds can be either viewed as a source of contamination that

makes the image partly useless for assessing landscape properties, or a source of information for

measuring important climatological parameters (Peixoto and Oort, 1992).

• Without an accurate cloud masking, undetected clouds in the scene are the most significant
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Figure 2.1: Total cloud amount (%) from the ISCCP-D2 monthly mean dataset for the period July 1983

through June 2005. (Credits: http://isccp.giss.nasa.gov)

source of error for true ground reflectance estimation, and thus for biophysical parameter

retrieval over both sea and land covers. By masking only the image areas affected by cloud

covers, the whole image is not necessarily discarded, making multitemporal studies possible.

• Having a global scale monitoring of clouds is becoming more and more important in clima-

tology studies: clouds contribute significantly to the global radiation budget with its role in

the direct radiative forcing, and thin clouds are responsible for the atmospheric greenhouse

effect.

The starting point for the subject of this Thesis is that any set of optical remote sensing images

needs to carry out a cloud screening process in the initial processing steps to ensure accuracy in

results extracted from them.

In this chapter, a brief introduction of the cloud types and the traditional characteristics used

to classify them is given. The main effects of cloud types on the EMR that travels through

the Earth’s atmosphere and, thus, its effects on the Earth’s radiation budget and climate are

introduced. Then, most relevant cloud optical properties measurable from remote sensing systems

are described. Finally, a review of cloud screening approaches presented in the literature is carried

out, paying special attention to the reference cloud screening algorithms developed for the sensors

studied in this Thesis.

2.1 Cloud Types and Characteristics

Clouds may be classified by their visual appearance, height, or form. A classification of clouds

was first introduced by Howard (1804) who used Latin words to describe their characteristics

(Cirrus, Cumulus, Stratus, and Nimbus). There are now ten main types of cloud (Fig. 2.2), which

can be separated into three broad categories according to the height of their base above the ground:
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Figure 2.2: Types of cloud according to the height of their base above the ground and their vertical

distribution (Credits: BBC Weather).

high clouds, medium clouds and low clouds (Stephens, 2003). Most of the main cloud types are

often subdivided further on the basis of their shape, structure and degree of transparency:

• High clouds. These are usually composed solely of ice crystals and have a base between 7000

and 18000 m.

– Cirrus - white filaments.

– Cirrocumulus - small rippled elements.

– Cirrostratus - transparent sheet, often with a halo.

• Medium clouds. These are usually composed of water droplets and ice crystals, and have a

base between 2000 and 7000 m.

– Altocumulus. - layered, rippled elements, generally white with some shading.

– Altostratus. - thin layer, grey, allows sun to appear as if through ground glass.

– Nimbostratus. - thick layer, low base, dark, rain or snow may fall from it.

• Low clouds. These are usually composed of water droplets, though cumulonimbus clouds

include ice crystals, and have a base usually below 2000 m.

– Stratocumulus - layered, series of rounded rolls, generally white with some shading.

– Stratus - layered, uniform base, grey.

– Cumulus - individual cells, vertical rolls or towers, flat base.

– Cumulonimbus - large cauliflower-shaped towers, often ’anvil tops’ sometimes giving

thunderstorms, or showers of rain or snow.
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Figure 2.3 shows pictures of the ten main types of cloud sorted according to the four main

levels of taxonomical classes. The reader can appreciate the particular characteristics described

for each type of cloud and the huge variability of cloud’s appearance when viewed from ground.

Low level Mid level

Stratocumulus Stratus Nimbostratus Altocumulus Altostratus

High level Clouds with vertical development

Cirrus Cirrostratus Cirrocumulus Cumulus Cumulonimbus

Figure 2.3: Pictures of ten main types of cloud.

In addition to the huge variability of cloud types and characteristics, one of the reasons that

makes cloud screening of paramount relevance in remote sensing is the broad coverage of the

Table 2.1: Frequency of occurrence and percentage of coverage over land and over ocean for the ten main

types of cloud.

Cloud Type Height of Freq.[%] over Coverage[%] over

base (km) land / ocean land / ocean

Low level

Stratocumulus (Sc) 0-2 27 / 45 18 / 34

Stratus (St)

Nimbostratus (Ns) 0-4 6 / 6 5 / 6

Mid level

Altocumulus (Ac) 2-7 35 / 46 21 / 22

Altostratus (As)

High level

Cirrus (Ci)

Cirrostratus (Cs) 7-18 47 / 37 23 / 13

Cirrocumulus (Cc)

Clouds with vertical development

Cumulus (Cu) 0-3 14 / 33 5/ 12

Cumulonimbus (Cb) 0-3 7 / 10 4 / 6
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2.2. Clouds and the Energy Cycle

Earth’s surface by clouds when viewed from the space. Clouds cover more than 60% of the

Earth’s surface (Zhang et al., 2004). In particular, average global coverage over the oceans is

about 65% and over the land is about 52%. Table 2.1 provides a frequency of occurrence and

percentage of coverage over land and over ocean depending on the type of cloud.

For the subject of this Thesis, the interest on cloud types comes from the effect of different

clouds on the solar radiation that is used by remote sensing sensors to observe the Earth. Low

and high clouds have different effects on the radiation field with contrary effects on the Earth’s

radiation budget. Whether a given cloud will heat or cool the surface depends on several factors,

including the cloud’s altitude, its size, and the make-up of the particles that form the cloud.

Moreover, cloud detection will not be concerned in identifying cloud type but only presence (and

probability) of clouds.

2.2 Clouds and the Energy Cycle

The Sun’s radiant energy is the fuel that drives Earth’s climate engine. Energy received from

the Sun is mostly in the visible (or shortwave) part of the electromagnetic spectrum. About

30% of the solar energy that comes to Earth is reflected back to space. The ratio of reflected-to-

incoming energy is called albedo1 from the Latin word meaning whiteness. The solar radiation

absorbed by the Earth causes the planet to heat up until it radiates (or emits) as much energy

back into space as it absorbs from the Sun. The Earth’s thermal emitted radiation is mostly in

the infrared (or longwave) part of the spectrum. The top of the clouds is usually colder than

the Earth’s surface. If a cloud is formed in a previously clear sky, the cold cloud top reduces the

longwave emission to space, and energy is trapped beneath the cloud top. The trapped energy

increases the temperature of the Earth’s surface and atmosphere until the longwave emission to

space once again balances the incoming absorbed shortwave radiation. This process is called the

greenhouse effect and, taken by itself, causes a heating of the Earth’s climate.

The balance between incoming and outgoing energy is called the Earth’s radiation budget.

As shown in figure 2.4, the Earth’s atmosphere system constantly tries to maintain a balance

between the energy that reaches the Earth from the Sun and the energy that flows from Earth

back out to space.

The most important components of the Earth’s system to the radiation budget are the planet’s

surface, atmosphere, and clouds. The effect of clouds on the Earth’s radiation balance is measured

as the difference between the clear-sky and total-scene radiation results. This difference is defined

as cloud-radiative forcing (Kiehl, 1992). Mainly, two cloud effects in the radiation budget can be

distinguished (Fig. 2.5):

• Shortwave rays from the sun are scattered in a cloud. Many of the rays return to space.

1Albedo indicates the fraction of the total solar radiation incident to a body that is reflected by it.
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Figure 2.4: Radiation Balance of the Earth. (Credits: Kiehl (1992))

The resulting “cloud albedo forcing” tends to cause a cooling of the Earth.

• Longwave rays emitted by the Earth are absorbed and reemitted by a cloud, with some rays

going to space and some going to the surface. The resulting “cloud greenhouse forcing”

tends to cause Earth’s warming.

Figure 2.5: Cloud albedo forcing due to the reflection of shortwave radiation (straight arrows) by clouds

(left) and cloud greenhouse forcing due to the absorption and reemission of longwave radiation (wavy

arrows) by clouds (right). (Credits: NASA Facts (1999))

The balance of the opposing cloud albedo forcing and cloud greenhouse forcing determines

whether a certain cloud type will produce a warming or a cooling effect. As explained below, the

high thin clouds tend to enhance the heating effect, and low thick clouds have the opposite effect,

while deep convective clouds are neutral (Fig. 2.6):
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2.3. Cloud Properties

• Low thick clouds reflect more shortwave radiation back to space than the darker surface

would in the absence of the cloud, and thus, less solar energy is available to heat the surface

and atmosphere that tends to cool the Earth’s climate.

• High thin cirrus clouds have a warming effect because they transmit most of the incoming

solar radiation while, simultaneously, they absorb some of the Earth’s infrared radiation

and radiate it back to the surface.

• Deep convective clouds, such as those associated with thunderstorms, have neither a warm-

ing nor a cooling effect because their cloud greenhouse effect, although large, is nearly

balanced by the effect due to the convective clouds’ high albedo.

Figure 2.6: Cloud albedo forcing (straight arrows, which indicate shortwave rays) and cloud greenhouse

forcing (wavy arrows, which indicate longwave rays) of low thick clouds (left), high thin cirrus clouds

(middle), and deep convective clouds (right). (Credit: NASA Facts (1999))

2.3 Cloud Properties

As shown in the previous section, clouds have an important role in energy budget studies due

to its effect on the EMR crossing the Earth’s atmosphere. The cloud cover fraction, cloud type

and the cloud top height have to be known accurately to better quantify the global mean effect of

clouds cooling the climate system and also the effect of clouds on the EMR detected by the remote

sensing sensors. The properties of clouds can vary widely with location, with time of day, with

changing weather, and with season. For these reasons, satellite data play an important role in the

study of clouds as the most effective method to observe clouds on a large scale and to estimate

their impact on the Earth’s climate. The most important cloud optical properties that can be

estimated from remote sensing data are the cloud optical thickness, cloud albedo, and cloud top

pressure:

• Cloud optical thickness: The cloud optical thickness is a measure of the opacity of the cloud.

The cloud optical thickness is an important parameter for the surface and atmospheric
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energy budget since the variation of cloud optical thickness alters the amount of reflected

radiation and hence the energy that reaches the surface. In addition, the intensity of the

thermal emission from a cloud varies with its temperature and the optical depth or thickness

of the cloud. The optical thickness of a cloud is a measure of not only the physical thickness

of the cloud but also of the amount and phase of water in the cloud. A cloud can be physically

thin, but contain water at a density high enough to produce a high optical thickness. Clouds

that allow most of the sunlight hitting them to pass through them are considered optically

thin. Clouds that reflect most of the sunlight hitting them are considered to be optically

thick. The cloud optical thickness can be determined directly from reflectance data, but its

retrieval depends on the particle size and shape.

• Cloud albedo: The most important cloud parameter for energy budget studies is the cloud

albedo. The cloud albedo is a measurement of the amount of radiation reflected by clouds.

The cloud albedo varies from less than 10 to more that 90 percent of the insolation and

depends on the cloud optical thickness, the size distribution of the cloud droplets, the liquid

water content, the water vapor content, and the Sun’s zenith angle. The smaller the drops

and the greater the liquid water content, the greater the cloud albedo, if all other factors

are the same.

• Cloud top pressure: The cloud top pressure is a measurement of pressure that represents

the location of the radiating top of the clouds (if there is a very tenuous upper portion,

this value may be below where the first cloud particles are found). It can be considered as

equivalent to cloud top height above mean sea level.

By using a simple relationship between the presented cloud optical properties, the ISCCP

has suggested an alternative method of classifying clouds into the traditional cloud types. This

method classifies clouds based upon how optically thick they are and how high they are in the sky.

Figure 2.7 shows how this method classifies clouds based on their optical thickness and cloud top

pressure (cloud top height). The cloud type names represent only an approximate climatological

relationship between the satellite-measured optical parameters and the classical morphological

cloud types. However, a detailed comparison of the satellite and surface-based cloud observations

supports this assignment of names.

The estimation of cloud optical properties involves the use of radiative transfer models and also

an accurate localization of clouds in the image is required. However, it would be advantageous

that the cloud screening algorithm, in addition to detecting clouds accurately, also provided a

cloud abundance index per pixel instead of a binary classification. This added-value information

may be used as follows:

1. To better describe clouds in order to include their properties (abundance, type, height,

subpixel coverage) in radiation models (Tian et al., 1999).
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Figure 2.7: International Satellite Cloud Climatology Project (ISCCP) definition of cloud types used in

remote sensing of clouds.

2. It can be converted into a binary cloud mask by setting thresholds that can be changed

depending on the application restrictions.

In general, cloud screening algorithms can be separated into clear sky conservative and cloud

conservative algorithms. Clear sky conservative algorithms minimize the clear sky detection error,

i.e. if a pixel is detected as clear the probability of cloudiness should be very low. This often has

the side effect that many cloud free pixels are detected as cloudy. The opposite is true for cloud

conservative algorithms, which try to minimize the cloud detection error, with the side-effect that

many cloudy pixels are missed. The selection of the type of cloud detection algorithm usually

depends on the posterior remote sensing application. The proposed cloud abundance product

would allow users to adjust the trade-off between clear sky and cloud detection errors.

2.4 Review of Cloud Screening Algorithms

Cloud screening approaches, also referred to as cloud masking or cloud detection, are generally

based on the assumption that clouds present some useful features for its identification (Rossow,

1993): clouds are usually brighter and colder than the underlying surface, clouds increase the

spatial variability of detected radiance, and the spectral response is different from that of the

surface covers. But, individually, as shown in chapter 1, each of these features in a given image

is strongly conditioned by the sun elevation, variable path length, atmospheric water vapor,

aerosol concentrations, variable reflectance, and subpixel clouds produced on the same pixel by

cloud structures over land or sea (Yhann and Simpson, 1995). Some of these problems can be

mitigated in the cloud screening algorithm by including specific corrections (e.g. sun elevation

or path length), avoiding bands with severe atmospheric effects, and providing the user with

information about subpixel coverage. The atmospheric features, though viewed as a problem by

most of the cloud screening approaches, can provide useful information about cloud height that

can be included in the screening approach.

After stating the cloud screening problem, it is clear that the selection of an approach heavily
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depends on the characteristics of the instrument. The spectral range, along with the spectral and

spatial resolutions are also critical factors in the selection of the best approach. For example, the

presence of channels in the thermal infrared range enables detection based on thermal contrasts

(Simpson and Gobat, 1996; Papin et al., 2002). Sensors with narrow spectral channels beyond

1 µm have demonstrated good capabilities to detect high clouds because of the strength of the

water vapor absorption (McIntire and Simpson, 2002; Gao et al., 1998). In the spectral range

of 1.38-1.50 µm, both the thin cirrus clouds and the lower-level cumulus clouds can be seen;

however, the surface features are eliminated due to additional absorption of solar radiation by

atmospheric water vapor between clouds and the surface cover (even in presence of ice or snow).

In fact, new generation EO satellites, such as the Global Monitoring for Environment and Security

(GMES) Sentinel 2 and 3 (European Space Agency, 2007), include dedicated bands specifically

designed to perform an accurate cloud screening. These features can not be exploited by recently

developed multispectral sensors that work in the spectral range between 400-1000 nm, such as

CHRIS and MERIS. However, even in these cases, one can take advantage of their high spectral

and radiometric resolution and the specific band locations to increase the cloud detection accuracy,

and to properly describe detected clouds.

In the literature, the simplest approach to mask clouds in a particular scene is the use of a

set of static thresholds (e.g. over features such as albedo or temperature) applied to every pixel

in the image and ultimately providing a binary flag (Wang and Shi, 2006). These methods can

fail for several reasons, such as subpixel clouds, high reflectance surfaces, illumination and obser-

vation geometry, sensor calibration, variation of the spectral response of clouds with cloud type

and height, etc. (Simpson et al., 1998). Spatial coherence methods have an advantage over static

threshold methods because they use the local spatial structure to determine cloud free and cloud

covered pixels. Usually, these algorithms are based on extracted textural features (Tian et al.,

1999; Christodoulou et al., 2003), contextual approaches (Papin et al., 2002), or simple thresholds

applied to the spatial variability of spectral bands (Martins et al., 2002), which is mainly appli-

cable over the ocean where the surface background is sufficiently homogeneous. However, spatial

coherence methods can fail when the cloud system is multi-layered (which is often the case), the

clouds over the scene are smaller than the instrument spatial resolution, or the scene presents

cirrus clouds (which are not opaque). As a consequence, researchers have turned to develop-

ing adaptive threshold cloud-masking algorithms (Simpson et al., 1998; Di Vittorio and Emery,

2002; Yang et al., 2007). Some other algorithms take advantage of the multi-angular (Yang et al.,

2007; Mazzoni et al., 2007) or the multi-temporal (Saitwal et al., 2003) information depending on

the instrument characteristics and the application constraints. In this context, few works using

more sophisticated machine learning tools have been presented so far, such as Bayesian methods

(Murtagh et al., 2003; Li et al., 2003; Merchant et al., 2005), fuzzy logic (Ghosh et al., 2006), arti-

ficial neural networks (Yhann and Simpson, 1995; Tian et al., 1999; McIntire and Simpson, 2002;

Torres Arriaza et al., 2003), or recently kernel methods (Srivastava and Stroeve, 2003; Lee et al.,

2004; Mazzoni et al., 2007).
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Given the extreme complexity of cloud screening, most of the operational cloud masking appli-

cations of current satellite multispectral systems, such as Moderate Resolution Imaging Spectrora-

diometer (MODIS) (Ackerman et al., 1998; Platnick et al., 2003), Advanced Very High Resolution

Radiometer (AVHRR) (Saunders and Kriebel, 1988), Along Track Scanning Radiometer (ATSR)

(Simpson et al., 1998), POLarization and Directionality of the Earth’s Reflectances (POLDER)

(Buriez et al., 1997), or MERIS (Santer et al., 1997), consist in a series of cloud detection thresh-

old tests, which can vary depending on surface type, solar illumination, geographic location, or

climatological criteria.

2.4.1 Reference Cloud Screening Algorithms

The choice of the cloud screening approach is conditioned by the instrument characteristics.

CHRIS and MERIS are optical sensors working in the VNIR range of the spectrum. Two major

points motivate the selection of these instruments and cloud screening to be put together in this

work.

In the case of MERIS, it offers a unique spectral configuration for the retrieval of both atmo-

sphere (Guanter et al., 2008a) and surface (Guanter et al., 2007) parameters: two fine bands at

the oxygen (O2-A) and water vapor atmospheric absorptions are combined with thirteen other

spectral bands providing high-accuracy measurements from the blue to the near-infrared spectral

regions (see Rast et al. (1999) for further technical information). Also, the accurate characteri-

zation of the O2-A absorption at MERIS channel 11 enables the estimation of cloud-top pressure

(which is related to cloud height) from MERIS data (Santer et al., 1999; Naud et al., 2003). How-

ever, there is a well-known lack of accurate methods for the cloud screening of MERIS data, as

well as clearly identified problems in the corresponding ESA official Level 2 cloud mask products

(Ramon et al., 2003; MERIS Quality Working Group, 2006).

In the case of CHRIS, it covers a spectral range from 400 nm to 1050 nm with a high number

of spectral bands (up to 62 spectral channels) and with a high spatial resolution (17 or 34 m at

nadir) depending on the acquisition mode. Owing to the PROBA platform pointing capabilities,

the acquisition plan tries to avoid acquisitions with cloud coverage, but occasionally images are

partially affected by clouds. However, since PROBA is an experimental mission, official Level 2

algorithms and products have not been developed and a cloud mask is not provided with CHRIS

products.

Summarizing, as far as author’s knowledge, no cloud screening algorithm have been proposed

in the literature for CHRIS instrument. In the case of MERIS, in addition to the ESA official

Level 2 cloud mask products, several approaches have been proposed in the literature in order to

mitigate identified problems in the standard ESA product (Ranera et al., 2005; Preusker et al.,

2006; Guanter et al., 2008a). In the following, the MERIS Level 2 Cloud Masking (the official

ESA product) and the Cloud Probability Processor (made available to the user community in the

BEAM software) are described in detail.
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MERIS Level 2 Cloud Masking

MERIS Level 2 products (European Space Agency, 2006) are obtained by further processing

MERIS TOA radiance. In order to take into account the effect of clouds, image pixels clear

enough to pursue atmospheric corrections are first identified as ‘clear sky’ or ‘cloud free’. The

classification process uses the a priori knowledge of a land/ocean map indexed by longitude and

latitude, and the information in the TOA radiance bands to classify each valid pixel into four pixel

classes: ‘clear sky’ or ‘bright pixel’ over both ‘ocean’ or ‘land’. In this classification, bright pixels

include clouds, bright sand or soil, ice, snow, sunglint, etc. Then there is also a need, for bright

pixels, to separate clouds from bright land and ocean surfaces. The proposed pixel identification

algorithm is based on a succession of tests on reflectance in the MERIS bands:

• For pixels identified as land, identification of homogeneous clouds is based on (i) tests on the

ratio of Rayleigh-corrected reflectance at several wavelengths; and (ii) the apparent pressure

estimated in the O2 absorption by two independent methods (a polynomial regression and

an artificial neural network).

• Over ocean, apparent pressure is used to discriminate between cloud and ice or sun glint.

In this case, thresholds are defined as a function of geometrical conditions due to the strong

effects of clouds on the scattering of radiation.

In addition to this classification, some flags are also defined for the possible occurrence of cirrus

clouds or finite clouds. Since the final L2 cloud classification is a hard classification (i.e. no infor-

mation about cloud transparency/contamination is given), these flags are proposed as a warning

for the quality of the atmospheric corrections. Over ocean, a first flag is set from correlations

between apparent pressure in O2 channels and reflectances at 865 nm with a threshold in pressure

corresponding to a too high contribution of the cirrus reflectance. A similar flag is implemented

for land observations.

All these flags (bright pixel, low pressures, pressure confidences, and reflectance ratios) are

finally used to index a decision table which provides the Cloud-Free flag. Pixels flagged as cloudy

are further processed in order to retrieve the cloud albedo, the cloud optical thickness, and the

cloud top pressure. Finally, a simple classification table indexed by the cloud optical thickness

and cloud top pressure is used to provide a cloud type index.

BEAM Cloud Probability Processor

As aforementioned, ESA official Level 2 cloud mask products have shown clearly identified

problems when considering critical cloud screening issues such as cloud borders and bright surfaces

(Ramon et al., 2003; MERIS Quality Working Group, 2006). In consequence, recent alternative

algorithms have been proposed (Ranera et al., 2005; Preusker et al., 2006).
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The Basic ERS & ENVISAT (A)ATSR and MERIS (BEAM) Toolbox is a collection of ex-

ecutable tools (Fomferra and Brockmann, 2005) that was originally developed by ESA to facilitate

the utilization, viewing, and processing of ESA MERIS, (A)ATSR and others (http://envisat.esa.int

/resources/softwaretools/ or http://www.brockmann-consult.de/beam/).

This software includes the BEAM Cloud Probability Processor, which uses a clear sky conservative

cloud detection algorithm which is based on artificial neural networks (Preusker et al., 2006).

The cloud probability algorithm uses nine spectral bands of MERIS, the ratio of band 11 and

10, which is an indication of the absorption due to oxygen, the ECMWF2 surface pressure and

the exact wavelength of band 11 as input. As an output, it yields a probability value ∈ [0, 1]

indicating if a pixel can be regarded as a cloud or not. Such a probability permits a more flexible

way to work with identified clouds compared to a binary cloud mask.

The algorithm uses two different artificial neural nets for prediction purposes. The first one is

used over the open ocean and the second one over land. The distinction between ocean and land

is done using the altitude information. If the altitude is lower than -50 m the ocean net is used.

During development of the algorithm, the Matrix Operator Model (MOMO), a radiative trans-

fer model (Fischer and Grassl, 1991) based on the Matrix Operator Method, was used to simulate

cloud and non-cloud TOA radiance and an artificial neural net was trained. The output of the

neural net is finally scaled into a probability value. The final cloud classification indicates pixels

that are cloudy (probability > 80%), cloud free (probability < 20%) or where it is uncertain

(20% < probability < 80%).

This algorithm provides a more accurate cloud mask than the MERIS Level 2 Cloud Masking

algorithm, but it still misclassifies bright surfaces such as ice and snow covers. Moreover, the cloud

probability provided by the artificial neural net, which may be useful for the users to decide what

is a cloud depending on the application requirements or image conditions, is usually unevenly

distributed around zero and one, and thus, the information provided is equivalent to a binary

cloud mask.

2European Centre for Medium-Range Weather Forecasts: http://www.ecmwf.int/.
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Methodology for Cloud Identification





Chapter 3

Proposed Methodology for Cloud

Screening

The main objective of this PhD Thesis is to develop an accurate cloud screening algorithm

using the full spectral information provided by MERIS and by CHRIS imaging spectrometers.

The proposed cloud screening algorithm takes advantage of the high spectral and radiometric

resolutions of MERIS, or the high number of spectral bands of CHRIS, and the specific location

of some bands to increase the cloud detection accuracy, such as the oxygen and water vapor

absorption bands. This chapter summarizes the proposed cloud screening procedure and briefly

introduces the different modules that constitute it. Chapters 4, 5, and 6 will be devoted to analyze

in greater detail these parts.

The method should be capable of: (i) detecting clouds accurately; and (ii) providing probabil-

ity or cloud abundance rather than merely cloud flags. The cloud abundance product provided is

not directly related to the retrieval of cloud optical properties (Kokhanovsky et al., 2007b), such

as the cloud optical thickness, which usually relies on radiative transfer models. This added value

product allows the user to apply an adjustable cloud mask depending on the further processing

stages and final use of the image. For example, undetected cloudy pixels heavily affect biophysical

parameter retrieval methods based on the evaluation of the measurements in the shortest wave-

lengths, such as aerosol retrieval, or estimation of water pigments or suspended matter, as well as

to methods relying on temporal composites (Saitwal et al., 2003; Ranera et al., 2005; Plummer,

2005). Slight over-masking of potential cloudy pixels –conservative cloud masking– would be

preferred to guarantee a minimum admissible quality of the final product (Guanter et al., 2008a;

Kaufman et al., 2005; Martins et al., 2002), while other applications such as land use classification

are less sensitive to thin clouds, and thus the associated areas should not be necessarily discarded

(Gómez-Chova et al., 2006f, 2007c; Camps-Valls et al., 2008a). As a result, the method should

be scalable and allow different levels of masking. Hence, a probabilistic mask indicating the cloud

contamination is proposed.
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Figure 3.1: Scheme of the cloud screening algorithm constituted by the preprocessing (TOA reflectance

derivation) and four main processing steps (grey boxes).

To achieve the objectives of accuracy and cloud probability, we propose a scheme based on

some building blocks and processing steps (see Fig 3.1). Firstly, a feature extraction based

on meaningful physical facts is carried out (e.g. clouds are bright and white). Then, a semi-

supervised or unsupervised classification is applied to these features and the resulting clusters are

subsequently labeled as cloud or cloud-free. Finally, a spectral unmixing is applied to the classified

image. Summarizing, the cloud screening procedure is constituted by the following steps:

1. Image pre-processing : TOA reflectance is derived.

2. Feature extraction: physically-inspired features are extracted to increase separability of

clouds and surface.

3. Image clustering : an unsupervised clustering is performed on the extracted features in order

to separate clouds from the ground-cover.

4. Cluster labeling : resulting clusters are subsequently labeled (by the user or by an auto-

matic classifier) into geo-physical classes according to their extracted features and spectral

signatures.

5. Spectral unmixing : a spectral unmixing is applied to the segmented image in order to obtain

an abundance map of the cloud content in the cloudy pixels.

Image pre-processing

Both MERIS and CHRIS products are provided in TOA radiance, that is, radiometrically

calibrated data. However, uncorrected errors, deviations from nominal calibration values, and

high levels of noise affect the performance of cloud screening significantly. Hence, a particular

attention is payed in this Thesis to the pre-processing of images, especially for CHRIS data, which
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present high levels of noise. In addition, the method must work under many situations. Therefore,

TOA reflectance is estimated to remove the dependence on particular illumination conditions (day

of the year and angular configuration).

Feature Extraction

The measured spectral signature depends on the illumination, the atmosphere, and the sur-

face. Spectral bands free from atmospheric absorptions contain information about the surface

reflectance, while others are mainly affected by the atmosphere. Physically-inspired features that

increase separability of clouds and surface covers can be extracted independently from the bands

that are free from atmospheric effects and from the bands affected by the atmosphere.

With regard the reflectance of the surface, one of the main characteristics of clouds is that

they present bright and white spectra:

• A bright spectrum means that the intensity of the spectral curve (related to the albedo)

should present high values. Therefore, cloud brightness is calculated as the integral of the

spectrum.

• A white spectrum means that the spectral curve is flat, and thus, the first derivative of the

spectral curve should present low values.

Concerning the atmospheric absorptions present in the spectrum of a pixel, another meaningful

feature is the fact that clouds are at a higher altitude than the surface. It is worth noting that

atmospheric absorption depends on the atmospheric components and the optical path. Since light

reflected on high clouds crosses a shorter section of the atmosphere, the consequence would be an

abnormally short optical path, thus weaker atmospheric absorption features. Atmospheric oxygen

or water vapor absorptions (at 760 nm and 940 nm respectively) can be used to estimate this

optical path.

This approach tries to overcome one of the critical issues in cloud detection: the presence

of bright pixels, such as ice/snow in the surface. Bright land covers and clouds have a similar

reflectance behavior, but the atmospheric absorption suffered by cloud pixels is lower than for the

surface pixels due to their height.

Image Clustering and Labeling

At this step, two different approaches have been proposed and analyzed: a fully unsupervised

method and a semi-supervised approach:

1. Unsupervised classification algorithm. In this approach, we use the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977) to estimate the parameters of a Gaussian mixture
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model (GMM) since it considers the full relationship among variables and provides probabil-

ity maps for each cluster. At this point of the process, the obtained clusters can be labeled

into geo-physical classes taking into account three complementary sources of information:

the thematic map with the distribution of the clusters in the scene, the spectral signatures

of the cluster, and their distribution in the image. Once all clusters have been related to a

class with a geo-physical meaning, it is straightforward to merge all the clusters belonging

to a cloud type. Since the EM algorithm provides posterior probabilities, a probabilistic

cloud index, based on the clustering of the extracted features, can be computed as the sum

of the posteriors of the cloud-clusters. However, if the clusters are well separated in the fea-

ture space, the posteriors decrease drastically from one to zero in the boundaries between

clusters. Therefore, this cloud probability index indicates the probability that one pixel

belongs to a cloud-cluster more likely than to one of the other clusters found in the image,

but it does not give information about the cloud content at a subpixel level, which in turn

becomes very important when dealing with thin clouds or partially covered pixels.

2. Semi-supervised classification algorithm. In this second approach, we develop a semi-

supervised kernel-based method that incorporates labeled and unlabeled data in a general-

purpose learner. The problem of learning from labeled and unlabeled data (semi-supervised

learning) has attracted considerable attention in recent years (Joachims, 2003; Chapelle et al.,

2006). In particular, we focus on two semi-supervised extensions of support vector machines

(SVM) (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004; Camps-Valls et al.,

2007c): the so called Laplacian SVM (LapSVM), which introduces an additional regulariza-

tion term on the geometry of both labeled and unlabeled samples by using the graph Lapla-

cian (Belkin et al., 2006; Gómez-Chova et al., 2007b, 2008c); and a novel generative semi-

supervised method based on composite kernels and mean kernel theory (Camps-Valls et al.,

2006d, 2008a; Gómez-Chova et al., 2008a, 2009).

Spectral Unmixing

In order to obtain a cloud abundance map for every pixel in the image, rather than flags

or a binary classification, a spectral unmixing algorithm is applied to the image using the full

spectral information (Chang, 2003). The computed abundances are related to a cluster with a

geo-physical meaning, and the abundance of cloud is computed as the sum of the abundances

of the cloud-clusters. An improved cloud abundance map can be obtained when combining the

cloud abundance and the cloud probability by means of a pixel-by-pixel multiplication. That is,

combining two complementary sources of information processed by independent methods: the

degree of cloud abundance or mixing (obtained from the spectra) and the cloud probability that

is close to one in the cloud-like pixels and close to zero in remaining areas (obtained from the

extracted features). As a result, the proposed algorithm should provide a probabilistic map of

cloud abundance rather than a binary cloud presence flag at a pixel level.
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Image Pre-processing and Feature

Extraction

When working with remote sensing images at different times and locations, a desirable charac-

teristic is to have data independent of the sensor system and image acquisition conditions. This is

also true for cloud screening. On the one hand, correcting image data for uncertainties in sensor

calibration has the advantage that then these data are independent of differences in sensor sys-

tem conditions. On the other hand, converting TOA radiance data into TOA reflectance has the

advantage that then these data are corrected for seasonal and diurnal differences in solar position.

Once the image data are expressed in TOA reflectance, we can further process the reflectance

spectra in order to extract features that increase the separability of clouds and surface covers.

These features are physically-inspired and their meaning is independent of differences in the

number, location, and bandwidth of the sensor channels, which is a desirable characteristic for a

cloud screening algorithm intended to work in images acquired by multi and hyperspectral sensors,

such as MERIS and CHRIS.

4.1 Pre-processing (I): TOA Radiance Corrections

Earth observation images acquired by remote sensing instruments are generally affected by two

kinds of noise. The first one can be defined as standard random noise (Aiazzi et al., 2002), which

varies with time and determines the minimum image signal-to-noise ratio (SNR). In addition,

hyperspectral images can present non-periodic partially deterministic disturbance patterns, which

come from the image formation process and are characterized by a high degree of spatial and

spectral coherence (Barducci et al., 2005).

Usually, the whole system is fully characterized after assembly, obtaining the actual gain

correction factors that would produce an even image in operational situations. However, in some

occasions, especially after launch, the system is affected in such a way that the characterization
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does not remove completely the noise. In addition, this type of sensors degrade with time, and thus

require a recalibration, which is not always possible. In those cases, a noise reduction algorithm

must be applied after image reception in the pre-processing phase.

In this first section of the chapter, we focus on presenting, modeling, and correcting the

coherent spatial and spectral noise patterns produced by these systematic, yet hardly predictable,

disturbances in both the operational MERIS and the experimental CHRIS instruments.

4.1.1 Corrections for MERIS

ENVISAT is the most important EO satellite ever launched by ESA. The calibration and vali-

dation activities of all ENVISAT instruments represent a long-term effort, which has been carried

out by ESA in parallel to the algorithms improvement (Baudin et al., 1996; Merheim-Kealy et al.,

1999; Delwart et al., 2004).

Calibration involves both pre-launch and post-launch measurements to fully characterize the

payload instruments, and subsequent activities to configure the ground processors to provide

calibrated (Level-1b) data products. MERIS Level 1b (L1b) products are provided in top of

the atmosphere radiance and two different calibration approaches are used to radiometrically

calibrate the data. The primary calibration is the in-flight calibration and characterization of

the instrument that uses the onboard sunlit calibration diffuser plates (Dubuisson et al., 2003;

Ramon et al., 2003; Delwart et al., 2007). Validation of TOA radiances measured by MERIS

are also achieved by comparison with TOA radiance values determined through a number of vi-

carious calibration independent methods: simultaneous in-situ measurements of natural targets

(Hagolle and Cabot, 2004); analysis of Rayleigh scattering over clear water (Martiny et al., 2005);

simulation of radiance data with radiative transfer models (Antoine and Chami, 2004); data ac-

quisition over stable deserts sites (Govaerts and Clerici, 2004); or simultaneous acquisition by

other sensors (Acarreta and Stammes, 2005; Kokhanovsky et al., 2007c).

The scene is acquired simultaneously across the entire spectral range, through a dispersing

system, onto the CCD array (cf. section 1.3). Signals read out from the CCD pass through

several processing steps in order to achieve the required image quality. These CCD processing

tasks include dumping of spectral information from unwanted bands, and spectral integration

to obtain the required bandwidth. Onboard analog electronics perform pre-amplification of the

signal and correlated double sampling and gain adjustment before digitization. The onboard

digital electronics system has three major functions: it completes the spectral integration, it

performs offset and gain corrections in full processed mode, and it creates the reduced-resolution

data when required.

The calibration of MERIS is performed at the orbital south pole, where the calibration diffuser

is illuminated by the Sun by rotating a calibration mechanism. In particular, onboard spectral

calibration is based on the use of absorption bands (Delwart et al., 2007): pink panel that is an
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Erbium doped panel with well-defined absorption peaks; the Fraunhoffer lines; and the oxygen

bands. In the calibration mode, correction parameters such as offset and gain are generated,

which are then used to correct the recorded spectra. This correction can be carried out either

on-board or on the ground segment.

A spectral characterization was performed before MERIS launch, which showed a spectral shift

mainly due to the CCD integration with optics during the spatial registration. The so-called smile

effect has a maximum spectral dispersion of 1.5 nm and can be observed at any wavelength. In

fact, MERIS smile is the sole acquisition error that is not corrected in the provided images and has

an important effect in the proposed cloud screening algorithm. However, MERIS smile has been

well characterized in previous works with both in-flight (Dubuisson et al., 2003) and vicarious

(Martiny et al., 2005) calibration methods. This accurate characterization of the spectral shift

produced by the smile can be introduced in the formulation of the cloud screening algorithm in

order to compensate its effects as it will be explained later.

4.1.2 Corrections for CHRIS

PROBA was designed as a technology demonstrator satellite and, originally, CHRIS data

was a secondary objective of the mission. ESA has renewed its support to the PROBA/CHRIS

acquisition plan year by year thanks to the interest of the scientific community, but originally

CHRIS data were not available in the ESA catalogues, and even nowadays CHRIS has no standard

processing algorithms defined. In fact, the only pre-processing step performed to the CHRIS data

before delivering image products is the radiometric calibration1. Thus, CHRIS images present

a certain number of problems and errors that are commonly removed from most of the remote

sensing data.

As a push-broom sensor, the radiometric response of the CHRIS instrument is determined by

two overlapping components: the optical system response (a telescope forming an image onto the

entrance slit together with the spectrometer) and the CCD response (a thinned, back-illuminated,

frame-transfer CCD) (Bernaerts et al., 2000). With regard to the CCD response, the different

pixel-to-pixel response comes from non-uniformities on dark current generation, non-uniformities

on pixel sensitivity, threshold variations, and gain and off-set differences (Theuwissen, 1995). But,

in practice, these CCD imperfections are relatively stable with temperature and time (Cutter,

2004a) resulting in a spatially fixed-pattern noise in the image that should be removed, e.g. the

dark signal offsets are removed by subtracting a generic dark image. However, with regard to

the optical system response, changes in temperature, due to the seasonal variation of the in-orbit

CHRIS instrument temperature (Cutter, 2004a), produce a dilation of the slit and change its

width and moves the image of the slit across the detector. Therefore, the effect of the slit adds up

1CHRIS products are provided in top of the atmosphere radiance in a HDF v4 file format, which includes

additional acquisition information (image date, azimuth and zenith angles, etc) contained in the metadata attributes

of the CHRIS HDF file (Cutter and Johns, 2005b).
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to the vertical pattern in a complex way, as it is dependent on the sensors temperature heavily

(see Fig. 4.1), and thus it must be modeled and corrected.

Several vertical stripping (VS) reduction approaches have been proposed in the literature. Our

approach falls in the field of the scene-based non-uniformity corrections (SNUCs), since it provides

relative calibration factors directly computed from the acquired image. Methods based on large

uniform areas in the scene or methods assuming constant-static noise patterns (Torres et al.,

2003; Pezoa et al., 2006) are not appropriate for CHRIS due its spatial resolution (17 to 34 m)

and its noise dependence on the sensor’s temperature, respectively. Other methods assume that

all sensor elements observe similar subscenes in a given image and adjust the distributions of

values acquired by each sensor to some reference distribution by means of histogram or moment

matching (Gadallah et al., 2000), but also the high CHRIS spatial resolution and the moderate

number of lines per image dissuade us from its use. Finally, most related methods assume that

noise contribution changes from one pixel to another (high spatial frequency) in the across-track

direction while surface contribution presents smoother profiles (lower spatial frequencies) in the

across-track dimension (Barducci and Pippi, 2001; Garcia and Moreno, 2004; Settle and Cutter,

2005; Mlsna and Becker, 2006). This approach is described in more detail in section 4.1.2 but

the reader is referred to Leathers et al. (2005) for a full description of SNUC methods for push-

broom sensors. A novelty of the proposed vertical striping correction method is that it explicitly

introduces a technique for excluding the contribution of the surface’s spatial high frequencies

from the destriping process. The proposed approach is ‘CHRIS-oriented’ since it takes advantage

of the hyperspectral and multiangular capabilities of CHRIS, and also can include the platform

temperature information in order to improve the results. However, the general nature of the

procedure allows it to be applied to any push-broom imaging spectrometer data.

In addition to the VS noise produced at the image formation process, the transmission of

CHRIS channel 2 (odd and even pixels from each CCD row are read in parallel) randomly fails

producing anomalous odd pixels in some image rows called ‘drop-outs’. These errors must be

identified (masked and unmasked drop-outs) and corrected by making use of both spatial and

spectral information of the anomalous pixel and its neighbors. Drop-outs hamper the operational

use of CHRIS images since later processing stages are drastically affected by these anomalous

pixels. For this reason, version 4.1 of the CHRIS data HDF file (Cutter and Johns, 2005a) includes

a quality mask that indicates pixel saturation and occurrence of errors: useful pixels, drop-out

pixel (Ch2 reset), and saturated pixel. The problem is that this mask sometimes fails to mark

drop-out pixels and, in addition, older versions of CHRIS products do not include the mask at

all.

The cloud screening module requires the CHRIS image already noise-corrected: drop-outs

cannot be processed since they present anomalous values in some bands, and the vertical striping

introduces differences between bands that affect features extracted from the spectra. Figure 4.2

shows an example of the effects of both types of noises and the images after the correction. In

the following sections, the correction algorithm proposed in this Thesis is described in detail. It
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Figure 4.1: Design of a push-broom imaging spectrometer that shows its operation mode and the sources

of the coherent spatial noise patterns.(Credit: figure based on an original of Barducci and Pippi (2001))

Figure 4.2: Illustration of the correction of the drop-out errors based on the four-connected neighbors

(top) and the vertical striping (bottom). Credits: Garcia and Moreno (2004).
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is being implemented in the BEAM Toolbox (Fomferra and Brockmann, 2005) in the framework

of an ESA project2 for the official CHRIS products.

No-data Mask Generation

From version release 4.1, CHRIS data includes an image quality mask, which has the same

dimensions in terms of number of pixels than the CHRIS image of the HDF file, that is, a data-

cube M(l, p, b) of size Nl × Np × Nb. In this mask, each pixel has one of three possible values

indicating the usability of the pixel with the following meaning3: ‘0’ indicates that the pixel is a

useful image pixel; ‘1’ indicates that the pixel is a channel 2 reset pixel and holds no valuable data

(Drop-Out); or ‘2’ indicates that the pixel has saturated and holds no valuable data (Saturation).

If the mask is not available (versions previous to v4.1) we have to create an empty mask of

the same size than the image and find rows with drop-out pixels. Moreover, although we have the

mask with the drop-outs (channel 2 reset), in some images there may also be invalid pixels that are

not masked. The problem with these unmasked pixels is that they do not present negative values

(their values are in the order of magnitude of the signal) but they always occur in odd columns.

Therefore, whether the mask with the drop-outs is available or not, we need to improve/create

the mask adding undetected drop-outs.

The anomalous pixels (drop-outs) are found for all the image lines Nl of all the spectral bands

Nb as follows:

1. We assume that the difference between contiguous pixels in a row is small. The difference

between a correct pixel with its neighbor should be equal or smaller than with the pixel

of two columns away, except in the case that the neighbor is a drop-out. This assumption

should be true for all the odd pixels of the row.

• Square difference of odd pixels, which may be drop-outs, with neighboring even pixels

that are certainly correct:

Dall(l, b) = (I(l, p, b) − I(l, p + 1, b))2 p = 1, 2, . . . ,Np − 1 , (4.1.1)

where high differences are expected in presence of drop-outs.

• Square difference of even pixels, which are certainly correct, with the following even

pixel:

Deven(l, b) = (I(l, p, b) − I(l, p+ 2, b))2 p = 2, 4, . . . ,Np − 2 , (4.1.2)

where low differences are expected in all cases (depending on the surface changes in

the across-track direction).

2Development of CHRIS/PROBA Modules for the BEAM Toolbox (ESRIN Contract No. 20442/07/I-LG).
3The meaning of the quality mask values is also provided in the “Key to Mask” annotation in the HDF file

metadata of the CHRIS products as a simple line of text: “0 = useful pixels; 1 = Ch2 reset pixels; 2 = Saturated

data pixel”.
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2. Surface and vertical striping affect differences between contiguous columns, thus the ‘median’

is used to obtain a robust estimator of the average difference between pixels for the whole

line.

3. Finally, all odd pixels of the line are labeled as drop-out noise if the difference between

neighbours is 50% higher than between even pixels:

IF
median(Dall(l, b))

median(Deven(l, b))
> 1.5 THEN M(l, p, b) = 1 p = 1, 3, . . . ,Np (4.1.3)

Drop-out Correction

Once the drop-out errors have been detected, they must be corrected by using both spatial

and spectral information of the anomalous pixel and its neighbors. Each invalid pixel value is

replaced by a weighted average of the values of the neighboring pixels. In order to avoid the poor

performance of spatial filters (local average) in border or inhomogeneous areas (Larsen et al.,

1998; Garcia and Moreno, 2004), the contribution of each pixel (i, j) of a given neighborhood (C)

of size 3 × 3, is weighted by its similarity to the corrected pixel, I(l, p, b). In particular, this

similarity weight is the inverse of the Euclidean distance between the spectral signature of the

pixels, which is calculated locally using the nb upper and bottom spectral bands closer to the

corrected band b:

W (i, j) =

(

∑

k

(I(l, p, b) − I(l + i, p + j, b+ k))2

)−1/2

k = −nb, . . . ,−1, 1, . . . , nb . (4.1.4)

The final weight matrix, WC is modified to have zero values for the pixels not belonging to

the given neighborhood C and it is normalized in order to sum to one, i.e. , WC(i, j) =

C(i, j)W (i, j)/
∑

i,j C(i, j)W (i, j). Finally, the new value of the drop-out is calculated as:

I(l, p, b) =
∑

i,j

I(l + i, p+ j, b)WC (i, j) i, j = −1, 0, 1 . (4.1.5)

The result of this process is similar to a spatial interpolation but taking into account the simi-

larity with neighbors. It is worth noting that the values of bands with errors (indicated by the

CHRIS quality mask) are not considered during this process. The inputs required by the drop-out

correction algorithm are the CHRIS image, I, the improved quality mask, M , the definition of

the neighborhood, C, and the number of spectral bands nb used to compute the local spectral

distance.

