New insights on the low T/W instability in shocked accretion flows

Blondin & Mezzacappa 07

Why is the prograde mode of SASI destabilized by rotation?

How much rotation can make a difference on the explosion threshold and NS birth?

Should we expect different GW signatures from these two instabilities?

What is the interplay between SASI and the corotation 'low T/|W|' instability?

Is the corotation instability similar to isolated NS with differential rotation?

Thierry Foglizzo, Rémi Kazeroni*, Jérôme Guilet, Matthias Gonzalez, Gilles Durand, Bruno Pagani CEA Saclay, *MPA Garching

Physical insight from an experimental analogue of SASI

Inviscid shallow water is analogue to an isentropic gas $\gamma=2$

Increasing the rotation rate: continuous transition from SASI to the corotation instability

the rotation period is gradually decreased (205s \rightarrow 62s) the flow rate is gradually decreased (1.1 L/s \rightarrow 0.59 L/s)

2.5

2.0

1.5

1.0 0.5 0.0 spiral frequency 2.73 rad/s

Robust spiral mode driven at the corotation radius (~20% Kepler) Which mechanism? acoustic over-reflection or vortical-acoustic coupling ?

$$rac{\Omega}{\Omega_{
m NS}} \propto \left(rac{R_{
m NS}}{R}
ight)^2 \; {
m Radial} \; {
m accretion} \; {
m enforces} \; {
m differential} \; {
m rotation}$$

corotation-enhanced SASI:

-weak jump = weak outer acoustic reflection-the growth time scales like the advection time

classical corotation instability in astrophysics: -neutron star rotating differentially ("low T/|W|") (Shibata+02, Passamonti & Andersson 15) -keplerian torus with a reflecting edge (Papaloizou & Pringle 84, Goldreich & Narayan 85) I velocity 3.8

Corotation instability with subsonic accretion

Experimental growth rate and oscillation period compared to shallow water modelling: a hint for an advective mechanism

-excellent modelling of the oscillation frequency

limited by the measured radial width of the hydraulic jump

-systematic offset of the experimental growth rate

expected phase mixing of the dragged vorticity

 \rightarrow at odds with the idea of a transition to an acoustic corotation instability?

Compact formulation of the perturbative problem with rotation

uniform specific angular momentum $-L \equiv r^2 \Omega(r) = {
m cte}$

+ boundary conditions from conservation equations

$$\text{-at the shock/jump} \quad \left\{ \begin{array}{c} (\delta w_z)_{\text{sh}} = -\frac{im}{r_{\text{sh}}v_{\text{sh}}} \left(1 - \frac{v_{\text{sh}}}{v_1}\right) \Delta \zeta \left[-i\omega' v_1 \left(1 - \frac{v_{\text{sh}}}{v_1}\right) + \frac{\partial \Phi}{\partial r} - \frac{v_1 v_{\text{sh}}}{r_{\text{sh}}} - \frac{L^2}{r_{\text{sh}}^3}\right], \\ (r\delta v_{\theta})_{\text{sh}} = im \left(1 - \frac{v_{\text{sh}}}{v_1}\right) v_1 \Delta \zeta, \\ \frac{d}{dX} (r\delta \tilde{v}_{\theta})_{\text{sh}} = -\frac{im}{v_{\text{sh}}^2} \left(1 - \frac{v_{\text{sh}}}{v_1}\right) \Delta \zeta \left[-i\omega' v_1 \left(1 - 2\frac{v_{\text{sh}}}{v_1}\right) + \frac{\partial \Phi}{\partial r} - \frac{v_1 v_{\text{sh}}}{r_{\text{sh}}} - \frac{L^2}{r_{\text{sh}}^3}\right], \\ \text{-at the inner boundary} \quad v_*^2 \frac{d}{dX} \delta (r\delta \tilde{v}_{\theta}) = i\omega' \text{Fr}_*^{\frac{4}{3}} (r\delta \tilde{v}_{\theta})_* + \left(1 - \text{Fr}_*^{\frac{4}{3}}\right) (rv_r \delta \tilde{w})_* \end{array} \right.$$

