New insights on the low T/W instability
in shocked accretion flows

How much rotation can
make a difference on the
explosion threshold and

NS birth?
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What is the interplay between SASI and
the corotation 'low T/|W|' instability?

Why is the prograde mode of SASI
destabilized by rotation?

Is the corotation instability similar to
isolated NS with differential rotation ?

Should we expect different
GW signatures from these
two instabilities?
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Spin-up or spin-down of the neutron star?

feore [HZ] (scaled from axisymmetric collapse)

(Kazeroni+17)

range of
NS spin
at birth

For a strong rotation
rate, the corotation
instability decelerates
the neutron star by
less than 30%.



Physical insight from an experimental analogue of SASI
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Dynamics of water Dynamics of the gas
in the fountain In the supernova core

diameter 40cm €—— 1000000 x bigger =3 diameter 400km
3s/oscillation @ — 100 x faster > 0.03s/oscillation




Increasing the rotation rate:
continuous transition from SASI to the corotation instability
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the rotation period is gradually decreased (205s - 62s)
the flow rate is gradually decreased (1.1 L/s = 0.59 L/s)

corotation radius (PIV)

—>the gravitational wave
', spial frequency signature of the low T/|W]|

s instability may be hard to
‘ disentangle from the SASI
' oscillations (Kuroda+14)
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Robust spiral mode driven at the corotation radius (~20% Kepler)
Which mechanism? acoustic over-reflection or vortical-acoustic coupling ?

Q ~ Rns\? Radial accretion enforces
ONs R differential rotation

corotation-enhanced SASI:
-weak jump = weak outer acoustic reflection

-the growth time scales like the advection time

Corotation instability with subsonic accretion

classical corotation instability in astrophysics:
-neutron star rotating differentially ("low T/|W|")
(Shibata+02, Passamonti & Andersson 15)

-keplerian torus with a reflecting edge
(Papaloizou & Pringle 84, Goldreich & Narayan 85)
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Experimental growth rate and oscillation period
compared to shallow water modelling: a hint for an advective mechanism
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—perturbative analysis [ -excellent modelling of the oscillation frequency
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-systematic offset of the experimental growth rate
expected phase mixing of the dragged vorticity
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rotation frequency (rad/s) —> at odds with the idea of a transition to an acoustic corotation instability?



. . . . uniform specific
Compact formulation of the perturbative problem with rotation angular momentum

L =r*Q(r) = cte
O0H

Bt +V.(Hv) = mass conservation
Differential system for the linearized perturbations

ot

Doppler shifted frequency s m2L, same as in a cylindrical flow (Yamasaki & Foglizzo 08)
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Rotation effect in shallow water equations
IS similar to gas dynamics
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The vortical-acoustic coupling 9y depends on - the stationary flow gradients
- the relative phase of advected and acoustic perturbations



Wronskien resolution: convolution of the acoustic solution with the source term
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advective-acoustic coupling shock boundary condition boundary
condition

The Doppler shifted frequency ' =w — m—2L affects the phase mixing between the source and the acoustic wave
/i

The frequency of the prograde mode is locally decreased by the doppler shift: the decrease of w’rvis favourable to
the advective-acoustic coupling as in Sheck+08 and Foglizzo 09 without rotation.

The corotation condition o'=0 favours the advective-acoustic coupling: the stationary phase prevents phase mixing
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Analogue of SASI modes without rotation: Fry, R;;/Rs
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eigenfrequencies ~multiples of 2x/tq suggest that the

advective-acoustic coupling is dominated by the lower boundary
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Comparison of a shocked rotating flow and a trapped acoustic mode

Fr1=5, R=3, m=1
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normal shock condition: vorticity + pressure perturbation

T 2n

A - as in Yamasaki & Foglizzo 08, the growth rate of the prograde mode increases
e L with the rotation rate

B : - a corotation radius can exist for rotation rates as low as 3% Vieper atr-
(T/W~0.05%)

- a corotation radius is not a sufficient condition for instability (e.g. Fr,=3, R=2)

- the transition from SASI to an instability with a corotation is very smooth
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VIV ad-hoc shock condition: total acoustic reflexion, no vorticity

Kepler

o g, el - when acoustic reflexion at the shock is total, the existence of the corotation

radius is a sufficient condition for instability: similar to differentialy rotating NS
(Watts+05, Passamonti & Andersson 15, Yoshida & Saijo 17)

- a corotation radius can exist for rotation rates as low as 6% Vieper at r-
(T/W~0.02%)

- however, the growth rate of this corotation instability seems loosely correlated
with the growth rate of the shocked flow.
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Acoustic over-reflection and corotation
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timescale

Growth time: hint for the advection time to the corotation radius ~ Qoe’™ + Roe'™ =1
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Towards higher Reynolds numbers

with Gilles Durand

Diameter 3m50, Reynolds x 10
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Conclusions

2D Cylindrical gas dynamics (Kazeroni+17) suggests that

-SASI can account for pulsar rotation periods down to ~50ms

-for rotation rates >100Hz the 'corotation instability' decreases the pulsar spin by <30%
Both instability regimes are captured in the supernova fountain experiment

&) -as the injected angular momentum increases, the prograde spiral mode of SAS| seems to connect
) @ smoothly to the 'corotation instability’

@ -the offset growth rate inthe experiment suggests advection may play a dominant role even when a
-

¥ corotation is present
The shallow water model offers a simple analytical framework to study the interplay of SASI & corotation
-equations are both simple and connected to a real experiment

) -the rotational destabilization of the prograde mode of SASIcan be explained by its lower doppler
shifted frequency which benefits to the advective-acoustic coupling

. -a classical corotation instability is recovered as a purely acoustic process, despite radial advection,

if the shock is artificially replaced by a total acoustic reflection and no advected vorticity

-the existence of a corotation radius does produce an acoustic over-reflection but this is not a
sufficient condition for instability in a shocked flow

-the prograde mode of SASIcan be more unstable than an acoustic corotation instability:
the stationary phase at the corotation radius favours a strong advective-acoustic coupling

-the growth time scales like the advection time from the shock to the corotation radius
— A sharp transition between SASIand the 'low T/|W]|' instability in a shocked flow is not expected

- These results have to be tested in non adiabatic gas dynamics including cooling and the protoneutron
star interior which may develop (or not) a classical low T/W instability