The correction of the drop-out errors can be carried out independently of the vertical striping

correction. However, the vertical striping noise introduces different multiplicative factors in image

columns that can affect the new pixel value if the local average is performed by using contiguous

columns. Therefore, if drop-out correction is performed before the vertical striping correction,

only the values of the vertical neighbors (C2) must be used in order to avoid the effect of vertical
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Figure 4.3: Vertical striping formation process from the combination of the non-uniform CCD pixel

response S(p, b) and the slit optical response Hx(p), which are constant in columns.

striping. After the vertical striping removal, it is possible to perform a second correction based

on the four-connected (C4) or eight-connected (C8) neighbors.

C2 =

(

0 1 0

0 0 0

0 1 0

)

C4 =

(

0 1 0

1 0 1

0 1 0

)

C8 =

(

1 1 1

1 0 1

1 1 1

)

(4.1.6)

Vertical Striping Correction

As it has been previously shown (cf. section 1.3), a spectral band b will be acquired by the

same row of CCD elements. Therefore, each image column p will be affected by a different CCD

pixel response S(p, b), and a different optical slit response Hx(p), which is equal for all spectral

bands. The combination of these non-uniform spatial responses, which are constant in columns,

superimposes a systematic pattern of noise organized by vertical lines (the formation of the stripe

noise is depicted in Fig. 4.3). Therefore, the relation between the desired at-sensor radiance,

LTOA(l, p, b), and the provided (radiometrically calibrated) product, I(l, p, b), can be expressed

from (1.3.4) as:

I(l, p, b) = LTOA(l, p, b)Hx(p)Hλ(b)S(p, b) + S0(l, p, b) = LTOA(l, p, b)ν(p, b) + S0(l, p, b) , (4.1.7)

where ν(p, b) is a multiplicative noise coming from the slit and CCD, and S0(l, p, b) represents

an additive noise. In the particular case of CHRIS, the provided level 1a images are radiomet-

rically corrected (so the units of I are radiance units instead of DN), and images processed at

version 4.1 of the CHRIS HDF files present an improved radiometric calibration (Cutter, 2004a;

Cutter and Johns, 2005b) which was poor in previous versions (underestimation up to a factor

two of the sensor measurements in the NIR). Therefore, one can assume that images present a

accurate spectral radiometric calibration with Hλ(b) ≃ 1, and are corrected of dark current off-

sets, thus making S0(l, p, b) negligible, i.e. remaining only random noise of zero mean and low
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Figure 4.4: Example of the processing steps of two different vertical striping correction methods pro-

posed by Barducci and Pippi (2001) (a) and Settle and Cutter (2005) (b): profiles of the last band of

CHRIS EI 060130 63A1 41 image taken over Heron Island.

amplitude. Hence, (4.1.7) is reduced to:

I(l, p, b) = LTOA(l, p, b)H(p)S(p, b) = LTOA(l, p, b)ν(p, b) . (4.1.8)

The objective of vertical striping (VS) correction methods is to estimate the correction factor,

ν(p, b) = H(p)S(p, b), of each spectral band to correct all the lines of this band. The main

assumption consists in considering that both slit (H) and CCD (S) contributions change from

one pixel to another (high spatial frequency) in the across-track (p) but are constant in the along-

track (l); while surface contribution (LTOA) presents smoother profiles (lower spatial frequencies)

in the across-track dimension.

Vertical striping correction methods. In the literature, all the vertical striping reduction

approaches take advantage of the constant noise factors in the image columns (Barducci and Pippi,

2001; Garcia and Moreno, 2004; Settle and Cutter, 2005; Mlsna and Becker, 2006). Basically, the

image is averaged in lines (along-track) and then the noise profile is estimated in the across-track

direction for each band. By averaging image lines (integrated line profile) the surface contribution

is smoothed, the additive random noise is cancelled, and the VS profile remains constant. Con-

sequently, the surface contribution presents lower spatial frequencies in the integrated line profile

and can be easily separated from the VS (high frequencies) applying a filter with a suited cut-off

frequency.

Figure 4.4a shows the three steps of the method proposed by Barducci and Pippi (2001):

A. Each band is averaged in lines (along-track direction) obtaining one integrated line profile

per band: α(p, b) =
∫ Nl

1 I(l, p, b)dl = ν(p, b)
∫ Nl

1 L(l, p, b)dl = ν(p, b)β(p, b).

55



Chapter 4. Image Pre-processing and Feature Extraction

B. A low pass filter (LPF) is applied using a moving-window algorithm that flattens the profile

α(p, b) by convolving it with a Gaussian weighting function w: β̂(p, b) = LPF{α(p, b)} =
∫

w(p − k)α(p, b)dk. In this kind of filter, the cut-off frequency fc defines the standard

deviation of the Gaussian window, σ ∼ 1/fc.

C. Since β̂(p, b) mainly contains the surface contribution, the shape of the VS factors can be

obtained by the ratio ν̂(p, b) = α(p, b)/β̂(p, b). Thus, the corrected image is calculated as

L̂(l, p, b) = I(l, p, b)/ν̂(p, b).

Figure 4.4b shows the method that is used by SIRA Technology Ltd. to correct CHRIS images

(Settle and Cutter, 2005). The main difference with the previous method is the use of logarithms

to transform the multiplicative noise into additive noise in order to improve the filtering as follows:

A. Each band is averaged in lines obtaining one integrated line profile per band, α(p, b).

B. Log-transform the averaged profile: logα(p, b) ≡ log(α(p, b)) = log(ν(p, b)) + log(β(p, b))

C. Applying a low pass filter in order to eliminate high frequency variations (coming from the

noise ν) and estimate surface contribution: ˆlogβ(p, b) = LPF{logα(p, b)}.

D. Obtaining high frequency variations (considered as the noise): ˆlogν(p, b) = logα(p, b) −
ˆlogβ(p, b)

E. The vertical striping factors are obtained calculating the inverse of the logarithm ν̂(p, b) =

exp( ˆlogν(p, b)).

Theoretically, the first approach should give poor results when filtering the line profile because it is

affected by a multiplicative noise and this is equivalent to a convolution in the frequency domain.

This is the main reason to propose the second approach but, in practice, both approaches give

equivalent results. This can be explained because features of the multiplicative noise, which

present a mean close to one (f = 0 and A = 1) and high frequency components of low amplitude

(high f and A ≃ 0.1). Therefore, when performing the convolution of the signal and noise in

the frequency domain, the power spectral density of the signal at low frequencies is not affected.

Since both methods provide equivalent results, we consider them as a single method and hereafter

we refer to them as the standard method.

The standard method can fail for several reasons, such as high amplitude changes in the VS,

which affect the performance of the low pass filter (wrong estimation of the surface contribu-

tion) producing an overestimation or underestimation in the correction factors of the neighboring

columns. Garcia and Moreno (2004) presented an iterative method that corrects the effect of

these high striping values. However, as proposed in the next section, these effects can be also

avoided using more advanced filtering techniques that use a weight function.
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Robust vertical striping correction method. One of the main drawbacks of the methods

proposed in the literature is the fact that they do not take into account the possible high frequency

components of the surface explicitly. In images presenting structures or patterns in the vertical

direction, the averaged profile α(p, b) may present high frequency contributions due to the surface.

This will be interpreted as vertical striping when estimating ν(p, b) (see the selected example in

Fig. 4.4), and some columns will be corrected with wrong values, worsening the final image.

The proposed correction method is also based on the hypothesis that the vertical disturbance

presents higher spatial frequencies than the surface radiance. However, it models the noise pattern

by suppressing the surface contribution in the across-track in two different ways: first, avoiding

the high frequency changes due to surface edges, and then subtracting the low frequency profile.

The surface can present high spatial frequencies due to: the surface texture, which has low am-

plitude changes; or changes in the land-cover type, which can produce great changes in amplitude

being a problem in the destriping process. In principle, in one spectral band, both the surface and

noise contributions are mixed and is not possible to distinguish which of them causes the changes

in the radiance amplitude between contiguous columns. However, the spectral signature of pixels

from current hyperspectral sensors can provide helpful information about the land cover changes.

Considering the spectra of two contiguous pixels, p1 and p2, just in the boundary between two

land-cover types, there are three factors affecting the spectral change: (i) differences between

the true spectra of both surfaces (in shape and magnitude); (ii) the different CCD sensitivity

S(p, b), which modulates the spectral signature as a multiplicative noise of low variance; and (iii)

the different multiplicative factor due to the slit H(p), which scales the magnitude of the whole

spectral signature. Among these three factors, the first one will produce the greater change, the

second one will be a second-order factor when comparing the spectral similarity, and the third one

will not affect the final result if the selected spectral distance is invariant to scaling by a positive

factor. Therefore, we can apply a filter in the across-track direction of the hyperspectral image in

order to find the surface borders that introduce high frequencies in the across-track profile. The

next sections explain how pixels corresponding to borders are not employed when computing the

integrated line profiles.

Spatio-Spectral Edge Detection. We propose a spatio-spectral filter based on spatial

convolution filters, which are commonly used in grayscale image processing, like the Derivation

filter or the Gradient-Roberts filter (Pratt, 2001). These spatial convolution filters which calculate

a weighted average of the cells in the current filter window. The spatial filter response, R, contains

the array of weighting coefficients used in the calculation. To find edges in the horizontal direction

(across-track) the edge detection matrix R of these methods can be
(

−1 1
0 0

)

or
(

1 −1
0 0

)

for the

derivation filter,
(−1 0

0 1

)

or
(0 −1
1 0

)

for the Roberts filter, or a combination of them. To apply these

techniques to hyperspectral images, taking into account the spectral dimension, it is not possible

to directly calculate the convolution of the edge detection matrix and the three-dimensional

hypercube. In our proposal, a spectral distance is first computed between the spectrum of the
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Figure 4.5: Approach followed to find edges in the hyperspectral image using a spatio-spectral derivative

filter in the horizontal direction (Image CHRIS PC 050518 540B 41 acquired over the port of Valencia).

pixel linked to the position with value R(i, j) = −1 in the edge detection matrix (reference pixel),

and the rest of neighboring pixels (forming a matrix D of distances with value D(i, j) = 0 for

the reference pixel). Then, the sum of the product of the elements of the edge detection matrix

and the distance matrix is computed,
∑

i,j R(i, j)D(i, j), and the resulting value is assigned to

the reference pixel (i, j). The main difference of this method compared to the case of grayscale

image processing is that only one position of R can present the value −1, which indicates at each

moment the pixel that is being used as a reference to compute the spectral distances. Once this

process is applied to all the pixels, a sensitivity threshold is defined. All pixels with values higher

than the threshold (i.e. pixels whose spectral signatures differ from that of their neighbors) are

identified as edges.

Figure 4.5 shows the approach followed to find the edge values in the processed hyperspectral

images, which uses the derivative filter in the horizontal direction R =
(

1 −1
0 0

)

. Concerning the

spectral distance D, the spectral angle distance (SAD) is used since it is invariant to multiplicative

scaling (Keshava, 2004) and will be not affected by the vertical striping of the slit:

D(x1(λ),x2(λ)) = arccos (〈x1,x2〉/(‖x1‖‖x2‖)) , (4.1.9)

where x1 and x2 are the vectors containing the spectral signature of the pixels whose spectral

distance is being calculated, 〈·, ·〉 is the dot product operator, and ‖ · ‖ is the quadratic norm.

Finally, in order to find an optimum threshold for each image, but also accounting for a significant

number of lines to compute the smoothed integrated line profiles, an iterative empirical procedure

is followed. The procedure starts with a threshold equal to zero iteratively increased until a 60%

of non-edge pixels in the column that presents more edge pixels is ensured, i.e.:

IF
∑

i,j

R(i, j)D(x(l, p),x(l + i, p+ j)) > threshold THEN Edge(l, p) = 1 (4.1.10)
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Figure 4.6: Example of the processing steps of proposed vertical striping correction method (profiles of

the last band of CHRIS EI 060130 63A1 41 image taken over Heron Island).

Vertical Striping Removal. A critical point of the proposed approach is how to remove

edge pixels when computing the integrated line profiles. If all image lines that present at least

one edge pixel are removed, it is probable that only few or even none of the lines can be used in

the averaging. On the other hand, if the edge pixels are removed and only the remaining pixels of

the line are used for averaging, then the problem is not solved since the high frequencies are still

there (think in a step profile where only one point is removed). The only way to remove the edges

is to work in the across-track spatial derivative domain, where the homogeneous areas before

and after the edge present values close to zero and the spikes of edge pixels can be substituted

interpolating prior to the integration in the along-track direction. In this simple way, all high

frequency contribution by the surface is removed from the integrated line profile before the low

pass filtering, and then the estimated VS is independent to the surface patterns.

Figure 4.6 shows the steps of the proposed method, which are detailed below:

A. To apply logarithms in order to transform the multiplicative noise in additive: log(I(l, p, b)).

B. To transform the data-cube into the across-track spatial derivative domain, which is equiv-

alent to high-pass filtering: θ(l, p, b) = ∂
∂p log(I(l, p, b)) = log(I(l, p, b)) − log(I(l, p − 1, b)),

for p > 1 (note that the first column derivative is fixed to zero, θ(l, 1, b) = 0).

C. The lines of each band are averaged in the along-track direction but avoiding the edge

pixels found with the spatio-spectral edge detection: ξ(p, b) =
∫ Nl

1 θ(l, p, b)dl. To work in
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the derivative domain has allowed our method to avoid edge pixels, and it also leads to

increase the noise level temporarily because the surface power spectrum is concentrated in

the low frequency region, whereas the vertical striping is spread all over the spatial frequency

spectrum (Othman and Qian, 2006). Nevertheless, if the LPF is applied in the derivative

domain, the committed errors by the LPF will accumulate throughout the integration in

the across-track direction. Therefore, after applying the along-track LPF, data is integrated

across-track to retrieve the signal in the radiance domain.

D. Integration in the across-track direction (cumulative sum in p): φ(p, b) =
∑p

i=1 ξ(i, b), i.e.

the integration bias is corrected at the end of the process.

E. To apply a LPF in the across-track direction in order to eliminate the high frequency varia-

tions coming from the noise ν and estimate the surface contribution: ϕ(p, b) = LPF{φ(p, b)}.

F. To obtain the high frequency variations (considered to be the noise) by subtracting the low

frequencies: ψ(p, b) = φ(p, b) − ϕ(p, b). The error committed during the integration process

consists in a constant value for each band. Nevertheless, as the vertical striping is corrected

independently for each band, the vertical striping in the logarithmic domain should present

zero mean (gain close to 1 in the radiance image). Therefore, the offset errors are corrected

subtracting the mean value: ψ(p, b) = ψ(p, b) − 1
Np

∑

p ψ(p, b).

G. Finally, the VS factors are obtained calculating the inverse of the logarithm ν̂(p, b) =

exp(ψ(p, b)).

Multiangular Vertical Striping Removal. Thanks to the sequential acquisition of CHRIS

of the same scene from five different angles, we can also improve the robustness of the proposed

algorithm using together all the multiangular images of one acquisition. As mentioned before, the

VS due to the instrument slit is temperature-dependent. Although temperature recorded for dif-

ferent acquisitions has shown differences higher than 8◦C, the changes are less than 0.5◦C within

a single acquisition (5 multi-angular images). Therefore, images of one acquisition present the

same vertical striping pattern while they are recording different spatial patterns from the same

Earth area (due to perspective, platform motion and Earth rotation). One can take advantage of

this fact in order to improve the estimation of the vertical striping by considering the five images

as a single longer hyperspectral image, which is formed by stacking the multiangular images in

the along-track direction, i.e. an hyper-cube with the same number of columns Np and bands Nb,

but with 5 ×Nl lines with different spatial distribution of similar surface types (similar spectra).

When processing together a higher number of lines, the surface contribution is smoother and the

estimation of the VS is more accurate.

Vertical Striping Characterization and Correction of the Slit Effect. An extensive anal-

ysis of the performance of the proposed vertical striping method was carried out with more than
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300 CHRIS images of several acquisition modes in (Gómez-Chova et al., 2006a; Gómez-Chova et al.,

2008). Details about the vertical striping results will be omitted in this Thesis, but a result of great

value is the characterization of the vertical striping and its dependence on temperature. With this

purpose, we corrected a significant number of CHRIS images of the database obtaining an estima-

tion of the vertical striping pattern, ν̂(p, b) = H(p)S(p, b), per image. The sensitivity of the CCD

array, S(p, b), is assumed to be characterized by a Gaussian distribution with unit mean. How-

ever, by applying the logarithmic transformation to the estimated VS, the multiplicative nature

of both terms is changed to additive one, log(ν̂(p, b)) = log(H(p)) + log(S(p, b)), where the term

log(S(p, b)) can be safely considered additive noise with zero mean distribution. As a consequence,

the VS profile due to the slit, which is constant in columns, can be obtained by averaging in the

spectral direction of the CCD and then reverting the logarithm: H(p) = exp(
∫ Nb

1 log(ν̂(p, b))db).

Moreover, the slit-VS profiles of the five angular images can be averaged to obtain only one H(p)

per acquisition, which will be associated to the platform temperature for this given acquisition:

H(p, T ). Changes in temperature produce an expansion of the slit, changing its width and moving

the image of the slit across the detector. These two effects produce a scaling of the slit-VS factors

and a shift of its shape in the across-track direction, respectively, causing a temperature dependent

vertical striping. Figure 4.7, on the left side, shows a peak of the obtained H(p) profiles for all

the analyzed Mode 2 acquisitions (Mode 2 is shown because it is not binned and presents higher

across-track resolution than Mode 1). The ‘∗’ symbols represent the actual H(p) values for each

pixel column p, and the curves (continuous lines) are the corresponding spline interpolations in

the across-track direction x, which provide a continuous subpixel resolution model of the striping

H(x) for each measured temperature T : H(x, T ). The curves clearly show the shift and scaling

of the VS amplitude with temperature. Taking the VS at T0 = 5.5◦C as a reference, we compute

the shift in the across-track looking for the lag, ∆x(T ), of the maximum of the cross-correlation

sequence between the analyzed vertical striping, H(x, T ), and the reference one, H(x, T0). Once

the shift is corrected, the scaling factor GH(T ) is computed as the slope of the linear regression

that better fits H(x, T ) with H(x, T0) in a least-squares sense. In the central and right plots of

Fig. 4.7 we represent the shift ∆x(T ) and scale GH(T ) of the slit-VS as a function of temperature,

respectively.

The estimated ∆x(T ) and GH(T ) values are used to compensate the shift and scale of the

slit-VS H(x, T ) and obtain the corresponding slit-VS for each acquisition of the database, but

expressed at the reference temperature T0. The average of all these curves provides us a model

of the “real” slit-VS at the reference temperature, denoted by H̃(x), minimizing the estimation

errors. The modeled slit-VS for a given temperature T can be recovered from H̃(x) as:

H(x, T ) = GH(T )H̃(x− ∆x(T )) (4.1.11)

where ∆x(T0) = 0 and GH(T0) = 1. The value for a given pixel column p is obtained integrating

the width of the pixel photo-sensible area:

H(p, T ) =

∫ p+1/2

p−1/2
H(x, T )dx (4.1.12)
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Figure 4.7: Dependence of CHRIS slit vertical striping on temperature. From left to right: (a) detail

of the slit-VS profiles for all the Mode 2 acquisitions of the database; (b) across-track shift of the slit-VS

shape as a function of temperature; (c) scaling of the slit-VS factors as a function of temperature.
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Figure 4.8: Detail of the “real” slit-VS modeled from Mode 1 and Mode 2 CHRIS images, and the

binning of Mode 2 ‘∗’ closely matching Mode 1 curve (left). Scatterplot of the modeled Mode 1 and Mode

2 “real” slit-VS.

It is worth noting that Mode 1 performs a binning of columns in pairs. Therefore, for Mode 1

images, we have to simulate the binning in order to obtain the slit-VS factors for each image

column:

H1(pbinned) = 1/2(H2(p− 1) +H2(p)) (4.1.13)

where p = {2, 4, 6, . . . , 744}, and pbinned is the pixel number in Mode 1 images (372 columns).

Figure 4.8 shows a segment of the slit-VS curves modeled independently from Mode 1 and

Mode 2 acquisitions H̃1(x) and H̃2(x) (Fig. 4.8[left]) and the scatterplot of Mode 1 vs. Mode 2

(Fig. 4.8[right]). Agreement between both results is excellent, except in the highest and lowest

anomalous values (VS peaks) where probably the interpolation used to obtain H(x) produces

underestimated VS peaks, being this effect more noticeable in the binned Mode 1.
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4.1. Pre-processing (I): TOA Radiance Corrections

Algorithm Implementation in the BEAM Toolbox. Currently, the proposed correction

algorithm is being implemented in the free BEAM Toolbox4 software (Fomferra and Brockmann,

2005) under the framework of the ESA contract “Development of CHRIS/PROBA modules for

the BEAM toolbox” (ESA ITT SoW ENVI-DTEX-EOPS-SW-06-0008).

Figure 4.9: Screenshot with an example of the CHRIS/PROBA noise reduction module implemented in

the ESA BEAM Toolbox software.

The approach followed in this project takes advantage of the results presented in previous

sections. First, all drop-outs are corrected. Then, a rough correction of the vertical striping

due to the entrance slit is performed. For a given CHRIS image, the estimation of the slit

vertical striping H(p, T ) is obtained from the characterization of the vertical striping pattern

H̃(x) stored in a look-up-table (LUT) by using Eq. (4.1.11) to include the dependence on the

platform temperature T at the given CHRIS acquisition, and Eq. (4.1.12) if the acquisition mode

is binned. In Eq. (4.1.11), we assume a linear dependence of the shift in columns and the gain

factor with the temperature: ∆x(T ) = −0.12T + 0.65 and GH(T ) = 0.13T + 0.28, respectively,

where the coefficients of the linear regression are obtained directly from Mode 2 data presented

in Fig. 4.7. After this preliminary correction of the vertical striping due to the entrance slit, the

robust vertical striping correction method proposed in section 4.1.2 is used to estimate directly

4The Basic ERS & ENVISAT (A)ATSR and MERIS (BEAM) Toolbox is a collection of executable

tools developed by ESA to facilitate the utilization, viewing, and processing of ESA Earth observation data

(http://envisat.esa.int/resources/softwaretools/ or http://www.brockmann-consult.de/beam/).
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from the image (or multiangular acquisition) the remaining vertical striping for each band ν̂(p, b).

Finally, obtained factors are used to correct the image column values .

Figure 4.9 shows an screenshot of the ESA BEAM Toolbox software. In this example we

display the same area for the original CHRIS product (top), the image corrected with the al-

gorithm implemented by Settle and Cutter (2005) (middle), and the image processed with the

CHRIS/PROBA noise reduction module proposed in this work and implemented in the BEAM

Toolbox (bottom). One can easily appreciate how the vertical patterns are reduced from top to

bottom pictures.

4.2 Pre-processing (II): TOA Reflectance

Once the data have been corrected of errors and uncertainties, these data are independent of

differences in sensor system conditions. Hence, it is no longer necessary to express this information

in terms of the image-sensor lines and columns. Now, the multispectral image can be expressed

in terms of pixels with spatial coordinates (x, y), and the spectral information of each sensor

channel in terms of the central wavelength λb and bandwidth Λb of the band. Only for some precise

spectral calculations, which require the exact central wavelength for each pixel, information about

the original detector elements will be used, mainly when dealing with narrow absorption bands

where a small spectral shift affects the measure.

As already mentioned, both MERIS and CHRIS Level 1b products are provided in top of

the atmosphere (TOA) radiance. The corrected TOA radiance is further processed in order to

estimate TOA reflectance. This allows us to remove in practice the dependence on particular

illumination conditions (day of the year and angular configuration) and illumination effects due

to rough terrain (cosine correction), since the method is intended to work under many situations.

TOA apparent reflectance is estimated as follows:

ρTOA(x, y, λ) =
πLTOA(x, y, λ)

µs(x, y)F0(λ)
, (4.2.1)

where LTOA(x, y, λ) is the provided at-sensor upward radiance at the image location (x, y), F0(λ)

is the extraterrestrial instantaneous solar irradiance, and µs(x, y) is the cosine of the angle between

the illumination direction (solar zenith angle) and the vector perpendicular to the surface. Finally,

the Sun irradiance, F0(λ), is taken from Thuillier et al. (2003), corrected for the acquisition day,

and convolved with the spectral response of the sensor channels (see Fig. 4.10).

4.2.1 Day-of-Year Correction

The largest source of variation in F0 at the TOA is the orbit of the Earth around the Sun

(cf. section 1.1.2). The Sun is located at one of the foci of the Earth’s orbit (an ellipse with

eccentricity ǫ = 0.01673), and the value of F0 is expected to vary as the reciprocal of the Earth-

Sun distance squared. The mean Earth-Sun distance is referred to as 1 Astronomical Unit (AU)
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Figure 4.10: Sun irradiance corrected for the day of the year (1st row) and the spectral channels (2nd

row) used to estimate from the at sensor radiance (3rd row) the TOA apparent reflectance (4th row) for

MERIS (left) and CHRIS (right) instruments.

and corresponds to a distance of 1.496×1011 m. The factor to adjust F0 for intra-annual variations

in Earth-Sun distance is inversely proportional to the square of the Earth-Sun distance. Thus the

corrected solar irradiance is given by the following approximate formula (Vermote et al., 1997):

F0(λ) =
1

(1 − ǫ cos(0.9856(J − 4)π/180))2
F0(λ) , (4.2.2)

where J is the Julian day of year (DOY). The solar intensity at perhelion (January 3, minimum

Earth-Sun distance) and aphelion (July 4, maximum Earth-Sun distance) can differ by as much

as 4% relative to the mean Earth-Sun distance.

Since the reference extraterrestrial solar irradiance presents a different spectral sampling, it

is resampled to fit the spectral channels of the sensor. In both MERIS and CHRIS sensors, a

specific band, b, consists of the addition of one or more CCD detector pixel elements depending

on the desired bandwidth. Therefore, the spectral response for a given band, Hb(λ), is the sum

of the spectral response Hi(λ) of the corresponding detectors, i, of the CCD array. Then, the

mean solar irradiance for a given band, F0(b), is obtained by integrating the extraterrestrial solar

irradiance times its spectral response:

F0(λb) =

∫∞
0 Hb(λ)F0(λ)dλ
∫∞
0 Hb(λ)dλ

. (4.2.3)
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Figure 4.11: Left : DEM altitude of the BR-2003-07-14image. Right : Cosine of the angle between the

illumination vector and a vector perpendicular to the surface (cosine correction).

In CHRIS sensor, the theoretical full-width half-maximum (FWHM) of the instrument line-

spread functions correspond to spectral resolutions of 1.25 nm at 415 nm, increasing to 11.25 nm

at 1050 nm. In MERIS, the CCD covers the spectral range with a nominal 1.25 nm spectral

sampling interval and with a FWHM equal to 1.25 nm. For both instruments, one could assume

that Hi(λ) is a Gaussian response function whose width is equal to the FWHM of each element

i, and sum up all the elements of the band. In this Thesis, the spectral response of a band,

Hb(λ) is approximated as a bell-shaped function (that combines properties of both Gaussian and

trapezoidal functions) depending on the mid-wavelength, λb, and the bandwidth, Λb, of the band,

directly:

Hb(λ) =
1

1 + |2(λ− λb)/Λb|4
λb − Λb < λ < λb + Λb, (4.2.4)

where both the exact mid-wavelength and the bandwidth values for each channel are included in

the image metadata.

4.2.2 Rough Surface Correction

In this Thesis, the angle between the illumination direction and the vector perpendicular to

the surface, which defines µs(x, y), is computed in a different way depending on the sensor:

• In MERIS, it is computed for each pixel using the Sun Azimuth and Sun Zenith angles,

which are available in the Tie Point Location and Auxiliary Data of the MERIS product,

and the vector perpendicular to the surface, which can be computed from a Digital Ele-

vation Model (DEM). The free GETASSE30 DEM included in the BEAM ESA software

(Fomferra and Brockmann, 2005) may be used for this purpose (Fig. 4.11). In this step,

however, we assume a flat surface because, by using a DEM, illumination effects in the

surface are corrected but the characteristics of clouds over rough terrain may change.

• In CHRIS, this correction is approximated by the Solar Zenith Angle provided in the CHRIS

HDF file attributes since, due to the small field of view of CHRIS, one can assume a flat
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landscape and a constant illumination angle for the area observed. Information from a DEM

could be easily incorporated, but automatic geocoding and co-registration of CHRIS images

using telemetry, which is needed in the case of cloudy images since other methods can not

be applied, is a not solved problem (Alonso and Moreno, 2005; Alonso et al., 2005).

4.3 Feature Extraction

Converting image data into TOA reflectances has the advantage that these data, yet not

being free of atmospheric effects (Guanter et al., 2008a), are corrected for seasonal and diurnal

differences in solar position, and are independent of differences in sensor systems This is a desirable

characteristic for a cloud screening algorithm intended to work in any new image acquired by the

studied sensors.

In the following, all radiance signals and reflectance are referred to the top of atmosphere so, in

order to simplify the notation, L(λ) and ρ(λ) are used instead of LTOA(λ) or ρTOA(λ). Therefore,

the image is defined by {ρi(λ)}n
i=1 ∈ R

Nb , where n is the total number of pixels, and the spectral

signature is sampled at Nb narrow bands of the VNIR spectral region. It is important to remark

that, in the case of MERIS (cf. section 1.3.1), the set of bands is fixed, {λb}15
b=1 = {412.5, 442.5,

490, 510, 560, 620, 665, 681.25, 708.75, 753.75, 760.625, 778.75, 865, 885, 900} nm, and in the case

of CHRIS (cf. section 1.3.2), the number of bands, the location, and the bandwidth are variable

depending on the acquisition mode. For this reason, in this section, numeric values of used bands

are provided only for MERIS. A detailed description of the different CHRIS band sets is provided

at the end of the chapter (section 4.3.3).

The measured spectral signature depends on the illumination, the atmosphere, and the surface.

Figure 4.12 shows sensor channel locations compared to the spectral curve of healthy vegetation,

bare soil, and the atmospheric transmittance. The spectral bands free from atmospheric absorp-

tions contain information about the surface reflectance, while others are mainly affected by the

atmosphere.
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Figure 4.12: MERIS (left) and CHRIS Mode 1 (right) channel locations (boxes) superimposed to a re-

flectance spectra of healthy vegetation (dashed), bare soil (dash-dotted), and the atmospheric transmittance

(solid).
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At this step, rather than working with the spectral reflectance only, physically-inspired fea-

tures are used in order to increase the separability of clouds and surface covers, which is a common

strategy in remote sensing classification (Gómez-Chova et al., 2003c,a). These features are ex-

tracted independently from the channels that are free from strong gaseous absorptions (λb ⊂ BS)

and from the channels substantially affected by the atmosphere (λb ⊂ BA). In the case of MERIS,

which presents a fixed band configuration, the atmospheric channels, BA, are b = {11, 15} and

the surface channels, BS , are b = {1, . . . , 10, 12, . . . , 14}. A detailed analysis of the extracted

features is given in the following subsections. For illustration purposes, only the extracted fea-

tures from one CHRIS image (CHRIS-BR-050717-576C-41, section 7.1.1) and one MERIS image

(BR-2003-07-14, section 7.2.1) are provided.

4.3.1 Surface Spectral Features

Regarding reflectance of the surface, one of the main characteristics of clouds is that they

present bright and white spectra (Fig. 4.13). We can exploit bands in BS in order to extract

information about the target reflectance, i.e. cloud brightness and cloud whiteness for cloudy

pixels:

• A bright spectrum means that the intensity of the spectral curve (related to the albedo)

should present relatively high values. Therefore, cloud brightness is calculated for each pixel

as the integral of spectrum, fBr =
∫

ρ(λ)dλ, which can be approximated with a trapezoidal

numerical integration:

f̂Br =
1

λmax − λmin

∑

λb⊂BS

ρ(λb+1) + ρ(λb)

2
(λb+1 − λb), (4.3.1)

which differs from the average of the spectral channels since it takes into account the dis-

tribution of the energy along the spectrum.

• A white spectrum means that the spectral signature must be flat along the spectrum. The

first derivative of the spectral curve should present low values, but noise and calibration

errors may reduce the accuracy in the estimation of the spectrum flatness when computing

the spectral derivative in channels with similar wavelengths. Therefore, we compute for each

pixel the deviation from the flatness as the (trapezoidal approximate) integral of e(λ) =

|ρ(λ) − f̂Br|:
fWh =

1

λmax − λmin

∑

λb⊂BS

e(λb+1) + e(λb)

2
(λb+1 − λb) (4.3.2)

Further surface features can be obtained by considering independently the VIS (λVIS ∈ [400−
700] nm) and NIR (λNIR ∈ [700−1000] nm) spectral ranges, where surface covers present different

reflectance properties. Therefore, instead of working with fBr and fWh, we can obtain 2+2 features

from (4.3.1) and (4.3.2) respectively: fBr,VIS and fWh,VIS, computed using λb ⊂ (BS ∩ VIS); and
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Figure 4.13: Cloud brightness (up) and whiteness (down) features extracted from the TOA reflectance,

for VNIR (left), VIS (center) and NIR (right), of the MERIS BR-2003-07-14 (top) and the CHIRS CHRIS-

BR-050717-576C-41 (bottom) images.
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fBr,NIR and fWh,NIR, computed using λb ⊂ (BS ∩ NIR). For example, clouds over land should

be better recognized in fBr,VIS than in fBr,NIR since land covers have less reflectance in the VIS

range, while the opposite is true for clouds over sea.

4.3.2 Atmospheric Features

Regarding atmospheric absorptions, another meaningful feature is the fact that clouds are at

a higher altitude than the surface. It is worth noting that atmospheric absorption depends on

the atmospheric constituents and the optical path. Since light reflected on high clouds crosses a

shorter section of the atmosphere, the consequence would be an abnormally short optical path,

thus weaker atmospheric absorption features. Atmospheric oxygen absorption and even water

vapor absorption (at 760 nm and 940 nm respectively) are candidate bands to be used in the

optical path estimation.

The use of atmospheric absorption in the oxygen-A band to infer cloud pressure, which is

related to cloud-top height, has been suggested by several authors (Yamamoto and Wark, 1961;

Chapman, 1962). In fact, cloud top height retrieval from the oxygen-A band using instruments

conceived to yield global distributions of atmospheric constituents, such as GOME and SCIA-

MACHY, is an active field of research (Kokhanovsky et al., 2007b,a). In the case of medium

resolution imaging spectrometers, several studies have shown that the oxygen-A band is poten-

tially efficient for determining the cloud-top pressure (Fischer and Grassl, 1991; Buriez et al.,

1997; Ramon et al., 2003). All these studies assume that the two spectral channels located at the

oxygen-A band (one outside and another inside the absorption band) allow the derivation of an

apparent pressure which roughly represents the cloud pressure. In particular, apparent pressure

is calculated using an empirical polynomial function of the oxygen transmission derived from the

reflectance ratio ρ(λin)/ρ(λout). However, to obtain reliable estimations of the cloud-top height

is still a challenging problem affected by the instrument radiometric and spectral resolution, the

influence of ground reflectance, and the need of a reliable surface pressure reference, e.g. from

the ECMWF.These difficulties explain the little attention paid to this helpful feature in cloud

screening.

In the case of MERIS, the accurate characterization of the O2-A absorption at MERIS channel

11 (bandwidth of 3.75 nm) makes the inclusion of this atmospheric feature in the cloud screening

scheme mandatory, as pointed out by Ramon et al. (2003) and Preusker et al. (2006). In the case

of CHRIS modes 1 and 5, at least one spectral band is affected by the O2-A absorption, which

makes the inclusion of this atmospheric feature in the cloud screening scheme possible. However,

its wavelength is not necessarily centered in the maximum absorption and its bandwidth is too

high, making difficult an accurate estimation of the optical path. Therefore, when using the oxygen

absorption band in CHIRS images, only high clouds are well distinguished from the surface and

low clouds present almost the same values as the surface. In the following paragraphs, we present

the formulation proposed to extract an atmospheric feature directly related to the optical path.
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Figure 4.14: Estimation of the optical path, δatm, from the O2 absorption band. Left : Correction of

the spectral shift on the MERIS response due to the smile effect. Top-Left Nominal wavelength λb of the

channels b = 10, 11, 12 (dashed lines), and the corrected one for each MERIS detector index (constant in a

given image column), λb+∆λb(x). Middle-Left : Effective atmospheric vertical transmittance, exp(−τ0(λ)),
estimated from a high resolution curve taking into account the spectral response (efficiency) of MERIS

channels Bottom-Left. Top-Right : CHRIS example of the TOA reflectance inside the oxygen band, and the

estimated reflectance at the maximum absorption (λ=760.625 nm). Middle-Right : Effective atmospheric

vertical transmittance, exp(−τ0(λ)), estimated from a high resolution curve taking into account the spectral

response (efficiency) of CHRIS channels Bottom-Right.
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The light transmitted through a non-dispersive medium can be expressed using the Bouguer-

Lambert-Beer law:

L(λ) = L0(λ) exp

(

−τ(λ)

µ

)

, (4.3.3)

where L0(λ) is the light entering into the medium, the term exp(−τ(λ)/µ) is the transmittance

factor, 1/µ is the optical mass obtained from the illumination and observation zenith angles, and

τ(λ) is the atmospheric optical depth. Since most of the radiation measured by the sensor has

been reflected by the surface, (4.3.3) can not be used to model the at-sensor radiance. However,

it provides a physical basis for the definition of a non-dimensional parameter that accounts for

atmospheric absorptions in typical remote sensing scenarios. In our case, the reference radiance

L0(λ) will be the radiance outside the absorption feature, calculated by interpolating the nearby

channels that are unaffected by absorptions, and L(λ) will be the radiance affected by gaseous

absorptions after crossing the TOA-surface-sensor path. The inversion of (4.3.3) provides τ(λ),

which is a measure of the strength of the gaseous absorptions in a certain spectral range. The

assumption is that variations in τ(λ) are driven by sharp changes in elevation as those due to

transitions between cloud-free and cloud-covered areas. Horizontal variations in the atmospheric

state are considered as a second-order effect compared to cloud-to-surface elevation changes. An

equivalent atmospheric transmittance parameter could be calculated as the ratio L(λ)/L0(λ), but

the contribution of illumination and observation geometries would not be normalized.

The atmospheric path radiance is an additional contribution to take into account, which is

the radiation reflected by the atmosphere into the sensor’s line-of-sight. Further refinement of

(4.3.3) is achieved by removing the atmospheric path radiance, Lp(λ), from L(λ) and L0(λ), as

Lp is mainly associated to scattering processes rather than to absorption ones. In particular, Lp

is calculated at each pixel using the exact pixel geometry (solar zenith angle, viewing geometry,

and surface height) from a look-up table generated with the MODTRAN4 radiative transfer code

(Berk et al., 1998). A default visibility value of 23 km is assumed for the aerosol loading, but

changes in illumination and observation angles are properly considered (Guanter, 2006).

The foundations for the procedure are solid but the performance of the instruments severely

affects the robustness of the method. Sensor spectral calibration is a major source of uncertainty

when dealing with gaseous absorptions. In the case of MERIS, even though it has two specific

spectral bands in the oxygen-A absorption region (channels 10 and 11), the oxygen absorption is

extremely narrow and small variations of the spectral wavelength of each pixel along the CCD

lines (smile effect) have a large impact on any variable derived from the oxygen-A. Fortunately,

this spectral shift on the MERIS response has been well characterized (Dubuisson et al., 2003),

and the spectral shift values for each pixel column in the across-track direction (p ≡ x) of the

five MERIS detectors, ∆λb(x), have been provided to the user community (D’Alba et al., 2005;

Delwart et al., 2007). This allows us an easy introduction of the spectral shift in our formulation.

In the case of CHRIS, the broader bandwidth makes the estimation of the oxygen absorption

less accurate but less sensitive to spectral shifts (moreover CHRIS optical system is designed

to minimize the smile). However, residual vertical striping noise is critical when ratios between
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bands with low values are computed.

The atmospheric optical depth is decoupled into two contributions,

τ(λ) = τ0(λ)δatm , (4.3.4)

where τ0 is an optical thickness reference spectrum at sea level for nadir illumination and ob-

servation, and δatm is a factor accounting for elevated surfaces such as clouds. The reference

τ0(λ) values are estimated from a high spectral resolution curve following the same procedure

that in (4.2.3). The approach followed here for the so-called Oxygen-A band can be devised from

Fig. 4.14, and the extracted feature is derived from (4.3.3) and (4.3.4) as:

fO2(x, y) = − µ(x, y)

τatm(λin)
log

(

L(x, y, λin)

L0(x, y, λin)

)

, (4.3.5)

where the interpolated radiance at the absorption band is estimated from nearby channels,

L0(λin) = L(λout inf) + (λin − λout inf)(L(λout sup)−L(λout inf))/(λout sup − λout inf), In the case of

MERIS, the fix set of band locations out inf , in, and out sup for the oxygen absorption corre-

sponds to channels 10, 11, and 12, respectively; and τ0(λ) has been corrected for the smile effect,

λb(x) = λb + ∆λb(x). Note that the smile correction can be easily implemented by calculating

the atmospheric features for each detector column x separately.

An additional estimation of the optical path can be obtained from the water vapor absorption

in the NIR, close to the end of the valid range of the sensors. In the case of the water vapour

absorption, the maximum absorption (940 nm) is acquired by CHRIS Modes 1 and 5 only, but is

located outside the MERIS range. In addition, the water vapor distribution is extremely variable,

and thus it is not straightforward to relate this feature to the real altitude. However, it is still valid

for relative measurements inside the same image since almost all the atmospheric water vapor is

distributed in the first 2-3 km of the atmosphere below most of the cloud types; and, in the case of

CHRIS, one can fairly assume small differences because of the small CHRIS spatial coverage (15

km swath). Therefore, the optical path estimated from water vapor absorption provides better

cloud discrimination in CHRIS images since this band is broader than the oxygen band and more

CHRIS bands are completely affected. Finally, snow presents higher absorption than clouds at

900 nm and this behavior can be appreciated in the extracted feature.

The same approach than in the O2 case has been followed to obtain this feature (Fig. 4.15):

fWV(x, y) = −µ(x, y)

τ0(λin)
log

(

L(x, y, λin)

L(x, y, λout inf)

)

, (4.3.6)

where we assume that L0(λin) = L(λout inf) since the interpolation at the end of the spectral range

of the sensor is sometimes not possible in CHRIS, and completely impossible in MERIS where

only the last two channels, λout inf = λ14 and λin = λ15, can be used.

It is worth noting that the extracted atmospherical features are not intended to estimate

altitude of clouds. They are just an estimation of the optical path by taking into account important
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Figure 4.15: Estimation of the optical path from the oxygen absorption (left) and water vapor (right)

bands for the MERIS BR-2003-07-14 (top) and the CHIRS CHRIS-BR-050717-576C-41 (bottom) images.

issues such as the viewing geometry, atmospheric transmission, and sensor calibration. However,

this estimation is affected by the background reflectance of the surface and the atmospheric

conditions (Guanter et al., 2008a), which change from one image to another. For example, at the

oxygen absorption band, solar-induced chlorophyll fluorescence emitted by terrestrial vegetation

(Gómez-Chova et al., 2006b; Vila-Francés et al., 2006a, 2007; Amorós-López et al., 2006b, 2007,

2008a) fills the absorption in those wavelengths and thus green vegetation fields can present

lower optical path values(Alonso et al., 2006, 2007, 2008), comparable to low altitude clouds

(Guanter et al., 2006b,c; Guanter et al., 2007). All these problems preclude the use of these

features in simple approaches based on static thresholds.

As it happened with the surface features, we found differences for the retrieved atmospheric

absorption features over land and ocean, which are mainly due to the coupling between scattering

and absorption. Over dark surfaces with low reflectance, such as oceanic water, an important part

of the light coming into the instrument is scattered in the atmosphere. Therefore, the extracted

features do not measure the direct oxygen or water vapor transmittance anymore, thus resulting in

a biased optical path (Ramon et al., 2003, 2004; Ranera et al., 2005). Despite of these differences

over land and over ocean, the extracted features are still capable of discriminating cloud pixels
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in both cases for a given image. These differences on feature values over land and ocean suggest

that these two different cases should be better managed separately, that is, clustering pixels of

each surface type separately.

4.3.3 Remarks on CHRIS Acquisition Modes

One of the main advantages of the CHRIS instrument is its high operation mode configura-

bility. In fact, the number of bands and their nominal wavelength allocations changes to a great

extent from one mode to another. However, this advantage is a problem for the detection of

clouds since the method has to take into account the number and configuration of the spectral

bands for each CHRIS acquisition mode. For example, the oxygen and water vapour atmospheric

absorptions are only present in the spectral region registered by Modes 1 and 5. The spectral

coverage of bands acquired by the main CHRIS modes is depicted in Fig. 4.16.

Table 4.1: Available features depending on CHRIS mode and number of bands used to compute them.

Characteristic Range Feature Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Spectral Brightness VIS fBr,VIS 22 10 7 5 8

Spectral Brightness NIR fBr,NIR 11 4 6 8 10

Spectral Brightness VNIR fBr 33 14 13 13 18

Spectral Whiteness VIS fWh,VIS 22 10 7 5 8

Spectral Whiteness NIR fWh,NIR 11 4 6 8 10

Spectral Whiteness VNIR fWh 33 10 13 13 18

Oxygen absorption 760 nm fO2
3 – – – 3

Water vapor absorption 940 nm fWV 2 – – – 2

The proposed cloud masking algorithm has been designed for CHRIS Modes with full spectral

information (Modes 1 and 5). Table 4.1 shows the available features depending on the CHRIS

acquisition mode. In the case of the brightness and whiteness, the number of spectral bands used

to compute them is lower for modes 2, 3, and 4. Therefore the robustness and the discrimination

power of these features will be poorer for these modes. Moreover, the absorption features can

not be computed at all for these modes. In consequence, the proposed algorithm could present

a poor performance for Modes 2-3-4 images in critical cloud screening situations, such as over

bright surfaces (ice, snow, sand, etc) and around cloud borders or thin semi-transparent clouds.
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Figure 4.16: Top-to-bottom: Modes 1–5 CHRIS band locations (boxes) superimposed to a reflectance

spectra of healthy vegetation (dashed), bare soil (dash-dotted), and atmospheric transmittance (solid).
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Unsupervised Cloud Classification

As previously discussed, cloud screening based on static thresholds applied to every pixel in the

image can fail due to subpixel cloud coverage, sensor calibration, variation of the spectral response

of clouds with cloud type and height, etc. In this context, the following step in our methodology

considers the use of classification methods to find groups of similar pixels in the image. Clustering

methods assume that the input data is organized into a number of groups or clusters according

to a given distance measure in some representation space (Duda and Hart, 1973). An excellent

review of clustering algorithms can be found in Xu and Wunsch (2005). In this work, we use the

Expectation–Maximization (EM) algorithm (Dempster et al., 1977) to estimate the parameters

of a Gaussian mixture model.

5.1 Pixel Identification and ROI Selection

Before applying a clustering algorithm, we should stress the fact that if clouds were not sta-

tistically representative in a given image, clustering methods could not find small clouds or cloud

pixels could be mixed with other similar covers. Therefore, in addition to using representative

features along with the spectral bands, clustering performance improves when applied over the

regions of the image where clouds are statistically representative, which are defined as the regions

of interest (ROIs).

5.1.1 Water/Land Identification

Differences of reflectance over land and ocean produce significant differences on the extracted

features. As a consequence, splitting image pixels into two different clustering problems reduces

the types of clusters and speeds up the clustering process itself. In order to do that, Geographical

Information Systems (GIS), both tools and products, are very useful since they provide addi-

tional information of the geographical areas observed by the sensor, which can be combined with
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Figure 5.1: Result of the threshold-based cloud/land/water classification (left) and the growing algorithm

(right) for the MERIS BR-2003-07-14 (top) and the CHIRS CHRIS-BR-050717-576C-41 (bottom) images

(significant pixels in white).

the image data (Izquierdo-Verdiguier et al., 2008; Amorós-López et al., 2008b). The so called

‘land/ocean’ and ‘coastline’ flags attached to the MERIS L1b product could be used to separate

land and water pixels present in the image. However, this geographical product can not be directly

used for this purpose due to inaccuracies in the image geo-referentiation (Brockmann et al., 2002).

Therefore, a refinement process of the ‘land/ocean’ flag is carried out on a per pixel basis using

the TOA reflectance in order to accurately classify the inland waters and coast intertidal areas.

Once image pixels are separated according to the surface type (‘land’ or ‘water’), the clustering

is carried out. This process is further described in the following subsections.
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5.1.2 Region of Interest with Cloud Covers

In order to find regions that could potentially contain clouds, we apply hard non-restrictive

thresholds to provide a first map of cloud-like pixels1. These absolute thresholds were obtained

empirically and were applied to well-defined features: the brightness in the VIS and the NIR

region, the estimated water vapor absorption, and the NDVI (in order to exclude areas with

vegetation). Then, a region growth algorithm is carried out, along with a morphological process

that dilates cloudy areas. This way, we ensure that all possible clouds and their contiguous areas

will be considered in the clustering. The result of this process is far from providing a classification

map, but just an overlay that identifies areas with presence of clouds (Fig.5.1).

5.2 Unsupervised Classification with the EM Algorithm

The clustering algorithm is applied to all the pixels in the ROI X = {xi}n
i=1, where xi ∈ R

d

is the vector of extracted features for each pixel: xi = [fBr,VIS, fBr,NIR, fWh, fO2, fWV]⊤, which

correspond to the target spectral brightness in the VIS and NIR, the target spectral whiteness,

and the oxygen and water vapor atmospheric absorptions, respectively. Basically, the aim of

the clustering is to associate each input xi to one of the clusters ωk, k = 1, . . . , c, in order to

separate different classes (or at least clouds and ground-cover) present in the scene. We impose

the following requirements to the clustering method: (i) it should take advantage of all available

features (including atmospheric absorptions); (ii) it should consider the full relationship among

variables (without applying independent tests to each feature); and (iii) it should provide for

each input a soft association with the clusters (membership or probability value) between zero

and one, hik, with the requirement that the memberships sum to one.

5.2.1 EM Algorithm

In multispectral and hyperspectral image processing, the assumption that the distribution

of image data can be approximated as a mixture of normally distributed samples is commonly

accepted (Shahshahani and Landgrebe, 1994; Jackson and Landgrebe, 2001; Landgrebe, 2002). In

this chapter, we make such assumption for the extracted features. Therefore, we consider the input

as a mixture of normal distributions and use the EM algorithm to obtain the maximum likelihood

estimation of the probability density function (pdf) of the Gaussian mixture (Duda and Hart,

1973).

The EM algorithm estimates the mixture coefficient πk, the mean µk, and the covariance

matrix Σk for each component of the mixture. The final pdf describes both the class of interest

and the ground-cover class, and is worth noting that both heterogeneous classes can be made up

1Note that, in the case of MERIS, the ‘bright’ flag could be directly used to determine these regions and,

therefore, to speed up the process.
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of more than one mode, each representing a different subclass.

In a mixture model, the probability density function is given by (Duda and Hart, 1973):

p(x|Θ) =

c
∑

k=1

p(x|ωk,Θ)P (ωk) (5.2.1)

where ωk are the components, P (ωk) are their prior probabilities, or mixing parameters, and

p(x|ωk,Θ) are the conditional pdf associated to the kth component, being Θ the vector of param-

eters. Sometimes Θ also includes P (ωk). The log likelihood of the independently and identically

distributed (i.i.d.) sample X is:

L(Θ|X ) =
∑

i

log p(xi|Θ) =
∑

i

log
∑

k

p(xi|ωk,Θ)P (ωk) (5.2.2)

This has not a straightforward solution, but the mixture parameters can be estimated using the

EM algorithm, which involves two consecutive iterative steps.

In the E-step, we compute the posteriors as follows:

P (ωk|xi,Θ) =
p(xi|ωk,Θ)P (ωk)
∑

l p(xi|ωl,Θ)P (ωl)
(5.2.3)

which will be also referred to as hik hereafter for the shake of simplicity in the notation. If the

component densities are taken to be d-variate Gaussian, p(x|ωk,Θ) ∼ Nd(µk,Σk):

p(x|ωk,Θ) =
1

(2π)d/2|Σk|1/2
exp

(

−1

2
(x− µk)

⊤Σ−1
k (x − µk)

)

(5.2.4)

then we have

hik =
πk|Σk|−1/2 exp

(

−(1/2)(xi − µk)
⊤Σ−1

k (xi − µk)
)

∑

l πl|Σl|−1/2 exp
(

−(1/2)(xi − µl)
⊤Σ−1

l (xi − µl)
) (5.2.5)

where we re-define πk ≡ P (ωk).

In the M-step, we update the component parameters Θ:

µk =

∑

i hikxi
∑

i hik

Σk =

∑

i hik(xi − µk)(xi − µk)
⊤

∑

i hik
(5.2.6)

πk =
1

n

∑

i

hik

EM initialization

The EM algorithm has to be started with a set of initial values for the parameters of the pdf.

In this work, the k-means algorithm is used to obtain a first approach to the structure of the data

in clusters. This algorithm only needs the number of clusters c to be fixed, and minimizes the
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Euclidean distance of the samples in one cluster to its mean. In k-means, input is associated only

with the cluster having the nearest center (crisp labels). The cluster center is the mean of all

inputs associated with that cluster. Once the cluster centers are updated, samples may change to

a different cluster so an iterative procedure is followed until centers do not change significantly.

MAP classification

Once we have estimated the Gaussian components of the pdf of the data, we perform a

Gaussian maximum likelihood classification on the whole image. The algorithm assigns the pixel

to the cluster with the maximum a posteriori probability (MAP) generating a map with the

clusters in the image. The final estimates of the cluster membership for each pixel in the image

hik represent the estimates of the posterior probabilities, which are used to compute the optimal

cluster label as:

hi ≡ argmax
k

{hik} (5.2.7)

Remarks on the number of clusters

The proposed image clustering process relies on the key step of selecting the number of clus-

ters, c. Several statistical criteria can be used to assess partitions produced by the EM clus-

tering algorithm. In (Bezdek et al., 1997) a good review of cluster validity indices, both crisp

and probabilistic, for choosing the correct number of components in a mixture of normal distri-

butions can be found. A well known statistically motivated index is the crisp Davies-Bouldin

(DB) index (Davies and Bouldin, 1979), which consists in maximizing the between-cluster sepa-

ration while minimizing the within-cluster scatter using an Euclidean metric. There are several

information-based criteria aimed at determining the model (number of Gaussian components)

that best describes the data (in terms of the maximum likelihood estimate) while reduces model’s

complexity (i.e. number of independently adjusted parameters within the model) to account for

the over-fitting of high order models. The most common criterion of this type is the Akaike’s

Information Criterion (AIC) (Akaike, 1974), which adds to the log-likelihood of the model pa-

rameters Θ with respect to the set of samples, L(Θ|X ), a penalty term depending of the number

of free parameters of the model, np = c(1 + d + (d + 1)d/2) − 1, and looks for the model with

lowest value: −2L(Θ|X ) + 2np. The Rissanen’s Minimum Description Length (MDL) criterion

(Rissanen, 1986) includes in the penalty term the total number of samples, n, in order to ob-

tain a consistent estimator that converges when the number of observations tends to infinity:

−2L(Θ|X ) + np log(n). Some variants of the MDL penalize free parameters more strongly than

the previous one: −2L(Θ|X ) + np log(nd).

Another possibility for the user (and not explored in this work) is to initialize the mean of the

clusters with the spectral signature of the class of interest using a spectral library. Obviously, the

problem of selecting c vanishes if a training labeled set is available.
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Figure 5.2: Thematic map with the distribution of the clusters in the scene (left), the spectral signatures

of the clusters (center), and the location in the image of the pixels with the most similar spectra (right)

for the MERIS BR-2003-07-14 (top) and the CHIRS CHRIS-BR-050717-576C-41 (bottom) images.

5.2.2 Cloud Identification

Once clusters are determined in the previous step, the spectral signature for each cluster, sk(λ),

is estimated as the average of the spectra of the cluster pixels. This step excludes those pixels with

abnormally low membership values or posterior probability hik. It is important to emphasize that

these spectral signatures of each cluster could differ a lot from the spectra obtained when applying

the EM algorithm over the image using the spectral bands rather than the extracted features. The

extracted features used to find the clusters are optimized to increase separability between clouds,

C, and any-other surface type, C, while in the spectral domain these clusters could present a high

degree of overlapping. Therefore, the obtained clusters can be labeled (or identified) as ‘cloud’ or

‘cloud-free’ (or into more detailed geo-physical classes) to take into account four complementary

sources of information (Fig. 5.2): (i) the cluster centers µk of the extracted features; (ii) the

spectral signatures of cluster, sk; (iii) the thematic map with the distribution of the clusters

in the scene; and (iv) the location in the image of the pixels with the spectral signature closer

to sk. At this point of the process, two different labeling strategies can be followed depending

on whether the method is applied to a large number of scenes in an operational mode or it is

used by an operator to improve cloud screening on regional and case studies. In the first case,

found clusters are labeled by using a set of threshold tests over µk and sk values (these tests

can be similar to the ones used by the MERIS standard algorithm (Santer et al., 1997)). This
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Figure 5.3: Thematic map with the distribution in the scene of the classes of the clusters (left) and Cloud

Probability index computed from the posteriors of the cloud-clusters (right) for the MERIS BR-2003-07-14

(top) and the CHIRS CHRIS-BR-050717-576C-41 (bottom) images.

cluster-based approach provides a more accurate cloud screening than the standard approach

(applied on a per pixel basis) since classifying the centers of the clusters should be easier than

classifying single pixels, e.g. pixels close to the decision boundaries. It is worth noting that, in

this case, different classification criteria can be used for clusters found over ‘land’ and over ‘water’.

For regional and case studies, the cluster information can be analyzed directly by the user for

the given image. This can help significantly to identify clusters corresponding to extremely thin

clouds or ice/snow covers misclassified by the automatic labeling. In the following processing steps

of the method, both ‘land’ and ‘water’ clusters are used together to obtain the final probability

and abundance fraction of clouds for all image pixels, and thus obtaining a cloud product map

without discontinuities between land and water.

Once all clusters have been related to a class with a geo-physical meaning (Fig. 5.3[left ]), it

is straightforward to merge all the clusters belonging to a cloud type. Since the EM algorithm

provides posterior probabilities (hik ∈ [0, 1] and
∑c

k=1 hik = 1), a probabilistic cloud index, based

on the clustering of the extracted features, can be computed as the sum of the posteriors of the
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cloud-clusters C:

hiC =
∑

ωk⊂C

hik (5.2.8)

However, if the clusters are well separated in the input space, the posteriors decrease drastically

from one to zero in the boundaries between clusters (Fig. 5.3[right ]). Therefore, this Cloud

Probability index indicates the probability that one pixel more likely belongs to a cloud-cluster,

C, than to one of the other clusters, C, found in the image, but it does not give information

about the cloud content at subpixel level, which is very important when dealing with thin clouds

or partially covered pixels.

5.3 Cloud Abundance

In order to obtain a cloud abundance map for every pixel in the image, instead of flags

or a binary classification, a spectral unmixing algorithm is applied to the MERIS image. The

linear spectral unmixing algorithm (LSU) (Chang, 2003) allows decomposing each pixel of the

image, ρi(λ), into a collection of constituent spectra or endmembers, and a set of corresponding

abundances that indicate the proportion of each endmember in the pixel.

5.3.1 Linear Spectral Unmixing

The algorithm used to perform the spectral unmixing is the Fully Constrained Linear Spectral

Unmixing (FCLSU) (Heinz and Chang, 2001; Chang, 2003), which guarantees a physical (yet

linear) interpretation of the results and can be formalized as follows:

ρi(λb) =

Q
∑

q=1

mq(λb)aiq + εb (5.3.1)

subject to

0 ≤ aiq ≤ 1 and
∑

q

aiq = 1 (5.3.2)

where ρi(λb) is the value of the pixel i for band b; Q represents the number of endmembers that

are being unmixed; and coefficients aiq are the unmixing coefficients, which can be interpreted

as the abundance fractions of materials in a pixel. Finally, the term εb represents the residual

error per band. Equation (5.3.1) can be expressed in a matrix form as ρi = M · ai + ε, where

the spectral signatures of materials, mq, are expressed as the columns of matrix M. The FCLSU

algorithm solves a constrained linear least-squares problem:

min
ai

‖M · ai − ρi‖ (5.3.3)

subject to (5.3.2), i.e. the vector ai of independent variables is restricted to being nonnegative and

sum to one. This is because ai represents the contribution of reflectance signatures mq and it is
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supposed that M represents all the constituents in the image with at least one pure independent

spectrum.

Remarks on endmember extraction for cloud screening

In the literature, there are different approaches to determine the spectra of the different pure

constituents in the image (Keshava and Mustard, 2002; Plaza and Chang, 2006). However, in a

cloud screening framework, two specific considerations have to be taken into account. First, only

one endmember must be selected to represent clouds. This constraint contrasts with the selection

of the number of clusters, in which more clusters should model better such an heterogeneous class

as clouds. In the classification, most of the cloud-clusters consists of mixed pixels of thin clouds

and ground or borders and subpixel clouds. In the LSU method, we assume that clouds represent

pure constituents and consequently only one endmember must represent them. Some examples

of the negative effects of including mixed thin cloud spectra as endmembers were reported by

Gómez-Chova et al. (2005a). In this work, the cloud endmember, m1, is selected among all the

cloud pixels, ρi ⊂ C, looking for the brightest and whitest one. The second issue is related to the

total number of endmembers. If the value of Q is selected to be too low, then not all constituents

will be extracted. On the other hand, if the value of Q is selected to be too high, some extracted

endmembers may be unwanted non-pure signatures. However, this does not constitute a critical

problem since we are not interested in obtaining accurate abundances for all the constituents

present in the image, but basically in the cloud abundance. For this reason, obtaining some

unpure ground endmembers, i.e. those mixture of two or more ground constituents, is not a

problem as this will only affect the abundances related to ground endmembers.

Endmember initialization algorithm

Taking into account the previous considerations, we use the Automated Target Generation

Process (ATGP) (Ren and Chang, 2003) to select the rest of endmembers, {mq}Q
q=2, from the

ground pixels, ρi ⊂ C. The ATGP finds the endmembers in accordance with an orthogonal sub-

space projection criteria and it normally outperforms the other common endmember initializa-

tion algorithms (Amorós-López et al., 2006a; Plaza and Chang, 2006). In particular, the ATGP

is well-suited to our problem since it starts with the initial endmember signature, m1, then finds

the next endmember signature, m2, looking for the ground pixel with the maximum absolute

projection in the space orthogonal to M = [m1], adds the new endmember to M = [m1,m2], and

repeats the procedure until a set of Q endmembers {m1,m2, . . . ,mQ} is extracted.

5.3.2 Cloud Abundance fraction

After the endmember selection, we apply the FCLSU to the image using all the available

spectral bands except those MERIS bands particularly affected by atmospheric absorptions (λb ⊂
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Figure 5.4: Cloud Probability index computed from the posteriors of the cloud-clusters (left); Cloud

Abundance computed from the unmixing coefficients of the cloud clusters (center); and cloud abundance

product (left) for the MERIS BR-2003-07-14 (top) and the CHRIS-BR-050717-576C-41 (bottom) images.

BA, b = {11, 15}), since the linear mixing assumption is not appropriate at those bands. The

FCLSU provides the vector ai of abundances for each sample pixel i. As it happens with the

probabilities of the clusters, the abundance aiq ∈ [0, 1] and
∑Q

q=1 aiq = 1. Therefore, the Cloud

Abundance is the sum of the abundances of the cloud-clusters which, in our case, represents the

abundance of the cloud-endmember (Fig. 5.4[center ]):

aiC =
∑

q⊂C

aiq = ai1 (5.3.4)

As in the case of the probabilities, a threshold of aiC would give a good cloud mask, but some false

detections could appear since unmixing has been performed on the basis of spectral signatures

that could be non-pure pixels or, at least, not completely independent, thus providing relatively

high cloud abundances in ground covers with similar spectral signatures.

5.3.3 Cloud Final Product

An improved cloud product map can be obtained when combining the Cloud Abundance, aiC ,

and the Cloud Probability, hiC , by means of a pixel-by-pixel multiplication (Fig. 5.4[right ]).

ϑi = aiChiC (5.3.5)

That is, combining two complementary sources of information processed by independent methods:

the degree of cloud abundance or mixing (obtained from the spectra) and the cloud probability
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that is close to one in the cloud-like pixels and close to zero in remaining areas (obtained from

the extracted features). Note that, by performing a pixel-by-pixel multiplication, errors in the

sub-pixel cloud abundance would lead to similar errors in the cloud abundance product. For

example, if an endmember is selected from a ground cover with similar reflectance signature to

the cloud endmember, it could introduce significant errors in the estimated cloud abundance.

However, the endmember selection performed by the ATGP algorithm reduces to some extent the

risk of selecting such spectra. In addition, besides abundance fractions, the unmixing algorithm

provides the unmixing residual error, ε, which informs us about the accuracy of the unmixing on

a per-pixel basis.
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Chapter 6

Semi-supervised Cloud Classification

Applying unsupervised clustering methods over the whole image allows us to take advantage

of the wealth of information and the high degree of spatial and spectral correlation of the image

pixels. However, the cluster labeling strategy presented in the previous chapter (cf. section 5.2.2)

is conceived for scenarios where there is an operator to improve cloud screening on regional and

case studies, but it is not practical when applied to a large number of scenes in an operational

mode. This solution is mostly image oriented and concerned with obtaining more accurate cloud

masks than the standard approach (applied on a per pixel basis), which underperforms in some

critical problems, such as cloud borders and bright surfaces.

When the aim is to process a large number of scenes in an automatic way, we should turn to

robust supervised methods, which learn from a reliable set of labeled training samples in order to

define a decision function that correctly classifies cloudy pixels. However, few labeled samples are

typically available or likely to be obtained in an operational basis. Our aim is to take advantage

of the benefits shown by both supervised and unsupervised methods. For this reason, in this

chapter, we explore the opportunities offered by semi-supervised learning (SSL) that exploits the

few labeled samples and the wealth of unlabeled samples in the images.

In remote sensing image classification, we are usually given a reduced set of labeled samples to

develop the classifier. Learning in these conditions is more challenging when dealing with ill-posed

problems, i.e. working with less labeled samples than the input dimension of the pixels. Super-

vised support vector machines (SVMs) (Schölkopf and Smola, 2001; Camps-Valls et al., 2007c)

excel in using the labeled information, since they are (regularized) maximum margin classifiers also

equipped with an appropriate loss function (Vapnik, 1998; Shawe-Taylor and Cristianini, 2004;

Camps-Valls and Bruzzone, 2005). These methods, nevertheless, need to be reformulated in order

to exploit the information contained in the wealth of unlabeled samples, a.k.a. semi-supervised

classification. In semi-supervised learning, the algorithm is provided with some available super-

vised information in addition to the unlabeled data.

Cloud screening constitutes a clear example of these situations, since few labeled cloud pixels
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are typically available, and cloud features change to a great extent depending on the cloud type,

thickness, transparency, height, or background, as shown in previous chapters. In addition, cloud

screening must be carried out before atmospheric correction, being the input data affected by the

variable atmospheric conditions.

Semi-supervised Learning Framework When working with semi-supervised methods, the

number of reliable labeled samples is usually small and semi-supervised learning methods try

to use the large amount of available unlabeled data by making some assumptions. Only if the

imposed model assumption meets the problem structure, it is possible to learn from unlabeled

samples and to improve classifier performance. The main assumptions made in SSL are the

following:

• The cluster assumption can be roughly stated as “If samples are in the same cluster, they

are likely to belong to the same class”. Nearby points are likely to have the same label

(local consistency), while points on the same data structure are likely to have the same

label (global consistency).

• The manifold1 (smoothness) assumption can be stated as “If two samples in a high-density

region are close, then so should be the corresponding outputs”. If two points are linked by

a path of high density then their outputs are likely to be close (global consistency), but the

contrary is not necessarily true.

The framework of semi-supervised learning is very active and has recently attracted a consid-

erable amount of research (Zhu, 2005; Chapelle et al., 2006). Essentially, two different classes of

SSL algorithms are encountered in the literature.

1. Generative models involve estimating the conditional distribution by means of modeling the

class-conditional distributions explicitly, such as expectation-maximization (EM) algorithms

with finite mixture models (Dempster et al., 1977), which have been extensively applied

in the context of remotely sensed image classification (Shahshahani and Landgrebe, 1994;

Jackson and Landgrebe, 2001; Gómez-Chova et al., 2002, 2003b).

2. Discriminative models estimate the conditional distribution directly and there is no need to

explicitly specify the class-conditional distributions. Two subgroups of SSL algorithms can

be distinguish within these models:

• Low density separation algorithms maximize the margin for labeled and unlabeled sam-

ples simultaneously, such as Transductive SVM (TSVM) (Vapnik, 1998), which has

been recently applied to hyperspectral image classification (Bruzzone et al., 2006);

1A manifold is a topological space that is locally Euclidean, but in which the global structure may be more

complex. Formally, in a “d-dimensional topological manifold” M, for each point x in the manifold M there is an

open subset S with x ∈ S, for which there exists a homeomorphic mapping g that maps S into a d-dimensional

open subset S′ in a d-dimensional Euclidean space R
d (Bachmann et al., 2005, 2006).
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• Graph-based methods, in which each sample spreads its label information to its neigh-

bors until a stable state is achieved on the whole dataset (Chung, 1997) also adapted

to remote sensing image classification by Camps-Valls et al. (2007a).

In the recent years, TSVM and graph-based methods have captured great attention. How-

ever, some specific problems are identified in both of them. In particular, the TSVM is

sensitive to local minima and requires convergence heuristics by using an (unknown) number

of unlabeled samples. Graph-based methods are computationally demanding and generally

do not yield a final decision function but only prediction labels.

In the following sections, we first provide an introduction to kernel-based methods, which have

been selected as the core of the semi-supervised classification algorithms proposed in this Thesis.

Then, we describe a semi-supervised discriminative algorithm based on the graph Laplacian and

SVMs that we propose for its use in cloud screening. Finally, a novel semi-supervised algorithm

based on composite kernels and kernel mean mappings is presented and analyzed in detail.

6.1 Introduction to Kernel Methods

In this section, we first state the general problem of learning from samples, the need of introduc-

ing regularization in the classifiers, and the important concept of kernel feature space. After this,

the formulation and characteristics of each kernel-based method are briefly reviewed. For a full the-

oretical description of these (and other) kernel-based methods, the reader is referred to Schölkopf

(1997); Müller et al. (2001) and for the analysis of hyperspectral image classification with ker-

nels to Camps-Valls et al. (2003, 2004b); Camps-Valls and Bruzzone (2004); Camps-Valls et al.

(2004a); Camps-Valls and Bruzzone (2005); Camps-Valls et al. (2006a); Bruzzone et al. (2007).

6.1.1 Learning from Samples, Regularization, and Kernel feature space

Let us consider a two-class problem, where a labeled training data set {(x1, y1), . . ., (xn, yn)},
being xi ∈ R

d and yi ∈ {−1, +1}, is generated according to an (unknown) probability distribution

p(x, y). The problem is to find a function f that minimizes the expected error (or risk)

R(f) =

∫

V (f(x), y)dp(x, y) (6.1.1)

where V represents a pre-defined cost (or loss) function of the errors committed by f . Since the

risk cannot be minimized directly, one follows an inductive principle. A common one consists

in approximating the minimum of the risk by the empirical risk Remp(f), i.e. the error in the

training data set:

Remp(f) =
1

n

n
∑

i=1

V (f(xi), yi) (6.1.2)
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However, convergence of the empirical risk to the actual risk is only ensured as n goes to infinity

and, since this is not possible in real applications, the well-known problem of overfitting may arise.

This is specially significant in hyperspectral image classification given the low ratio between the

number of training samples and the size of the input feature space, and the high spatial variability

of the spectral signature.

In order to control the capacity (or excess of flexibility) of the models and to avoid overfitting,

the solution is usually regularized (Tikhonov and Arsenin, 1977), which is carried out in practice

by minimizing an l-norm of the decision function given by the model parameters, ‖w‖l, in the

corresponding feature space where the function is defined. This is intuitively equivalent to find

the estimator which uses the minimum possible energy of the data to estimate the output, i.e.

by minimizing this term one forces smooth solutions by using small weights, which reduces the

tendency of the model to overfit the training data. The resulting functional should take into

account both this complexity term and an empirical error measurement term defined according to

an a priori determined cost function V of the committed errors. Hence, the regularized minimizing

functional can be written as

Rreg(f) = Remp(f) + γ‖w‖2
l , (6.1.3)

where the parameter γ tunes the trade-off between model complexity and minimization of training

errors. It is worth noting that different loss functions V and norms can be adopted for solving

the problem, involving completely different families of models and solutions.

The problem of minimizing the regularized functional in (6.1.3) can be solved following dif-

ferent minimization procedures. Neural networks are trained to minimize the empirical risk, and

therefore, they follow the empirical risk minimization (ERM) principle (Soria-Olivas et al., 2003).

However, on the one hand, in order to attain significant results on the test set, early-stopping

criteria or pruning techniques must be used (Haykin, 1999; Camps-Valls et al., 2006e). On the

other hand, the structural risk minimization (SRM) principle (Vapnik, 1998) states that a better

solution in terms of generalization capabilities can be found by minimizing an upper bound of the

generalization error.

Statistical learning theory points out that learning can be simpler using low complexity clas-

sifiers in high dimension (possibly infinite) spaces H instead of working in the original input

space R
d, i.e. not the dimensionality but the complexity of the function class, which maps in-

put data into H, matters (Vapnik, 2000). Thus, all the potential and richness that a classifier

needs can be introduced by a mapping φ to a Hilbert space H. For instance, in a Radial Ba-

sis Function Neural Network (RBFNN), the Hilbert space H is spanned by the RBF centers,

whereas in the case of SVMs it is expanded by the training samples (Camps-Valls et al., 2004c;

Camps-Valls and Bruzzone, 2005). It is worth noting, nevertheless, that in the machine learning

community, one only refers to kernel methods as those that take advantage of the “kernel trick”,

which allows us to work in the mapped kernel space without explicitly knowing the mapping φ,
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Figure 6.1: (a) The Optimal Decision Hyperplane (ODH) in a linearly separable problem. Optimal

margin hyperplane is equivalent to minimizing ‖w‖. Only support vectors (gray-squared samples) are

necessary to define the ODH. (b) Linear decision hyperplanes in nonlinearly separable data can be handled

by including slack variables ξi to allow classification errors.

but only the kernel function formed by the dot product of mapping functions. In the following,

we will always refer to the reproducing kernel Hilbert space (RKHS), where the data is mapped,

as the “kernel space”. Further detailed information on this issue can be found in the next subsec-

tions where kernel-based methods are briefly reviewed. Among all the available kernel machines,

we focus on SVMs, which have recently demonstrated superior performance in the context of

hyperspectral image classification (Camps-Valls and Bruzzone, 2004, 2005). For all methods, we

only review the standard binary formulation since cloud screening can be considered a binary

classification problem.

6.1.2 Support Vector Machines

The classification methodology of SVMs attempts to separate samples belonging to different

classes by tracing maximum margin hyperplanes in the kernel space where samples are mapped

to (see Fig. 6.1(a)). Maximizing the distance of samples to the optimal decision hyperplane is

equivalent to minimizing the norm of w, and thus this becomes the first term in the minimizing

functional. For better manipulation of this functional, the quadratic norm of the weights is

preferred. Therefore, following previous notation, the SVM method solves the following primal

problem:

min
w,ξi,b

{

1

2
‖w‖2 + C

∑

i

ξi

}

(6.1.4)

constrained to:

yi(〈φ(xi),w〉 + b) ≥ 1 − ξi ∀i = 1, . . . , n (6.1.5)

ξi ≥ 0 ∀i = 1, . . . , n (6.1.6)
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where w is the normal to the optimal decision hyperplane defined as 〈w,φ(x)〉 + b = 0, and b

represents the bias or closest distance to the origin of the coordinate system. These parameters

define a linear classifier in the kernel space H:

ŷ∗ = f(x∗) = sgn(〈w,φ(x∗)〉 + b) (6.1.7)

The non-linear function φ maps samples to a higher dimensional space, which in accordance

with Cover’s theorem (Cover, 1965), guarantees that the transformed samples are more likely to

be linearly separable. The regularization parameter C controls the generalization capabilities of

the classifier, and ξi are positive slack variables allowing to deal with permitted errors (see Fig.

6.1(b)).

The above problem is solved by introducing Lagrange multipliers (ξi ≥ 0, µi ≥ 0) for each

constraint:

min
w,ξ,b

{

‖w‖2 + C
n
∑

i=1

ξi −
n
∑

i=1

αi[yi(〈w,φ(xi)〉 + b) + ξi − 1] −
n
∑

i=1

µiξi

}

(6.1.8)

Now, by making zero the gradient of this primal-dual functional Lpd with respect to the primal

variables (w, b, ξi), we obtain the following conditions:

∂Lpd

∂w
= 0 → w =

∑

i

yiαiφ(xi) (6.1.9)

∂Lpd

∂b
= 0 →

∑

i

yiαi = 0 (6.1.10)

∂Lpd

∂ξi
= 0 → C = αi + µi, i = 1, . . . , n (6.1.11)

If constraints (6.1.9)-(6.1.11) are included in the Lagrange functional Lpd (Eq. (6.1.8)) in order

to remove the primal variables, the dual problem Ld to be solved is obtained:

max
α







∑

i

αi −
1

2

∑

i,j

αiαjyiyj〈φ(xi),φ(xj)〉







, (6.1.12)

constrained to 0 ≤ αi ≤ C and
∑

i αiyi = 0, ∀i = 1, . . . , n. In this way, one gets rid of the

explicit usage of very high dimensional vectors, w. This constitutes a quadratic programming

(QP) problem with linear constraints, and can be solved with many available software packages.

It is worth noting that all φ mappings used in the SVM learning occur in the form of inner

products. This allows us to define a kernel function K:

K(xi,xj) = 〈φ(xi),φ(xj)〉, (6.1.13)

and then, without considering the mapping φ explicitly, a non-linear SVM can be defined. Note
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that the pair {H,φ} will only exist if the kernel function K fullfils Mercer’s conditions2 as will

be detailed in the following section.

After solving the QP problem with a given kernel function, one obtains the optimal Lagrange

multipliers, αi, which reflect the relative relevance of each sample for classification. The key

issue is that we have worked implicitely in the higher dimensional feature space, and retrieve a

weight vector in the original input space. Note that, by solving the optimization problem, the

feature-space model parameters w are expressed as a linear expansion of the mapped samples

φ(xi) through the dual parameters αi, i.e. w =
∑n

i=1 yiαiφ(xi) (Eq. (6.1.9)).

By plugging (6.1.9) into (6.1.7), the decision function for any test vector x∗ is given by:

ŷ∗ = f(x∗) = sgn

(

n
∑

i=1

yiαiK(xi,x∗) + b

)

, (6.1.14)

where b is calculated using the primal-dual relationship, and where only samples with non-zero

Lagrange multipliers αi account for the solution. This leads to the very important concept of spar-

sity, i.e. the solution is expressed as a function only of the most critical training samples in the

distribution, namely support vectors (SV). For deeper analysis and application of SVMs in RS im-

age classification refer to Gualtieri and Cromp (1998); Gualtieri et al. (1999); Camps-Valls et al.

(2004a); Camps-Valls and Bruzzone (2005).

6.1.3 Composite Kernels Framework

The bottleneck for any kernel method is the definition of a suitable kernel mapping function

that accurately reflects the similarity (distance, resemblance) between samples. However, not

all metric distances are permitted. In fact, valid kernels are only those fulfilling the Mercer’s

Theorem (Mercer, 1905; Aizerman et al., 1964).

Some popular kernels fulfilling these conditions are:

• Linear kernel:

K(xi,xj) = 〈xi,xj〉 (6.1.15)

• Non-homogeneous Polynomial:

K(xi,xj) = (〈xi,xj〉 + 1)p, p ∈ Z
+ (6.1.16)

2According to Hilbert-Schmidt theory, K(xi,xj) can be any symmetric function satisfying Mercer’s conditions.

This was firstly stated by Courant and Hilbert (1953). The same idea was used by Aizerman et al. (1964) for the

analysis of the convergence properties of the method of potential functions, and happened at the same time as the

method of the optimal hyperplane was developed by Vapnik and Chervonenkis (1964). Full details on the Mercer’s

conditions can be obtained from Vapnik (2000).
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Figure 6.2: Illustrative example of the use of different kernel functions in a two-dimensional two-class

problem where training data are generated from the so called ‘two moons’ nonlinear problem. Upper

part of the figure shows the classification results for the standard SVM with the linear kernel and the RBF

kernel with different widths. In these plots, red and black points represent the training samples; blue circles

indicate the samples used as support vectors in each SVM; and black line shows the classification boundary

of the trained classifiers. Bottom part of the figure shows the kernel matrix of the training samples for

each trained model (samples are sorted by class for a proper interpretation).

• Radial Basis Function (RBF) kernel:

K(xi,xj) = exp
(

−‖xi − xj‖2/2σ2
)

, σ ∈ R
+ (6.1.17)

In order to illustrate the relevance of the adequate definition of the kernel function, Fig. 6.2

shows the classification results obtained for the so called ‘two moons’ nonlinear problem when

using a linear kernel or an RBF kernel with different widths. The linear kernel function is directly

the dot product of the input vectors 〈xi,xj〉 and thus φ corresponds to the identity function and

input data are not mapped to a different space. As a consequence, the linear kernel provides a

regularized maximum margin linear classifier in the input space as we can observe in Fig. 6.2. The

RBF kernel implies a nonlinear mapping to a higher dimensional Hilbert space. In fact, it can

map data to so many spaces as values can take the kernel width σ, which is the standard deviation

of a Gaussian function. It is worth noting that the similarity between samples in the RBF kernel

comes from dividing their squared distances by the kernel width (σ2) in the exponent. Therefore,

σ is a scale parameter that is directly related to the local variability of the data. Figure 6.2 shows

results obtained with a standard SVM when fixing the value of σ to a large, optimum, or small

value (data ranges between -1 and 1 in both dimensions). In practice, a σ greater than half the
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maximum Euclidean distance between all samples will provide results similar to the linear kernel

since a high value (σ = 0.5) would imply low variability or local structure. On the other hand, a σ

smaller than half the smallest Euclidean distance between training samples would make samples

go too far from each other (with respect to the Gaussian) to extract the structure of data. This is

shown for σ = 0.01, where the imposed data locality leads to overfit 3 training samples. For this

case, classification boundary clearly overfits the training data, all training samples are selected

as support vectors (blue circles), and the kernel matrix is almost diagonal (no class structure is

observed). Finally, the value σ = 0.17 is selected through cross-validation in the training set. In

this case, a nonlinear classifier is obtained while optimizing its generalization capabilities, and the

kernel matrix structure reflects the class information. Summarizing, when using RBF kernels, the

more local data structure is, the smaller σ should be.

In this section, we review the main properties of kernels and the framework of composite

kernels, which will be explained to later present a novel semi-supervised kernel algorithm for

cloud classification.

Properties of Mercer’s kernels

In the context of SVMs in particular and kernel methods in general, one can use any kernel

function K(·, ·) that fullfils Mercer’s condition, which can be stated formally in the following

theorem:

Theorem 1. Mercer’s kernel. Let X be any input space and K: X × X −→ R a symmetric

function, K is a Mercer’s kernel if and only if the kernel matrix formed by restricting K to any

finite subset of X is positive semi-definite, i.e. having no negative eigenvalues.

The Mercer condition constitutes the key requirement to obtain a unique global solution when

developing kernel-based classifiers (e.g. SVMs) since they reduce to solving a convex optimization

problem (Cristianini and Shawe-Taylor, 2000). In addition, important properties for Mercer’s

kernels can be derived from the fact that they are positive-definite (affinity) matrices, as follows:

Property 1. Be K1 and K2 valid Mercer’s kernels over X × X , with xi ∈ X ⊆ R
d, with A being

a symmetric positive semi-definite n× n matrix, and α > 0. Then, the following kernels:

K(xi,xj) = K1(xi,xj) +K2(xi,xj) (6.1.18)

K(xi,xj) = αK1(xi,xj) (6.1.19)

K(xi,xj) = x⊤
i Axj (6.1.20)

K(xi,xj) = K1(xi,xj)K2(xi,xj) (6.1.21)

3Overfitting consists in perfectly fitting available data with a false model by increasing its complexity, i.e. its

number of parameters, but reducing the ability of the model to generalize beyond the fitting data. Therefore, it will

not be able to predict the correct output for other examples, thus it will not generalize to situations not presented

during the training process.
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are valid Mercer’s kernels. �

Therefore, one can design kernels by summing, weighting, or multiplying dedicated kernels.

This intuitive idea is formally expressed in the following. It is worth noting that the size of

the training kernel matrix is n × n and each position (i, j) of the kernel matrix K contains the

similarity between all possible pairs of training samples measured with a suitable kernel function

K fulfilling Mercer’s conditions. As shown before, some popular kernels are: linear, polynomial,

or radial basis function. This (distance or similarity) matrix is precomputed at the very beginning

of the minimization procedure, and thus, one usually works with the transformed input data, K,

rather than the original input space samples, xi. This fact allows us to easily combine positive

definite kernel matrices taking advantage of the properties in Proposition 1, as will be shown in

the next section.

Composite kernels for hyperspectral image classification

In (Camps-Valls et al., 2006d), we explicitly formulated a full family of kernel-based classifiers

that combine different kernels in order to simultaneously take into account spectral, spatial,

and local cross-information in a hyperspectral image. This framework was further extended in

(Camps-Valls et al., 2008a) to multitemporal and multisource classification and change detection

problems. Basically, we take advantage of two specially interesting properties of kernel methods:

(i) their good performance when working with high input dimensional spaces (Camps-Valls et al.,

2004a; Camps-Valls and Bruzzone, 2005), and (ii) the properties derived from Mercer’s conditions

by which a scaled summation of (positive definite) kernel matrices is a valid kernel, which have

provided good results in other domains (Mak et al., 2004; Sun et al., 2004).

A full family of composite kernels for the combination of different information types is pre-

sented in this section. The following composite kernels are defined for two types of information

only A and B. In any case, the formulations proposed in this section can be easily extended to

any number of information types. For this purpose, three steps are followed:

1. Pixel definition. A pixel entity xi is defined simultaneously in both informative domains A,

xA
i ∈ R

dA , and B, xB
i ∈ R

dB .

2. Kernel computation. Once that both input vectors xA
i and xB

i are constructed, different ker-

nel matrices can be easily computed using any suitable kernel function that fulfills Mercer’s

conditions.

3. Kernel combination. At this point, we take advantage of the direct sum of Hilbert spaces

by which two (or more) Hilbert spaces Hk can combined into a larger Hilbert space, H =

H1 ⊕H2 ⊕ · · · ⊕ HN .

In the following, we present three different kernel approaches for hyperspectral image classification.
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The stacked-features approach A good example of the applicability of composite kernels

to remote sensing is the combination of spectral and contextual information of the pixels. The

most commonly adopted approach in hyperspectral image classification is to exploit the spectral

content of a pixel, defined as xA
i . However, performance can be improved by including also the

textural information in the classifier, defined as xB
i . This is usually done by means of the ‘stacked’

approach, in which feature vectors are built from the concatenation of both types of features. Note

that if the chosen mapping φ is a transformation of the concatenation xi ≡ {xA
i , xB

i }, then the

corresponding ‘stacked’ kernel matrix is:

K{A,B} ≡ K(xi,xj) = 〈φ(xi),φ(xj)〉, (6.1.22)

which does not include explicit cross relations between different information features xA
i and xB

j .

The direct summation kernel A simple composite kernel combining two types of information

naturally comes from the concatenation of nonlinear transformations of xA
i and xB

i . Let us assume

two nonlinear transformations ϕ1(·) and ϕ2(·) into Hilbert spaces H1 and H2, respectively. Then,

the following transformation can be constructed:

φ(xi) = {ϕ1(x
A
i ), ϕ2(x

B
i )} (6.1.23)

and the corresponding dot product can be easily computed as follows:

K(xi,xj) = 〈φ(xi),φ(xj)〉
= 〈{ϕ1(x

A
i ), ϕ2(x

B
i )}, {ϕ1(x

A
j ), ϕ2(x

B
j )}〉 (6.1.24)

= KA(xA
i ,x

A
j ) +KB(xB

i ,x
B
j )

Note that the solution is expressed as the sum of positive definite matrices, with dim(xA
i ) = dA,

dim(xB
i ) = dB, and dim(K) = dim(KA) = dim(KB) = n× n.

The weighted summation kernel By exploiting Property (2) in Proposition 1, a composite

kernel that balances both information types in (6.1.24) can also be created, as follows:

K(xi,xj) = νKA(xA
i ,x

A
j ) + (1 − ν)KB(xB

i ,x
B
j ) (6.1.25)

where ν is a positive real-valued free parameter (0 < ν < 1), which is tuned in the training process

and constitutes a trade-off between the spatial and spectral information to classify a given pixel.

This composite kernel allows introducing a priori knowledge in the classifier or allows extracting

some information from the best tuned ν parameter.

6.2 Semi-supervised Classification with the Laplacian SVM

In this section, we present a recently introduced semi-supervised framework that incorporates

labeled and unlabeled data in any general-purpose learner (Belkin and Niyogi, 2004; Belkin et al.,
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2006). We focus on a semi-supervised extension of the SVM, which introduces an additional reg-

ularization term on the geometry of both labeled and unlabeled samples by using the graph

Laplacian (Chung, 1997), thus leading to the so-called Laplacian SVM (LapSVM) (Belkin et al.,

2006). This methodology follows a non-iterative optimization procedure, in contrast to most

transductive learning methods, and provides a closed-form classification function for testing on

novel samples not used in the training phase (out-of-sample predictions), in contrast to graph-

based approaches. In addition, the Laplacian SVM constitutes a general framework for SSL,

in which supervised SVM and other methods can be regarded just as particular cases. Hard-

margin SVM, directed graph methods, label propagation methods, and spectral clustering solu-

tions (Shawe-Taylor and Cristianini, 2004; Chapelle et al., 2006) are obtained for particular free

parameters of the LapSVM.

The use of the Laplacian SVM algorithm in the field of remote sensing was introduced for the

first time in (Gómez-Chova et al., 2007b) for cloud screening of MERIS data, and was extended

in (Gómez-Chova et al., 2008c) for a urban monitoring application combining multispectral and

SAR data from LANDSAT/TM and ERS (Gómez-Chova et al., 2004b,c, 2006e) or from MERIS

and ASAR (Gómez-Chova et al., 2005d). The reason for using LapSVM is that it permits using

the labeled samples, and efficiently exploiting the information contained in the high number of

available unlabeled pixels to characterize the marginal distribution of data. This is particularly

interesting in practical remote-sensing applications since obtaining additional unlabeled samples

is cheap and easy, while labeling is expensive, difficult, or even impossible.

6.2.1 Manifold Regularization Learning Framework

Regularization is necessary to produce smooth decision functions and thus avoiding overfitting

to the training data. Since the work of Tikhonov (1963), many regularized algorithms have been

proposed to control the capacity of the classifier (Evgeniou et al., 2000; Schölkopf and Smola,

2001). The regularization framework has been recently extended to the use of unlabeled samples

(Belkin et al., 2006) as follows.

Notationally, we are given a set of ℓ labeled samples, {xi, yi}ℓ
i=1, and a set of u unlabeled

samples {xi}ℓ+u
i=ℓ+1, where xi ∈ R

d and yi ∈ {−1,+1}. Let us now assume a general-purpose

decision function f . The regularized functional to be minimized is defined as:

Rreg(f) =
1

ℓ

ℓ
∑

i=1

V (f(xi), yi) + γL‖f‖2
H + γM‖f‖2

M, (6.2.1)

where V represents a generic cost function of the committed errors on the labeled samples, γL

controls the complexity of f in the associated Hilbert space H, and γM controls its complexity

in the intrinsic geometry of the marginal data distribution p(x). For example, if the probability

distribution is supported on a low-dimensional manifold, ‖f‖2
M penalizes f along that manifold

M. Note that this functional constitutes a general regularization framework that takes into

account all the available knowledge.
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6.2.2 Laplacian Support Vector Machines

The previous semi-supervised learning framework allows us to develop many different algo-

rithms just by playing around with the loss function, V , and the regularizers for the function f .

In this work, we focus on the Laplacian SVM formulation, which basically uses SVM as the core

learner and the graph Laplacian for manifold regularization. In the following, we review all the

ingredients of the formulation.

Cost function of the errors

The Laplacian SVM uses the same hinge loss function as the traditional SVM:

V (f(xi), yi) = max{0, 1 − yif(xi)}, (6.2.2)

where f represents the decision function implemented by the selected classifier and predicted

labels are y∗ = sgn (f(x∗)).

Decision function

We use as the decision function f(x∗) = 〈w,φ(x∗)〉+ b, where φ(·) is a nonlinear mapping to

a higher (possibly infinite) dimensional Hilbert space H, and w and b define a linear regression

in that space. By means of the Representer Theorem (Schölkopf and Smola, 2001), weights w

can be expressed in the dual problem as the expansion over labeled and unlabeled samples w

=
∑ℓ+u

i=1 αiφ(xi) = Φα, where Φ = [φ(x1), . . . ,φ(xℓ+u)]⊤ and α = [α1, . . . , αℓ+u]. Then, the

decision function is given by:

f(x∗) =
ℓ+u
∑

i=1

αiK(xi,x∗) + b, (6.2.3)

and K is the kernel matrix formed by kernel functions K(xi,xj) = 〈φ(xi),φ(xj)〉. The key

point here is that, without considering the mapping φ explicitly, a non-linear classifier can be

constructed by selecting the proper kernel. Also, the regularization term can be fully expressed

in terms of the kernel matrix and the expansion coefficients:

‖f‖2
H = ‖w‖2 = (Φα)⊤(Φα) = α⊤Kα. (6.2.4)

Manifold regularization

The geometry of the data is typically modeled with a graph whose nodes represent both

labeled and unlabeled samples connected by weights Wij (Jordan, 1999; Chapelle et al., 2006).

Regularizing the graph follows from the smoothness (or manifold) assumption and intuitively is
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Figure 6.3: Illustrative example of the use of the graph Laplacian for manifold regularization. Upper

part of the figure shows the learning and classification process using only the two labeled samples (signed

balls). Bottom part of the figure shows how LapSVM efficiently exploits the information contained in the

available unlabeled samples (unsigned balls) to characterize the marginal distribution of data by means of

a graph.

equivalent to penalize the “rapid changes” of the classification function evaluated between close

samples in the graph (Fig. 6.3):

‖f‖2
M =

1

(ℓ+ u)2

ℓ+u
∑

i,j=1

Wij(f(xi) − f(xj))
2 =

1

(ℓ+ u)2
f⊤Lf , (6.2.5)

where L = D− W is the graph Laplacian; D is the diagonal degree matrix of W given by Dii =
∑ℓ+u

j=1 Wij and Dij = 0 for i 6= j; the normalizing coefficient 1
(ℓ+u)2

is the natural scale factor for

the empirical estimate of the Laplace operator (Belkin et al., 2006); and f = [f(x1), . . . , f(xℓ+u)]⊤

= Kα, where we have deliberately dropped the bias term b.

Formulation

By plugging (6.2.2), (6.2.4), and (6.2.5) into (6.2.1), we obtain the regularized function to be

minimized:

min
ξ∈Rℓ

α∈Rℓ+u

{

1

ℓ

ℓ
∑

i=1

ξi + γLα⊤Kα +
γM

(l + u)2
α⊤K⊤LKα

}

(6.2.6)
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subject to:

yi

( ℓ+u
∑

j=1

αjK(xi,xj) + b

)

≥ 1 − ξi, i = 1, . . . , ℓ (6.2.7)

ξi ≥ 0 i = 1, . . . , ℓ (6.2.8)

where ξi are slack variables to deal with committed errors in the labeled samples. Introducing

restrictions (6.2.7)-(6.2.8) into the primal functional (6.2.6) through Lagrange multipliers, βi and

ηi, and taking derivatives w.r.t. b and ξi, we obtain:

min
α,β

{

1

2
α⊤

(

2γLK +
2γM

(ℓ+ u)2
K⊤LK

)

α − α⊤KJ⊤Yβ +

ℓ
∑

i=1

βi

}

, (6.2.9)

where J = [I 0] is an ℓ × (ℓ + u) matrix with I as the ℓ × ℓ identity matrix (the first ℓ points

are labeled) and Y = diag(y1, . . . , yℓ). Taking derivatives again w.r.t. α, we obtain the solution

(Belkin et al., 2006):

α =

(

2γLI + 2
γM

(ℓ+ u)2
LK

)−1

J⊤Yβ∗ (6.2.10)

Now, substituting again (6.2.10) into the dual functional (6.2.9), we obtain the following quadratic

programming problem to be solved:

β∗ = max
β

{ ℓ
∑

i=1

βi −
1

2
β⊤Qβ

}

(6.2.11)

subject to
∑ℓ

i=1 βiyi = 0 and 0 ≤ βi ≤ 1
ℓ , i = 1, . . . , ℓ, where

Q = YJK

(

2γLI + 2
γM

(ℓ+ u)2
LK

)−1

J⊤Y (6.2.12)

Therefore, the basic steps for obtaining the weights αi for the solution in (6.2.3) are: (i) build the

weight matrix W and compute the graph Laplacian L = D− W, (ii) compute the kernel matrix

K, (iii) fix regularization parameters γL and γM , and (iv) compute α using (6.2.10) after solving

the problem (6.2.11).

Relation with other classifiers

The Laplacian SVM is intimately related to other unsupervised and semi-supervised classi-

fiers. This is because the method incorporates both the concepts of kernels and graphs in the

same classifier, thus having connections with transduction, clustering, graph-based and label prop-

agation methods. The minimizing functional used in the standard TSVM considers a different

regularization parameter for labeled and unlabeled samples, which is the case in the proposed

framework. Also, LapSVM is directly connected with the soft-margin SVM (γM = 0), the hard
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margin SVM (γL → 0, γM = 0), the graph-based regularization method (γL → 0, γM > 0), the

label-propagation regularization method (γL → 0, γM → 0, γM ≫ γL), and spectral clustering

(γM = 1). In conclusion, by optimizing parameters γL and γM over a wide enough range, the

LapSVM theoretically outperforms the aforementioned classifiers. See (Belkin et al., 2006) for

deeper details and theoretical comparison.

6.2.3 Remarks on Laplacian SVM

This method brings together the ideas of spectral graph theory, manifold learning, and kernel-

based algorithms in a coherent and natural way to incorporate geometric structure with a kernel-

based regularization framework. The solution of the LapSVM constitutes a convex optimization

problem and results in a natural out-of-sample extension from the labeled and unlabeled training

samples to novel examples, thus solving the problems of previously proposed methods.

The potential of this classification method in remote sensing image classification increases

when reduced labeled training sets are available. In particular, in cloud screening, it becomes

very difficult to obtain a representative training set for all possible situations, motivating the

introduction of a semi-supervised method exploiting the unlabeled data.

The main problem is related to the computational cost, since a huge matrix consisting of

labeled and unlabeled samples must be inverted (see Eqs. 6.2.10 and 6.2.12). Note, however,

that in this method it is not necessary to incorporate all unlabeled samples in the image so the

computational load is easily scalable. However, smart sampling strategies developed to select

the most informative unlabeled samples could yield improve performance. In this respect, a

modified manifold regularization method for large-scale problems has been recently presented by

Tsang and Kwok (2007).

Another problem when using the Laplacian SVM in cloud screening is that it assumes that

considered problems hold a non-linear manifold. However, distribution of remote sensing data,

and of clouds in particular, can differ to a great extent from a manifold, making the cluster

assumption more suitable in these cases.

6.3 Semi-supervised Classification with Composite Mean Ker-

nels

In previous sections, we introduced kernel-based classification methods and pointed out the

advantages offered by SSL in EO applications. However, SSL approaches make some model

assumptions to improve classification performance by using unlabeled data that do not necessarily

hold in our problem. Consequently, when selecting or developing an SSL method, one has to verify

that the imposed model assumptions meet the problem data structure.

In this section, we propose a semi-supervised kernel-based classification method that takes
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into account the particularities and problems found in practical cloud screening of EO images.

The main issues to be considered before presenting the method can be summarized as follows:

Data Structure. The main assumptions made about data structure in SSL are that data are

organized into a number of groups or clusters according to a given distance measure in some

representation space (cluster assumption) or that data hold a manifold forming a non-linear

complex global structure (manifold assumption) (Bachmann et al., 2005, 2006). In the case

of clouds, and most natural land covers, distribution of remote sensing data is smooth and

spectra of pixels of the same land cover are similar, making the cluster assumption more

suitable to model each class. This is why the proposed method assumes that data are

organized into a number of groups or clusters according to a given distance measure in some

representation space. If the correspondence between sample and cluster is known for some

training samples, one can reinforce samples in the same cluster to belong to the same class

by taking into account the similarity between clusters.

SSL Model. In general, SSL methods aim to retrieve information from unlabeled data by esti-

mating its conditional distribution, and one can distinguish between generative models and

discriminative models to accomplish that. In multispectral image processing, the assumption

that the data distribution can be approximated as a mixture of normally distributed samples

is commonly accepted (Shahshahani and Landgrebe, 1994; Jackson and Landgrebe, 2001).

Hence, generative models, which estimate the conditional distribution by modeling the class-

conditional distributions explicitly, may provide a good performance in cloud screening and

perfectly fit the cluster assumption.

Basic Operations in the Kernel Space. One of the basic ideas when working with kernel

methods is that the mapping φ(x) into the kernel-defined feature space H needs not to be

explicitly known. Although we do not have access to the representation of samples in this

space, it is possible to perform some elementary calculations in the kernel space, such as

computing means and distances.

Training Set Representativeness. In many remote sensing image classification problems, it

is difficult to collect a sufficient number of statistically significant ground-truth samples to

define a complete training set for developing robust supervised classifiers. In this setting, two

main different conditions are usually considered: (1) few training samples are available for

characterizing the image to be classified; and (2) no training samples are available for the test

image to be classified. In the later case, one-class classifiers can be used (Muñoz-Maŕı et al.,

2007, 2008). We instead adopt another strategy by which training data extracted from other

images modeling similar problems can be exploited. In both situations, unlabeled samples

of test image can be jointly used with the available training samples for increasing the

reliability and accuracy of the classifier.

All these issues are addressed in this section. First, some recommendations about how to use
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clustering methods to extract information from unlabeled samples of the test image are given.

Then, the concept of mean kernel is introduced to compute cluster similarities and then it is

extended under the framework of composite kernels (Camps-Valls et al., 2006d). Finally, the

proposed solution is presented. It is based on the idea that clouds in the test image present

features that form compact clusters, and unlabeled data coming from similar images can help

to model these clusters and to improve classification performance at pixel level by reinforcing

samples in the same cluster to belong to the same class. Consequently, the aim of the algorithm is

to compute and combine both similarity between samples and similarity between clusters in the

kernel space, while performing the classification at a sample or pixel level. The section closes with

a comprehensive comparison of the benchmarked kernel-based methods with special emphasis on

the pros and cons of the proposed method.

6.3.1 Image Clustering

It is worth noting that the distribution of remote sensing data over natural land covers is

usually smooth and spectra of pixels of the same land cover are locally similar, making the

cluster assumption more suitable in the general case. In this work, clusters of the analyzed

image are found by applying a clustering algorithm, which provides for each sample xi a crisp

or soft association, hik, with each cluster ωk. In particular, we consider the input image as

a mixture of normal distributions so the EM algorithm can be used to obtain the maximum

likelihood estimation of the probability density function (pdf) of the Gaussian mixture. The

EM algorithm estimates the mixture coefficient πk, the mean µk, and the covariance matrix Σk

for each component of the mixture. Then, the algorithm assigns each pixel to the cluster with

the maximum a posteriori probability (MAP); and the cluster membership hik represents the

estimates of the posterior probabilities; that is, membership or probability value between zero

and one, with the requirement that the memberships of one sample to all the clusters sum to one
∑

k hik = 1. Hence, the optimal cluster label for each sample is found as hi = argmax
k

{hik}, i.e.

hi = k if the sample xi is assigned to the cluster ωk.

The suitability of the Expectation-Maximization algorithm with finite Gaussian mixture mod-

els (GMM) for remotely sensed image classification has been extensively demonstrated in the

literature (Shahshahani and Landgrebe, 1994; Jackson and Landgrebe, 2001) and its use in cloud

screening problems was justified in Chapter 5. Applying unsupervised clustering methods over

the whole image allows us to take advantage of the wealth of information and the high degree of

spatial and spectral correlation in the image pixels.

6.3.2 Cluster Similarity and the Mean Map

Given a finite subset of training samples S = {x1, . . . ,xn} laying in an input space X and

a kernel K(xi,xj) = 〈φ(xi),φ(xj)〉, let Φ(S) = {φ(x1), . . . ,φ(xn)} be the image of S under
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the map φ. Hence Φ(S) is a subset of the inner product space H. Significant information

about the embedded data set Φ(S) can be obtained by using only the inner product information

contained in the kernel matrix K of kernel evaluations between all pairs of elements of S: Kij =

K(xi,xj), i, j = 1, . . . , n. In particular, the centre of mass of the set S in the kernel space is the

vector:

φµ(S) =
1

n

n
∑

i=1

φ(xi) (6.3.1)

where φµ(·) denotes the mean map. The concept of the mean map has been recently extended

and led to a full family of kernel methods known under the framework of mean kernels, which has

mainly been used for the comparison of distributions in the kernel space (Gretton et al., 2007b,a).

We should stress that there is not an explicit vector representation of the centre of mass, since,

in this case, there may also not exist a point in the input space X whose image under φ is φµ(S).

In other words, we are now considering points that potentially lie outside φ(X ), that is, the image

of the input space X under the mapping φ.

Let us now consider two finite subsets of samples S1 = {a1, . . . ,am} and S2 = {b1, . . . ,bn}
belonging to two different clusters ω1 and ω2, respectively. We are interested in defining a clus-

ter similarity function that estimates the proximity between them in a sufficiently rich feature

space. A straightforward kernel function reflecting the similarity between clusters is obtained by

evaluating the kernel function between the means of the clusters in the input space X :

KX
µ (S1, S2) ≡ 〈φ(µ1),φ(µ2)〉 = K(µ1,µ2), (6.3.2)

but then we lose the advantage of working in the kernel space H implicitly.

The centre of mass of the sets S1 and S2 in the kernel space are the vectors φµ(S1) =
1
m

∑m
i=1 φ(ai) and φµ(S2) = 1

n

∑n
i=1 φ(bi). Despite the apparent inaccessibility of the points

φµ(S1) and φµ(S2) in the kernel space H, we can compute the cluster similarity in H using only

evaluations of the sample similarity contained in the kernel matrix:

KH
µ (S1, S2) ≡

〈

φµ(S1),φµ(S2)
〉

=

〈

1

m

m
∑

i=1

φ(ai),
1

n

n
∑

j=1

φ(bj)

〉

(6.3.3)

=
1

mn

m
∑

i=1

n
∑

j=1

K(ai,bj)

Note how significant information about the cluster similarities can be obtained by using only the

inner product information contained in the kernel matrix, Kij = K(xi,xj), of kernel evaluations
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between all pairs of elements in S1 and S2:

K =

























K(a1,a1) · · · K(a1,am) K(a1,b1) · · · K(a1,bn)
...

. . .
...

...
. . .

...

K(am,a1) · · · K(am,am) K(am,b1) · · · K(am,bn)

K(b1,a1) · · · K(b1,am) K(b1,b1) · · · K(b1,bn)
...

. . .
...

...
. . .

...

K(bn,a1) · · · K(bn,am) K(bn,b1) · · · K(bn,bn)

























(6.3.4)

which is reduced to Kµ by applying (6.3.3):

KH
µ =

[

KH
µ (S1, S1) KH

µ (S1, S2)

KH
µ (S2, S1) KH

µ (S2, S2)

]

(6.3.5)

6.3.3 Composite Pixel-Cluster Kernels

The concept of computing similarities between sets of vectors in the kernel space has been

previously explored in several application fields. For example, in (Gärtner et al., 2002), a kernel on

sets is proposed to solve multi-instance problems, where individuals are represented by structured

sets; in (Kondor and Jebara, 2003), the Bhattacharyya’s measure is computed in the Hilbert

space between the Gaussians obtained after mapping the set of vectors into H; in (Jebara et al.,

2004), kernel machines are combined with generative modeling using a kernel between distributions

called Probability Product Kernel (PPK); in (Zhou and Chellappa, 2006), expressions for the most

common probabilistic distance measures in the reproducing kernel Hilbert space are presented;

and, in (Li et al., 2007), the PPK is used to develop a Support Cluster Machine for large-scale

classification problems, where the labeled samples are clustered and the obtained labeled clusters

are used to train the model instead of the training samples. However, all these works consider the

sets of samples or distributions as a single entity with a given label and no information is provided

for each individual sample. In our approach, classifying clusters is not the goal since we seek a

detailed classification at a pixel level. This approach thus it falls into the field of cluster kernels,

which are focused on changing the representation given to a classifier by taking into account the

structure described by the unlabeled data (Szummer and Jaakkola, 2002; Zhu and Ghahramani,

2002; Chapelle et al., 2003; Weston et al., 2005). Let us remind that the bottleneck for any kernel

method is the definition of a suitable kernel function that accurately reflects the similarity between

samples. Hence, the proposed algorithm should compute and combine both similarity between

samples and similarity between clusters in the kernel space.

Notationally, we are given a set of ℓ labeled samples, {xi, yi}ℓ
i=1, and a set of u unlabeled

samples {xi}ℓ+u
i=ℓ+1, where xi ∈ R

d and yi ∈ {−1,+1}. In the proposed semi-supervised method,

the u unlabeled training samples coming from the test image are used to describe the clusters

and to compute the similarity between clusters, which is used to weight the similarity between

the ℓ labeled training samples that define the classes. The similarity between clusters is included

108



6.3. Semi-supervised Classification with Composite Mean Kernels
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Figure 6.4: Illustrative example of the three involved kernel matrices: sample similarity accounted by

the kernel of the training samples K; cluster similarity accounted by the mean map kernel of the clusters

Kµ; and the composite kernel Kω obtained by combining the sample and the cluster similarities for each

sample. Note that samples are sorted by class yi and by cluster ωi for a proper interpretation.

through the use of a composite kernel that balances both similarity distances

Kω(xi,xj) = ν K(xi,xj) + (1 − ν)Kµ(Shi
, Shj

) ∀i, j = 1, . . . , ℓ (6.3.6)

where ν is a positive real-valued free parameter (0 6 ν 6 1), which is tuned in the training process

and constitutes a trade-off between the sample and corresponding cluster information. It is worth

noting that the size of the kernel matrix of all the training samples K is (ℓ+u)× (ℓ+u), and not

ℓ×ℓ, because unlabeled samples allow us to compute the cluster similarities by summing elements

of the kernel matrix. On the other hand, the size of the kernel matrix with the cluster similarities

Kµ is only c× c. However, the size of the final kernel matrix Kω used to train the standard SVM

(6.2.3) is ℓ× ℓ (the first ℓ samples are labeled). Summarizing, each position (i, j) of matrix Kω

contains the similarity between all possible pairs of the ℓ labeled training samples (xi and xj)

and their corresponding clusters (defined by hi and hj), which are measured with suitable kernel

functions K and Kµ fulfilling Mercer’s conditions.

Figure 6.4 shows an illustrative example of the three kernel matrices involved in the proposed

method: sample similarity accounted by the kernel of the training samples K; cluster similarity

accounted by the mean map kernel of the clusters Kµ; and the composite kernel Kω obtained by

combining the sample and the cluster similarities for each sample. It is worth noting that the

proposed composite kernel Kω maintains the sample similarity at pixel level while making pixels

in the same cluster more similar, thus reinforcing them to belong to the same class. It may be

interpreted as a smoothing of K attending to the cluster structure in Kµ.

Even that cluster information could be also included in the classification process by stacking

the input features of each pixel xi with the mean of its corresponding cluster µk=hi
. However,

it has been shown in previous works that the use of composite kernels provides better results if
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Figure 6.5: Illustrative example of the sample selection bias produced when the distributions on training

and test sets might not match, which is a common situation in remote sensing image classification if no

labeled training set is available for the test image.

different information entities are treated separately and combined in feature spaces (Mak et al.,

2004; Camps-Valls et al., 2006d, 2008a).

6.3.4 Sample Selection Bias and the Soft Mean Map

SSL methods learn from both labeled and unlabeled samples constituting the training set to

build a model that is used to classify the test set. So far we have assumed that training and test

data are independently and identically distributed (i.i.d.) from the same pdf, but in reality the

distributions on training and test sets might not match, which is known in the literature as the

sample selection bias (Heckman, 1979; Huang et al., 2007; Bickel et al., 2007) or covariate shift

(Shimodaira, 2000; Sugiyama and Müller, 2005; Sugiyama et al., 2007, 2008). Obviously, if the

training and the test data have nothing in common there is no chance to learn anything. Thus, we

assume that both follow a similar conditional distribution p(y|x) and the input distributions p(x)

differ, yet not completely (see Fig. 6.5). In remote sensing, this is a likely situation since usually

no training samples are available for the image to be classified and labeled data is extracted from

other images modeling similar problems. In these situations, not all training samples are equally

reliable. In the literature, the training samples are weighted in different ways in order to avoid

the sample selection problem: by deriving the conditional density to maximize the log-likelihood

function (Shimodaira, 2000); by changing the criterion to be maximized for learning, such as

the nonparametric kernel mean matching method presented in (Huang et al., 2007) that tries to

match the first momentum of training and test sets in the kernel space; or by modifying the model

selection criteria (importance weighted cross validation estimate of risk) to obtain unbiased results

(Sugiyama et al., 2007).
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In the proposed method, the most reliable samples in terms of maximum likelihood in the

input space are used to compute a kernel function that accurately reflects the similarity between

clusters in the kernel space. Therefore, the relative reliability of training samples is trimmed by

weighting the contribution of each sample xi to the definition of the centre of mass of each cluster

in the kernel space H with the EM estimated posterior probabilities hik, that is:

φµs
(Sk) =

∑

i hikφ(xi)
∑

i hik
, (6.3.7)

which we call the soft mean map. The corresponding kernel can be easily computed as:

KH
µs

(Sk, Sl) =
〈

φµs
(Sk),φµs

(Sl)
〉

=

〈

∑

i hikφ(xi)
∑

i hik
,

∑

j hjlφ(xj)
∑

j hjl

〉

(6.3.8)

=

∑

i

∑

j hikhjlK(xi,xj)
∑

i hik

∑

j hjl
,

and now, when computing cluster similarities, all training samples contribute to all clusters but

with different relative weights with a posteriori probability sense. The main advantage of the pro-

posed method is that weights for the training samples are directly computed by taking advantage

of the full statistical information of the test data distribution without modifying the classification

problem to be solved, i.e. the same QP problem of the SVM is solved with the available standard

optimization tools. We should stress that, with this approach, the EM algorithm is applied to

the entire image in order to properly characterize the test data distribution and compute the

sample weights, but the number of unlabeled samples used to describe the clusters in the soft

mean map can be selected by the user to reduce the size of the kernel matrix and thus controlling

the computational effort.

Note that the mean map kernel in (6.3.3) is a particular case of the proposed soft mean map

kernel in (6.3.8) when the training samples are associated only with one cluster (crisp association),

i.e. when hik = 1 if xi belongs to cluster ωk and hik = 0 otherwise. In addition, the expression of

the soft mean map kernel in (6.3.8) can be rewritten in matrix notation as follows:

KH
µ = DH⊤KHD (6.3.9)

where K is the (ℓ + u) × (ℓ + u) kernel matrix of both labeled and unlabeled training samples;

H is a (ℓ + u) × c matrix containing the membership value hik of each training sample to each

cluster of the analyzed image; and D is a c×c diagonal matrix with normalization factors for each

cluster Dkk =
∑

i hik. Note that the computational effort is directly controlled by the number of

unlabeled samples u included in K to describe the clusters.

The size of the matrix containing the similarity between clusters Kµ is c× c. Thus, it has to

be expanded to match the number of labeled samples, in order to obtain the final ℓ × ℓ kernel

matrix Kω in (6.3.6) used to train the classifier:

Kω = ν JKJ⊤ + (1 − ν)WKµW
⊤ (6.3.10)
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Table 6.1: Particular cases of the proposed method depending on: 1) the sample-cluster similarity balance

(free parameter ν), 2) in which space the cluster similarities are computed (input or kernel space), and 3)

how the unlabeled training samples contribute to each cluster (crisp or soft association).

Method Kernel Mapping Similarity Eq.

SVM K φ(x) ν = 1 (6.1.13)

µ-SVM in X KX
ω = νK + (1 − ν)KX

µ {√νφ⊤(x),
√

1 − νφ⊤(µ)}⊤ 0 < ν < 1 (6.3.6)

KX
µ φ(µ) ν = 0 (6.3.2)

µ-SVM in H KH
ω = νK + (1 − ν)KH

µ {√νφ⊤(x),
√

1 − νφ⊤
µ (S)}⊤ 0 < ν < 1 (6.3.6)

KH
µ φµ(S) ν = 0 (6.3.3)

µs-SVM in H KH
ωs

= νK + (1 − ν)KH
µs

{√νφ⊤(x),
√

1 − νφ⊤
µs

(S)}⊤ 0 < ν < 1 (6.3.6)

KH
µs

φµs
(S) ν = 0 (6.3.8)

where J = [I 0] is an ℓ× (ℓ+ u) matrix with I as the ℓ× ℓ identity matrix (the first ℓ samples are

labeled); and W is a ℓ × c sparse matrix that stores the cluster of each labeled sample hi , i.e.

Wik = 1 if sample xi belongs to cluster ωk and Wik = 0 otherwise.

6.3.5 Summary of Composite Mean Kernel Methods

The proposed method brings together the ideas of unsupervised clustering, mean map kernel,

composite kernel, and SVM in a simple and natural way, improving classification performance by

exploiting the information contained in the unlabeled samples. Essentially, the method tries to:

1) to reinforce both the local and global consistencies, and 2) to mitigate the sample selection

bias problem. The method combines the expectation-maximization (EM) algorithm for fitting

Gaussian mixture models (GMM) and the mean map kernel, which uses the most reliable samples

in terms of maximum likelihood to compute a kernel function that accurately reflects the similarity

between clusters in the kernel space. The final classification model is obtained by solving a

standard SVM (a convex optimization problem) but the kernel of the labeled training samples

(local consistency) is previously deformed to take into account the similarities between clusters

(global consistency), which are easily computed from the unlabeled samples of the analyzed image.

Table 6.1 shows several particular cases of the proposed method depending on: 1) the balance

between the sample similarity and the cluster similarity (free parameter ν), 2) in which space

the cluster similarities are computed (input or kernel space), and 3) how the unlabeled training

samples contribute to each cluster (crisp or soft association). In this table we indicate the kernel

function used in the SVM, the mapping function whose dot product generates the corresponding

composite kernel (cf. section 6.1.3), and the value of ν that constitutes a trade-off between the

sample (ν = 1) and the cluster information (ν = 0).
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6.3.6 Performance on Synthetic Data

Figure 6.6 shows an illustrative example of how the proposed method efficiently exploits the

information contained in the available unlabeled samples to characterize the marginal distribution

of data by means of the cluster structure. In order to demonstrate the robustness of the method

in the sample selection bias problem, we used a two-dimenssional non-linear classification problem

where training and test data are generated by two slightly different mixture models composed of

six Gaussian components (Fig. 6.6[top]). Three different models are obtained in order to illustrate

the trade-off between the sample (ν = 1) and the cluster information (ν = 0) provided by the

proposed method (Fig. 6.6[bottom]). In particular, we have depicted results of the pixel-based

approach (ν = 1) equivalent to a standard SVM trained with K (left); the cluster-based approach

(ν = 0) of the µs-SVM trained with KH
µs

(center); and the composite pixel-cluster approach

(0 < ν < 1) of the µs-SVM trained with KH
ωs

(right).

Selected models are compared with the classification boundary of the maximum likelihood

classifier (MLC) built with the true mixture models (upper-bound of the classification perfor-

mance) of both the training distribution and the test distribution, respectively. In the three plots

at the bottom part of the figure, we can observe from the sample-similarity based approach to

the cluster-similarity based approach, how the classification boundary changes. On the one hand,

Fig. 6.6(d) corresponds to the standard SVM looking for a maximum margin classifier of the

training samples. In this case, the classification boundary matches the MLC boundary of the

training set (gold line). On the other hand, Fig. 6.6(e) corresponds to the cluster-based approach

that trains a SVM using as kernel matrix the cluster similarity KH
µs

of the associated clusters.

In this case, classification boundary is dominated by the cluster distribution of the unlabeled

samples form the test set, and thus it matches the MLC boundary of the test set (blue line). It is

worth noting that in the case where both sample and cluster similarities are combined (Fig. 6.6(f))

we obtain an intermediate solution, that is: 1) in regions densely populated by labeled training

samples, the µs-SVM follows the optimal MLC boundary of the training data (middle-left part

of the plot); and 2) in regions without labeled training samples forcing the output class, µs-SVM

follows the optimal MLC boundary of the test data (bottom-right corner of the plot). The value

of ν can be tuned by the user in the training process or selected through cross-validation in the

training set, as is commonly done with the other free parameters of SVMs, such as C and σ. We

should note, however, that the model selection in semi-supervised methods applied to problems

affected by sample selection bias is not well-solved since, if the training and test distributions are

significantly different, selected model will be biased towards the training samples when performing

cross-validation in the training set.

To provide an exhaustive analysis of the proposed method’s performance, the experiment

described in Fig. 6.6 was repeated for a series of realizations varying the following parameters:

• Data Generation: the width σ of the Gaussian components used in the mixture model to

generate the training and test data. Different σ correspond to different levels of data overlap
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(a) Training Data (b) Test Data (c) Cluster Distribution
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Figure 6.6: Illustrative example of the use of composite mean kernel in a two-dimensional two-classes

problem where training and test data are generated by two slightly different mixture models composed

of six Gaussian components. Upper part of the figure (left and center) shows the samples (circles) and

the distribution (colored areas) of each Gaussian component of the the training (6 × 25 samples) ant test

(6 × 1000 samples) sets, respectively. Upper-right plot shows test samples with the true class labels (red

and black points) and the distribution (shaded areas) of the found clusters by the EM algorithm. Bottom

part of the figure shows the classification results of the proposed composite kernel using the soft mean

map for three different situations: pixel-based approach (ν = 1) equivalent to a standard SVM trained

with K (left); cluster-based approach (ν = 0) of the µs-SVM trained with KH
µs

(center); and composite

pixel-cluster approach (0 < ν < 1) of the µs-SVM trained with KH
ωs

(right). In these plots, red and

black points represent the training samples; blue circles indicate the samples used as support vectors in

each model; golden line and shaded areas indicate the classification boundary of the maximum likelihood

classifier (MLC) built with the true mixture model of the training data (upper-bound of the classification

performance); blue line indicates the classification boundary of the MLC built with the true mixture model

of the test data; and black line shows the classification boundary of the trained models.
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that determine the clasification complexity. In particular, using the true pdf that generated

the test data with σ = {0.2, 0.275, 0.35, 0.425, 0.5}, the maximum likelihood classifier results

in a kappa statistic κ = {0.97, 0.90, 0.81, 0.71, 0.63}, respectively. Fig. 6.7(a) shows the κ

obtained when classifying test data with the MLC using the true pdf of the test data (dashed

line), which provides an upper-bound of the classification performance, and using the true

pdf of the training data (dotted line), which informs us about the difference between the

mixture models used to generate training and test data (sample selection bias problem).

• Supervised Information: the number of labeled samples ℓ used to train the models. By

decreasing the number of labeled training samples ℓ, one can analyze how the SSL method

efficiently exploits the information contained in the available unlabeled samples. In the

experiments, the number of unlabeled samples is fixed to u = 300 and we explore from

ill-posed situations with only 3 labeled samples per class (ℓ = 6) up to almost supervised

cases with 300 labeled samples per class (ℓ = 600).

• Unsupervised Clustering: the number of clusters c, i.e. the number of Gaussian components

fixed in the EM algorithm. The proposed method requires as input the clusters presents

in the test data, which are obtained from the unlabeled data using the EM algorithm.

Therefore, the proposed method relies on the clustering performance and assumes that

clusters present in the test data are correctly identified. In order to analyze the robustness

of the method to inaccurate clustering results, the number of Gaussian components in the

EM algorithm is set to c = {2, 4, 6, 8, 10} instead of the actual six components of the mixture

model that generated the data.

As mentioned above, for the experiments, we generated training sets consisting of ℓ = 600 labeled

samples (300 samples per class), and added u = 300 unlabeled (randomly selected) samples from

the analyzed test data to the training set for the SSL methods. We focus on the ill-posed scenario

and vary the rate of labeled samples, i.e. {1, 2, 4, 8, 14, 27, 52, 100}% of the labeled samples of the

training set were used to train the models in each experiment. In order to avoid skewed conclu-

sions, for each combination of parameters σ, ℓ, and c, the experiments were run for ten realizations

where the used training samples were randomly selected. All classifiers are compared using the

estimated kappa statistic κ as a measure of robustness in the classification of 6000 independent

validation samples. Free parameter ν was varied in steps of 0.1 in the range [0.01, 0.99], and the

Gaussian width for the RBF kernel was tuned in the range σRBF = {10−3, . . . , 10}. The selection

of the best subset of free parameters was done by cross-validation.

Fig. 6.7 shows the validation results for the analyzed SVM-based classifiers when the number

of clusters in the EM is fixed to the c = 6 actual clusters and only class overlap σ and labeled

training samples ℓ are varied. Fig. 6.7(b) and 6.7(c) show the κ surface as a function of σ and ℓ for

the proposed µs-SVM method when using as kernel KH
µs

(ν = 0) andKH
ωs

(0 < ν < 1), respectively.

These plots illustrate how the most separated are the classes (low σ) and supervised information

is available (high ℓ), the most accurate is the classification for all methods. Fig. 6.7[bottom] shows
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Figure 6.7: Validation results for the analyzed SVM-based classifiers when the number of clusters in the

EM is fixed to the actual clusters (c = 6) and only class overlap σ and labeled training samples ℓ are

varied. Top, from left to right : MLC kappa statistic (κ) for different levels of data overlap σ using the test

and the training pdfs, and κ surface as a function of σ and number of labeled samples ℓ for the proposed

µs-SVM method when using as kernel KH
µs

(ν = 0) and KH
ωs

(0 < ν < 1). Bottom, from left to right : results

averaged over σ for all the analyzed methods: avg(κ), std(κ), and the percentage of training samples used

as support vectors SVs[%].

the results for all the analyzed methods averaged over σ: avg(κ), std(κ), and the percentage of

training samples used as support vectors (SVs) in the selected models. Note that, in addition

to the standard SVM and the variations of the proposed method, we have include classification

results obtained when using the trained standard SVM (K) to classify the centers of the clusters

(µk) and then assigning the same class label to all the samples belonging to the same cluster ωk.

Several conclusions can be obtained from these plots. First (Fig. 6.7(d)), composite mean kernels

classifiers (black ‘+’ lines), which combine both sample and cluster similarities, produce better

classification results than SVM (red dotted line) in all cases for both the KX
ω and KH

ωs
kernels

(note that SVM is a particular case of the µ-SVM for ν = 1). The cluster-based approaches KX
µ

and KH
µs

(blue ‘◦’ lines) provide accurate classifications when there are enough labeled samples

to describe the class conditional distribution of the clusters (otherwise a whole cluster can be

misclassified). In addition, cluster-based approaches are not equivalent to a simple classification

of the centers of the clusters (red dash-doted line). Regarding the standard deviation of kappa

std(κ) (Fig. 6.7(e)), the SVM provide the most stable results, but composite mean kernels provide
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Figure 6.8: Validation results when the class overlap is fixed to σ = 0.35 (MLC accuracy of κ = 0.81)

and the number of clusters in the EM c and labeled training samples ℓ are varied. Top, from left to right :

the kappa (κ) surface as a function of the number of clusters c and number of labeled samples ℓ for the

result of classifying cluster centers µk with the standard SVM, the cluster-based µs-SVM using as kernel

KH
µs

(ν = 0), and the composite kernel µs-SVM using as kernel KH
ωs

(0 < ν < 1). Bottom, from left to

right : results averaged over c for all the analyzed methods: avg(κ), std(κ), and the percentage of training

samples used as support vectors SVs[%].

similar results that the SVM and significantly better that the cluster-based methods. Finally, a

similar behavior can be observed with the number of SVs (Fig. 6.7(f)), SMV and composite mean

kernels produce sparse models with low number of support vectors (note that both red lines are

overlapped since the resulting SVM model is the same), while the cluster-based methods require

more SVs to correctly weight the cluster similarities.

In the previous results, we have used in the EM algorithm the actual number of Gaussian

components that generated the data. Hence, with enough unlabeled samples and a proper initial-

ization, we can assume that the clustering algorithm is modeling the class conditional distribution

almost perfectly. However, this is not usually the case and we can obtain misleading clustering

results. To analyze the robustness of the methods to the clustering accuracy, Fig. 6.8 shows the

validation results when the class overlap is fixed to σ = 0.35 (MLC accuracy of κ = 0.81) and the

number of clusters in the EM c and labeled training samples ℓ are varied. Fig. 6.8[top] shows the

κ surface as a function of c and ℓ for the result of classifying cluster centers with the standard

SVM, the cluster-based µs-SVM using as kernel KH
µs

(ν = 0), and the composite kernel µs-SVM
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using as kernel KH
ωs

(0 < ν < 1), from left to right, respectively. In these plots, contrarily to

Fig. 6.7, one can observe clear differences between the exclusively cluster-based approaches and

the proposed composite mean kernel. When the number of found clusters goes under the actual

number of clusters in the data, it is possible to merge clusters corresponding to different classes

in one cluster, and thus, in cluster-based approaches, one entire cluster is misclassified. However,

composite mean kernel provides an excellent trade-off between the sample and the cluster infor-

mation and, even when samples of different classes are merged in the same estimated cluster, the

labeled samples of the training set allow the proposed method to define the classification boundary

correctly. Fig. 6.8[bottom] shows the results for all the analyzed methods averaged over c. The

obtained avg(κ) validate the fact that composite kernels provide the best results together with the

standard SVM, and that they are robust to inaccuracies in the data clustering, which produces

the worsening the classification performance of cluster-based methods. Regarding the std(κ) and

the number of SVs, the same conclusions than in Fig. 6.7 can be extracted. Summarizing, re-

sults confirm that the proposed SSL method efficiently exploits the information contained in the

available unlabeled samples to improve classification accuracy of supervised methods by means

of reinforcing samples in the same cluster to belong to the same class. The algorithm requires to

estimate the clusters present in the test data, but it has demonstrated to be robust to errors in

the data clustering. In addition, it retains the good SVM properties of stability and sparsity.

6.4 Remarks on Semi-supervised Cloud Classification

Two different strategies have been proposed in Chapter 5 and Chapter 6 in order to classify

image pixels as cloud-free and cloud-contaminated pixels:

• In previous chapter, an unsupervised approach has been proposed. The method relies on

using representative features along with the spectral bands to perform a clustering of the

analyzed image, and then to label the found clusters instead of directly finding the class

of each single pixel. For regional and case studies, the cluster information can be analyzed

directly by the user for the given image. This approach is intended for being used by

an operator to improve cloud screening on particular cases. For example, this user-driven

approach can help significantly to identify clusters corresponding to extremely thin clouds

or ice/snow covers misclassified by the automatic labeling.

• In this chapter, a semi-supervised approach has been proposed. In this case, some supervised

information is available and it is used together with the unlabeled samples of the analyzed

image to develop a classifier that provides the class of each pixel but taking also into account

the image data distribution. Therefore, this method can be applied automatically to a large

number of scenes in an operational mode.

Both cloud classification approaches perfectly fit in the cloud screening scheme proposed in

Fig. 3.1. After the cloud labeling, the following processing step of the method consisted of ob-
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taining the final abundance fraction of clouds for all image pixels. In the unsupervised approach,

the improved cloud product map was obtained combining the Cloud Abundance, aiC , and the

Cloud Probability, hiC , by means of a pixel-by-pixel multiplication, ϑi = aiChiC . The procedure

followed in section 5.3 to obtain the cloud final product is still valid for the semi-supervised ap-

proach. The main difference now is that, instead of obtaining hiC from the posterior probabilities

of the cloud-clusters for each sample provided by the EM algorithm, we define hiC as the hard

classification label ŷi provided for each sample by the semi-supervised cloud classifier. That is,

hiC = 1 if the sample xi is classified as cloud-contaminated (C) and hiC = 0 if is cloud-free.

It is worth noting that now hiC is a binary label instead of a continuous probability value, but

it indicates more accurately the presence of cloud. In addition, the posterior probabilities also

decreased drastically from one to zero in the boundaries between clusters. Therefore, both the

cloud probability and the cloud classification label indicate if one pixel is cloudy, C, or cloud-free,

C, but none of them give information about the cloud content at subpixel level. In the cloud final

product, ϑi = aiChiC , hiC indicates the cloudy pixels and aiC indicates their cloud abundance.
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Chapter 7

Unsupervised Cloud Screening

Validation

The third part of the work deals with the validation of the proposed methodology and cloud

products. A wide database of images has been included in the study in order to take into account

the different peculiarities of the problem: geographic location, date and season, type of cloud, and

type of surface. The selected images allow us to validate method’s performance since they include

different landscapes, vegetation, bare soils, and two critical cases given the especial characteristics

of the induced problems: ice and snow covers.

The validation of cloud screening algorithms is not an easy task because, in the unsupervised

case (i.e. with no labeled data), there are no simultaneous independent measurements with

the same spatial resolution. In most cases, the performance of cloud detection algorithms has

been evaluated against visual analysis of the original satellite images. The human eye is able

to recognize cloud structures in a satellite image much better than any automatic algorithm

does, which justifies this validation approach. However, human cloud recognition may miss the

difficult cases (thin clouds, broken cloudiness) and is far from being operational. In addition,

visual comparison requires a large amount of tedious work, which is unsuited for a quantitative

validation on a large dataset. For these reasons, a significant effort has been done in order to

validate results by using different techniques:

• The simplest approach consists in comparing the final cloud mask and abundance with

a false color composite of the images. Therefore, the resulting products are validated by

visual inspection on CHRIS and MERIS data in section 7.1 and section 7.2, respectively.

Following this validation approach, we are simultaneously testing the generalization abil-

ity of the proposed cloud screening algorithm, because a general methodology for cloud

detection should be valid for different sensors working in the VNIR range. In particular,

in Gómez-Chova et al. (2005b,a), performance of the proposed approach is tested on im-

ages from the CHRIS instrument, which presents completely different characteristics than
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MERIS, tested in Gómez-Chova et al. (2005c, 2006d, 2007a).

• In the case of MERIS, we can also compare results with the official MERIS Level 2 Cloud

Flag. In section 7.3, a representative set of MERIS images is processed and compared to

the Level 2 products (used for validation purposes only) by comparing its cloud flag product

to the cloud mask produced by the presented method. Preliminary test of this approach

were carried out in previous works (Gómez-Chova et al., 2005c, 2006d, 2007a) by testing

critical situations in cloud detection (e.g. ice/snow covers). Results were encouraging since

the proposed algorithm classifies difficult cloud pixels more accurately; especially thin cirrus

clouds and clouds over ice/snow.

• The lack of a real ground truth, and the low accuracy shown by the official MERIS Level

2 Cloud Flag in some situations prevent the validation of the cloud screening in fair condi-

tions. Therefore, new validation approaches are required in order to test the proposed cloud

screening algorithm. In section 7.4, the performance of the cloud screening is tested with a

multitemporal validation approach proposed in Gómez-Chova et al. (2006f). In particular,

pairs of cloud-free and cloud-covered images over the same area are used to detect cloud-

pixels by identifying pixels with spectral changes between both dates. The spectral change

is detected by using the spectral angle distance (SAD) as it is invariant to multiplicative

scaling (being less affected by atmospheric and illumination changes). Image pairs are se-

lected to be close in time, so spectral changes due to temporal evolution of the surface are

avoided. However, images taken from orbits within three or six days present a significant

variation in the viewing geometry. Therefore, pixels with significant changes in composition

(> 10%) due to the different observation angle are not considered in the multi-temporal

cloud screening validation.

In the following sections, we present results of the unsupervised cloud screening scheme pro-

posed in Chapter 5. The results were obtained for all images and scenarios as follows. The

number of clusters found by the EM clustering was automatically determined as the maximum

of suggested numbers by the DB and MDL indices (cf. section 5.2.1). However, we did not

observe a critical dependence of the results on the number of clusters; note that even if a low

number of clusters is selected, some of them should correspond to different cloud types, since the

(overgrown) ROI is typically well-identified. Clusters were labeled into geo-physical classes by an

operator considering the extracted features (cf. section 5.2.2). The number of endmembers was

equal to the number of cloud-free clusters (cf. section 5.3.1). Finally, cloud screening results are

presented in terms of the cloud probability hiC in (5.2.8), the cloud abundance aiC in (5.3.4), and

the hard classification between clouds and ground was obtained applying a threshold of 0.05 to

the cloud final product ϑ in (5.3.5) (cf. section 5.3.3).
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(a) Barrax (BR-2003-07-14) (b) Barrax (BR-2004-05-27) (c) Barrax (BR-2005-07-17)

(d) Oahu (OH-2005-01-08) (e) Lake Argyle (LG-2004-02-29) (f) R. Creek (RC-2004-04-23)

Figure 7.1: RGB composite of the CHRIS images (Mode 1, FZA 0◦) over different test sites.

7.1 Visual Inspection of PROBA/CHRIS Images

7.1.1 CHRIS Sample Products

A dataset consisting of six CHRIS Mode 1 acquisitions (five multi-angular images per acqui-

sition) over four of the core sites of the PROBA mission is considered. In particular, images

taken over Barrax (BR, Spain), Oahu (OH, Hawaii, USA), Lake Argyle (LG, Australia), and

Reynold’s Creek (RC, USA) have been included in the study (Fig.7.1) in order to take into ac-

count their different characteristics: geographic location (latitude/longitude); date and season;

type of cloud (cumulus, cirrus, stratocumulus); and surface types (soil, vegetation, sand, ice,

snow, lakes, sea, etc). Fig. 7.1 shows an RGB composite of the images over the test sites (BR-

2003-07-14, BR-2004-05-27, BR-2005-07-17, OH-2005-01-08, LG-2004-02-29, and RC-2004-04-23)

with an histogram stretching such that 10% of data is saturated at both low and high reflectance

(10%-90%) in order to increase the contrast of the cloudy images. These images are useful to

validate the performance of the algorithm since they include different landscapes, land covers,

and also ice and snow.
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7.1.2 CHRIS Cloud Screening Results

We have tested the proposed scheme for the aforementioned images. All the method has been

implemented in Matlab programming language and it is capable to handle directly the CHRIS

HDF original files and process them automatically producing the results in an ENVI standard

format. Intermediate images of the method have been shown in Chapter 5. This section analyzes

the performance of the method on the six images by means of the thematic map of the clusters

and the cloud abundance product (Fig.7.2).

The following conclusions about the method results are depicted in Fig.7.2. The three images

over the Barrax (BR, Spain) site are a good example of an easy cloud detection problem, when

clearly defined clouds are well contrasted with soil and vegetation. The ROI selection can be

easily appreciated in the classified images, being more important in the BR-2003-07-14 image

where small clouds could be mixed in a cluster with other classes if the whole image is considered.

At the OH-2005-01-08 image (Oahu, Hawaii), waves and beach sand pixels belong to a cluster

labeled as cloud due to their high reflectance and whiteness, but they present low probabilities

and abundances. In addition, this image presents cirrus clouds over land and over sea that are well

detected since specific clusters describe them and have been correctly classified. One of the weak

points of the algorithm is the use of thresholds to select the ROI, because some thin or small clouds

can be excluded from the ROI. A solution is to relax thresholds at the risk of considering as ROI

the whole image like in the image of LG-2004-02-29 (Lake Argyle, Australia). But, even in this

case, results are good if clouds cover a sufficient percentage of the image or the number of clusters

is high enough. The image of RC-2004-04-23 (Reynold’s Creek, United States) is an example of

one of the critical issues in cloud detection, the presence of ice/snow in the surface. These covers

and clouds have a similar reflectance behavior. However, the atmospheric absorption suffered by

cloud pixels is lower than for the case of surface pixels due to their height, thus different clusters

are found for these two classes in the image. Thanks to the extracted atmospheric features,

ice/snow pixels present low cloud probability values although the cloud abundance provided by

the spectral unmixing could be relatively high due to the spectral similarities. In consequence,

both information types are combined improving the final classification accuracy.

The use of CHRIS data allows us to assess algorithm performance in favorable spatial reso-

lution (34 m) and number of bands (62 channels). The extrapolation to the ENVISAT MERIS

sensor will be very valuable in order to simulate the subpixel effects due to the MERIS coarse

spatial resolution (300m at Full Resolution). In addition, MERIS allows an accurate oxygen ab-

sorption estimation (11th/10th band ratio) and presents narrower bands to enhance detection

and knowledge discovery.
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Figure 7.2: Cloud screening results on CHRIS images: BR-2003-07-14, BR-2004-05-27, BR-2005-07-17,

OH-2005-01-08, LG-2004-02-29, and RC-2004-04-23 (from left to right). First and third rows: Thematic

maps obtained after the cluster labeling (colors have been manually assigned to match land cover colors:

clouds in grey, ground in brown, ice/snow in yellow, and background in blue). Second and fourth rows :

Cloud abundance product.
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(a) Barrax (BR-2003-07-14) (b) Barrax (BR-2004-07-14) (c) Finland (FI-2005-02-26) (d) France (FR-2005-03-19)

Figure 7.3: RGB composite of the MERIS images over the test sites of Barrax, Finland, and France.

7.2 Visual Inspection of ENVISAT/MERIS Images

7.2.1 MERIS Sample Products

A dataset consisting of four acquisitions over three sites has been selected to perform the

visual validation on MERIS data. Both Level 1b (L1b) and Level 2 (L2) products were avail-

able for all MERIS Full Resolution (FR) images (300 m). In particular, the site of Barrax (BR,

Spain) was selected as the main test site since it has been the core site of previous Earth ob-

servation campaigns and the analyzed cloudy images are part of the data acquired in the frame-

work of the SPARC 2003 and 2004 ESA campaigns (ESA-SPARC Project, contract ESTEC-

18307/04/NL/FF) (Moreno et al., 2005). These two images were acquired on July 14th of two

consecutive years (BR-2003-07-14 and BR-2004-07-14). Additionally, MERIS acquisitions over

France (FR-2005-03-19) and Finland (FI-2005-02-26) have been included in the study in order

to take into account their different characteristics: geographic location, date and season, type

of cloud, and type of surface. Again, the selected images represent different scenarios extremely

useful to validate the performance of the method, including different landscapes; soils covered by

vegetation or bare; and two critical cases given the special characteristics of the induced problems:

ice and snow. Fig. 7.3 shows an RGB composite of the images over the test sites (BR-2003-07-14,

BR-2004-07-14, FI-2005-02-26, and FR-2005-03-19) with an histogram stretching such that 10%

of data is saturated at both low and high reflectance (10%-90%) in order to increase the contrast

of the cloudy images.

The proposed method is only applied to the MERIS L1b products (TOA radiance) because

the top of aerosols reflectance provided on MERIS L2 products does not include information

at the oxygen and water vapor absorptions (MERIS channels 11 and 15 are not corrected from

atmosphere due to the strong gaseous absorptions). Besides, L2 products are processed from L1b

using a cloud pixel classification that could be inaccurate. Therefore, L2 products are only used

for validation purposes by comparing the official L2 cloud flag with the cloud mask produced by

our method.
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7.2.2 MERIS Cloud Screening Results

Easy cloud screening situations

The two images over Barrax (Spain) are a good example of an easy cloud detection problem,

where opaque clouds are well contrasted with bare soil and vegetation (Fig. 7.4[first and second

columns]). At the BR-2003-07-14 image, dry soil pixels belong to a cluster labeled as cloud due to

their high reflectance and whiteness, but they present low probabilities and abundances. The BR-

2004-07-14 image presents thin and small clouds over land and over sea, which are well detected

since a specific cluster describes them. The ROI selection can be easily seen in the classification

images (Fig. 7.4[second row ]), being more significant in the BR-2004-07-14 image where small

clouds could be mixed in a cluster with other ground covers if the whole image is considered.

The use of thresholds to select the ROI could be interpreted as one of the weak points of the

algorithm, since some thin or small clouds could be potentially excluded from the ROI. However,

the ROI selection can be seen as an eventual improvement. The obvious solution is to relax the

thresholds or even consider the whole image. In this case, results are accurate if clouds cover a

sufficient percentage of the image or the found number of clusters is high enough (as in the image

over Finland, FI-2005-02-26).

Challenging cloud screening situations

The images over Finland and France have been included in the study to test one of the critical

issues in cloud screening for which the proposed algorithm was intended for. In particular, the

presented approach is designed to overcome the presence of bright pixels, such as ice and snow

in the surface. Bright land covers and clouds have a similar reflectance behavior, thus thresholds

on reflectance values or unmixed fractions do not solve the problem. However, the atmospheric

absorption suffered by cloud pixels is lower than for the surface pixels due to their height. For

this reason, when using together all the features in the clustering algorithm, different clusters are

found for these two classes in the image. Thanks to the extracted atmospheric features, ice/snow

pixels present low cloud probability values although the cloud abundance provided by the spectral

unmixing could be relatively high due to the spectral similarities.

Consequently, both information types are combined improving the final cloud abundance prod-

uct provided to the users (Fig. 7.4[third row ]). Figure 7.4[fourth column] shows a case example

result for an image over France (FR-2005-03-19) that presents opaque clouds at south and north

France, and snowy mountains at various altitudes (Pyrenees, Massif Central, and the Alps),

which are well-distinguished from clouds. The cloud product for these regions presents low values

because the low cloud probability, hiC ∼ 0, obtained for these pixels.

In the case of Finland (FI-2005-02-26, Fig. 7.4[third column]), we have a different scenario

where a cirrus cloud, often found in advance of a warm front, is moving from sea to the icy coast

of Finland. In this image, we have a difficult cloud identification problem, even for an expert
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Figure 7.4: MERIS images over the test sites of BR-2003-07-14, BR-2004-07-14, FI-2005-02-26, and FR-

2005-03-19 displayed in columns from left to right. First row : RGB composite with an histogram stretching

such that 10% of data is saturated at both low and high reflectance (10%-90%) in order to increase the

contrast of the cloudy images. Second row : Classification of the relevant regions (clouds in grey, ground in

brown, ice/snow in yellow, and background in blue). Third row : Cloud abundance product. Fourth row :

Comparison of MERIS L2 Cloud Flag with the obtained cloud mask (discrepancies are shown in red where

our algorithm detects cloud and in yellow where pixels are classified as cloud free).

130



7.3. Comparison with MERIS Standard Products

analyst. Incoming radiance from transparent cirrus clouds is mostly affected by the surface

contribution, and it ranges from very low to extremely high values depending on whether cirrus

cloud is over water or ice, respectively. However, the highest altitude clouds in the atmosphere are

cirrus clouds located at altitudes between 5 and 14 km (cf. section 2.1). Despite the variability

of the spectral behavior, the atmospheric features allow us to cluster transparent cirrus clouds

correctly. Summarizing, the use of the oxygen-A absorption allows thick and high/middle-level

clouds to be detected unambiguously. Very low level clouds, very thin cirrus clouds and broken

clouds could be undetected when using only the oxygen feature, but its combined use with surface

reflectance features solves these problems to a great extent. Finally, although the water vapor

absorption feature is less accurate than the oxygen feature for cloud height estimations, it provides

an alternative independent estimation. Besides, it is extremely useful to discriminate clouds from

ice/snow covers due to the incipient absorption of these types of covers in the NIR region above

900 nm (Gao et al., 1998).

7.3 Comparison with MERIS Standard Products

One of the motivations to propose the presented cloud screening algorithm is to solve some

critical problems where the operational MERIS L2 algorithm shows clear deficiencies, as reported

by the user community elsewhere (Ramon et al., 2003; Brockmann, 2006), and by the MERIS

Quality Working Group (MERIS Quality Working Group, 2006). For this reason, we illustrate

the proposed methodology in different scenarios presenting critical cloud screening problems, and

compare it to the MERIS L2 flag solution (cf. section 2.4.1).

Images in the last row of Fig. 7.4 show a comparison of MERIS L2 Cloud Flag with the

results obtained by our algorithm. Pixels where both algorithms agree are depicted in white for

the cloudy pixels and in blue for the cloud free pixels. The agreement between both methods

is shown in Table 7.1 on the basis of the confusion matrices, which are expressed in terms of

percentage of pixels in each image, and the overall accuracy (OA) and estimated kappa statistic1

(κ) derived from them. Although overall agreement between both classifications is good enough

for most of these images, the low values of kappa indicate that significant differences between

methods exist. These differences can be better analyzed looking at the confusion matrices and

comparison maps in Fig. 7.4. From these results, two main discrepancies are found. On the one

hand, pixels classified as cloudy pixels (C) by our method but not by the MERIS flag (C) are

plotted in red, showing a good agreement with cloud borders. Therefore, one can assume that

the proposed method provides better recognition in cloud borders and in small and thin clouds,

which is the situation in the images acquired over Spain. On the other hand, discrepancy pixels

1The use of estimated kappa statistics, κ, is more appropriate than the overall accuracy for testing whether

agreement for both binary cloud classifiers exceeds chance levels (Congalton and Green, 1999). A value of κ = 1

means complete agreement and κ ≤ 0 reflects no agreement. Following this criterion, a classification can be

considered ‘good’ for κ > 0.8 and ‘poor’ for κ < 0.7.
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Table 7.1: Confusion matrices between the proposed method in the whole scene using the MERIS L2

Cloud Flag as reference (given in % of pixels). In the bottom, the overall agreement (OA[%]) and estimated

kappa statistics (κ) are given for all images.

MERIS L2 Proposed Method

Cloud Flag Spain’03 Spain’04 Finland France

C C C C C C C C

Conf. Matrix C 3.8 0.0 1.3 0.0 27.6 30.2 7.4 4.4

C 5.4 90.8 6.2 92.5 9.8 32.4 1.8 86.4

OA[%] 94.58 93.84 59.98 93.78

κ 0.56 0.29 0.23 0.66

classified by our algorithm as cloud-free (C) are shown in yellow. These areas correspond to ice

covers (Finland image) and snow over high mountains (Pyrenees, Massif Central, and Alps in

the France image). These results explain all discrepancies found in the confusion matrices and

indicate the goodness of our approach.

For the sake of a fair comparison between both algorithms, we want to remark that the pro-

posed algorithm is less efficient than the MERIS standard cloud masking scheme in terms of

computational burden (mainly due to the clustering and unmixing processes). However, when

considering critical cloud screening problems, our algorithm provides better results. The algo-

rithm has not been specifically designed to process a large number of images like the operational

MERIS L2 algorithm or recent pragmatic solutions proposed for MERIS (Ranera et al., 2005;

Preusker et al., 2006). Our proposal is more concerned with obtaining abundance and accurate

cloud masks when the thresholds used in the MERIS L2 algorithm are not representative.

7.4 Multitemporal Validation on MERIS Series

In order to test the performance of the proposed cloud screening algorithm, we set up a real

multitemporal land cover mapping application over cloudy areas. In particular, a temporal series

of MERIS images is used to derive sub-pixel land cover composition by means of linear spectral

unmixing techniques. The final objective of this validation approach is two-fold: to propose

a cloud screening validation based on temporal series, and to evaluate the impact of a cloud

screening algorithm in a multitemporal unmixing application.

7.4.1 MERIS Time Series over The Netherlands

A temporal series of MERIS FR Level 1b images acquired over the Netherlands in 2003 is

selected to illustrate our approach (Fig. 7.5). The Netherlands is selected as study area because

of the heterogeneity of its landscapes, frequent cloud coverage, and the availability of an up-to-
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(a) February 18th† (b) April 16th†‡ (c) April 22nd‡ (d) April 23rd (e) May 28th

(f) May 31st† (g) June 6th (h) June 16th (i) July 8th‡ (j) July 14th†‡

(k) August 6th† (l) August 9th (m) August 12th (n) October 15th† (o) December 8th†

† Dates selected for the multitemporal unmixing in the multitemporal land cover mapping application,

which are chosen throughout the year according to its low cloud coverage.

‡ Pairs of cloudy and cloud-free dates used to validate the cloud screening algorithm.

Figure 7.5: Coregistered MERIS FR L1b temporal series acquired over The Netherlands in 2003.

date high spatial resolution land use database. The availability of this high resolution land use

map over The Netherlands is really convenient because it can be used to validate the subpixel

classification results provided by the unmixing, but also as an input of the validation methodology

in order to improve the accuracy of the cloud screening validation.

Most of the acquisition dates of the temporal series presented extensive clouded areas. There-

fore, the selected dates for the multitemporal unmixing are chosen according to two criteria: (i)

to maximize the number of cloud free pixels in each scene and (ii) to get, at least, one image

per month so that the vegetation phenological cycle is fully captured. Unfortunately, no suitable

MERIS FR scene was found for the months of January, March, June, September, and November.

Therefore, an uneven temporal series of seven images is considered for the unmixing: February

18th, April 16th, May 31st, July 14th, August 6th, October 15th, and December 8th. In addition,

images of the 22nd of April and the 8th of July are only used to validate the cloud screening

algorithm. These dates were the closest clouded dates to the 16th of April and 14th of July,

respectively, and thus are needed in order to set up pairs of cloudy and cloud-free images (marked
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(a) April 16th (b) April 22nd (c) July 8th (d) July 14th

Figure 7.6: Co-registered MERIS FR L1b images acquired the 16th and 22nd of April (a and b), and

the 8th and 14th of July (c and d).

by ‡ in Fig. 7.5 and shown in Fig. 7.6).

Reference dataset

The LGN5 Dutch land use database is used as a reference in this study. This geographical

database is based on a multi-temporal classification of high resolution satellite data acquired

in 2002 and 2003; several types of ancillary data were also used to produce the LGN5 land

use database (Hazeu, 2005, 2006). The LGN5 has a pixel size of 25m and maps 39 classes. The

unmixing of all these classes would be unrealistic, since some of the classes are rather small and/or

sparsely distributed and/or heavily based on available ancillary data, which mainly describes land

uses rather than land cover types. Consequently, the LGN5 was thematically aggregated into the

main 9 land cover types of The Netherlands. The aggregation to 9 classes is meant to offer a

detailed distribution of the following classes: grassland, arable land, deciduous forest, coniferous

forest, water, built-up, greenhouses, bare soil (including sand dunes), and natural vegetation.

Image co-registration

First, the LGN5 is spatially aggregated in order to match the nominal MERIS FR pixel size

(Fig. 7.7). To do so, a majority filter with a window of 12 by 12 LGN5 pixels is used, obtaining a

land cover classification map of 300 m (LCC). During this spatial aggregation process, abundances

of the different land cover types present in the final pixel of 300 m are recorded (LCA).

The second step in the pre-processing of the images is the co-registration. Multitemporal

studies require an accurate co-registration so that the correspondence between pixels at different

dates is ensured. Nevertheless, a perfect correspondence is very difficult to obtain because of

differences in observation angles (in our case each MERIS acquisition date belongs to a different

ENVISAT orbit) and because of the so-called resampling effects (e.g., Moirée patterns). In order

to minimize these effects, we compute the ‘real’ land cover abundances as seen by MERIS for
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Land Use (25m) Spatial aggregation (300m)

MERIS nominal pixel size (300m)

Figure 7.7: Illustration of the spatial aggregation of the LGN5 land use database to the nominal MERIS

FR pixel size.

each date. This provides us with slightly different abundances for each date that can be used to

do a fair validation of the unmixing results. Figure 7.8 illustrates how the ‘real’ abundances are

computed. First, each MERIS image is projected into the original 25m grid of the reference dataset

(LGN5). Then, the abundances of the different land cover types present in the area observed by

each MERIS detector element are computed. The class having the highest abundance is also used

to produce a land cover classification for each date, t, so that both a sub-pixel and a per-pixel

validation of the results could be done. After this, each MERIS image (t) and its corresponding

sub-pixel abundances (LCAt) and land cover map (LCCt) are projected into the same coordinate

system of the reference LGN5 dataset but this time with a grid of 300 by 300 m (i.e., MERIS

nominal pixel size). A nearest neighbor interpolation method is used so that the original values

recorded by MERIS are not modified.

7.4.2 Temporal Cloud Screening based on Change Detection

Once all MERIS images are co-registered, the performance of the cloud screening is tested with

a multitemporal validation approach. In particular, pairs of cloud-free and cloud-covered images

(Fig. 7.6) are used to detect cloud-pixels by identifying pixels with spectral changes between both

dates (t1 and t2) higher than a given threshold. Concerning the spectral change, the spectral

angle distance (SAD) is used since it is invariant to multiplicative scaling (Keshava, 2004), and

thus is less affected by atmospheric and illumination changes:

D(ρt1
i ,ρ

t2
i ) = arccos

(

〈ρt1
i ,ρ

t2
i 〉

‖ρt1
i ‖‖ρt2

i ‖

)

(7.4.1)
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Orbit1 Orbit2

Mask out

abundance

differences

>10%

date1

date2

Figure 7.8: Illustration of the projection and spatial aggregation of the LGN5 land use database to the

actual area observed by the MERIS pixels depending on the observation angles from the given orbit.

where ρt1
i and ρt2

i represent the spectra of a given pixel location i for dates t1 and t2, respectively;

〈·, ·〉 is the dot product operator; and ‖ · ‖ is the squared norm. Image pairs are selected to be

close in time in order to avoid spectral changes due to temporal evolution of the surface. However,

images with only three or six days of difference are taken from different orbits and thus present

a significant variation in the viewing angles. Although images are co-registered and a one-to-one

correspondence between the pixels of the two dates can be found, the area observed at each date is

not exactly the same. If the land cover types present in the observed areas change from one date

to the other, then the spatial shift can produce significant spectral changes between ρt1
i and ρt2

i .

In consequence, pixels with significant changes in composition, i.e. differences between LCAt1

and LCAt2 derived from de LGN5 higher than 10%, are masked out in the multitemporal cloud

screening validation (Fig. 7.8).

Cloud screening results

A hard cloud mask is obtained for each date t by applying the same threshold of 0.05 to

the cloud abundance product maps ϑt of the proposed algorithm, which are shown in Fig. 7.9.

Since no ground truth indicating cloudy pixels can be generated for all dates, we first analyze the

performance of the proposed method by visual inspection. The analysis of the results showed an

excellent cloud screening performance even in thin clouds and cloud borders. The only exception

is a small amount of pixels belonging to the classes greenhouses (sun glint on glass roofs) and

bare soil (sand dunes). These pixels were identified as clouds because these classes have similar

136



7.4. Multitemporal Validation on MERIS Series

(a) February 18th (b) April 16th (c) April 22nd (d) April 23rd (e) May 28th

(f) May 31st (g) June 6th (h) June 16th (i) July 8th (j) July 14th

(k) August 6th (l) August 9th (m) August 12th (n) October 15th (o) December 8th

Figure 7.9: Cloud product provided by the proposed cloud screening algorithm for the temporal series of

MERIS images shown in Figure 7.5 (same order and dates).

reflectance behavior to clouds. However, the classes that were misclassified represent less than

0.5% of The Netherlands and, therefore, were not statistically representative in the clustering

process used by the cloud screening algorithm.

In addition to the visual analysis, image pairs covering the same area acquired within few

days can be used to perform the temporal validation of the cloud screening. The performance of

the cloud screening algorithm is validated over the cloudy images acquired the 16th of April and

the 14th of July using as reference the cloud-free images of the 22nd of April and 8th of July,

respectively (Fig. 7.6). Figure 7.10 shows on the left the temporal spectral change computed

with (7.4.1) and on the right the final cloud product as provided by the proposed cloud screening

algorithm. From this figure, one can easily appreciate the high correlation between both magni-

tudes. However, it is worth noting that in the temporal spectral change images: (i) the surface

contribution is still visible, and (ii) differences between surface and cloud values are lower than

in the proposed cloud screening product, which suggests the consistency of our approach.

In order to obtain a quantitative validation of the proposed approach, the cloud screening

accuracy is assessed by comparing the hard cloud mask (ϑt > 0.05) with a ‘true mask’, which is

obtained by applying an empirical threshold to the temporal spectral change (SAD). Considering
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(a) Temporal SAD (April) (b) Cloud Product (April) (c) Temporal SAD (July) (d) Cloud Product (July)

Figure 7.10: Temporal spectral change (SAD) computed from image pairs of April 16th-22nd (a) and

July 8th-14th (c). Cloud product provided by the proposed cloud screening algorithm for April 22nd (b)

and July 8th (d).

the cloud mask as a binary classification, the overall accuracy (OA[%]) and the kappa statistic (κ)

show an excellent detection accuracy for April 22nd (OA=91%, κ=0.82), and slightly worst re-

sults for July 8th (OA=87%, κ=0.67), since this presents a complex cloud screening problem with

thin transparent clouds at different layers. However, ‘true mask’ obtained with the multitemporal

approach is not 100% accurate, and thus one has to interpret this assessment as a simple com-

parison between the multitemporal approach and the proposed method. Figure 7.11[top] shows

the comparison of both cloud masks. On the one hand, when our algorithm detects more cloudy

pixels (blue), good agreement with cloud borders can be seen. Therefore, one can assume that

the proposed method provides better recognition in cloud borders and thin clouds. On the other

hand, differences when our algorithm classifies as cloud-free are shown in red. One can see that

these areas correspond to the boundaries between land cover types, where spectral changes are

probably due to the different viewing geometry of the two dates. Therefore, one can conclude

that, despite the fact that the proposed method only uses the information of the ‘cloudy image’,

our method offers a better discrimination than the multitemporal change detection approach.

For the studied MERIS temporal series over The Netherlands, only MERIS FR Level 1b prod-

ucts is available. Therefore, it is not possible to compare the official L2 cloud flag with the cloud

mask produced by our method. However, further validation can be performed by comparing re-

sults with the Cloud Flag provided by the Cloud Probability Processor of the Basic ENVISAT

AATSR and MERIS (BEAM) Toolbox (cf. section 2.4.1). The BEAM Cloud Probability Pro-

cessor uses a clear sky conservative cloud detection algorithm, which is based on artificial neural

nets (NN). Figure 7.11[bottom] shows the comparison of our method against a flag that indicates

cloudy when NN probability > 20%, which is the lowest threshold recommended by the authors

of the algorithm (Preusker et al., 2006). Also, in this comparison a good agreement with cloud

borders can be seen in the blue areas where only our algorithm detects cloudy pixels.
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Figure 7.11: Comparison of the obtained cloud mask against the multitemporal cloud flag (top) and

against the BEAM Cloud Probability Processor Flag (bottom) for the images of April 22nd (left) and July

8th (right). Discrepancies between methods are shown in blue when our algorithm detects cloud and in

red when pixels are classified as cloud-free.

7.4.3 Spectral Unmixing of Multitemporal Series

An indirect procedure to test cloud screening performance consists in analyzing its effect in a

real application. Undetected clouds are one of the most significant sources of error in both sea and

land cover biophysical parameter retrieval. For example, in a land use classification application

based on spectral unmixing of multitemporal series, undetected clouds can hamper the selection

of endmembers and seriously affect the quality of the unmixing of cloud contaminated pixels.

Therefore, cloud screening is needed to remove all the cloudy pixels from the final analysis. As a

consequence, an accurate cloud screening should significantly increase the classification accuracy.

The algorithm used to perform the spectral unmixing is the fully constrained linear spectral

unmixing (Heinz and Chang, 2001) presented in section 5.3.1, which can be applied to each MERIS
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image (mono-temporal case) as well as to a multitemporal composite (stacked approach) of all

the MERIS images. The FCLSU guarantees a physical interpretation of the results, and can be

formalized as follows:

ρt
i(λb) =

Q
∑

q=1

mt
q(λi)a

t
iq + ε (7.4.2)

subject to 0 ≤ at
iq ≤ 1 and

∑

q a
t
iq = 1; where ρt

i(λb) is pixel i value for band b at date t, Q

represents the number of class endmembers, mt
q, that are being unmixed, being the coefficients

of this combination, at
iq, the unmixing coefficients, which can be interpreted as the abundance

fractions of materials or classes in a pixel. Finally, the term ε represents the residual error per

band, assumed constant for all bands.

In the multitemporal case, the spectral signature of each class, mq, is the stacked vector

formed by the class endmember of all dates, mq = [mt1
q ,m

t2
q , . . . ], and the pixel to be unmixed,

ρi, is the stacked vector ρi = [ρt1
i ,ρ

t2
i , . . . ]. Now, (7.4.2) can be expressed in a matrix form as

ρi = M · ai + ε, where the spectral signatures of materials, mq, are expressed in the columns of

matrix M.

Multitemporal unmixing results

After applying the cloud screening algorithm to all the selected images, identified cloud con-

taminated pixels are masked out and the spectral unmixing is carried out. Figure 7.12(a) shows

the spectral signature of the endmembers for the seven dates selected in this study. Grassland

presents the highest NIR reflectance all year around. During the months of May, July, and August

the endmember of deciduous forest also shows high reflectance (high greening of vegetation). The

rest of the vegetated classes appear to have a very similar spectral signature. High confusion is,

therefore, expected among these classes. On the one hand, in the spectral unmixing of one image,

the land cover abundances cannot be obtained over clouded areas or outside the field of view of

the sensor. On the other hand, in the multitemporal unmixing, each pixel is formed as the stacked

vector of the spectra for all the available dates. This allows us to obtain the abundance fractions

in all the pixels of the studied area, but the number of dates used in multitemporal unmixing is

pixel dependent since each pixel is unmixed with the maximum number of valid cloud free dates.

This means that the quality of the unmixing is also pixel-dependent and that, whenever critical

(phenological) dates are missing for a number of pixels (e.g. clouded areas), the accuracy of the

results on those pixels (areas) might be lower. Figure 7.12(b) shows the number of usable dates for

each pixel after masking out the clouds and cloud borders. It should be noted that the northern

and south-eastern parts of The Netherlands have less usable pixels than the rest of the country.

This is not only because of the cloud coverage but also because some of the MERIS FR images

did not cover the whole of The Netherlands.

A detailed description of the multitemporal spectral unmixing and the obtained results is given

in Gómez-Chova et al. (2006f). Here, we have only focused on the impact of cloud screening in
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Figure 7.12: (a) Pure temporal endmembers selected from the multitemporal dataset for each land cover

class. (b) Per-pixel number of usable dates.
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Figure 7.13: (a) Classification obtained from the multitemporal unmixing abundances. (b) LGN5 resam-

pled to 9 classes and 300 m used as ground truth.

the multitemporal unmixing. However, in the following, we summarize the main unmixing results

in order to show the importance of an accurate cloud screening. The unmixed abundances for

each date, at
i, and the multitemporal approach, ai, are compared to the abundances computed

during the spatial aggregation of the LGN5 database, LCA. Then, the classification obtained

from the abundances (Fig. 7.13) is used to compute the overall classification accuracy and the

kappa statistic using the LCC as ground truth (Table 7.2). As expected, the multitemporal ap-

proach yielded the highest classification results, since adding the temporal evolution (phenology)

simplifies the discrimination of spectrally similar land cover types. However, the difference be-

tween the classification results of the best (monotemporal) image [April] and the multitemporal

approach is not very large. These errors in the multitemporal case should be produced by the

within class heterogeneity (land covers with different phenology mixed in one class, e.g. arable
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Table 7.2: Performance of the land cover classification using the FCLU at per pixel scale (overall accuracy,

OA[%], and kappa statistics, κ) for each single date and the multitemporal series.

Data Feb Apr May Jul Aug Oct Dec Multitemporal

Kappa 0.36 0.49 0.39 0.45 0.36 0.37 0.35 0.52

OA[%] 46.44 58.58 50.33 56.10 46.81 49.88 47.55 62.29

land class) or by the procedure used to elaborate the LGN5 used as ground truth. In conclusion,

the accurate cloud screening performed by the proposed algorithm enables a more efficient use of

MERIS images.

7.5 The Cloud Abundance Product

Finally, one of the requirements imposed to the proposed cloud screening methodology was

to provide information about the contribution of clouds to the spectra of image pixels (for both

transparent clouds or subpixel coverage situations). This type of information may be very useful

for the users in order to decide what is a cloud depending on the application requirements or

image conditions. In this work, we classify as cloud all pixels presenting values higher than 0.05

in the obtained cloud abundance product. It should be noted that this threshold is the same for

all images analyzed in order to demonstrate the general applicability of the method. This value is

so low because the classification probability makes almost zero the cloud abundance product for

all the cloud-free pixels. However, if the user is not interested in excluding pixels slightly affected

by clouds in a given application, the threshold value can be increased.

In order to show the potential of the cloud abundance product, Fig. 7.14 shows the histograms

of the obtained values of posterior probability hiC (dark) and cloud product ϑi (white) for all

images. The smooth distribution of ϑi values differs to a great extent from the output of the

probabilistic classifier, which has no physical meaning and is usually unevenly distributed around

zero and one.

Finally, we can also validate our abundance product against the cloud probability provided

by the Cloud Probability Processor implemented in the BEAM Toolbox, which is the most similar

cloud product available for MERIS data. Figure 7.15 shows the histograms of the proposed

cloud product (white) and the BEAM cloud probability (dark) values. Again, our algorithm

provides a smoother distribution of ϑ values, which differs to a great extent from the output of

the probabilistic NN classifier that is concentrated around one.
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(c) FI-2005-02-26
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Figure 7.14: Histogram of the posterior probability hiC (dark) and cloud product ϑi (white) values for

the images of BR-2003-07-14 (a), BR-2004-07-14 (b), FI-2005-02-26 (c), and FR-2005-03-19 (d). Extreme

low and high values have been excluded for a proper visualization.
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Figure 7.15: Histogram of the proposed cloud product (white) and the BEAM cloud probability (dark)

values for the images of April 22nd (a) and July 8th (b). Extreme low and high values have been excluded

for a proper visualization.
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Chapter 8

Semi-supervised Cloud Screening

Validation

The user-driven approach proposed in Chapter 5 has shown an excellent cloud screening

performance in the results as presented in Chapter 7. However, this approach is best suited

to case studies due to its computational cost and the optional interaction of the user during

the labeling process. In operational cloud screening applications, methods that automatically

and accurately classify clouds are mandatory. Therefore, supervised or semi-supervised methods

should be more appropriate due to their typically enhanced performance. This chapter describes

the cloud screening results obtained with the novel kernel methods presented in Chapter 6. All

these methods are supervised or semi-supervised classifiers, and thus they require a representative

set of labeled samples to train and validate the models.

As we mentioned in previous chapters, in a real cloud screening classification problem, no

simultaneous independent assessment measurement of cloud presence at the same image spatial

resolution is usually available. Therefore, it is not easy to obtain the true label (cloud or cloud-

free) for the image pixels. In the case of MERIS images, only two cloud mask products (obtained

in an operational basis) can be used as a reference in order to compare the results of the proposed

cloud screening approaches. These two cloud masks, which are derived directly from the MERIS

image, are the official MERIS L2 Cloud Flag and the BEAM Cloud Probability Processor Flag

that provides a more accurate cloud mask than the official product. However, results presented

in Chapter 7 revealed that both methods have deficiencies. In fact, the analysis carried out in

Chapter 7 showed that the method based on unsupervised clustering proposed in Chapter 5 is

the most accurate cloud screening method, especially when the labeling of the found clusters is

done by the user (user-driven approach). Therefore, the true labels and true maps used to train

and validate the classifiers presented in this chapter are based on the proposed cloud abundance

product (see section 5.3.3).



Chapter 8. Semi-supervised Cloud Screening Validation

8.1 Experimental Setup

In a real cloud screening classification problem, it is difficult to collect a statistically significant

number of ground-truth samples to define a complete training set for developing robust supervised

classifiers. This usually leads to a poor representation of the problem by the training set that

can induce the so-called sample selection bias problem, i.e. the available training set is not repre-

sentative enough of the test set. For this reason, the proposed kernel methods are benchmarked

in two different conditions: (1) few labeled training samples are available for characterizing the

image to be classified; and (2) no labeled training samples are available for the test image to be

classified. In the latter case, training data extracted from other images modeling similar problems

are exploited to develop the classifiers. In both situations, unlabeled samples of the test image

can be jointly used with the available training samples to increase the reliability and accuracy of

the classifier. In this context, two scenarios are further considered: labeled and unlabeled training

samples might belong to the image to be classified, or to different images coming from different

locations and acquired in eventually very different conditions. The most realistic situation in op-

erational remote sensing applications is, nevertheless, to obtain the labeled samples from previous

images and the unlabeled samples from the image to be classified. Summarizing, two challenging

scenarios are considered:

Single-Image Approach. In these experiments, labeled and unlabeled training samples belong

to the image to be classified. This is a common scenario in remote sensing, when a single

image is available or is going to be analyzed, and the training set is built by labeling some

representative samples, usually by an expert or by using additional ground measurements.

In this case, both the training and test data come from the same marginal distribution,

and thus the classifiers are not affected by the sample selection bias problem. We call this

procedure the single-image approach.

Image-Fold Approach. A completely different (and more realistic) situation is to obtain the

labeled training samples from previous images or from physical model simulations, and

then apply the developed models to a test set, which usually consists of several images. In

this case, the available training set can be not representative enough for the test (sample

selection bias problem) and the unlabeled samples from the image to be classified should

help to improve the classification accuracy. In order to analyze this scenario, in this chapter,

we carry out some experiments where classifiers are trained using both labeled samples from

the N − 1 out of N available images, and unlabeled samples from the image to be classified.

We call this procedure the image-fold approach (see Fig. 8.1).

Table 8.1 describes the data sets used to develop the kernel classifiers and the experimental

setup followed to obtain the cloud screening results. The input features used by all the methods

are extracted from the MERIS L1b images, as described in Chapter 4. The labels of the image

pixels are obtained from the cloud abundance product (cf. section 5.3.3), which has been analyzed
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Figure 8.1: Image-fold approach followed in the experiments in order to induce the sample selection

bias in the training process. Classifiers are trained using both labeled samples from the N − 1 out of N

available images, and unlabeled samples from the image to be classified. The scheme depicts a 5-image-fold

approach, where a different classifier is trained for each image. Finally, classification results on test are

averaged for the 5 images to evaluate the robustness of the classifiers to the sample selection bias.
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Table 8.1: Experimental setup and data used to develop the kernel classifiers and to obtain the cloud

screening results.

Data Sets

Input Features All methods are applied to the vector of extracted features for each pixel:

xi = [fBr,VIS, fBr,NIR, fWh, fO2, fWV]⊤, which correspond to the target spec-

tral brightness in the VIS and NIR, the target spectral whiteness, and the

oxygen and water vapor atmospheric absorptions, respectively.

Labels (yi) Supervised information defining the labels (cloud/cloud-free) of the image

pixels is obtained by applying a threshold of 0.05 to the cloud abundance

product (cf. section 5.3.3), presented in Chapter 7: yi = sgn(ϑi − 0.05).

Samples (xi) 10000 labeled samples covering the full range of ϑ values are selected from

each image. These samples are used to generate the different training and

validation sets used to develop and compare the models.

Clusters (ωk) The EM algorithm is applied to each image in order to obtain the clus-

ters present in the image, together with the cluster membership hik, and

assigned cluster hi for each sample xi.

Training Set A given number of samples is used to develop the models during the train-

ing process. For all models, a set of ℓ labeled samples {xi, yi}ℓ
i=1 is used.

For semi-supervised models, a set of u unlabeled samples {xi}ℓ+u
i=ℓ+1 is also

included in the training set. In the later case, we assume that the unla-

beled samples come from the image to be classified, and their labels yi are

unknown, but their cluster membership hi has been obtained. In the exper-

iments, the number of unlabeled samples is fixed to u = 800 and we explore

from ill-posed situations with only 4 labeled samples per class (ℓ = 8) up to

well-posed supervised cases with 200 labeled samples per class (ℓ = 400).

The best model for each experiment is selected by 10-fold cross-validation

over the labeled training samples evaluating the averaged κ statistics.

Validation Set An independent dataset of 5000 labeled samples from the test image is

used to compare the performance of the classifiers. These samples are used

to compute the κ classification accuracy of the different models but not

to tune the free parameters of the models, i.e. validation samples are not

used during the training phase since the best model is selected with the

10-fold cross-validation approach. In addition, in order to avoid skewed

conclusions, we run all experiments for a number of realizations where the

used training samples were randomly selected. Therefore, the validation

results are averaged for 10 realizations in order to measure the robustness

of the methods in the classification.

Test Set The developed classifiers are finally applied to all the pixels of the test

image in order to obtain the classification maps.

148



8.2. Kernel Methods and Model Development

in Chapter 7. The training and validation sets are built in a different manner for each experiment

depending on whether a single-image approach or an image-fold approach is followed. In addition,

the number of labeled samples ℓ used to train the models is also different for each experiment.

By decreasing the number of labeled training samples ℓ, one can analyze how the SSL methods

efficiently exploit the information contained in the available unlabeled samples compared to the

labeled samples. Regarding the validation results, in order to avoid skewed conclusions, we run all

the experiments several times using randomly selected train samples, and the validation results,

obtained over unseen data, are averaged for ten realizations in order to measure the robustness of

the classification methods. Finally, the developed models are applied to all the pixels of the test

image in order to obtain the classification maps.

8.2 Kernel Methods and Model Development

The kernel methods analyzed in this chapter are the supervised and semi-supervised classifiers

presented in Chapter 6. The novel kernel methods based on the composite and mean kernels are

benchmarked against the standard SVM, which is used as a reference for supervised methods

(cf. 6.1), and the Laplacian SVM, which is used as a reference for semi-supervised methods as it

is a general regularization framework that contains as particular cases several unsupervised and

semi-supervised methods (cf. 6.2). The main characteristics of these methods (corresponding

kernel and mapping functions) are summarized in Table 6.1. Here, a brief description of these

methods, and the abbreviations and legend used in the results of this chapter are provided in

Table 8.2. In addition to the standard SVM (denoted by “SVM on xi”), the proposed methods

are also compared with the classification results obtained when using the trained standard SVM

(with kernel K) to classify the centers of the clusters (µk) and then assigning the same class label

to all the samples belonging to the same cluster ωk (denoted by “SVM on µk”). Note that this is

the standard approach in unsupervised classification problems, where first a clustering algorithm

is applied to the data and later clusters are classified. For all the experiments, we used the Radial

Basis Function (RBF) kernel, K(xi,xj) = exp
(

−‖xi − xj‖2/2σ2
)

, where σ ∈ R
+ is the kernel

width for SVM, LapSVM, and µ-SVM, and can be different for K and Kµ. In addition, in the

LapSVM, the graph Laplacian L consisted of ℓ + u nodes connected using 6 nearest neighbors,

and the edge weights Wij are computed using the Euclidean distance among samples.

The parameters of the maximum-margin hyperplane defining a linear classifier in the kernel

space are derived by solving the corresponding quadratic programming (QP) optimization problem

in its dual form. For all the analyzed kernel methods, the dual optimization problem is solved by

using the LibSVM software package (Chang and Lin, 2001), which follows a sequential minimal

optimization (SMO) procedure. In order to adjust the free parameters of the SVM (C, σ), µ-SVM

(C, σ, ν), and LapSVM (γL, γM , σ), a cross-validation strategy with ten folds in the training set

is applied. A summary of the parameters to be tuned during the training process is provided in

Table 8.2, indicating also their variation range. Once classifiers are trained and adjusted, they are
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Table 8.2: Summary of the analyzed kernel methods and the parameters to be tuned during the training.

Kernel Methods (see Table 6.1)

SVM on xi Kℓ×ℓ SVM trained with the ℓ labeled samples and applied to each

sample xj to obtain its class label: K(xi,xj) = 〈φ(xi),φ(xj)〉.
SVM on µk Kℓ×ℓ SVM trained with the ℓ labeled samples but applied to each

cluster center µk in order to obtain its class label that is prop-

agated to all the samples belonging to this cluster: K(xi,µk).

LapSVM Kn×n Laplacian SVM trained with the n = ℓ+u labeled and unlabeled

samples of the training set (see 6.2 for details).

µ-SVM in X KX
µ Mean-Map SVM based on the cluster similarity in X , i.e.

computed between the cluster centers µk in the input space:

KX
µ = 〈φ(µ1),φ(µ2)〉

KX
ω Mean-Map SVM combining both the sample similarity and the

cluster similarity in X through composite kernels: KX
ω = νK+

(1 − ν)KX
µ .

µ-SVM in H KH
µ Mean-Map SVM based on the cluster similarity in H, i.e. com-

puted between the clusters Sk in the kernel space by using the

mean map: KH
µ (S1, S2) =

〈

φµ(S1),φµ(S2)
〉

.

KH
ω Mean-Map SVM combining both the sample similarity and the

cluster similarity in H through composite kernels: KH
ω = νK+

(1 − ν)KH
µ .

µs-SVM in H KH
µs

Mean-Map SVM based on the cluster similarity in H, i.e. com-

puted between the clusters Sk in the kernel space by using the

soft mean map: KH
µs

(S1, S2) =
〈

φµs
(S1),φµs

(S2)
〉

.

KH
ωs

Mean-Map SVM combining both the sample similarity and the

soft cluster similarity in H through composite kernels: KH
ωs

=

νK + (1 − ν)KH
µs

.

Free Parameters

SVM
Kernel width σ ∈ R

+ of the RBF kernel, K(xi,xj) =

exp
(

−‖xi − xj‖2/2σ2
)

, was tuned in the range {10−3, . . . , 10}.
Regularization parameter C was varied in the range {10−1, . . . , 102}.

LapSVM
Kernel width σ was varied as in the SVM.

γL and γM were varied in steps of one decade in the range {10−4, . . . , 104}.
The graph Laplacian L was computed using 6 neighbors.

µ-SVM
Kernel width σ and C were varied as in the SVM.

Weight ν was tuned in the range {0.01, . . . , 0.99} for composite kernels.
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compared using the overall accuracy OA[%] and the kappa statistic κ as a measure of robustness

in the classification over the validation set and the test image.

8.3 Semi-supervised Cloud Screening Validation Results

In this section, we show the validation results for the set of MERIS images presented in

section 7.2.1 (four MERIS Level 1b images taken over Spain, Finland, and France) plus an image

over Tunisia (TU-2004-07-15). For our experiments, we used as the input the 6 physically-inspired

features extracted from MERIS bands normalized between zero and one: cloud brightness and

whiteness in the visible (VIS) and near-infrared (NIR) spectral ranges, along with atmospheric

oxygen and water vapor absorption features.

As mentioned above, we generated training sets consisting of ℓ = 400 labeled samples (200

samples per class), and added u = 800 unlabeled (randomly selected) samples from the analyzed

test data to the training set for the SSL methods. We focus on the ill-posed scenario and vary

the rate of labeled samples, i.e. {2, 4, 7, 14, 27, 52, 100}% of the labeled samples of the training set

were used to train the models in each experiment. In order to avoid skewed conclusions, for each

value of ℓ, the experiments are run for ten realizations using randomly selected training samples.

Then, classifiers are compared using the overall accuracy OA[%] and the estimated kappa statistic

κ in the classification of 5000 independent validation samples.

8.3.1 Single-Image Approach Results

First, we are going to analyze the classification results when following the single-image ap-

proach, i.e. each test image is classified with a model built with labeled and unlabeled samples

coming from the same test image. This procedure is aimed at comparing the different algorithms

in an ideal situation where both training and test data come from the same distribution. Hence,

one can assess which method learns best from the labeled samples, and how the semi-supervised

methods take advantage of the available unlabeled samples. In the following paragraphs, we

discuss results obtained for the single-image approach. Average results over ten realizations are

shown in Fig. 8.2. Several conclusions are obtained from these plots.

Figure 8.2(a) shows the κ statistic for the five images obtained with the standard SVM.

This plot provides us with a reference on how difficult is the classification problem or the cloud

screening problem in each MERIS image. From the results one can conclude that the classification

complexity of the images increases in the following order: Barrax (BR-2003-07-14) that presents

a bright and thick cloud in the center of the image; Barrax (BR-2004-07-14) that presents small

clouds over land and sea in the right part of the image; Tunisia (TU-2004-07-15) that presents

clouds and bright desertic areas; France (FR-2005-03-19) that presents opaque clouds at south

and north France, but also snowy mountains at various altitudes; and, finally, Finland (FI-2005-

02-26), which presents cirrus clouds over the sea and the icy coast of Finland. Therefore, we
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Figure 8.2: Average cloud classification results for the 5 MERIS sample images training the models

with labeled and unlabeled (800) samples from the image to be classified (single-image approach): κ of

the standard SVM for each image, CPU time [s], avg(κ), avg(OA), SVs[%], and weight ν of the sample-

similarity kernel of labeled samples K. Symbols correspond to the legend in Table 8.2.
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are including in the experiments both easy cloud screening problems, where few labeled samples

are enough to obtain accurate classifications, and extremely complex cloud screening scenarios,

where a reasonable number of labeled samples is required to correctly detect clouds when using

a standard supervised classifier. In the remaining plots of Fig. 8.2, the results obtained for these

five scenes are averaged in order to discover which method performs best in most of the scenarios.

Figure 8.2(b) shows the average CPU time consumed by each method during the training

phase. All experiments were carried out in a 64-bit dual-core Intel R© XeonTM CPU 2.80GHz

processor under Linux, and all methods are based on MATLAB implementations with a QP/SMO

algorithm programmed in C++ (Chang and Lin, 2001). In this plot, three groups of methods are

easily distinguished. Firstly, the best performance in terms of CPU time is obtained by the

standard SVM and the µ-SVM in X , which only require to compute the kernel matrix for the

labeled samples Kℓ×ℓ. In fact, KX
µ method is slightly faster than the SVM since it only computes

the kernel matrix over the cluster centers µk in the input space (KX
µ = 〈φ(µ1),φ(µ2)〉) and

the number of clusters c in the image is usually much lower than the number of labeled samples

ℓ. On the other hand, KX
ω = νK + (1 − ν)KX

µ is slightly slower than these methods since the

weighting parameter ν is also tuned during the training phase. Secondly, the proposed µs-SVM

classifiers in H provide an acceptable performance but are slower than previous methods since, in

order to compute the similarity between clusters in the kernel space KX
µ , they have to compute

the kernel matrix for the labeled and unlabeled samples K(ℓ+u)×(ℓ+u). However, this difference

is reduced when the number of labeled samples ℓ approaches the number of unlabeled samples

u = 5000. Again, the weighted versions of the µ-SVM (‘+’ markers) are slower than the versions

based on clusters exclusively (‘◦’ markers) because of the tuning of ν. Finally, LapSVM is around

a thousand times more demanding than SVM in terms of CPU time, and a thousand times more

demanding than µ-SVM. It can be explained because the training of LapSVM models requires

tuning more free parameters than in the SVM case, but the main problem is that a (ℓ+u)×(ℓ+u)

matrix consisting of labeled and unlabeled samples must be inverted.

Figures 8.2(c) and 8.2(d) show the average κ and OA for all the methods. The first conclusion

extracted from the curves is that the proposed µ-SVM method clearly improves the results of the

other methods. The mean kernels classifiers produce better classification results than the reference

provided by the supervised SVM in all cases (note that SVM is a particular case of the µ-SVM

for ν = 1). These results are a consequence of taking into account the distribution of image data

to define the clusters. In consequence, µ-SVM classifiers can be considered as a good trade-off

between computational cost and classification accuracy. In addition, µ-SVM classifiers working

in the kernel space provide slightly better results, supporting the idea that we can find a richer

space H for separating classes. In ill-posed situations, with a low number of labeled samples, the

performance of µ-SVM in H is reversed and µ-SVM in X provide better results. This fact can

be explained since, when working with a low number of labeled samples, v-fold cross-correlation

techniques are less efficient at tuning the kernel width σ, which actually defines the mapping to

H. Therefore, the cluster similarity KH
µ , computed only from the unlabeled samples in H, is less
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meaningful than KX
µ , computed by using the cluster centers µk obtained when applying the EM

algorithm to the whole image. We can also observe that the proposed method is not equivalent to

a simple segmentation of the image by classifying the centers of the clusters (red dash-doted line),

that is, classifying µk is not a good option but still better than purely supervised SVM (red dotted

line). This indicates that the EM clustering of the image provides a good image segmentation,

which is mainly due to the physically-inspired extracted features described in Chapter 4. Finally,

LapSVM classifiers produce worse classification results than SVM in some cases. In principle

that is not possible since SVM is a particular case of the LapSVM for γM = 0. However, we

explicitly avoid this combination by varying γL and γM in the range {10−4, . . . , 104}. These

results suggest that LapSVM assumes that considered problems hold a complex manifold, but

distribution of remote sensing data and clouds, can differ to a great extent from a manifold,

making the cluster assumption more suitable in these cases. Nevertheless, LapSVM performs

better than the standard SVM when a low number of labeled samples is available and unlabeled

samples help estimating the geometry of data.

Figure 8.2(e) shows the average percentage of support vectors (SVs) for each method, i.e. the

number of labeled training samples used as SVs in the selected models. In these experiments,

all SVM methods produce sparse models with low number of support vectors. Note that the

LapSVM is not included in the analysis since it does not produce sparse models and all the training

samples (both labeled and unlabeled) contribute to the final model. This fact makes LapSVM

computationally expensive in both the training and test phases. The trend of all methods is

coherent, since as the number of labeled samples in the training set increases, the rate of samples

(SVs) required to correctly classify decreases. The only significant difference between methods is

that, in ill-posed situations with a low number of labeled samples, the classifiers based on cluster

similarity require less SVs since the class distribution is approximated by the cluster distribution.

However, when increasing the number of labeled samples, simple spaces (such as that of SVM)

increase sparsity, but also worsens models in terms of kappa.

Finally, Fig. 8.2(f) shows the relative weight ν of the sample-similarity kernel of labeled samples

K with respect to the cluster-similarity kernel of the unlabeled samples in the selected KX
ω , KH

ω ,

and KH
ωs

models. The value of ν can be tuned by the user in the training process, but we have

selected it through cross-validation in the training set. In these experiments, the sum of Hilbert

spaces (i.e. different mapping and kernel functions) leads approximately to an average weighting

as optimal solution (ν ∼ 0.5). Intuitively, this means that both the labeled information and

the cluster information show similar importance in the classification. Hence, taking into account

the excellent classification accuracy obtained in the experiments, we can conclude that both the

labeled samples included in the training set and the clusters from unlabeled samples properly

describe the class distribution in the test image. This situation is coherent in the context of the

single-image approach followed to obtain the results presented in Fig. 8.2.
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8.3.2 Image-Fold Approach Results

Now, we analyze the classification results when following the image-fold approach, i.e. each

test image is classified according to a model built with labeled samples from the other 4 images

and unlabeled samples coming from the same test image. This procedure is aimed at testing the

robustness of the algorithm to differences between the training and test distributions.

Figure 8.3(a) shows the κ statistic for the five images obtained with the standard SVM. This

plot provides us a reference of how difficult is the classification problem in each MERIS image,

but now it also depends on how well are the labeled samples from the other images in the training

set representing the classes in the test image. Now, the order of the images depending on its clas-

sification complexity is very similar: Barrax (BR-2003-07-14), Barrax (BR-2004-07-14), Tunisia

(TU-2004-07-15), France (FR-2005-03-19), and Finland (FI-2005-02-26). Also poorer classifica-

tion accuracy is obtained in all images as expected. However, it remains almost independent of

the number of labeled samples, which indicates that, from the very beginning, labeled samples

from other images roughly describe the type of clouds in the test image, and these situations do

not improve by adding more labeled samples with the same information. Therefore, we can con-

clude that, following the proposed image-fold approach, the experiments for the five images are

affected by sample selection bias problem. In the remaining plots of Fig. 8.3, the results obtained

for these five scenes are averaged in order to discover which method performs better in most of

the scenarios.

Figure 8.3(b) shows the average CPU time consumed by each method during the training

phase. The results in this plot are almost identical to the results in Fig. 8.2, since the computa-

tional burden mainly depend on the amount and type of data, and the experiments were carried

out in the same computer.

Figures 8.3(c) and 8.3(d) show the average κ and OA for all the methods. The situation now

is completely different to the previous experiments following the single-image approach. Almost

all the methods provide moderate classification results, and all of them provide poor results in ill-

posed situations. However, a great difference can be observed between the µ-SVM classifiers based

on clusters exclusively (‘◦’ markers) and the rest. Several conclusions can be obtained from these

curves. The standard SVM is affected by the sample selection bias and this can not be solved since

it relies on the training labeled samples exclusively. When using the standard SVM to directly

classify the centers of the clusters from the EM algorithm, classification results improve since, if

the training and the test data are different, it is difficult to learn from training samples and then

unsupervised approaches can be useful. Again, the main impediment is the SVM classifier used

to label the cluster centers. The LapSVM provides moderate classification results, but generates

better classification accuracy than the SVM in all cases since it incorporates in the solution the

geometry of the unlabeled samples that come from the test image. The µ-SVM classifiers based

exclusively on cluster-based approaches KX
µ , KH

µ , and KH
µs

provide excellent results when there

are enough labeled samples to describe the class conditional distribution of the clusters (with

155



Chapter 8. Semi-supervised Cloud Screening Validation

8 15 29 56 107 207 400
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

# Labeled Samples

S
ta
n
d
a
rd
 S
V
M
 K
a
p
p
a
 s
ta
ti
s
ti
c
,κ

 

 

BARRAX  (BR-2003-07-14)

BARRAX (BR-2004-07-14)

TUNISIA (TU-2004-07-15)

FINLAND (FI-2005-02-26)

FRANCE (FR-2005-03-19)

(a)

8 15 29 56 107 207 400
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

C
P

U
 ti

m
e 

[s
]

# Labeled Samples

(b)

8 15 29 56 107 207 400
0.45

0.5

0.55

0.6

0.65

0.7

0.75

K
ap

pa
 s

ta
tis

tic
,κ

# Labeled Samples

(c)

8 15 29 56 107 207 400
72

74

76

78

80

82

84

86

88

O
ve

ra
ll 

A
cc

ur
ac

y,
 O

A
[%

]

# Labeled Samples

(d)

8 15 29 56 107 207 400
0

20

40

60

80

100

S
V

s 
[%

]

# Labeled Samples

(e)

8 15 29 56 107 207 400
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

W
ei

gh
t o

f s
am

pl
e−

si
m

ila
rit

y 
ke

rn
el

# Labeled Samples

(f)

Figure 8.3: Average cloud classification results for the 5 MERIS sample images training the models with

labeled samples from the other 4 images and 800 unlabeled samples from the image to be classified (image-

fold approach): κ of the standard SVM for each image, CPU time [s], avg(κ), avg(OA), SVs[%], and weight

ν of the sample-similarity kernel of labeled samples K. Symbols correspond to the legend in Table 8.2.
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few labeled samples a whole cluster can be misclassified). Among these three classifiers, KH
µ

produce worse results. This can be explained since the selection of the mapping function to H,

i.e. the selection of kernel free parameters, depends on the classification accuracy in the training

set. Therefore, an inappropriate training set produces an inappropriate mapping (in terms of

class separability in test). As a consequence, KH
µ is more affected by the sample selection bias

since all the unlabeled samples in the training set are used to compute the cluster similarity in

an inappropriate kernel space. On the other hand, KX
µ is more robust to the sample selection

bias because it approximates the cluster similarity to the similarities of the cluster centers µk

already defined in the input space, and thus it is less dependent on how the unlabeled samples

that represent the clusters are mapped into H. In this context, KH
µs

provides the best results and

is also more robust to the sample selection bias because it uses the soft mean map to compute

the cluster similarity in the kernel space. The soft mean map weights the contribution of each

sample to the definition of the centre of mass of each cluster in the kernel space H with the EM

estimated posterior probabilities. This is equivalent to eliminate the samples that do not properly

represent the cluster in the input space, and thus the estimation of the cluster center in H is less

influenced by the selection of an inappropriate mapping. Finally, the µ-SVM classifiers based on

composite mean kernels KX
ω , KH

ω , and KH
ωs

(black ‘+’ lines) produce significant worse results than

the cluster-based approaches Kµ. These approaches combine both sample and cluster similarities

and, intuitively, should produce better classification results than standard SVM (K) and Kµ,

which are a particular case of Kω for ν = 1 and ν = 0, respectively. Therefore, the divergence in

the results should be explained because the tuning of ν, and we have to analyze also the selected

ν value for the different experiments.

Fig. 8.3(f) shows the relative weight ν of the sample-similarity kernel of labeled samplesK with

respect to the cluster-similarity kernel Kµ. In this plot, we can observe that for a low number

of labeled samples (ℓ 6 30) the sample-similarity and cluster-similarity has the same weight

(ν = 0.5), and then the weight of the sample-similarity kernel of labeled samples K increases

exponentially with the number of labeled samples. As the number of labeled samples increases,

K becomes more important than the cluster information (the exponential value of labeled samples

in supervised classifiers is analyzed in detail by Castelli and Cover (1995)). However, the opposite

behavior is observed in the classification accuracy (Fig. 8.3(c) and 8.3(d)) that starts to decreases

when ν increases. As mentioned above, the labeled samples in the training set used to compute

K come from different images and are affected by the sample selection bias. For this reason, high

values of ν (more weight of K) produce worse values. The key point is why high values of ν are

selected during the training. The reason is that ν has been selected through v-fold cross-validation

in the labeled training samples, thus the selected model (ν, σ, and C) will be biased towards the

training samples, which produces worse results in test if the training and test distributions are

significantly different. It should be noted that the model selection in semi-supervised methods

applied to problems affected by sample selection bias is not well-solved yet. A solution would be

to select the best model by cross-validation in a labeled validation set coming from the image to
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be classified, but this is an unrealistic situation since, in this case, these data can be used in the

training. The results suggest that a trade-off is to equally weight the sample and cluster similarity

(ν = 0.5), which provides good results in standard semi-supervised scenarios (Fig. 8.2) and it is

not biased towards the training set when dealing with sample selection biased problems (Fig. 8.3).

Finally, Fig. 8.3(e) shows the average percentage of support vectors (SVs) for each method.

Again, most of the methods produce sparse models with low number of support vectors. The

only exception are the three cluster-based methods that require more SVs to correctly weight the

cluster similarities. Here we can clearly observe the trade-off between sparsity and accuracy, with

the over-sparse solutions that provide low classification accuracy and the moderately sparse (80%

over 400 samples) models that provide better classification accuracy. The high number of SVs

in cluster-based methods can be explained since in this image-fold experiment the information

(similarities) in K and Kµ are contradictory because the class distribution in training and the

cluster distribution in test do not match. Hence, a higher number of samples is needed to find a

maximum-margin hyperplane in the kernel space.

8.4 Comparison with MERIS Standard Products

Results shown in the previous section have been obtained by using the validation set (5000

labeled samples from the test image used to compare the performance of the classifiers). In this

section, a quantitative and a visual analysis of the corresponding classification maps of the test

images are carried out.

The obvious cloud reference to compare the results obtained by our algorithm is the official

MERIS L2 Cloud Flag. However, it shows clear deficiencies, as reported by the user community

elsewhere (Ramon et al., 2003; Brockmann, 2006), and by the MERIS Quality Working Group

(MERIS Quality Working Group, 2006). In section 7.3, we assessed this poor performance of

the MERIS L2 Cloud Flag when compared to the proposed user-driven cloud screening based on

clustering and spectral unmixing (cf. Chapter 5). For this reason, we illustrate the proposed semi-

supervised kernel methods in the same five scenarios presenting critical cloud screening problems,

but now we compare it to the unsupervised cloud screening results shown in section 7.3. In

addition, a further validation can be performed by comparing results with the Cloud Flag provided

by the Cloud Probability Processor of the Basic ENVISAT AATSR and MERIS (BEAM) Toolbox

(cf. section 2.4.1). With this approach we can compare our results against both an accurate

cloud screening (in which the labeling of the clusters has been carried out by an operator) and

an independent cloud screening (the BEAM Cloud Probability Processor is based on NN and

uses the reflectance values as input). It should be noted that benchmarking the proposed kernel

algorithms against a completely independent cloud screening method is relatively important in

our case since the semi-supervised kernel methods use the same extracted features and cluster

information than the unsupervised approach. In addition, the labels of the training set of the

kernel methods are obtained from the cloud abundance product of the unsupervised approach.
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Figure 8.4: Comparison of the cloud mask of kernel methods proposed in Chapter 6 against two reference

cloud flags obtained from the user-driven unsupervised method proposed in Chapter 5 (top) and the BEAM

Cloud Probability Processor Flag (bottom) for the MERIS images over Barrax (BR-2003-07-14) and France

(FR-2005-03-19). Discrepancies between methods are shown in red when proposed kernel methods detect

cloud and in yellow when pixels are classified as cloud-free.
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Figure 8.4 shows the comparison of the µs-SVM methods (both composite KH
ωs

and cluster-

based KH
µs

classifiers) against the cloud masks from the two cloud screening references. The cloud

flag of the user-driven method is computed by applying a threshold of 0.05 to the cloud abundance

product (cf. section 5.3.3), which in fact are the true labels for the trained models; and the flag of

the BEAM Cloud Processor indicates cloudy when the NN output is higher than 20%, which is the

lowest threshold recommended by the authors of the algorithm (Preusker et al., 2006). The images

selected to illustrate the results are one image over Barrax (BR-2003-07-14) and the France image

(FR-2005-03-19), which present different cloud screening problems and are differently affected

by the sample selection bias problem. In the case of the unprojected MERIS FR images, the

quarter scenes have 1153×1153 pixels (e.g. BR-2003-07-14) and the full scenes have 2241×2241

pixels (e.g. FR-2005-03-19). The selected images are classified using the best models (realization

with best validation results) trained with 400 labeled samples for both the single-image approach

and the image-fold approach (last point in the figures 8.2 and 8.3, respectively). Pixels where

compared algorithms agree are depicted in white for the cloudy pixels and in blue for the cloud

free pixels; discrepancies are shown in yellow and red. The agreement between both methods is

expressed in terms of the overall accuracy (OA) and kappa statistic (κ) for the whole image.

Classification accuracies higher than 90% are obtained for most cases, but the lower values of

κ for some cases reflect that classification results are unbalanced due to the misclassification of a

significant number pixels of one class. Note that the overall accuracy is directly interpretable as

the ratio of pixels being classified correctly, while the kappa coefficient allows for a statistical test

of the significance of the divergence between two algorithms (Congalton and Green, 1999). The

best kappa result (>0.9) for each experiment is bold faced. First, we are going to analyze the

classification on the Barrax image, which represents an easy cloud screening problem. Looking at

the comparisons with both the ‘User-driven Method’ and the ‘BEAM Cloud Processor’ references,

one can observe that the kernel methods and the user-driven unsupervised method show a good

agreement, while the BEAM product misclassifies the cloud borders (red pixels) where only our

algorithms detect cloudy pixels. When comparing the two kernel methods with the user-driven

reference, the cluster-based classifier KH
µs

provides good results even in the image-fold approach,

which means that training samples from the other images are useful to correctly classify the

clusters found in the test image. However, the composite kernel classifier KH
ωs

works properly in

the single-image approach, while results are worse for the image-fold approach, which means that

the model is biassed towards the labeled samples of the other images instead of to the cluster

structure (see explanation of Fig. 8.3(f)).

The second image is the ‘France image’, which presents opaque clouds at south and north

and also snow in the Alps, the Pyrenees, and the Massif Central. Attending to the image-fold

experiments, µs-SVM methods agree with the user-driven cloud mask, and the discrepancies

with the BEAM Processor show evidence of the errors committed by the BEAM Processor that

misclassifies all the snowy areas as clouds. In the image-fold approach, neither the cluster-based

classifierKH
µs

nor the composite kernel classifierKH
ωs

produce an accurate cloud screening. This can
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Figure 8.5: Comparison of the class conditional distributions of the brightness (fBr,VIS, right), oxygen

(fO2
, center), and water vapor (fWV, left) features for the MERIS images over Barrax (BR-2003-07-14, top)

and France (FR-2005-03-19, bottom). The class conditional distributions are obtained from the normalized

histograms of each class; and, in the case of the training distributions (red curves), the histograms of each

experiment were obtained with all the pixels from the other four images (image-fold approach).

be explained since, in the image-fold approach, no training samples from the other images model

the difference between clouds and snowy mountains, thus the classifier can not learn this difference

(as probably happens with the NN trained for BEAM). Therefore, although the proposed semi-

supervised methods benefit from the inclusion of unlabeled samples by estimating the marginal

data distribution, these methods are limited by the quality of the available labeled information

and can not alleviate situations with a dramatic sample selection bias problem.

Figure 8.5 illustrates the origin of the sample selection bias caused when the training set

is formed by samples coming from images different to the image to be classified (image-fold

approach). In this figure, the class conditional distributions (pdf) of some extracted features for

the training images and test image are displayed. Two main conclusions can be extracted from

these plots. On the one hand, the distributions of the two classes (solid-line for ‘Surface’ and

dashed line for ‘Cloudy’) in the test image (black color) are more overlapped for all the extracted

features from the France image, which confirms the higher difficulty to classify the France image

than the Barrax image. On the other hand, the ‘Surface’ and ‘Cloudy’ distributions on training

(image-fold approach, red) are much more different than the ‘Surface’ and ‘Cloudy’ distributions

on test (black), respectively, for the case of France image classification. Summarizing, the France

image is intrinsically more difficult to classify due to the class overlap, and it is more affected
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by the sample selection bias due to the lack of representativeness of the test class conditional

distribution in the training images.

8.5 Results on MERIS Temporal Series

Let us start by formally reviewing the main differences between the single-image approach and

the image-fold approach in a multitemporal classification context. In multitemporal classification,

one tries to classify the pixels of an image at the observation time tN by using the available

(instantaneous or previous) information t 6 tN . In these experiments, we follow a cascade strategy

for classification, i.e. only the previous acquired information is used to classify a given image. This

strategy differs from a strategy in which the posterior images are also used. Therefore, under the

semi-supervised learning framework, two main situations may arise, depending on the availability

of information at the classification time t = tN .

1. Labeled information is available only for t < tN . This is the most common scenario and

discourages the use of fully supervised classifiers, such as the SVM, that learn to discriminate

classes at t < tN and then are used to extrapolate their predictions at t = tN . This scenario

is simulated in the experiments by a multitemporal image-fold approach where models are

trained using both labeled samples from t1 to tN−1 images, and unlabeled samples from the

image to be classified tN .

2. Labeled information is available for t = tN . This single-image situation makes the use of

supervised classifiers, such as SVM, more appropriate, but unlabeled data still can help in

the classification when a reduced number of labeled data is available.

For the experiments, the temporal series of MERIS FR Level 1b images acquired over The

Netherlands in 2003 are used to illustrate our approach. Most of the images are the same as in

Fig. 7.5, but different dates/images are chosen since the criterion now is to select images with

both cloudy and cloud-free areas. In addition, now we are not restricting ourselves to use one

image per month in order to capture the phenological cycle of land covers. In fact, close dates

are better suited for an image-fold approach since land covers should not change. Therefore,

an uneven temporal series of 12 images is considered in the multitemporal image-fold approach:

February 18th, April 22nd, April 23rd, May 28th, May 31st, June 6th, June 16th, August 6th,

August 8th, August 9th, and August 12th. In addition, no co-registration or even projection

of the images is required, since now we are not interested in land properties and the proposed

multitemporal approach requires samples from different dates but not all the dates for a given

location. In this context, the models are trained using both labeled samples from the tN−2 and

tN−1 available images, and unlabeled samples from the image to be classified tN , i.e. 2-image-fold

approach where only the two closest previous images are used. Note that, following this approach,

only ten images will be classified since the images of 18th February and 22nd April are only used
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Figure 8.6: Average cloud classification results for 10 MERIS images over The Netherlands training the

models with labeled and unlabeled (800) samples from the image to be classified (single-image approach):

κ of the standard SVM for each image, CPU time [s], avg(κ), avg(OA), SVs[%], and weight ν of the

sample-similarity kernel of labeled samples K. Symbols correspond to the legend in Table 8.2.
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to generate the training set of 23rd April and half of the training set of 28th May. For additional

details about the experimental setup see section 8.1 and for the used kernel methods and the

model development see section 8.2.

The same procedure that in section 8.3 is followed in order to analyze the performance of the

classifiers on the temporal series of MERIS images acquired over The Netherlands. Average results

over ten realizations for different rates of labeled samples are shown in Fig. 8.6 and Fig. 8.7 for

the single-image and the image-fold approach, respectively. Several conclusions can be obtained

from these plots.

Figure 8.6(a) shows the κ statistic for the ten images obtained with the standard SVM, which

indicates that the classification complexity of the images is almost the same except for ill-posed

situations where semi-supervised methods should provide better results. In the remaining plots

of Fig. 8.6, the results obtained for the ten dates are averaged in order to discover which method

performs better in most situations. The discussion about the CPU time consumed by each method

in Fig. 8.6(b) has already been done for Fig. 8.2. The average κ and OA for all the methods are

shown in Fig. 8.6(c) and 8.6(d), respectively. The main conclusion extracted from the curves is

that the proposed µ-SVM method clearly improves the results of the other methods, especially

when the cluster similarity is computed in the kernel space H by using the mean map. In fact, the

µ-SVM classifiers follow a similar trend that the purely supervised SVM (red dotted line), which

means that the labeled information is crucial to obtain accurate results, but the cluster structure

of the test image properly adapts the classification mapping if the EM produces a good image

segmentation. In the case of the LapSVM, different behaviors can be observed depending on

the labeled samples. Only when a low number of labeled samples is available LapSVM performs

better than the standard SVM thanks to the unlabeled samples that help estimating the geometry

of data distribution. Finally, the percentage of SVs for all the methods (Fig. 8.6(e)) is almost

the same since, in the single image approach, the class distribution is well-defined by the labeled

samples in the training set and the same key samples are used in all the methods to define the

class boundary. The gain in accuracy of the semi-supervised µ-SVM classifiers is not obtained

by adding more labeled samples to the final model but taking also into account the similarities

between the clusters of the selected SVs. This can be observed in Fig. 8.6(f) that shows how the

sample-similarity K and cluster-similarity Kµ equally contribute in the best models (ν ∼ 0.5).

Figure 8.7 shows the classification results for the same images when following the multitem-

poral image-fold approach. The κ statistic for the ten images obtained with the standard SVM

(Fig. 8.7(a)) evidences the decrease in the classification accuracy, which is also much more variable,

due to the sample selection bias (i.e., in some cases, the labeled samples from the two previous

images do not represent the classes in the test image). However, the worsening of the results now

is lower than for the images of section 8.3 since the problems in contiguous images of the temporal

series are similar (land covers, location, etc.). The CPU times in Fig. 8.7(b) are almost identical

to the results in Fig. 8.2, since the computational burden mainly depends on the amount and

type of data, and the labeled samples are the same and experiments were carried out in the same
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Figure 8.7: Average cloud classification results for 10 MERIS images over The Netherlands training the

models with labeled samples from the two previous images over The Netherlands and 800 unlabeled samples

from the image to be classified (temporal image-fold approach): κ of the standard SVM for each image,

CPU time [s], avg(κ), avg(OA), SVs[%], and weight ν of the sample-similarity kernel of labeled samples

K. Symbols correspond to the legend in Table 8.2.
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computer. Figures 8.7(c) and 8.7(d) show the average κ and OA for all the methods. Again, the

situation is less dramatic than in the previous experiments of section 8.3 since the images of the

temporal series are less affected by the sample selection bias problem. For this reason, although

the mean classification accuracy is lower, the differences among methods are similar to those of

the single-image approach in Fig. 8.6. Only for the µ-SVM cluster-based classifier KX
µ a signifi-

cant lower classification accuracy is observed, which suggests that, for the image-fold approach,

the centers of the clusters of previous images µt−i
k can not properly model the clusters of the test

image and better results are obtained when computing the cluster similarity in the kernel space.

Regarding the average percentage of SVs in Fig. 8.7(e), the three cluster-based methods require

more SVs to correctly weight the cluster similarities. This result agrees with the curves found for

the previous image-fold experiments (Fig. 8.3), where the information (similitudes) in K and Kµ

are contradictory because the class distribution in training and the cluster distribution in test do

not match. Hence, a higher number of samples is needed to find the optimum classifier.

Finally, the relative weight ν of the sample-similarity kernel of labeled samples K with respect

to the cluster-similarity kernel Kµ (Fig. 8.7(f)) shows the expected behavior for the image-fold

experiments. Again, the weight of the sample-similarity kernel of labeled samples K increases

exponentially with the number of labeled samples (with more labeled samples K becomes more

important than the cluster information). Nevertheless, since in the temporal series of images

the sample selection bias problem is not so hard, ν increases slowly with the number of labeled

samples and the classification accuracy is less affected. Therefore, although the selected model

(ν) is biased towards the training samples, results in test are not so bad because the training and

test distributions are not so different.

Once the classification results over the validation set (5000 labeled samples from the test

image used to compare the performance of the classifiers) have been discussed, the classification

maps are generated for the ten test images. For the studied MERIS temporal series over The

Netherlands, only MERIS FR Level 1b products are available. Therefore, it is not possible to

compare the official L2 cloud flag with the cloud mask produced by the kernel methods. The

cloud mask provided by the BEAM Cloud Probability Processor is available but, as we have

shown in sections 7.4.2 and 8.4, this algorithm fails in some critical cloud screening problems.

In consequence, we restrict ourselves to compare the classification maps of the composite mean

kernel classifier (KH
ωs

) with the user-driven cloud screening method that provides the most accurate

ground truth (computed by applying a threshold of 0.05 to the cloud abundance product). The

images are classified using the best model (realization with best validation results) trained with

400 labeled samples for the single-image approach (last point in Fig.8.6).

Figure. 8.8 shows the RGB color images for the temporal series of MERIS images with cloud

covers over The Netherlands in 2003 together with the cloud mask provided by the proposed kernel

method based on composite and mean kernels, KH
ωs

. Note that the images are not projected in any

geo-reference system and thus the image size of all the MERIS FR scenes is 2241 × 2241 and the
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April, 23rd (κ=0.82 ; OA=97.3%) May, 28th (κ=0.90 ; OA=97.3%)

May, 31st (κ=0.80 ; OA=90.9%) June, 6th (κ=0.83 ; OA=91.9%)

June, 16th (κ=0.80 ; OA=90.7%) July, 8th (κ=0.89 ; OA=94.8%)

August, 6th (κ=0.76 ; OA=97.5%) August, 8th (κ=0.97 ; OA=98.8%)

August, 9th (κ=0.73 ; OA=93.7%) August, 12th (κ=0.78 ; OA=94.5%)

Figure 8.8: Cloud mask provided by the proposed kernel method based on composite and mean kernels,

KH
ωs

, for the temporal series of MERIS images with cloud covers over The Netherlands in 2003.
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area displayed is not exactly the same. Pixels where compared algorithms agree are depicted in

white for the cloudy pixels and in blue for the cloud free pixels; discrepancies are shown in yellow

and red. The agreement between both methods is expressed in terms of the overall accuracy

(OA) and estimated kappa statistic (κ) for the whole image. In the figure, we can appreciate the

excellent classification accuracies higher than 90% obtained for all cases. Also κ shows balanced

classification results higher than 0.7 even in the worst cases. In addition, one can observe that

the kernel methods and the user-driven unsupervised method show an excellent agreement, and

most of the discrepancies correspond to the cloud borders (red pixels) where it is really difficult

to distinguish the level of cloud contamination in the measured pixel.

8.6 On the Relative Importance of Labeled and Unlabeled Sam-

ples

In the previous sections, performance of the supervised and semi-supervised kernel methods in

different situations has been analyzed. In the experiments, we have explored the robustness of the

classifiers to the number of labeled samples available during the training process; from ill-posed

situations with only 4 labeled samples per class (ℓ = 8) up to well-posed supervised cases with 200

labeled samples per class (ℓ = 400). In addition, for the semi-supervised methods, the number of

unlabeled samples (randomly selected from the analyzed test image) used in the training of the

models is fixed to u = 800. However, in the case of semi-supervised learning, it is also interesting

to analyze the capability of the different SSL methods to exploit the information contained in

the wealth of unlabeled samples. Therefore, additional experiments have been carried-out, in

which the number of both labeled and unlabeled samples is varied independently, in order to

see how efficiently the classifiers learn from the unlabeled samples, and how much the classifier

performance improves.

Fig. 8.9 shows the κ surface of the different methods as a function of the number of labeled (ℓ)

and unlabeled (u) samples used in the training phase. Note that the variation of u is two times

the variation of ℓ since unlabeled samples can be easily obtained from the test image. Moreover,

all experiments consider a minimum number of one hundred unlabeled samples since the cluster-

based methods require a proper representation of the clusters found in the test image in order to

provide reasonable classification results (though this is not a critical requirement). The κ surface is

shown for the standard SVM, the LapSVM, and the proposed µs-SVM classifiers KH
ωs

(0 < ν < 1)

and KH
µs

(ν = 0). It is worth noting that the SVM is a fully supervised method and it is only

based on labeled samples. Therefore, the κ surface in Fig. 8.9(a) represents actually a single

curve since it is independent on the number of unlabeled samples. Results in Fig. 8.9 illustrate

only the image-fold approach since the value of unlabeled samples can be better evaluated when

labeled samples do not perfectly define the class distribution in the test image (sample selection

bias problem).
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(b) LapSVM (K(ℓ+u)×(ℓ+u))
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Figure 8.9: Average cloud classification results for the 5 MERIS sample images (BR-2003-07-14, BR-

2004-07-14, TU-2004-07-15, FR-2005-03-19, and FI-2005-02-26) training the model for each image with

labeled samples from the other 4 images and unlabeled samples from the image to be classified (image-

fold approach): Kappa statistic surface over the validation set for the SVM, LapSVM, and µs-SVM as a

function of the number of labeled (ℓ) and unlabeled (u) samples.

The κ surface for the standard SVM (Fig. 8.9(a)) provides us with a baseline of κ and shows

its dependence on the number of labeled samples. This plot illustrates how the more supervised

information is available (high ℓ), the more accurate should be the classification for all methods.

However, due to the sample selection bias problem, when ℓ is high enough, the model is biased to-

wards the labeled training samples, which produces worse results in test since the training and test

distributions are significantly different. On Fig. 8.9(b), the κ surface for the LapSVM confirms, in

general terms, the importance of the labeled information in this problem. The LapSVM benefits

from the information of unlabeled samples, since it provides better results than the standard SVM

in all cases. However, classification accuracy slightly improves with the number of unlabeled sam-

ples, which suggests a preference for the regularization of the classifier (supervised information)

than for the regularization of the geometry of the marginal data distribution (unsupervised infor-

mation). Finally, the κ surfaces obtained for both µ-SVM methods are significantly different. The

KH
ωs

classifier (Fig. 8.9(c)) is affected by the sample selection bias problem for high values of ℓ as

the standard SVM. As explained in section 8.3.2, in the image-fold experiments, the KH
ωs

model is
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also biased towards the labeled training samples since ν is selected through v-fold cross-validation

in the labeled training samples. On the other hand, KH
µs

(Fig. 8.9(d)) confirms the importance of

both labeled and unlabeled information in this problem. It uses both the labeled samples to fix

a support for the class distribution, and the unlabeled samples to characterize (parametrize) the

marginal distribution of data. The key point is that the proposed µ-SVM methods integrate the

test data distribution through the cluster distribution of the test image, which has been estimated

with the EM algorithm for GMM using the information contained in the high number of available

unlabeled pixels (or even all the image pixels) and not only with the unlabeled samples included

in the training set that the µ-SVM uses to determine cluster similarities.

The observed facts confirm the fact that semi-supervised learning methods require a much more

unlabeled samples than labeled for a noticeable gain in the classification accuracy, as suggested by

Castelli and Cover (1995, 1996) and Sinha and Belkin (2008). However, this implies an extremely

high computational cost in kernel methods. We have mitigated these problems by using the EM

algorithm as a preprocessing stage of the µ-SVM (note that the simplest and best understood

situation is when the data is described by an identifiable mixture model and each class comes

from a pure component). This approach falls in the field of cluster kernels, which are focused on

changing the representation given to a classifier by taking into account the structure described

by the unlabeled data (Szummer and Jaakkola, 2002; Zhu and Ghahramani, 2002; Chapelle et al.,

2003; Weston et al., 2005). We should note that even though the approach alleviates the problem,

there is still more room for improvement in the form of ‘learned’ kernels for specific datasets, or

by increasing the computational capabilities of kernel methods. We should stress here that novel,

fast, and linearly scalable SSL kernel methods are still required for remote sensing applications.

Recently, a great interest has been put on large scale kernel machines (Bottou et al., 2007).
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Chapter 9

Discussion and Conclusions

9.1 Summary and Conclusions

This Thesis presented a novel methodology in order to solve the challenging problem of cloud

screening in optical Earth Observation images acquired by multispectral and hyperspectral space-

borne sensors working in the visible and near-infrared range of the electromagnetic spectrum.

Sensors on board two European Space Agency environmental satellites are used in this work: the

MEdium Resolution Imaging Spectrometer (MERIS), placed on board the biggest environmen-

tal satellite ever launched (ENVISAT); and the Compact High Resolution Imaging Spectrometer

(CHRIS) hyperspectral instrument, mounted on board the technology demonstration mission

PROBA.

The proposed methodology identifies clouds in the image and produces a cloud abundance

map in order to quantify how cloud presence affects the measured spectra. The cloud screening

algorithm is based on well-founded physical features, which are intended to increase separability

between clouds and ground covers, and are extracted from the converted TOA reflectance in order

to reduce dependence on illumination and geometric acquisition conditions. A significant effort

has been done to correct and calibrate images from the selected sensors in order to ensure the

quality of data. In this respect, a novel algorithm has been proposed for the pre-processing of

push-broom hyperspectral sensors, which is especially relevant in the case of the CHRIS sensor.

The final objective has been to develope an accurate and automated set of tools for the

discrimination of clouds. For this purpose, two different approaches have been proposed depending

on whether the algorithm has to be applied on an operational basis to automatically classify

a significant number of images, or the classification process can be driven by an operator to

accurately identify even the most critical cloud screening problems. Both approaches use, as

the starting point, an unsupervised clustering method based on the extracted features in order

to adapt the cloud screening procedure to the situation of each image, mainly the atmospheric

conditions, the background, and the existing cloud types. This step allows to easily discriminate
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between cloud-free and cloudy regions, providing a cloud abundance product based on a spectral

unmixing algorithm.

In the following paragraphs, several remarks and conclusions are drawn from the different

modules and algorithms developed in this Thesis.

Image Pre-processing. The first step of the process is to correct remote sensing data in

order to obtain an accurate TOA radiance signal. Note that correcting and compensating im-

age data from uncertainties in sensor calibration makes data to be independent from the sensor

system. This requires a deep understanding of the signals provided by ENVISAT/MERIS and

PROBA/CHRIS imaging spectrometers in order to adapt the cloud screening algorithm, or even

developing completely new correction algorithms.

• The smile effect produces small variations of the spectral wavelength of each pixel in the

across-track direction that have a large impact on the oxygen absorption feature, which is

extremely narrow. Therefore we have proposed a novel feature extraction algorithm that

allows the introduction of the spectral shift on the MERIS response in our formulation.

• PROBA is a technology demonstration satellite and several noise reduction algorithms have

been developed ad-hoc since CHRIS provides minimally preprocessed data.

• A new technique has been presented in order to detect pixels presenting drop-outs and

correct them by making use of both spatial and spectral information of the drop-out pixel

and its neighbors. Although it is a ‘cosmetic’ correction, it is needed since later processing

stages are drastically affected by these anomalous pixel values.

• A new technique has been presented to reduce the coherent noise known as vertical striping,

which is usually found in hyperspectral images acquired by push-broom sensors such as

CHRIS. The main novelty of our proposal consists in reducing the vertical striping pattern

using a new algorithm robust to surface changes.

• The proposed destriping approach has proven to be robust, stable, and permitted to success-

fully model the relationship of the sensor temperature with the magnitude and distribution

of the vertical striping.

Feature Extraction. When working with remote sensing images at different times and loca-

tions, a desirable characteristic is having data independent of the image acquisition conditions.

Converting TOA radiance data into TOA reflectance has the advantage that these data are

corrected for seasonal and diurnal differences in solar position. Moreover, extracting appropriate

physically-based features increases separability between clouds and ground covers, which improves

the classification performance and allows a better understanding of the problem.
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We should note that, in addition to the brightness and whiteness radiometric properties of

clouds, one critical feature introduced in this work is the use of the atmospheric oxygen and water

vapor absorption bands to improve cloud screening results.

• The use of atmospheric absorption in the oxygen-A band to infer cloud pressure, which

is related to cloud-top height, is well-known in atmospheric studies. Here, we proposed a

formulation to extract an atmospheric feature directly related with the optical path by using

the exact pixel geometry.

• The oxygen absorption band is extremely narrow and, despite the high spectral and radio-

metric resolution of MERIS, small variations of the spectral wavelength of each pixel have

a large impact on any variable derived from the oxygen-A. As mentioned, this spectral shift

has been accounted for in order to correct the smile effect.

• In the case of CHRIS, the oxygen band is not so necessary because of CHRIS broader

bandwidths. However, some CHRIS acquisition modes present an excellent characterization

of the water vapor absorption.

• The maximum water vapor absorption (940 nm) is located outside the MERIS range but ab-

sorption at 900 nm is still valid for relative measurements inside the same image. Moreover,

snow presents higher absorption than clouds at 900 nm and this behavior can be observed

in the extracted feature.

• Results obtained by using these absorption features suggest that it would be advantageous

to see those bands included in future sensors.

• Specifically, the study has led to a qualitative list of key issues and physical features which

can potentially enhance cloud detection in remote sensing sensors working in the visible and

near-infrared spectrum: the target spectral brightness and whiteness in the VIS and the

NIR region, and the oxygen and water vapor atmospheric absorptions.

Cloud Screening. A central objective of the Thesis has been to provide new operational cloud

screening tools for the derivation of cloud location maps from the selected sensors’ data. In order

to achieve this objective, advanced pattern recognition and machine learning techniques have been

specifically developed.

• Two different cloud screening approaches have been proposed based on the assumption that

the available unlabeled samples in the remote sensing images have to be exploited.

• An unsupervised cloud screening approach based on classical pattern recognition methods

is proposed.
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• Applying unsupervised clustering methods to the whole image allows us to take advantage

of the wealth of information and the high degree of spatial and spectral correlation of the

image pixels.

• The EM algorithm applied to the extracted features has shown an excellent ability to seg-

ment the image pixels allowing to easily discriminate between cloudy and cloud-free regions.

• A specific procedure has been defined to label the found clusters in order to assist an operator

to identify even the most critical cloud screening problems in regional and case studies.

• Advanced semi-supervised learning methods are explored since they offer the opportunity

of exploiting available labeled samples and the wealth of unlabeled samples. In this case,

some supervised information is available and is used together with the unlabeled samples

of the analyzed image to develop a classifier that provides the class of each pixel but taking

also into account the image data distribution. Since class distribution is partially fixed by

a training set, this method can be automatically applied to a large number of scenes in an

operational mode.

• A novel family of kernel methods based on the composite and mean kernels is proposed and

benchmarked to the standard SVM, which is used as a reference for supervised methods,

and the Laplacian SVM, which is used as a reference for semi-supervised methods.

• The proposed mean-map SVM (µ-SVM) combines both the sample similarity, computed

from the labeled samples in the training set, and the cluster similarity, computed from the

unlabeled samples of the test image in the kernel space through composite kernels.

• With this approach, the class distribution of typically low number of labeled samples is

adapted to the data distribution in the analyzed image estimated from the unlabeled samples.

As a consequence, the proposed approach is more robust to the sample selection bias, which

is a common statistical problem in real Earth Observation applications.

Cloud Abundance. One of the key requirements imposed to the proposed cloud screening

methodology was to provide information about the contribution of clouds to the spectra of image

pixels (for both transparent clouds or subpixel coverage situations). Therefore, an important

aspect of the proposed cloud screening methodology is that it provides a cloud abundance product.

• The cloud abundance product provides maps with the level of cloud contamination on a per

pixel basis instead of a binary classification.

• The cloud product map is obtained combining the cloud abundance, computed with a spec-

tral unmixing algorithm, and the cloud probability, obtained from the clustering algorithm,

by means of a pixel-by-pixel multiplication.
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• The proposed approach combines two complementary sources of information processed by

independent methods: the degree of cloud abundance or mixing (obtained from the spectra)

and the cloud probability that is close to one in the cloud-like pixels and close to zero in

remaining areas (obtained from the extracted features).

• The cloud abundance product can be used to better describe detected clouds (subpixel

coverage, transparency, cloud type) and to generate cloud masks with different restrictive

levels depending on the application.

Validation Approaches. The validation of cloud detection algorithms is not an easy task

because there is no independent measurement with the same spatial resolution. For this reason,

a significant effort has been required to validate results by using different techniques.

• The simplest approach consisted in validating the resulting products by visual inspection,

comparing the final cloud mask and abundance with a false color composite of the images.

• In the case of MERIS, we also compared results with the official MERIS Level 2 Cloud

Flag, comparing the cloud flag against the cloud mask produced by the presented method

in terms of classification accuracy.

• A multitemporal validation approach has been proposed to test the performance of the cloud

screening. Pairs of cloud-free and cloud-covered images over the same area have been used

to detect cloud-pixels by identifying pixels with spectral changes between both dates.

• The advantages provided by an accurate cloud screening have also been shown for a sub-

pixel land cover mapping application. In particular, the unmixing of MERIS FR time series

have been shown to outperform the unmixing of single dates.

• We have also validated the abundance product against the cloud probability provided by the

Cloud Probability Processor implemented in the BEAM Toolbox, which is the most similar

cloud product available for MERIS data.

• In the case of the semi-supervised approach, more classical classification results (κ and

OA[%] for all the methods) have been provided by using true labels and true maps to train

and validate the classifiers.

• The proposed kernel methods have been benchmarked in two different conditions: first when

few labeled training samples are available for characterizing the image to be classified; and

second when no labeled training samples are available for the test image to be classified. In

the later case, an image-fold experimental setup has been proposed in order to induce and

analyze the so-called sample selection bias problem.
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Results and Recommendations. Following these validation approaches, a series of experi-

ments has been carried out to obtain a comprehensive collection of results. A wide database of

images has been included in the study in order to take into account the different peculiarities of

the problem (geographic location, date and season, type of cloud, and type of surface) for both

sensors.

• Results have demonstrated that the proposed user-driven algorithm accurately classifies

difficult cloud-pixels, especially thin cirrus clouds and clouds over ice/snow.

• Clear deficiencies have been observed in the MERIS L2 Cloud Flag over bright covers, such

as bare soils, ice, and snow, which are classified as clouds; and more accurate results have

been obtained by the presented method in thin transparent clouds and cloud borders, which

are misclassified by the official ESA product.

• The algorithm has also been validated against a cloud mask obtained with a temporal change

detection approach and, despite the fact that the proposed method only uses the information

of the ‘cloudy image’, results show that our method offers a better discrimination of thin

clouds and cloud borders. This accurate cloud screening algorithm enables a more efficient

use of MERIS images and temporal series.

• The histograms of the proposed cloud abundance product show a smooth distribution, which

differs to a great extent from the output of the cloud probabilistic NN implemented in BEAM

toolbox that is concentrated around one, and thus provides a more useful information.

• The mean kernel classifiers produce better classification results than the reference provided

by the supervised SVM and the semi-supervised LapSVM in all cases. Note that SVM is a

particular case of the µ-SVM, which also takes into account the distribution of image data

in order to define the clusters.

• Due to its relatively low CPU time consumed, the µ-SVM classifiers have a good trade-off

between computational cost and classification accuracy.

• In addition, µ-SVM classifiers working in the kernel space provide slightly better results,

supporting the idea that we can find a richer space H for separating classes.

• In ill-posed situations, with a low number of labeled samples, the wealth of unlabeled samples

helps to improve the performance of µ-SVM and to provide better results.

• The proposed µ-SVM method based exclusively on the cluster similarity is not equivalent to

a simple segmentation of the image by classifying the centers of the clusters with a purely

supervised SVM. We observed that its performance depends on the quality of the image

segmentation provided by the EM clustering.
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• In the case of the image-fold experiments, the standard SVM is drastically affected by the

sample selection bias since it relies exclusively on labeled samples that do not represent the

classes in the test image.

• A common problem for all the kernel methods is that the selection of kernel free parameters

depends on the training set and thus it is drastically affected by the sample selection bias

problem.

• The µ-SVM classifiers based exclusively on cluster-based approaches KX
µ , KH

µ , and KH
µs

provide excellent results in the image-fold experiments. However, a sufficient number of

labeled samples is required to describe the class conditional distribution of the clusters

(with fewer labeled samples a whole cluster might be misclassified).

• The soft mean map is more robust to the sample selection bias because it weights the

contribution of each sample to the definition of the centre of mass of each cluster in the

kernel space H with the posterior probabilities. This is equivalent to eliminate the samples

that do not properly represent the cluster in the input space, and thus the estimation of the

cluster center in H is less affected by the selection of an inappropriate mapping.

• Results also suggest that a compromise solution in composite µ-SVM classifiers is to equally

weight the sample and cluster similarity, which provides good results in standard semi-

supervised scenarios, and it is not biased towards the training set when dealing with sample

selection biased problems.

• Finally, results show a trade-off between model sparsity (number of SVs) and classification

accuracy. Over-sparsified solutions provide low classification accuracy while the moderately

sparse models provide better classification accuracy. Especially in image-fold experiments,

a higher number of samples is needed since the information of class distribution in training

and the cluster distribution in test do not match or are even contradictory.

• The main limitation of the proposed semi-supervised methods is that, although they benefit

from the inclusion of unlabeled samples by estimating the marginal data distribution, the

available labeled information cannot alleviate situations with a dramatic sample selection

bias problem, such as in the shown cases of France or Finland images where ice and snow

covers are not well-represented in the training set.

• In the case of temporal series of images, the sample selection bias problem is not that hard,

and results in test are acceptable because the training and test distributions do not differ

significantly.

Summarizing, a full principled cloud screening methodology has been proposed. The method-

ology is versatile and consists of an arrangement of different purpose-designed modules, which

have been formulated in terms of operational algorithms that cover the essential requirements
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for the cloud screening process. These modules can be updated to more advanced algorithms or

modified to adapt to the characteristics of other sensors. Consequently, this procedure can serve

to develop a cloud screening algorithm for other imaging spectrometers working in the VNIR spec-

tral range with proper spectral characterization of the atmospheric absorptions, such as NASA’s

EO1/Hyperion, the future GMES/Sentinel-3 and EnMAP Earth observation missions, and the

FLEX ESA Earth explorer proposal. In fact, an important outcome of this Thesis consists in

a series of guidelines and recommendations provided for MERIS and CHRIS instruments, which

may be useful for developing further missions and satellite sensors. Specifically, the study has

led to a qualitative list of key issues and physical features which can potentially enhance cloud

detection in remote sensing sensors working in the visible and near-infrared spectrum.

9.2 Further Work

The list of objectives proposed at the beginning of this Thesis has been completely fulfilled.

However, the presented methodology for cloud screening opens many future directions of research

due to its natural modularity. In this respect, our next steps are tied to the inclusion of further

refinements addressed to enhance its robustness. For instance, the inclusion of dynamic thresholds

might be useful to find the regions to analyze, while the inclusion of contextual and textural in-

formation might enhance the clustering module. Some other directions will consider the inclusion

of sun position to relate cloud and shadow positions.

An important remark is that the methodology has been implemented to use self-contained

information provided with MERIS or CHRIS level 1 products. This pre-requisite is one of the

advantages of the proposed methods. However, in the experiments, we have discovered some dif-

ficulties of the automatic classifiers to distinguish bright surface covers at different altitudes from

clouds, such as snowy mountains and ice at high latitudes. These problems cannot be completely

solved with the information contained in the spectral range covered by MERIS and CHRIS, but

sensors with narrower spectral channels beyond 1 µm have demonstrated good capabilities to

detect clouds because of the magnitude of the water vapor absorption. For this reason, our new

lines of research are tied to the synergistic use of complementary data coming from different

sensors. For example, the presence of channels in the thermal infrared range enables detection

based on thermal contrasts. Currently, we are defining and will implement a cloud screening

scheme combining information from both AATSR and MERIS instruments on board ENVISAT.

The simultaneous acquisition and similar spatial resolution allows the synergy of MERIS and

AATSR. The inclusion of the AATSR SWIR band at 1.6 µm in the cloud screening scheme is

of paramount importance (McIntire and Simpson, 2002). Also the presence of channels in the

thermal infrared range (TIR) provided by AATSR in nadir and forward views enables cloud de-

tection based on thermal contrast (Simpson and Gobat, 1996; Papin et al., 2002), and based on

the spatial variability over oceans (Martins et al., 2002).

Furthermore, in the spectral range of 1.38-1.50 µm, both thin cirrus clouds and lower-level
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cumulus clouds can be seen, but the surface features are eliminated due to additional absorption of

solar radiation by atmospheric water vapor between clouds and the surface cover (even in presence

of ice or snow). New generation EO satellites, such as the Global Monitoring for Environment

and Security (GMES) Sentinel 2 and 3 (European Space Agency, 2007), include dedicated bands

specifically defined to perform an accurate cloud screening. Currently, we are also analyzing the

benefits of including the so-called cirrus band (1.38 µm) in the cloud screening scheme in the

frame of the preparatory studies for the FLEX Earth explorer proposal (Moreno, 2006).

Finally, it is worth noting that, although the proposed techniques have been developed with

remote sensing applications in mind, some algorithms and breakthroughs can be applied to other

fields related to data clustering and classification.

9.3 Achievements and Relevance

Applicability of the developed methodology is crucial for a successful outcome. In this sense,

we should stress here the following achievements.

Cloud screening constitutes itself both a research and technical opportunity, which has led

to important publications in the field, and attracted the interest of the international scientific

community. Several publications cover the most relevant issues of this Thesis:

• The preprocessing of EO data from multispectral and hyperspectral sensors has led to

different algorithms for noise reduction in (Gómez-Chova et al., 2006a; Gómez-Chova et al.,

2008) and atmospheric correction in (Guanter et al., 2006a, 2007, 2008a).

• The presented method was tested in (Gómez-Chova et al., 2005b, 2006c, 2005a) on CHRIS

Mode 1 hyperspectral images in order to propose and validate cloud detection methodologies

in favorable spatial resolution (34 m) and number of bands (62 channels).

• Preliminary test of MERIS cloud screening was carried out in (Gómez-Chova et al., 2005c,

2006d, 2007a) by testing critical situations in cloud detection (e.g. ice/snow covers).

• Temporal series have been employed for cloud screening in (Gómez-Chova et al., 2006f,

2007c), subpixel classification through unmixing techniques in (Zurita-Milla et al., 2007),

and classification of remote sensing data in (Camps-Valls et al., 2006b, 2008a).

• Theoretical background of the advanced kernel methods used in this Thesis is based on the

carried out work in (Camps-Valls et al., 2004a, 2006d, 2008a).

• The performance of semi-supervised techniques such as the LapSVM and mean kernels

has been analyzed in (Gómez-Chova et al., 2007b, 2008c) and (Gómez-Chova et al., 2008a),

respectively.
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The knowledge acquired about this multi-disciplinary field of research has led to the publica-

tion of three chapters in international books:

• Hyperspectral Image Classification with Kernels in “Kernel Methods in Bioengineering, Sig-

nal and Image Processing” Idea Group Publishing (Bruzzone et al., 2007).

• Kernel Machines in Remote Sensing Image Classification in “Intelligent Systems: Tech-

niques and Applications” Shaker Publishing (Camps-Valls et al., 2008c).

• Kernel Mean for Semi-supervised Remote Sensing Data Classification in “Kernel methods

for Remote Sensing Data Analysis” Wiley & Sons (Gómez-Chova et al., 2009).

Finally, the present Thesis is devoted to developing scientific as well as technical innovative

tools. As a consequence, the Thesis is also framed in three different European Space Agency (ESA)

contracts:

• Development of CHRIS/PROBA modules for the BEAM toolbox (ESRIN Contract No.

20442/07/I-LG). Currently, the method presented for the PROBA/CHRIS instrument is

being implemented in ESA BEAM software as a part of a toolbox for the pre-processing of

CHRIS/PROBA data. Particularly, the methods presented in section 4.1.2 and chapter 5

are being implemented as two different BEAM modules in the Work Packages “2.3 Noise Re-

duction Definition” and “2.4 Cloud Masking Definition” of the project, which are managed

by the author of this Thesis. The decision of ESA to implement the proposed algorithms

derived from this work for real application in the Basic ENVISAT Toolbox for (A)ATSR

and MERIS (BEAM toolbox1) is definitely a significant achievement and also demonstrates

the interest and applicability of the pursued work.

• Atmospheric Corrections for Fluorescence Signal Retrieval (ESTEC Contract No. 20882/07/

NL/LvH). The gained knowledge about cloud screening of hyperspectral images during the

work carried out in this Thesis is being applied in this project (Guanter et al., 2008b) to

define and implement a cloud screening scheme for the FLEX candidate mission. Cloudy

pixels must be masked for fluorescence studies (Gómez-Chova et al., 2006b; Guanter et al.,

2007; Guanter et al., 2007), as they may contaminate the retrieval of the fluorescence signal

to be investigated. In the WP “3.1 Cloud screening method”, which is managed by the

author of this Thesis, a method for the derivation of probabilistic cloud masks will be

developed, and the expected improvements associated to the SWIR imager to be installed

onboard FLEX platform will be estimated for descoping purposes.

• MERIS/AATSR Synergy Algorithms for Cloud Screening, Aerosol Retrieval, and Atmo-

spheric Correction (ESRIN Contract No. 21090/07/I-LG). The extension of the work of

this Thesis for the MERIS instrument is being investigated in the frame of this project

1http://www.brockmann-consult.de/beam/
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(North et al., 2008). The cloud screening method proposed in this project exploits the com-

bined information of both AATSR and MERIS features in order to improve current cloud

masking products of both sensors (Gómez-Chova et al., 2008b). The author of this Thesis

is the principal investigator of this project at the University of Valencia and is responsible

for the definition of a novel MERIS/AATSR synergy algorithm for cloud screening (WP

2.1) and all the related cloud issues. In addition, he participates in the MERIS and AATSR

Cloud Screening Working Group, which was established by ESA in order to combine forces

and use existing know-how to develop novel cloud screening approaches.
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SMARTSPECTRA Smart Multispectral System for Commercial Applications.

“Multispectral systems with an affordable cost and proven robustness are needed in order

to achieve a broad use of multispectral techniques in several commercial areas and appli-

cations. These sensors must have the capability to be integrated in currently established

production systems. Moreover, they have to be flexible enough to be applicable a wide range

of applications.”

In this project, a Smart Multispectral System was designed and implemented, developing

different electronic and processing techniques to achieve a system with the above mentioned

features (Vila et al., 2005). This provided us an excellent opportunity to apprehend the

physics and electronics fundamentals of the different imaging spectrometer systems.

Project funded by IST, European Union (2002-2005)

IST-2001-37306

http://www.smartspectra.com/

ESA CATEGORY-1 Development of an Expert Classification System for Urban Mon-

itoring at Regional Scale Based on ASAR and MERIS data.

“The objective of this project is twofold: on the one hand, to explore the capabilities of

ENVISAT ASAR and MERIS data to map urban area at European scale; on the other
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hand, and based on the results derived from the previous analysis, an expert classification

system was prototyped being able to map urban areas over Europe on a regular basis.”

In this project, the operation modes, image acquisition, and data products of ASAR syn-

thetic aperture radar and the MERIS multispectral imaging spectrometer were investigated

in depth (Gómez-Chova et al., 2005d, 2006e). The author of this Thesis was the princi-

pal researcher of this project, which was carried out in the context of an ESA internship

programme at the ESA-ESRIN research center.

Project funded by the European Space Agency (2003-2004)

ESA CAT-1 ID2489

http://eopi.esa.int/

SPARC Technical assistance for CHRIS/PROBA measurements during Spectra bAR-

rax Campaign (SPARC).

“The SPARC field campaign is the frame for several activities, planned over Barrax (Spain)

the summer of 2004, originated from the combination of a number of initially not connected

initiatives: Field activities of the EU projects DEMETER, EAGLE and SMARTSPEC-

TRA; MERIS/ASAR synergy studies within an ENVISAT AO project; MERIS validation

activities within the framework of another ESA project; CHRIS/PROBA acquisitions and

data analysis; MSG/SEVIRI validation activities under funding by EUMETSAT LSA SAF;

Barrax as an additional site for VALERI activities; Background activities for vegetation

fluorescence modelling and validation studies; Background activities for SPECTRA studies;

and other national projects.”

This project represents the starting point for the research of this Thesis related to the

CHRIS/PROBA signal acquisition, data calibration, and image correction, which lead to

the development of a set of tools for processing CHRIS images (Gómez-Chova et al., 2008).

Project funded by the European Space Agency (2003-2005)

RFQ/3-10824/03/NL/FF

http://gpds.uv.es/sparc/

HYPERTEL Contribution to the design of future Earth Observation ESA missions

with optimal use of new hyperspectral sensors.

“This project aims to contribute to the development of theoretical models for hyperspec-

tral data interpretation, and to the implementation of multiangular geometric registration

methods and athmospheric corrections, compression techniques, automatic classification and

other elements in the Ground Segment of the SPECTRA mission. In addition, some as-

pects of design and enhancement of the acquisition tools will be developed. On one hand,

the aim is to introduce computing elements in the sensor that carry out common image
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corrections. At this stage, we will use the technology developed under the European project

entitled “SmartSpectra” for the acquisition of remote sensed imagery. On the other hand, a

complementary goal is the analysis and modeling of directional effects over the estimation

of the Earth surface temperature at a global scale (from data supplied by on-board sensors,

such as AATSR in ENVISAT, and SEVIRI in 2nd Generation Meteosat), but also at a local

scale (from foreseen multiangular sensors in future ESA missions; e.g. SPECTRA).”

This project aimed at the incorporation of Spanish research teams to the start-up design

stages of the future European Space Agency (ESA) missions. It allowed us to play an

important role in the context of the preliminary hyperspectral and multi-angular future

missions, or in the experimentation stage of current missions such as PROBA.

Project funded by the Spanish Ministry of Education and Science CICYT (2005)

ESP2004-06255-C05-02

HYPERCLASS Advanced Methods for Hyperspectral Image Classification.

“This project deals with the consolidation of knowledge and the state of the art in processing

hyperspectral imaging, as well as proposing innovative remote sensing techniques. The study

will take place through the research and development of techniques based on kernel methods

and their implementation in a set of routines integrated in an hyperspectral image processing

environment.”

This project allowed establishing the theoretical basis and investigate the experimental

performance of the supervised kernel methodologies used in this Thesis such as the support

vector machines with composite kernels (Camps-Valls et al., 2004a, 2006d, 2008a).

Project funded by the Generalitat Valenciana, Grups Emergents (2005-2006)

GVA/11/2005

SEN2FLEX SENtinel-2 and FLuorescence EXperiment Campaign (SEN2FLEX).

“The SENtinel-2 and FLuorescence EXperiment (SEN2FLEX) is a campaign that combines

different activities in support of initiatives related both to fluorescence experiments (AIR-

FLEX) for observation of solar induced fluorescence signal over multiple surface targets

and to GMES Sentinel-2 initiative for prototyping of spectral bands, spectral widths, and

spatial/temporal resolutions to meet mission requirements. Both initiatives require simul-

taneous airborne hyperspectral and ground measurements for interpretation of fluorescence

signal levels (AIRFLEX), and simulation of an optical observing system capable to assess

geo- and bio-physical variables and to classify target surfaces by spectral, spatial and temporal

distinction (Sentinel-2).”

One of the aims of this project was the analysis of fluorescence signal retrieval (Alonso et al.,

2008; Amorós-López et al., 2008a) from satellite remote sensing data in the frame of the
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preparatory studies for the FLEX mission. This study has revealed that undetected clouds

have a negative impact in the retrieval of vegetation fluorescence (Guanter et al., 2007),

and have favored the assignment of several ESA projects in order to investigate the develop-

ment of cloud screening methods to be applied to imaging spectrometers with high spectral

resolution (Guanter et al., 2008b).

Project funded by the European Space Agency (2005-2006)

19187/05/I-EC, 17628/03/NL/CB, and 17336/03/NL/CB

http://www.uv.es/leo/sen2flex/

AC.INT. ES–IT Classification of hyperspectral remote sensing images based on semi-

supervised kernel methods.

“Earth observation is a crucial aspect in today’s life. Nowadays, satellites offer many pos-

sibilities for the analysis of the Earth surface, such as the analysis of climate changes,

urbanization, fire detection, coastal monitoring, water quality assessment, observation and

detection of crop fields, detection of contaminants and pollution elements, temperature maps,

etc. Despite the good capabilities of multispectral sensors (those with a reduced number of

spectral channels or bands) to address these problems, in the last years the development of

hyperspectral sensors has offered improved performance for the detection and classification

of the Earth land-cover classes. The information contained in hyperspectral images allows

the characterization, identification, and classification of the land-covers with improved accu-

racy and robustness. However, several critical problems should be considered in classification

of hyperspectral data, among which: (i) the high number of spectral channels, (ii) the spa-

tial variability of the spectral signature, (iii) the high cost of true sample labeling, and (iv)

the quality of data. In particular, the high number of spectral channels and low number of

labeled training samples pose the problem of the curse of dimensionality, (i.e. the Hughes

phenomenon) and, as a consequence, result in the risk of overfitting the training data. These

problems have been recently alleviated by the introduction of kernel classifiers. However, fur-

ther improvement in the classification accuracy could be achieved by taking into account the

information provided by the high number of unlabeled samples in the image. Recent years

have seen considerable attention on semi-supervised learning, which differs from traditional

supervised learning by making use of unlabeled data.”

The main objective and motivation guiding this project was to extend the use of kernel

methods to the semi-supervised classification framework. Most of the new semi-supervised

kernel methods proposed in this Thesis have been developed in the frame of this project,

such as the Laplacian support vector machines (Gómez-Chova et al., 2008c) and the mean

kernels (Gómez-Chova et al., 2008a).

Project funded by the Spanish Ministry of Education and Science (2005-2007)

Acción integrada España–Italia: MEC/HI2005-0228
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DATASAT Development of an Integrated Processing System for Earth Observation

Data, Applicable to Design of Future Hyperspectral ESA Missions.

“One of the main current problems in Earth Observation satellite data exploitation is the

development of appropriate algorithms for data interpretation and information extraction,

as well as the optimization of such algorithms to allow a proper storage, indexing, processing

and distribution of remote sensing data and products to the final user. At the same time,

this optimization of advanced algorithms would have an impact on a better design of future

sensors and Earth Observation systems to make more easy and efficient its data usage. This

project intends to use the SPARC database (ESA campaigns for the simulation of future

missions) to develop and validate new algorithms for the processing of remote sensing data,

and to implement these algorithms in the processing chain of ENVISAT/MERIS-AATSR,

CHRIS/PROBA, APEX, ARES, AHS, AIRFLEX and future missions in preparation such

as FLEX (always in the context of systems with high spectral resolution).”

The aim was to contribute to the development of theoretical models for hyperspectral data

interpretation, and to the implementation of geometric registration methods, cloud screen-

ing and atmospheric corrections, band selection techniques, automatic classification, esti-

mation of biophysical parameters, among others. All such algorithms, including the ones of

this Thesis, were validated thanks to the access to the SPARC data previously mentioned

(Gómez-Chova et al., 2007a). The activities proposed in this project were under the scope

and framework of on-going ESA projects, with guaranteed access to data and resources

needed from ESA for such activities.

Project funded by the Spanish Ministry of Education and Science CICYT (2005-2008)

ESP2005-07724-C05-03

http://www.vision.uji.es/datasat
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Appendix A

Acronyms

AATSR Advanced Along Track Scanning Radiometer

AERONET AErosol RObotic NETwork

AIC Akaike’s Information Criterion

AOT Aerosol Optical Thickness

ATGP Automated Target Generation Process

ATLAS ATmospheric Laboratory for Applications and Science mission

AVHRR Advanced Very High Resolution Radiometer

AVIRIS Airborne Visible/Infrared Imaging Spectrometer

BEAM Basic ERS & ENVISAT (A)ATSR and MERIS

BRDF Bidirectional Reflectance Distribution Function

CCD Charge Coupled Device

CHRIS Compact High Resolution Imaging Spectrometer

COT Cloud Optical Thickness

CTP Cloud Top Pressure

DB Davies-Bouldin index

DEM Digital Elevation Model

DN Digital Number

DOY Day Of Year



Appendix A. Acronyms

ECMWF European Center for Medium range Weather Forecasting

EM Expectation–Maximization

EMR ElectroMagnetic Radiation

EnMAP Environmental Mapping and Analysis Program

ENVISAT ENVIronmental SATellite

EO Earth Observation

ERM Empirical Risk Minimization

ERS European Remote Sensing satellite

ESA European Space Agency

EURECA EUropean Retrieval CArrier mission

FCLSU Fully Constrained Linear Spectral Unmixing

FLEX FLuorescence EXperiment

FOV Field Of View

FR Full Resolution

FWHM Full Width at Half Maximum

GETASSE30 Global Earth Topography And Sea Surface Elevation at 30 arc second resolution

GMES Global Monitoring for Environment and Security

GMM Gaussian Mixture Model

HDF Hierarchical Data Format

IR InfraRed

ISCCP International Satellite Cloud Climatology Project

LapSVM Laplacian Support Vector Machine

LCC Land Cover Classification

LCA Land Cover Abundances

LPF Low Pass Filter

LSU Linear Spectral Unmixing
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LUT Look-Up Table

MAP Maximum A Posteriori Probability

MDL Minimum Description Length criterion

MERIS MEdium Resolution Imaging Spectrometer

MERIS FR MERIS Full Resolution (300m)

MERIS RR MERIS Reduced Resolution (1200m)

MLC Maximum Likelihood Classifier

MIR Middle-InfraRed

MODIS Moderate Resolution Imaging Spectroradiometer

MODTRAN MODerate Resolution TRANsmittance

MOMO Matrix Operator Model

NASA National Aeronautics and Space Administration

NDVI Normalize Difference Vegetation Index

NIR Near InfraRed

NDOI Normalized Difference at Oxygen-A absorption Index

NN Neural Network

OA Overall Accuracy

ODH Optimal Decision Hyperplane

OLCI Ocean and Land Colour Instrument

pdf Probability Density Function

POLDER POLarization and Directionality of the Earth’s Reflectances

PROBA PRoject for On-Board Autonomy

RBF Radial Basis Function

RGB Red-Green-Blue

RKHS Reproducing Kernel in Hilbert Space

ROI Region Of Interest
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RR Reduced Resolution

RT Radiative Transfer

RTM Radiative Transfer Model

RMSE Root Mean Square Error

SAA Sun Azimuth Angle

SAD Spectral Angle Distance

SLST Sea and Land Surface Temperature

SNR Signal-to-Noise Ratio

SOLSPEC SOLar SPECtrum spectrometer

SOSP SOlar SPectrum spectrometer

SPARC SPectra bARrax Campaign

SPECTRA Surface Processes and Ecosystem Changes Through Response Analysis

SRF Spectral Response Function

SRM Structural Risk Minimization

SSL Semi-Supervised Learning

SV Support Vector

SVM Support Vector Machine

SWIR ShortWave InfraRed

SZA Sun Zenith Angle

TM Thematic Mapper

TIR Thermal InfraRed

TOA Top Of Atmosphere

TOC Top Of Canopy

TSVM Transductive Support Vector Machine

VIS VISible

VISAT VISualisation and Analysis Tool
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VNIR Visible and Near InfraRed

VS Vertical Striping

VZA View Zenith Angle

WV Water Vapor
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Appendix B

List of Notational Symbols

Symbols Introduced in Chapter 1

λ wavelength ν frequency

c speed of light ~ Planck’s constant

F0 solar constant F0(λ) solar spectral irradiance

B(λ, T ) Planck’s distribution kB Boltzmann’s constant

Φ radiant power I radiant intensity

A area ω solid angle

F irradiance L radiance

θ zenith angle ψ azimuth

µ cos(θ) 1/µ optical mass

βe volume extinction coefficient τ optical thickness or depth

log natural logarithm e base of the natural log

T transmittance ρ reflectance

y surface along-track dimension x surface across-track dimension

l image-lines dimension p line-pixels dimension

Nl number of image lines Np number of pixels per line

b image-bands dimension Nb number of spectral bands

H(x, λ) optical system response S(p, b) CCD sensitivity

I(l, p, b) image values a(p, b) calibration coefficients

Symbols Introduced in Chapter 4

ν(p, b) vertical striping factors α(p, b) integrated line profile

f profile frequency A profile amplitude

D spectral distance R spatial filter response

λb channel mid-wavelength Λb channel bandwidth



Appendix B. List of Notational Symbols

Symbols Introduced in Chapter 5

R real numbers N natural numbers

x input feature vector X input feature space

x⊤, X⊤ transpose of a vector/matrix ‖x‖ squared norm

n number of samples d number of input features

i sample index k cluster index

ωk cluster k c number of clusters

µk mean feature vector Σk covariance matrix

p(x|Θ) probability density function Θ vector of parameters

p(x|ωk,Θ) conditional pdf P (ωk) or πk prior probability

L log likelihood Nd(µk,Σk) d-variate Gaussian

P (ωk|xi,Θ) posterior probability hik posterior or membership

C cloud C cloud-free

hiC cloud probability hi optimal cluster label

ai vector of abundance fractions mq endmember

q endmember index Q number of endmembers

aiC cloud abundance ϑi cloud product

Symbols Introduced in Chapter 6

x ∈ X input and input space y ∈ Y output and output space

f(x) real-valued function F class of real-valued functions

Remp(f) empirical risk V (f(x), y) cost function

H Hilbert space φ, ϕ mapping functions to H
w weight vector b bias

ξ slack variables C regularization parameter

Ld Lagrangian dual problem α Lagrange multipliers

〈x, z〉 inner product of x and z K(x, z) kernel 〈φ(x),φ(z)〉
ℓ labeled training samples u unlabeled training samples

γL, γM regularization parameters β, η Lagrange multipliers

K kernel matrix L graph Laplacian

S subset of training set Φ(S) S in kernel space

φµ(S) mean of S in kernel space φµ mean map

KX
µ mean kernel in X KH

µ mean kernel in H
KH

µs
smooth mean kernel in H Kω weighted kernel

σ Gaussian width κ kappa statistic
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Resumen

Esta Tesis aborda el problema de la detección de nubes en imágenes multiespectrales adquiri-

das desde satélites por instrumentos que trabajan en el rango visible e infrarrojo del espectro

electromagnético.

Los sistemas de observación de la Tierra observan nuestro planeta midiendo en diferentes

longitudes de onda la radiación electromagnética reflejada por la superficie que cruza la atmósfera

hasta el satélite. La cantidad de imágenes adquiridas todos los d́ıas por los instrumentos a bordo

de los satélites de observación de la Tierra hace inevitable que muchas de estas imágenes estén

cubiertas de nubes. Se estima que más de 60% del globo está cubierto por nubes. De hecho,

las nubes son uno de los componentes más importantes de la atmósfera de la Tierra y que más

afecta a la calidad de la señal electromagnética medida y, por tanto, también a las propiedades

derivadas de ella. Desde el punto de vista operativo, las nubes son la fuente más significativa

de error para la obtención de la reflectividad de la superficie y afectan a una amplia gama de

aplicaciones en teledeteción. Enmascarando en las imágenes las zonas afectadas por nubes, no es

necesario descartar toda la imagen. Por otro lado, la observación de las nubes a escala mundial

es un requisito fundamental para establecer un modelo adecuado del clima de la Tierra. Por

tanto, las nubes se pueden ver como una fuente de error que hace que la imagen adquirida solo

sirva parcialmente para obtener propiedades de la cubierta terrestre, pero también como una

fuente de información que permite medir importantes parámetros climatológicos. En ambos casos

es imprescindible disponer de un método que permita enmascarar de forma precisa las nubes

presentes en las imágenes de sensores ópticos de teledetección. Como resultado, la detección

de nubes representa una importante tarea en el preprocesado de cualquier imagen óptica de

teledetección con el fin de garantizar una máxima precisión y fiabilidad en los resultados inferidos

de la explotación de los datos.

En este contexto, esta Tesis está también dirigida a cubrir el creciente interés de la comunidad

cient́ıfica en dos sensores a bordo de dos de los satélites de la Agencia Espacial Europea (ESA). El

primero es el MEdium Resolution Imaging Spectrometer (MERIS), instalado en ENVISAT que es

el satélite medioambiental más grande jamás lanzado. El segundo es el Compact High Resolution

Imaging Spectrometer (CHRIS), que es un instrumento hiperespectral único montado a bordo de

la misión de demostración tecnológica PROBA.



El objetivo principal es el de proporcionar nuevas herramientas operativas de enmascaramiento

de nubes que proporcionen mapas con la localización de las nubes a partir de las propias imágenes.

Además, el método debe proporcionar mapas con la proporción de nube para cada ṕıxel (en lugar

de una clasificación binaria) para describir mejor las nubes (proporción, tipo, altura, superficie

cubierta). Permitiendo aśı la estimación de parámetros biof́ısicos de la superficie a partir de las

imágenes de satélite. El algoritmo de detección de nubes propuesto aprovecha la excepcional

resolución espectral y radiométrica de MERIS o el gran número de bandas espectrales de CHRIS

junto con la posición espećıfica de la longitud de onda de alguna de sus bandas (como por ejemplo

las que coinciden con las absorciones del ox́ıgeno o el vapor de agua atmosféricos) que permiten

mejorar la precisión de la detección de nubes.

Para alcanzar este objetivo, diferentes técnicas de reconocimiento de patrones y aprendizaje

automático han sido espećıficamente desarrolladas en el marco de esta Tesis para la detección

de nubes. Primero, se extraen de los datos caracteŕısticas f́ısicas significativas de las nubes para

proporcionar a los algoritmos unas entradas con la mejor información posible. A continuación, se

propone un algoritmo de detección de nubes partiendo de la suposición de que se debe explotar

la riqueza de las muestras de las imágenes analizadas aunque no se disponga de información de

su clase. Por lo tanto, se exploran métodos de aprendizaje no supervisado y semisupervisado. En

primer lugar, la aplicación de métodos de agrupamiento (clustering) sobre la imagen completa

nos permite aprovechar la riqueza de la información de la distribución de los datos y el alto grado

de correlación espacial y espectral de los ṕıxeles de la imagen. En segundo lugar, los métodos de

aprendizaje semisupervisados ofrecen la oportunidad de explotar también las muestras etiquetadas

disponibles.

La validación de los algoritmos de detección de nubes no es una tarea fácil ya que, por lo

general, no hay medidas independientes y con la misma resolución que informen sobre la existencia

o no de nubes en el momento de la adquisición de la imagen. Por estas razones, se ha de realizar

un esfuerzo importante para validar los resultados usando diferentes técnicas: por medio de un

análisis visual de las imágenes en color originales, comparando la máscara de nubes resultante

con los productos oficiales de la ESA (MERIS Level 2 Cloud Flag) y empleando algoritmos de

detección de cambios aplicados a series multitemporales.

Para concluir, un resultado importante de esta Tesis incluye la elaboración de un conjunto

de directrices y recomendaciones para misiones futuras. En concreto, el estudio ha dado lugar a

una lista cualitativa de las principales cuestiones y caracteŕısticas f́ısicas que pueden mejorar la

detección de nubes en los sensores de teledetección que trabajan en el visible e infrarrojo cercano.
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Visión General

Observación de la Tierra

La observación de la Tierra comprende aquellos procedimientos y metodoloǵıas cient́ıficas

centradas en observar nuestro planeta por medio de la radiación electromagnética medida por

sensores situados en plataformas espaciales. La información que proporcionan estos sensores

representa escalas espaciales y temporales completamente diferentes de las obtenidas a partir de

mediciones sobre el terreno. En particular, la teledetección óptica pasiva se basa en el estudio de

la superficie por medio de la radiación solar reflejada por el área observada y transmitida a través

de la atmósfera hasta llegar al sensor.

Los materiales en una escena reflejan, absorben y emiten la radiación electromagnética de

diferentes maneras dependiendo de su composición molecular y su forma. La teledetección explota

este hecho f́ısico y tiene que ver con la adquisición de información a corta, media o larga distancia.

La radiación adquirida por el sensor se mide en diferentes longitudes de onda, y la consiguiente

firma espectral (espectro) se utiliza para identificar un determinado material o estimar parámetros

biof́ısicos de la superficie. El campo de la espectroscoṕıa se refiere a la medición, análisis e

interpretación de esos espectros.

Efectos radiativos de las nubes

Sin embargo, la observación de la Tierra a partir de datos de teledetección implica tener en

cuenta el acoplamiento de los efectos radiativos entre la atmósfera y la superficie. Si no hay

atmósfera alrededor de la Tierra, la radiación solar sólo se perturba cuando alcanza la superficie.

Por lo tanto, la radiación medida proporcionaŕıa una representación de la superficie e indirec-

tamente de la dinámica de la naturaleza. Sin embargo, la influencia de la atmósfera sobre la

radiación en el visible (VIS) e infrarrojo (IR) es lo suficientemente fuerte como para modificar

la señal electromagnética reflejada, causando la pérdida o corrupción de parte de la información

transportada. La interacción de la radiación solar con los componentes atmosféricos consiste

básicamente en procesos de absorción y dispersión. La absorción disminuye la intensidad de la

radiación que llega al sensor, lo que provoca una pérdida en la luminosidad del objetivo observado,

mientras que la dispersión actua principalmente modificando la dirección de propagación.

En este escenario, las nubes son uno de los componentes más importantes de la atmósfera de la

Tierra, y constituyen el núcleo central de este trabajo. La presencia de nubes, afecta drásticamente

a la calidad y fiabilidad de las mediciones de la señal electromagnética y, por tanto, a la estimación

de las propiedades de la superficie. La influencia correspondiente a las nubes depende de su tipo,

cubierta, altura y distribución en el cielo. Por ejemplo, nubes gruesas opacas impiden la entrada

de radiación en su camino a la superficie, mientras que nubes finas transparentes contaminan

los datos con fotones dispersados en la dirección de observación o atenúan la señal eliminando
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los fotones en su camino hacia el sensor. Como resultado, cualquier conjunto de imágenes de

teledetección requiere una detección de nubes precisa en las primeras etapas de procesamiento,

antes de la explotación de los datos, para garantizar una máxima precisión en los resultados

derivados. Ésta es la base fundamental del enmascaramiento de nubes en la teledetección óptica:

la detección de las nubes en la ĺınea de visión del observador con el fin de determinar la utilidad

de la señal reflejada por el objetivo.

Motivación de la Tesis

La identificación de las nubes en las imágenes de teledetección es una cuestión clave para una

amplia gama de aplicaciones de la teledetección, especialmente en el caso de sensores que trabajan

en el visible e infrarrojo cercano (VNIR) del espectro electromagnético. La cantidad de imágenes

adquiridas todos los d́ıas por los instrumentos a bordo de los satélites de observación de la Tierra

hace inevitable que muchas de estas imágenes presenten cubiertas nubosas, cuyo alcance depende

de la estación y la posición geográfica de la región de estudio.

Por un lado, las nubes pueden ser vistas como una fuente de contaminación que hace que

la imagen sea en parte inútil para evaluar las propiedades de la superficie. Sin una detección

exacta de las nubes, las nubes no detectadas en la escena son la fuente más significativa de

error para estimar la reflectividad real de la superficie y, por tanto, para la recuperación de

parámetros biof́ısicos tanto oceánicos como terrestres. Enmascarando sólo las zonas de la imagen

afectadas por nubes, no es necesario descartar toda la imagen, aumentando la usabilidad de los

datos de teledetección y facilitando la realización de estudios multitemporales. Por otro lado, las

nubes pueden ser vistas como una fuente de información importante para medir los parámetros

climatológicos. La observación de las nubes a escala mundial es cada vez más importante en los

aspectos climatológicos: las nubes contribuyen de manera significativa al balance de radiación

global con un papel importante en la reflexión de la radiación directa, y las nubes delgadas son

también responsables del efecto invernadero en la atmósfera. Como resultado, la teledetección por

satélite de las nubes no es sólo un paso en el proceso de enmascaramiento de nubes, sino también

un requisito para un adecuado modelado de el clima de la Tierra.

Objetivos de la Tesis

Atendiendo a las mencionadas necesidades y demandas, la presente Tesis aborda el problema

fundamental en teledetección de desarrollar un conjunto de herramientas operativas, precisas y

automatizadas para la discriminación de las nubes. Podemos distinguir distintos objetivos en este

trabajo:

1. Analizar el problema de la detección de nubes bajo diferentes perspectivas. La natu-

raleza multidisciplinar intŕınseca de este trabajo (en la intersección entre la f́ısica, la ter-

modinámica, las telecomunicaciones, la informática y el aprendizaje máquina) nos permitirá
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extraer diferentes caracteŕısticas para un mejor entendimiento y modelización del problema.

2. Entender mejor las señales proporcionadas por los espectrómetros de imagen ENVISAT/

MERIS y PROBA/CHRIS. En particular, PROBA es un satélite de demostración tec-

nológica cuyo sensor CHRIS proporciona datos mı́nimamente preprocesados. La adecuada

corrección y calibración de los datos de CHRIS y MERIS es una cuestión clave para una

adecuada detección de las nubes y también para cualquier otra aplicación.

3. Desarrollar un algoritmo de detección de nubes automático, robusto y operacional. El

algoritmo debe principalmente proporcionar una máscara de nubes interpretable como la

abundancia de nube en cada ṕıxel.

4. Validar el algoritmo propuesto. Comparando los resultados del enmascaramiento de nubes

con productos oficiales de los diferentes satelites y con la clasificación multi-temporal de las

cubiertas de nubes en series de imágenes.

5. Proporcionar un conjunto de directrices y recomendaciones para el desarrollo de nuevos

sensores y misiones de satélites.

Organización de la Tesis

Esta Tesis está organizada en cuatro partes: (1) una profunda revisión bibliográfica, (2) el

desarrollo de un conjunto robusto de herramientas automatizadas para la detección de nubes, y

(3) la evaluación de los algoritmos propuestos en situaciones reales:

• La primera parte del trabajo está dedicada a una revisión de los aspectos generales de

la f́ısica y propiedades ópticas de las nubes junto con una recopilación de los métodos de

detección actuales. En este primer paso se identifican los puntos fuertes y débiles de los

algoritmos más representativos propuestos hasta la fecha.

• La segunda parte de este trabajo aborda la metodoloǵıa propuesta para la generación de

productos de nubes. En particular, para producir una máscara de probabilidad de nubes y

obtener conocimiento de las caracteŕısticas extráıdas de las nubes.

• La tercera parte del trabajo se ocupa de la validación de la metodoloǵıa propuesta y los

productos de nubes. Una amplia base de datos de imágenes se ha incluido en el estudio

con el fin de tener en cuenta sus diferentes caracteŕısticas: ubicación geográfica (latitud

/ longitud); fecha y estación; tipo de nubes (cúmulos, cirros, stratocumulus), y tipos de

superficie.

• La última parte del trabajo resume los objetivos conseguidos, examina las principales con-

clusiones, y proporciona recomendaciones para mejorar la detección de nubes en imágenes

multiespectrales para espectrómetros de futuras misiones de observación de la Tierra.
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Teledetección Mediante Satélites de Observación de la Tierra

La teledetección óptica pasiva se basa en la radiación solar como fuente de iluminación. Esta

radiación solar viaja a través de la atmósfera terrestre antes de ser reflejada por la superficie y

de nuevo antes de llegar al sensor. Por lo tanto, la señal medida en el satélite es la radiación

emergente del sistema tierra-atmósfera en la dirección de observación del sensor.

La reflectividad del objeto observado es el parámetro de interés, ya que caracteriza la su-

perficie independientemente de los efectos atmosféricos y las diferencias estacionales y diurnas

en la posición solar. Sin embargo, la estimación de la reflectividad de la superficie a partir de

la radiancia medida en el satélite (proceso conocido como corrección atmosférica) requiere una

estimación precisa de los parámetros utilizados para modelar los efectos atmosféricos y, a conti-

nuación, compensarlos usando un buen modelo de transferencia radiativa. El principal problema

es que, para estimar los parámetros atmosféricos desde los propios datos, previamente es necesaria

una detección de nubes precisa. Por lo tanto, la detección de nubes es el primer paso después de

la reducción del ruido y la calibración radiométrica de los datos.

Debemos señalar aqúı que el procedimiento de corrección atmosférica está fuera del marco de

esta Tesis. Sin embargo, dado que la detección de nubes se lleva a cabo antes de que se realice

la corrección atmosférica, la interacción entre la atmósfera y la radiación se tendrá en cuenta a

fin de cuantificar los efectos atmosféricos en la señal medida. Por otra parte, una formulación

precisa de los efectos atmosféricos sobre la señal a recuperar nos permite estimar caracteŕısticas

útiles para discriminar las nubes de la superficie.

En el caṕıtulo 1, se hace una breve introducción sobre la enerǵıa solar, la radiación electro-

magnética y su interacción con la atmósfera terrestre. Se describen los procesos de absorción y

dispersión que afectan a la radiación electromagnética solar en su camino a través de la atmósfera

hasta llegar al sensor. Se detalla la adquisición y el modo de funcionamiento de los espectrómetros

de imagen multiespectrales. Por último, se incluye una breve descripción de los sensores de satélite

ENVISAT/MERIS y PROBA/CHRIS junto con una discusión sobre las oportunidades y proble-

mas identificados que justifican la decisión de estudiar en la presente Tesis la detección de nubes

en este tipo de sensores.

Detección de Nubes en Imágenes de Teledetección

Las nubes se pueden definir como una masa de vapor de agua condensada o part́ıculas de

hielo en suspensión por encima de la superficie terrestre. Debido a las intensas absorciones de las

nubes en las longitudes de onda del visible e infrarrojo cercano, la mayor parte de las aplicaciones

en teledetección que usan datos de sensores sensibles a este rango del espectro electromagnético

requieren la identificación de las nubes en las imágenes. La cantidad de imágenes adquiridas a lo

largo del mundo todos los d́ıas por los instrumentos a bordo de los satélites de observación de la
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Tierra hace inevitable que muchas de estas imágenes presenten nubes, cuyo alcance depende de la

estación y la posición geográfica de la región de estudio. De acuerdo con estimaciones de las obser-

vaciones obtenidas en el International Satellite Cloud Climatology Project (ISCCP) (Zhang et al.,

2004), la media global anual de nubosidad es de 66% aproximadamente. Otros estudios reportan

tasas más altas de nubes en el planeta analizando los datos de una red meteorológica en todo el

mundo con un gran número de estaciones en diferentes latitudes (Bréon and Colzy, 1999).

La presencia de nubes afecta drásticamente la señal electromagnética medida y, por tanto, a

la información obtenida de la superficie observada. Por ejemplo, nubes espesas opacas impiden

la entrada de radiación hasta la superficie, mientras que nubes finas transparentes contaminan

los datos de fotones dispersados en la dirección de observación y atenuan la señal debido a la

eliminación de los fotones en su viaje hacia el sensor. Una cuestión importante aqúı es subrayar

que, dependiendo de la aplicación de teledetección, las nubes pueden ser vistas como una fuente

de contaminación que hace que la imagen sea en parte inútil para estudiar la superficie, o como

una fuente de información importante para medir parámetros climatológicos (Peixoto and Oort,

1992).

• Sin una máscara de nubes precisa, las nubes no detectadas en la escena son la fuente más

significativa de error para la estimación de la reflectividad de superficie y, por tanto, para la

recuperación de parámetros biof́ısicos. Enmascarando sólo las zonas de la imagen afectadas

por las nubes, no es necesario descartar toda la imagen, lo que hace posible realizar estudios

multitemporales.

• La monitorización de las nubes a escala mundial es cada vez más importante en estudios de

la climatoloǵıa (las nubes contribuyen de manera significativa a la radiación global).

La conclusión más importante para el tema de esta Tesis es que cualquier conjunto óptico de

imágenes de teledetección necesita llevar a cabo un proceso de detección de nubes en las primeras

etapas de procesamiento para garantizar la exactitud en los resultados extráıdos de las imágenes.

En el caṕıtulo 2, se da una breve introducción de los tipos de nubes y las caracteŕısticas

clásicas utilizadas para clasificarlas. Se presentan los principales efectos de los tipos de nubes

en la radiación electromagnética que viaja a través de la atmósfera terrestre y, por tanto, sus

efectos sobre el balance radiativo de la Tierra y el clima. Entonces, se describen la mayoŕıa de las

propiedades ópticas de las nubes medibles por los sistemas de teledetección. Por último, se lleva

a cabo un examen de los enfoques presentados en la literatura para detectar nubes, prestando

especial atención a los algoritmos de detección de nubes desarrollados para los sensores estudiados

en esta Tesis.
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Metodoloǵıa de Detección de Nubes Propuesta

El objetivo principal de esta Tesis es desarrollar un algoritmo de detección de nubes utilizando

toda la información espectral proporcionada por las imágenes de los espectrómetros MERIS y

CHRIS. El algoritmo de detección de nubes propuesto se aprovecha de la alta resolución espectral

y radiométrica de MERIS o el elevado número de bandas espectrales de CHRIS, aśı como de la

ubicación espećıfica de algunas bandas para aumentar la precisión en la detección de nubes, como

por ejemplo las bandas de absorción del ox́ıgeno y del vapor de agua. En el caṕıtulo 3, se resume el

procedimiento de detección de nubes propuesto y se introducen brevemente los diferentes módulos

que lo constituyen.

El método debe ser capaz de: (i) detectar con precisión las nubes, y (ii) proporcionar pro-

babilidad o abundancia de nubes en lugar de limitarse a indicar los ṕıxeles que presentan nubes

con una máscara binaria. El producto de abundancia de nube proporcionado no está directa-

mente relacionado con las propiedades ópticas de las nubes, como por ejemplo el espesor óptico

(Kokhanovsky et al., 2007b), que generalmente se basan en modelos de transferencia radiativa.

Este producto de valor añadido permite al usuario aplicar una máscara de nubes ajustable en

función de las siguientes etapas de procesamiento y uso final que se le dé a la imagen. Por

ejemplo, ṕıxeles nubosos no detectados afectan en gran medida a la recuperación de parámetros

biof́ısicos y a métodos basados en medidas en las longitudes de onda más corta, como la estimación

de aerosoles, o la estimación de pigmentos o materia en suspensión en agua, aśı como a los métodos

que dependen de composiciones temporales (Saitwal et al., 2003; Ranera et al., 2005; Plummer,

2005). Un ligero sobre-enmascaramiento de los posibles ṕıxeles contaminados por nubes (de-

tección de nubes conservadora) seŕıa preferible para garantizar un mı́nimo admisible en la calidad

del producto final (Guanter et al., 2008a; Kaufman et al., 2005; Martins et al., 2002), mientras

que otras aplicaciones, tales como la clasificación de los tipos de cubiertas, son menos sensibles a

nubes delgadas, y por lo tanto, las áreas con nubes muy finas no deben ser necesariamente descar-

tadas (Gómez-Chova et al., 2006f, 2007c; Camps-Valls et al., 2008a). Como resultado, el método

debe ser escalable y permitir diferentes niveles de enmascaramiento. Por lo tanto, se propone una

máscara probabiĺıstica que indique el nivel de contaminación por nubes en cada ṕıxel.

Para lograr los objetivos de exactitud en la clasificación y en el ı́ndice de contaminación, se

propone un esquema basado en bloques. En primer lugar, se lleva a cabo una extracción de

caracteŕısticas basada en propiedades f́ısicas (por ejemplo, las nubes son brillantes y blancas).

Entonces, un algoritmo de clasificación semisupervisado o no supervisado se aplica a estas ca-

racteŕısticas y los agrupamientos resultantes son posteriormente etiquetados como nube o libre

de nube. Por último, se aplica a la imagen clasificada un algoritmo de desmezclado espectral.

Resumiendo, el procedimiento de detección de nubes está constituido por los siguientes pasos:

1. Preprocesado de la Imagen: se obtiene la reflectividad de la superficie en el techo de la

atmósfera (TOA) libre de ruidos.
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2. Extracción de Caracteŕısticas: se extraen caracteŕısticas f́ısicas para aumentar la separabi-

lidad de las nubes y la superficie.

3. Segmentación de Imagen: se aplica un algoritmo de agrupamiento no supervisado a las

caracteŕısticas extráıdas a fin de separar las nubes de la superficie.

4. Etiquetado de los Agrupamientos: los agrupamientos resultantes son posteriormente etique-

tados en clases geo-f́ısicas en función de sus caracteŕısticas extráıdas y su firma espectral.

5. Desmezclado Espectral : finalmente se aplica un algoritmo de desmezclado espectral a la

imagen segmentada con el fin de obtener un mapa de abundancias indicando el contenido

de nube por ṕıxel.

En los caṕıtulos 4, 5, y 6 se analizan los diferentes bloques en mayor detalle.

Preprocesado de la Imagen y Extracción de Caracteŕısticas

Cuando se trabaja con imágenes de teledetección adquiridas en diferentes momentos y lugares,

una caracteŕıstica deseable es contar con datos independientes del sensor y de las condiciones de

adquisición de la imagen. Esto también es válido para la detección de nubes. Por una parte,

corregir los datos de la imagen de las incertidumbres en la calibración del sensor tiene la ventaja

de que aśı los datos son independientes de las diferencias en el sensor. Por otro lado, la conversión

de datos de radiancia a reflectividad en el techo de la atmósfera tiene la ventaja de que estos

datos se corrigen de diferencias estacionales y diurnas en la posición solar.

Una vez que los datos de la imagen se expresan en reflectancia, podemos procesar los espectros

de reflectividad con el fin de extraer caracteŕısticas que aumenten la separabilidad de las nubes y la

superficie. Estas caracteŕısticas están inspiradas en hechos f́ısicos y su significado es independiente

de las diferencias en el número, la ubicación y el ancho de banda de los canales espectrales del

sensor, que es una caracteŕıstica deseable para un algoritmo de detección de nubes destinado a

trabajar en imágenes adquiridas por sensores multi e hiperespectrales, como MERIS y CHRIS.

Clasificación no supervisada de las nubes

Los métodos basados en aplicar umbrales estáticos a cada ṕıxel de la imagen para detectar

las nubes pueden fallar debido a una cobertura parcial del ṕıxel, a la calibración del sensor, a

la variación de la respuesta espectral de las nubes con el tipo y altura de las nubes, etc. En

este contexto, el siguiente paso en nuestra metodoloǵıa considera la utilización de métodos de

clasificación para encontrar grupos similares de ṕıxeles en la imagen. Los métodos no supervisados

de clasificación suponen que los datos de entrada están organizados en una serie de grupos de

acuerdo a una determinada distancia medida en un determinado espacio (Duda and Hart, 1973).

Una revisión excelente de los algoritmos de agrupamiento se puede encontrar en (Xu and Wunsch,
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2005). En este trabajo, utilizamos el algoritmo Expectation-Maximization (Dempster et al., 1977)

para estimar los parámetros de una distribución mezcla de Gaussianas.

Clasificación semisupervisada de las nubes

La aplicación de métodos de agrupamiento no supervisados a toda la imagen nos permite

aprovechar la riqueza de la información y el alto grado de correlación espacial y espectral de

los ṕıxeles de la imagen. Sin embargo, la estrategia de etiquetado de los grupos obtenidos por

métodos no supervisados se concibe para escenarios donde un usuario etiqueta manualmente los

grupos con el fin de mejorar la detección de nubes en estudios de casos particulares o regionales,

pero no es práctico cuando se aplica a un gran número de escenas de modo operacional. Esta

solución está principalmente orientada a obtener, para la imagen en cuestión, una mayor precisión

en la máscara de nubes que con el enfoque estándar (que se aplica ṕıxel a ṕıxel), que produce

resultados insatisfactorios en algunos problemas cŕıticos, como en los bordes de las nubes o cuando

hay superficies brillantes.

Cuando el objetivo es procesar un gran número de escenas de manera automática debemos

recurrir a los métodos supervisados, en los que se aprende de un conjunto fiable de muestras

etiquetadas con el fin de definir una función de decisión que clasifique correctamente los ṕıxeles

con nubes. Sin embargo, t́ıpicamente hay pocas muestras etiquetadas disponibles o que se puedan

obtener de forma regular. Nuestro objetivo es aprovechar los beneficios que muestran tanto

los métodos supervisados como no supervisados. Por esta razón, en el caṕıtulo 6, se exploran las

oportunidades ofrecidas por el aprendizaje semisupervisado basado en métodos kernel que explota

las pocas muestras con etiqueta y también la riqueza de las muestras sin etiqueta de la imagen a

clasificar.

Resultados

La tercera parte del trabajo se ocupa de la validación de la metodoloǵıa propuesta y de los

productos de nubes obtenidos. Una amplia base de datos de imágenes se ha incluido en el estudio

con el fin de tener en cuenta las distintas peculiaridades del problema: la ubicación geográfica,

fecha y estación, el tipo de nube y tipos de superficie. Las imágenes seleccionadas nos permiten

validar el método, ya que incluyen diferentes cubiertas, vegetación, suelos desnudos, y casos

cŕıticos para la detección de nubes como son el hielo y la nieve.

Validación de los métodos no supervisados

La validación de algoritmos de detección de nubes no es una tarea fácil porque, en el caso no

supervisado (es decir, sin datos etiquetados), no suelen existir mediciones simultáneas indepen-

dientes de las nubes con la misma resolución espacial que la imagen a clasificar. En la mayoŕıa
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de los casos, el rendimiento de los algoritmos de detección de nubes ha sido evaluado mediante el

análisis visual de las imágenes de satélite. El ojo humano es capaz de reconocer las estructuras

de nubes en una imagen de satélite mucho mejor que cualquier algoritmo automático, lo que jus-

tifica este enfoque de validación. Sin embargo, el reconocimiento de las nubes puede ser dif́ıcil en

ciertos casos (nubes delgadas, nubosidad discontinua) y está lejos de ser operativo. Además, la

comparación visual requiere una gran cantidad de trabajo tedioso, lo cual es inadecuado para una

validación cuantitativa en un gran conjunto de datos. Por estas razones, se ha hecho un esfuerzo

significativo con el fin de validar los resultados mediante el uso de diferentes técnicas:

• La aproximación más simple consiste en comparar la máscara y abundancia de nubes con

las imágenes en color. Por lo tanto, los productos resultantes son validados por inspección

visual de las imágenes de CHRIS y MERIS.

• En el caso de MERIS, también podemos comparar los resultados con los productos oficiales

de MERIS de nivel 2 ‘Cloud Flag’ (utilizado solo para la validación, no para el entre-

namiento).

• La falta de un mapa de verdad terreno y la escasa precisión mostrada por los productos

oficiales de MERIS de nivel 2 en algunas situaciones (Santer et al., 1999) impiden la vali-

dación de la máscara de nubes en condiciones fiables. Por lo tanto, son necesarios nuevos

enfoques de validación para poner a prueba el algoritmo de detección de nubes propuesto.

En particular, se propone una aproximación multitemporal en la que pares de imágenes con

y sin nubes sobre la misma zona se utilizan para la detección de ṕıxeles con nubes medi-

ante la identificación de ṕıxeles con cambios espectrales entre ambas fechas. Los pares son

seleccionados para estar cerca en el tiempo, por lo que se evitan los cambios debidos a la

evolución temporal de la superficie. Sin embargo, las imágenes tomadas de las órbitas con

solo tres o seis d́ıas de diferencia presentan una importante variación en la geometŕıa de

observación. Por lo tanto, ṕıxeles con cambios significativos en su composición debido al

diferente ángulo de observación no se consideran en el método multi-temporal de validación

de detección de nubes.

En el caṕıtulo 7, se presentan los resultados del método propuesto en el caṕıtulo 5.

Validación de los métodos semisupervisados

El método propuesto en el caṕıtulo 5 ha demostrado un excelente comportamiento en los

resultados de detección de nubes tal como se presenta en el caṕıtulo 7. Sin embargo, esta aproxi-

mación es más adecuada para estudios de casos particulares debido a su coste computacional y a la

interacción opcional del usuario durante el proceso de etiquetado de los agrupamientos. En aplica-

ciones de detección de nubes operativas, se requiere métodos que clasifiquen automáticamente con

precisión las nubes. Por lo tanto, los métodos supervisados o semisupervisados debeŕıan ser más
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adecuados. En el caṕıtulo 8 se describen los resultados del enmascaramiento de nubes obtenidos

con los nuevos métodos presentados en el caṕıtulo 6. Todos estos métodos son clasificadores

supervisados o semisupervisados y, por tanto, requieren un conjunto representativo de muestras

etiquetadas para entrenar y validar los modelos.

Discusión y Conclusiones

Resumen y Conclusiones

Esta Tesis presenta una nueva metodoloǵıa con el fin de resolver el dif́ıcil problema de la

detección de nubes en imágenes adquiridas por sensores de satélite multiespectrales e hiperespec-

trales que trabajan en el rango visible e infrarrojo cercano del espectro electromagnético. Los

sensores a bordo de dos satélites de la Agencia Espacial Europea se utilizan en este trabajo: el

MEdium Resolution Imaging Spectrometer (MERIS), a bordo del satélite ENVISAT, y el ins-

trumento hiperespectral Compact High Resolution Imaging Spectrometer (CHRIS), a bordo de

PROBA.

La metodoloǵıa propuesta identifica la ubicación de las nubes en la imagen y produce una

abundancia de nube con el fin de cuantificar la forma en que la presencia de nubes afecta a la

medición de espectros. El algoritmo de detección se basa en las caracteŕısticas f́ısicas extráıdas,

que están destinadas a aumentar la separabilidad entre las nubes y la superficie, y se extraen de

la reflectividad en el techo de la atmósfera que pretende reducir la dependencia de la iluminación

y las condiciones geométricas de adquisición. Se ha hecho un importante esfuerzo para corregir

y calibrar las imágenes de los sensores seleccionados con el fin de garantizar la calidad de los

datos. En este sentido, un nuevo algoritmo se ha propuesto para el tratamiento previo de sensores

hiperespectrales, que es especialmente pertinente en el caso del sensor CHRIS.

El objetivo final ha sido el de desarrollar un conjunto de herramientas preciso y automático

para la discriminación de las nubes. De esta manera, dos aproximaciones diferentes se han pro-

puesto en función de si el algoritmo tiene que ser aplicado de forma operativa para clasificar

automáticamente un número importante de imágenes, o el proceso de clasificación puede ser

guiado por un operador para identificar con precisión incluso los casos más cŕıticos en problemas

de detección de nubes. Ambas aproximaciones usan, como punto de partida, un algoritmo de

agrupamiento no supervisado basado en las caracteŕısticas extráıdas con el fin de adaptar el en-

mascaramiento de nubes a la situación de cada imagen, sobre todo a las condiciones atmosféricas,

el escenario de fondo, y los tipos de nubes. Este paso permite discriminar fácilmente entre regiones

con y sin nubes, proporcionando un producto de abundancia de nube basado en un algoritmo de

desmezclado espectral.

En los párrafos siguientes se destacan varias observaciones y conclusiones se han extráıdo de

los diferentes módulos y algoritmos desarrollados en esta Tesis.
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Preprocesado de la imagen. El primer paso del proceso es corregir los datos de teledetección

a fin de obtener una señal de radiancia en el techo de la atmósfera lo más precisa posible. Hay

que tener en cuenta que corregir y compensar los datos de la imagen de incertidumbres en la

calibración de los datos del sensor hace que estos datos sean independientes del sistema. Esto re-

quiere una profunda comprensión de las señales proporcionadas por los espectrómetros de imagen

ENVISAT/MERIS y PROBA/CHRIS para adaptar el algoritmo de detección de nubes, o incluso

para desarrollar nuevos algoritmos de corrección.

• El efecto sonrisa (smile effect) produce pequeñas variaciones de la longitud de onda espectral

medida por cada ṕıxel en la dirección horizontal del sensor que tienen un gran impacto en la

caracteŕıstica de la absorción de ox́ıgeno, que es sumamente estrecha. Por lo tanto, hemos

propuesto un nuevo algoritmo de extracción de caracteŕısticas que permite la introducción

de este desplazamiento de la respuesta espectral de MERIS en nuestra formulación.

• PROBA es un satélite de demostración de tecnoloǵıa y se han desarrollado varios algorit-

mos de reducción de ruido en esta Tesis ya que CHRIS proporciona datos mı́nimamente

preprocesados.

• Se ha presentado una nueva técnica para detectar ṕıxeles con errores y corregirlos haciendo

uso de la información espacial y espectral del ṕıxel erróneo y sus vecinos. Aunque se trata

de una corrección cosmética, es necesaria ya que las etapas de procesado posteriores se ven

afectadas drásticamente por estos ṕıxeles con valores anómalos.

• Se ha presentado una nueva técnica para reducir el ruido coherente conocido como vertical

striping, que se encuentra normalmente en las imágenes hiperespectrales adquiridos por

sensores como CHRIS. La principal novedad de nuestra propuesta consiste en reducir el

patrón de bandas verticales usando un nuevo algoritmo robusto a cambios en la superficie.

• La aproximación propuesta de eliminación de patrones de ruido verticales ha demostrado ser

robusta, estable, y permite modelizar con éxito la dependencia del ruido con la temperatura

del sensor.

Extracción de caracteŕısticas. Cuando se trabaja con imágenes de teledetección adquiridas

en diferentes momentos y lugares, una caracteŕıstica deseable es tener datos independientes de

las condiciones de adquisición. La conversión de datos de radiancia en reflectividad en el techo

de la atmósfera tiene la ventaja de que estos datos se corrigen de diferencias en la posición solar

estacionales y diurnas. Por otra parte, la extracción de caracteŕısticas f́ısicas adecuadas, aumenta

la separabilidad entre las nubes y la superficie, lo que mejora la clasificación y permite una mejor

comprensión del problema.

Debemos tener en cuenta que, además de propiedades comunes de las nubes como ser ra-

diométricamente blancas y brillantes, una caracteŕıstica cŕıtica presentada en este trabajo es el
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uso de las bandas de absorción del ox́ıgeno atmosférico y del vapor de agua para mejorar los

resultados de la detección de nubes.

• La utilización de la absorción atmosférica del ox́ıgeno para inferir la presión de las nubes, la

cual se relaciona con la altitud de las nubes, es bien conocida en estudios atmosféricos. En

este sentido, se propone una fórmula para extraer una caracteŕıstica atmosférica relacionada

directamente con el camino óptico mediante el uso de la geometŕıa de observación exacta

de cada ṕıxel.

• La banda de absorción del ox́ıgeno es muy estrecha y, a pesar de la alta resolución espectral

y radiométrica de MERIS, las pequeñas variaciones de la longitud de onda espectral de cada

ṕıxel tienen un gran impacto en cualquier variable derivada de la banda del ox́ıgeno. Como

se ha mencionado, este cambio espectral se ha tenido en cuenta con el fin de corregir el smile

effect.

• En el caso de CHRIS, la banda del ox́ıgeno no es tan útil por el mayor ancho de banda de

los canales de CHRIS. Sin embargo, algunos modos de adquisición de CHRIS presentan una

excelente caracterización de la absorción de vapor de agua.

• La máxima absorción de vapor de agua (940 nm) se encuentra fuera del rango de MERIS,

pero la absorción a 900 nm sigue siendo válida para medidas relativas dentro de la misma

imagen. Por otra parte, la nieve presenta mayor absorción que las nubes a 900 nm y este

comportamiento puede observarse en las caracteŕısticas extráıdas.

• Los resultados obtenidos mediante la absorción de estas caracteŕısticas sugieren que seŕıa

ventajoso ver esas bandas incluidas en futuros sensores.

• Resumiendo, el estudio ha dado lugar a una lista cualitativa de las principales cuestiones y

caracteŕısticas f́ısicas que pueden mejorar la detección de nubes en los sensores de telede-

tección que trabajan en el visible e infrarrojo cercano del espectro.

Detección de nubes. Un objetivo central de la Tesis ha consistido en dar un conjunto de

herramientas de detección de nubes para la obtención de mapas de nubes para los datos de los

sensores seleccionados. Con el fin de lograr este objetivo, técnicas avanzadas de reconocimiento

de patrones y de aprendizaje automático han sido desarrolladas.

• Dos aproximaciones diferentes de detección de nubes se han propuesto basadas en la idea

de aprovechar las muestras sin etiqueta disponibles en las imágenes de teledetección.

• Inicialmente se propone una aproximación no supervisada de detección de nubes basada en

métodos clásicos de reconocimiento de patrones.
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• La aplicación de métodos de agrupamiento no supervisados a toda la imagen nos permite

aprovechar la riqueza de la información y el alto grado de correlación espacial y espectral

de los ṕıxeles de la imagen.

• El algoritmo EM, que se aplica a las caracteŕısticas extráıdas, ha demostrado una excelente

capacidad para segmentar la imagen permitiendo discriminar fácilmente entre regiones con

y sin nubes.

• Se ha definido un procedimiento espećıfico para etiquetar los grupos encontrados a fin de

ayudar al usuario a identificar incluso los problemas de detección de nubes más cŕıticos.

• Se han explorado métodos de aprendizaje semisupervisados, ya que ofrecen la oportunidad

de explotar las muestras etiquetadas disponibles y la riqueza de las muestras sin etiqueta.

En este caso, hay información supervisada disponible y se utiliza junto con las muestras sin

etiqueta de la imagen analizada para desarrollar un clasificador que proporciona la clase de

cada ṕıxel, pero teniendo también en cuenta la distribución de los datos de la imagen. Dado

que la distribución de las clases está fijada por el conjunto de entrenamiento, este método

puede ser aplicado automáticamente a un gran número de escenas de modo operativo.

• Se ha propuesto una nueva familia de métodos kernel basados en kernels promedio (µ-

SVM) tomando como referencia la SVM estándar, que se utiliza como referencia de los

métodos supervisados, y la SVM Laplaciana, que se utiliza como referencia de los métodos

semisupervisados.

• Los clasificadores µ-SVM propuestos combinan la similitud entre muestras, basada en las

muestras etiquetadas del conjunto de entrenamiento, y la similitud entre agrupamientos,

basada en las muestras sin etiqueta de la imagen analizada, que se calculan en el espacio

kernel gracias a un kernel compuesto.

• Con esta aproximación, la distribución de las clases, estimada t́ıpicamente a partir de un

bajo número de muestras etiquetadas, se adapta a la distribución de los datos de la imagen

analizada, estimada a partir de todas las muestras sin etiqueta. Como consecuencia de ello,

el enfoque propuesto es más robusto al sesgo en la selección de las muestras, que es un

problema común en aplicaciones reales de observación de la Tierra.

Abundancia de nubes. Una de las principales exigencias impuestas a la metodoloǵıa pro-

puesta de detección de nubes era proporcionar información sobre la contribución de las nubes a

los espectros medidos de los ṕıxeles de la imagen (para cuantificar situaciones con nubes semi-

transparentes o con cobertura parcial de un ṕıxel). Por lo tanto, un aspecto importante de la

metodoloǵıa de detección de nubes es que proporcione un producto de abundancia de nube.

• El producto de abundancia de nubes ofrece mapas con el nivel de contaminación de nubes

para cada ṕıxel en lugar de una clasificación binaria.
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• El producto final de nubes se obtiene combinando la abundancia de nubes, calculada con

un algoritmo de desmezclado espectral, y la probabilidad de nubes, obtenida a partir del

algoritmo de agrupamiento, por medio de una multiplicación ṕıxel a ṕıxel.

• La aproximación propuesta combina dos fuentes complementarias de información procesada

por métodos independientes: la abundancia de nubes (obtenida a partir de los espectros) y

la probabilidad de nube (obtenida a partir de las caracteŕısticas extráıdas), que se aproxima

a uno en los ṕıxeles con nubes y es cercana a cero en el resto de zonas.

• El producto de abundancia de nubes puede ser usado para describir mejor las nubes detec-

tadas (cobertura subṕıxel, transparencia, tipo de nubes) y para generar máscaras de nubes

con diferentes niveles de restricción en función de la aplicación.

Aproximaciones de Validación de los Resultados. La validación de algoritmos de de-

tección de nubes no es una tarea fácil porque no hay una medición independiente con la misma

resolución espacial. Por esta razón, hay que hacer un esfuerzo importante para validar los resul-

tados mediante el uso de diferentes técnicas.

• La aproximación más simple consiste en la validación de los productos resultantes mediante

inspección visual, comparando la máscara de nubes y abundancia con las imágenes en color.

• En el caso de MERIS, también puede hacerse una comparación con los resultados oficiales

de MERIS de nivel 2, comparando la máscara de nubes producida por el método presentado

en términos de acierto en la clasificación.

• Se ha propuesto una aproximación multitemporal de validación para analizar el resultado de

detección de nubes. Se han utilizado pares de imágenes sobre la misma zona, una cubierta

con nubes y otra sin nubes, para detectar los ṕıxeles con nubes mediante la identificación

de ṕıxeles con un cambio espectral significativo entre ambas fechas.

• Las ventajas previstas de una detección precisa de nubes también se han demostrado con

una aplicación de clasificació de la cubierta terrestre a nivel subṕıxel. En particular, se ha

demostrado que el desmezclado de series temporales de imágenes MERIS supera al desmez-

clado de fechas independientes.

• También hemos validado los productos de abundancia y probabilidad de nube respecto a la

la probabilidad de nube proporcionada por el programa BEAM Toolbox, que es el producto

de nubes más parecido disponible para datos de MERIS.

• En el caso de los métodos de clasificación semisupervisados, se ha proporcionado resul-

tados más clásicos de acierto en la clasificación (κ y acierto promedio [%] para todos los

métodos) obtenidos utilizando etiquetas y mapas de verdad terreno para entrenar y validar

los clasificadores.
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• Los métodos kernel de clasificación propuestos han sido examinados en dos diferentes situa-

ciones: en primer lugar, cuando hay disponibles muestras etiquetadas para caracterizar la

imagen que debe ser clasificada y, en segundo lugar, cuando no hay muestras etiquetadas

para la imagen a ser clasificada. En éste último caso, una configuración experimental se ha

propuesto con el fin de inducir y analizar el llamado sesgo en la selección de las muestras.

Resultados y Recomendaciones. A ráız de estos criterios de validación, una serie de expe-

rimentos se han llevado a cabo para obtener una colección completa de resultados. Una amplia

base de datos de imágenes se ha incluido en el estudio con el fin de tener en cuenta las distintas

peculiaridades del problema (localización geográfica, fecha y estación, tipos de nube y tipos de

superficie) para ambos sensores.

• Los resultados han demostrado que la aproximación guiada por usuario clasifica con precisión

los casos más dif́ıciles de ṕıxeles de nubes, especialmente cirros y nubes sobre el hielo o nieve.

• Se ha observado claras deficiencias en la máscara oficial de nubes de MERIS de nivel 2 en

las superficies más brillantes, como suelos desnudos, hielo y nieve, que se clasifican como

nubes, y también se han obtenido resultados más precisos con el método presentado en nubes

semitransparentes o bordes de nubes, que son incorrectamente clasificadas por el producto

oficial de la ESA.

• El algoritmo también ha sido validado comparándolo con una máscara de nubes basada en

la detección de cambios temporales. A pesar de que el método propuesto sólo utiliza la

información de la imagen analizada, los resultados demuestran que nuestro método ofrece

una mejor discriminación de las nubes y sus bordes. Esto permite una utilización más

eficiente de las imágenes y series temporales de MERIS.

• Los histogramas del producto de abundancia de nube propuesto muestran una distribución

de valores adecuada, que difiere en gran medida de la salida probabiĺıstica de la red neuronal

del programa BEAM que se concentra en torno a uno y cero, y por lo tanto proporciona

una información más útil para el usuario.

• Los clasificadores basados en kernels promedio (µ-SVM) producen mejores resultados que

la clasificación de la referencia proporcionada por las SVM supervisadas y las LapSVM

semisupervisadas en todos los casos. Hay que tener en cuenta que la SVM es un caso

particular de la µ-SVM, que además tiene en cuenta la distribución de datos de la imagen

con el fin de definir los grupos.

• Debido a que el tiempo de CPU consumido es relativamente bajo, los clasificadores µ-SVM

tienen una buena relación entre el coste computacional y la precisión en la clasificación.

• Además, los clasificadores µ-SVM que trabajan en el espacio kernel proporcionan mejores

resultados, lo que apoya la idea de que podemos encontrar un espacio más rico en términos
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de separación de clases.

• En situaciones extremas, con un bajo número de muestras etiquetadas, la información de

las muestras sin etiqueta ayuda a mejorar el comportamiento de la µ-SVM y a proporcionar

mejores resultados.

• El método µ-SVM basado exclusivamente en similitud entre agrupamientos no es equivalente

a una simple segmentación de la imagen y posterior clasificación de los centros de los grupos

con una SVM supervisada. Hemos observado que su rendimiento depende de la calidad de

la segmentación de la imagen proporcionada por el algoritmo EM.

• En los experimentos en los que la imagen se clasifica a partir de datos de otras imágenes,

la SVM se ve drásticamente afectada por el sesgo en la selección de las muestras de entre-

namiento (sample selection bias), ya que se basa exclusivamente en las etiquetas de muestras

que no representan a las clases en la imagen analizada.

• Un problema común para todos los métodos kernel es que la selección de los parámetros

libres del kernel depende de las muestras de entrenamiento y, por tanto, se ve drásticamente

afectada por el sample selection bias.

• Los clasificadores µ-SVM basados exclusivamente en los grupos encontrados proporcionan

excelentes resultados. Sin embargo, se requiere un número suficiente de muestras etiquetadas

para describir la distribución de las clases (con un menor número de muestras el grupo podŕıa

ser clasificado incorrectamente).

• El mapeado propuesto es el más robusto frente al sesgo en la selección de muestras debido a

que la contribución de cada una de las muestras en la definición del centro de masa de cada

grupo en el espacio kernel H se pesa con las probabilidades a posteriori. Esto es equivalente

a eliminar las muestras que no representan adecuadamente el agrupamiento en el espacio de

entrada, y, por tanto, la estimación del centro del agrupamiento en H se ve menos afectada

por la selección de un mapeado inadecuado.

• Los resultados también sugieren que los clasificadores µ-SVM que promedian los kernels

con las similitud entre muestras y entre grupos son una solución de compromiso, ya que

proporcionan buenos resultados en escenarios semisupervisado, y no están sesgados hacia el

conjunto de entrenamiento cuando se trata con problemas con selección de muestras sesgadas

.

• Por último, los resultados muestran una relación inversa entre la simplicidad del modelo

(número de vectores soporte) y la precisión en la clasificación. Los modelos excesivamente

simples ofrecen malos resultados, mientras que modelos moderadamente simples proporcio-

nan una mejor clasificación.
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• La principal limitación de los métodos semisupervisados es que, aunque se benefician de la

inclusión de las muestras sin etiqueta para estimar la distribución de datos, las etiquetas

disponibles no pueden aliviar las situaciones con un excesivo sesgo de selección de la mues-

tras, ya que los datos de la imagen de test a clasificar no están bien representados en el

conjunto de entrenamiento.

• En el caso de series temporales de imágenes, el sesgo de selección de las muestras no es

tan cŕıtico (la superficie observada es la misma), y los resultados obtenidos en los expe-

rimentos son aceptables porque las distribuciones de entrenamiento y de test no difieren

significativamente.

Resumiendo, se ha propuesto una metodoloǵıa de detección de nubes. La metodoloǵıa es muy

versátil y se compone de diferentes módulos diseñados espećıficamente que se han formulado en

términos de algoritmos operativos que cubren los requisitos esenciales para el proceso de detección

de las nubes. Estos módulos se pueden actualizar con algoritmos más avanzados o modificarse para

adaptarse a las caracteŕısticas de otros sensores. En consecuencia, este procedimiento puede servir

para desarrollar un algoritmo de detección de nubes para otros espectrómetros de imagen que

trabajen en el rango espectral VNIR con una adecuada caracterización espectral de las absorciones

atmosféricas, como EO1/Hyperion de la NASA, las futuras misiones de observación de la Tierra

GMES/Sentinel-3 y EnMAP, o la propuesta FLEX del explorador de la Tierra de la ESA.

Trabajo Futuro

La lista de objetivos propuestos al comienzo de esta Tesis ha sido totalmente cubierta. Sin

embargo, la metodoloǵıa para la detección de nubes presentada abre muchas direcciones futuras de

investigación debido a su modularidad. En este sentido, nuestros próximos pasos están vinculados

a la inclusión de modificaciones dirigidas a mejorar su robustez. Por ejemplo, la inclusión de

umbrales dinámicos podŕıa ser útil para encontrar las regiones a analizar, mientras que la inclusión

de información contextual y de textura podŕıa mejorar el agrupamiento. Algunas otras ĺıneas de

investigación consisten en la inclusión de la posición del sol respecto a las nubes para encontrar

sombras.

Una importante observación es que la metodoloǵıa se ha limitado para usar únicamente la

información proporcionada por los productos de MERIS o CHRIS de nivel 1. Este requisito

previo es una de las ventajas de los métodos propuestos. Sin embargo, en los experimentos,

hemos descubierto algunas dificultades de los clasificadores automáticos para distinguir superficie

brillantes a diferentes altitudes de las nubes, como por ejemplo montañas nevadas y el hielo en

latitudes altas. Estos problemas no pueden resolverse por completo con la información contenida

en el rango espectral cubierto por MERIS y CHRIS, pero los sensores con canales espectrales

estrechos más allá de 1 µm han demostrado una buena capacidad para detectar las nubes gracias

a la absorción del vapor de agua . Por esta razón, nuestras nuevas ĺıneas de investigación están
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vinculadas a la utilización de datos complementarios procedentes de diferentes sensores. Por

ejemplo, la presencia de canales en el infrarrojo térmico (TIR) permite la detección basada en

contrastes térmicos. Actualmente, estamos definiendo e implementando un sistema de detección

de nubes que combina la información procedente de los instrumentos AATSR y MERIS a bordo de

ENVISAT. La adquisición simultánea y similar resolución espacial permite la sinergia de MERIS

y AATSR. La inclusión de la banda de AATSR SWIR a 1.6 µm en el sistema de detección de

nubes es de suma importancia (McIntire and Simpson, 2002). También la presencia de canales en

el rango infrarrojo térmico permite la detección basada en contraste térmico (Simpson and Gobat,

1996; Papin et al., 2002) y en la variabilidad espacial sobre el mar (Martins et al., 2002).

Por otra parte, en el rango espectral de 1.38-1.50 µm, cirros y cúmulos bajos de nubes pueden

ser detectados, ya que las caracteŕısticas de la superficie se eliminan debido a la absorción adicional

de radiación solar por el vapor de agua de la atmósfera entre las nubes y la superficie (incluso

en presencia de hielo o nieve). La nueva generación de satélites, como los GMES Sentinel 2

y 3 (European Space Agency, 2007), incluyen bandas dedicadas espećıficamente definidas para

realizar una detección precisa de cirros. Actualmente, también estamos analizando las ventajas

de incluir la llamada banda de cirros (1,38 µm) en el sistema de detección de nubes en el marco

de los estudios preparatorios de la misión FLEX (Moreno, 2006).

Por último, cabe señalar que, a pesar de que se han propuesto y desarrollado técnicas con

aplicaciones de teledetección en mente, algunos algoritmos propuestos se puede aplicar a otros

campos relacionados de agrupamiento y clasificación de datos.

Relevancia de la Tesis

La aplicabilidad de la metodoloǵıa propuesta es crucial para completar con éxito el trabajo

realizado en esta Tesis. En este sentido, debemos destacar aqúı los siguientes logros.

La detección de nubes constituye en śı misma una oportunidad a nivel cient́ıfico y técnico,

lo que ha dado lugar a importantes publicaciones en el campo. Varias publicaciones abarcan los

temas más relevantes de esta Tesis:

• El preprocesado de datos de teledetección de sensores hiperespectrales y multiespectrales

ha dado lugar a diferentes algoritmos para la reducción del ruido en (Gómez-Chova et al.,

2006a; Gómez-Chova et al., 2008) y de corrección atmosférica en (Guanter et al., 2006a,

2007, 2008a).

• El método propuesto ha sido probado en (Gómez-Chova et al., 2005b, 2006c, 2005a) en

imágenes hiperespectrales de CHRIS con el fin de proponer y validar las metodoloǵıas de

detección de nubes en situaciones favorables de resolución espacial (34 m) y número de

bandas (62 canales).

• En (Gómez-Chova et al., 2005c, 2006d, 2007a) se llevó a cabo un estudio preliminar de
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detección de nubes con MERIS, analizando situaciones cŕıticas como por ejemplo la presencia

de hielo o nieve.

• Se han empleado series temporales para la detección de nubes en (Gómez-Chova et al.,

2006f, 2007c), clasificación subṕıxel a través de técnicas de unmixing (Zurita-Milla et al.,

2007), y clasificación de los datos de teledetección en (Camps-Valls et al., 2006b, 2008a).

• La teoŕıa de los métodos kernel utilizados en esta Tesis se basa en la labor llevada a cabo

en (Camps-Valls et al., 2004a, 2006d, 2008a).

• La utilización de técnicas semisupervisadas como la LapSVM y los kernel promedio ha

sido analizada en (Gómez-Chova et al., 2007b, 2008c) y (Gómez-Chova et al., 2008a, 2009),

respectivamente.

Los conocimientos adquiridos acerca de este campo de investigación multidisciplinar ha dado

lugar a la publicación de tres caṕıtulos en libros internacionales:

• Hyperspectral Image Classification with Kernels en “Kernel Methods in Bioengineering, Sig-

nal and Image Processing” (Bruzzone et al., 2007).

• Kernel Machines in Remote Sensing Image Classification en “Intelligent Systems: Tech-

niques and Applications” (Camps-Valls et al., 2008c).

• Kernel Mean for Semi-supervised Remote Sensing Data Classification en “Kernel methods

for Remote Sensing Data Analysis” (Gómez-Chova et al., 2009).

Por último, la presente Tesis se ha orientado tanto a la investigación cient́ıfica como al de-

sarrollo de herramientas técnicas innovadoras. Como consecuencia de ello, la Tesis también se

enmarca en tres contratos diferentes de la Agencia Espacial Europea (ESA):

• Development of CHRIS/PROBA modules for the BEAM toolbox (ESRIN Contract No.

20442/07/I-LG). Actualmente, el método presentado se está aplicando al sensor CHRIS

como parte del software Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM tool-

box1) para el tratamiento previo de datos de CHRIS. En particular, los métodos presentados

en la sección 4.1.2 y caṕıtulo 5 están siendo implementados como dos módulos independi-

entes de BEAM en los subproyectos “2.3 Noise Reduction Definition” y “2.4 Cloud Masking

Definition” del proyecto, que son gestionados por el autor de esta Tesis. La decisión de la

ESA de implementar los algoritmos derivados de este trabajo en el BEAM es, sin duda,

un logro significativo y demuestra también el interés y la aplicabilidad de la investigación

realizada.

1http://www.brockmann-consult.de/beam/
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• Atmospheric Corrections for Fluorescence Signal Retrieval (ESTEC Contract No. 20882/07/

NL/LvH). El conocimiento adquirido sobre la detección de nubes en imágenes hiperespec-

trales durante la labor llevada a cabo en esta Tesis se aplica en este proyecto (Guanter et al.,

2008b) para definir y aplicar un enmascaramiento de nubes para el sistema FLEX. Los

ṕıxeles con nubes deben ser enmascarado en los estudios de fluorescencia (Gómez-Chova et al.,

2006b; Guanter et al., 2007; Guanter et al., 2007; Alonso et al., 2008; Amorós-López et al.,

2008a), ya que pueden contaminar la medida de la señal de fluorescencia investigada. En

el subproyecto “3.1 Cloud screening method”, que es dirigido por el autor de esta Tesis, se

esta desarrollando un método para la obtención de máscaras de nubes probabiĺısticas, y se

está analizando en profundidad las mejoras esperadas asociadas a la presencia de bandas en

el SWIR que medirá la plataforma FLEX.

• MERIS/AATSR Synergy Algorithms for Cloud Screening, Aerosol Retrieval, and Atmo-

spheric Correction (ESRIN Contract No. 21090/07/I-LG). La extensión del trabajo de

esta Tesis para el instrumento MERIS está siendo investigada en el marco de este proyecto

(North et al., 2008). En el método propuesto en este proyecto se aprovecha la información

combinada de ambos sensores AATSR y MERIS con el fin de mejorar los productos actuales

de nubes de los dos sensores (Gómez-Chova et al., 2008b). El autor de esta Tesis es el in-

vestigador principal de este proyecto en la Universidad de Valencia y es responsable de la

definición de un algoritmo de detección de nubes que combine MERIS y AATSR. Además,

participa en el MERIS and AATSR Cloud Screening Working Group, que fue creado por la

ESA con el fin de aunar sus esfuerzos y utilizar los conocimientos técnicos existentes para

desarrollar nuevos métodos de detección de nubes.
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Soria-Olivas, E. (2006e). Enhancing decision-based neural networks through local competition. Neuro-

computing, 69(7-9):905–908.
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Gómez-Chova, L., Calpe-Maravilla, J., Bruzzone, L., and Camps-Valls, G. (2009). Kernel Methods for

Remote Sensing Data Analysis, chapter Mean Kernels for Semi-supervised Remote Sensing Image Clas-

sication. Wiley & Sons.
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Gómez-Chova, L., Camps-Valls, G., Calpe, J., Guanter, L., and Moreno, J. (2007a). Cloud-screening

algorithm for ENVISAT/MERIS multispectral images. IEEE Transactions on Geoscience and Remote

Sensing, 45(12):4105–4118.
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Guanter, L., Gómez-Chova, L., Alonso, L., Amorós, J., Vila, J., and Moreno, J. (2006b). Estimation of

solar-induced vegetation fluorescence from remote sensing data acquired during the SEN2FLEX cam-

paign. In Sobrino, J. A., editor, Second Recent Advances in Quantitative Remote Sensing, RAQRS’II,

pages 826–831. Universitat de Valencia.

Guanter, L., Gómez-Chova, L., Alonso, L., Amorós, J., Vila, J., and Moreno, J. (2006c). Estimation of solar-

induced vegetation fluorescence from remote sensing data acquired during the SEN2FLEX campaign.

In Sobrino, J. A., editor, 2nd International Symposium on Recent Advances in Quantitative Remote

Sensing: RAQRS’II, pages 826–831, Torrent, Valencia, Spain.

235



References
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Vila-Francés, J., Amorós-López, J., Alonso, L., Gómez-Chova, L., Calpe, J., del Valle-Tascón, S., and

Moreno, J. (2006a). Vegetation’s fluorescence spectrum and Kautsky effect measurements under natural

solar illumination. In Sobrino, J. A., editor, Second Recent Advances in Quantitative Remote Sensing,

RAQRS’II, pages 985–990. Universitat de Valencia.
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