Rotation effect in shallow water equations is similar to gas dynamics

The vortical-acoustic coupling Q_{∇} depends on - the stationary flow gradients - the relative phase of advected and acoustic perturbations

Wronskien resolution: convolution of the acoustic solution with the source term

$$\begin{aligned} & \text{acoustic solution satisfying the} \quad \left\{ \frac{\mathrm{d}^2}{\mathrm{d}X^2} + \frac{\omega'^2 - \frac{m^2}{r^2}(c^2 - v_r^2)}{v_r^2 c^2} \right\} r \delta \tilde{v}_{\theta}^0 = 0, \\ & \text{inner boundary condition} \qquad v_*^2 \frac{\mathrm{d}}{\mathrm{d}X} \delta (r \delta \tilde{v}_{\theta}^0) = i\omega' \mathrm{Fr}_*^{\frac{1}{2}} (r \delta \tilde{v}_{\theta}^0)_*, \\ & \text{definition of the perturbed mass flux} \qquad h^0 \equiv \frac{\delta v_r}{v_r} + \frac{\delta H}{H} = \frac{1 - \mathrm{Fr}^2}{i m v_r} \mathrm{e}^{f_{\mathrm{sh}} - i\omega' \frac{v_r}{1 - \mathrm{Fr}^2} \frac{\mathrm{d}}{\mathrm{d}r}} \left(\mathrm{e}^{f_{\mathrm{sh}} i\omega' \frac{v_r}{1 - \mathrm{Fr}^2} \frac{\mathrm{d}}{\mathrm{d}r}} r \delta v_{\theta}^0 \right). \\ & \text{acoustic solution} \qquad \text{advected phase} \\ & \text{acoustic solution} \qquad \text{of the source term} \\ & \int_*^{\mathrm{sh}} \left(h^0 + \frac{\omega'}{mc^2} r \delta v_{\theta}^0 \right) \frac{\mathrm{e}^{\int_* i\omega' \frac{1 + \mathrm{Fr}^2}{1 - \mathrm{Fr}^2} \frac{\mathrm{d}r}{v_r}}{1 - \mathrm{Fr}^2} \frac{\mathrm{d}r}{v_r} \frac{\mathrm{d}r}{v_r} = -\frac{\frac{\omega'}{mv_{\mathrm{sh}}} (r \delta v_{\theta})_{\mathrm{sh}}^0 + v_1 h_{\mathrm{sh}}^0}{\frac{\partial \Phi}{\partial r} - \frac{v_1 v_{\mathrm{sh}}}{r_{\mathrm{sh}}} - \frac{L^2}{r_{\mathrm{sh}}^2}} - i\omega' v_1 \left(1 - \frac{H_1}{H_{\mathrm{sh}}} \right)}{\mathrm{inner}} \mathrm{e}^{\int_*^{\mathrm{sh}} i\omega' \frac{1 + \mathrm{Fr}^2}{1 - \mathrm{Fr}^2} \frac{\mathrm{d}r}{v_r}} - \frac{h_{\omega'_*}^0}{i\omega'_*}. \\ & \text{advective-acoustic coupling} \qquad \text{shock boundary condition} \qquad \text{boundary condition} \end{aligned}$$

The Doppler shifted frequency $\omega' \equiv \omega - \frac{mL}{r^2}$ affects the phase mixing between the source and the acoustic wave The frequency of the prograde mode is locally decreased by the doppler shift: the decrease of $\omega' \tau_{\nabla}$ is favourable to the advective-acoustic coupling as in Sheck+08 and Foglizzo 09 without rotation.

The corotation condition $\omega'=0$ favours the advective-acoustic coupling: the stationary phase prevents phase mixing

Comparison of a shocked rotating flow and a trapped acoustic mode

-1+

0.2

0.4

v /v Kepler

0.6

0.8

normal shock condition: vorticity + pressure perturbation

- as in Yamasaki & Foglizzo 08, the growth rate of the prograde mode increases with the rotation rate

- a corotation radius can exist for rotation rates as low as 3% v_{Kepler} at r_{*} (T/W~0.05%)

- a corotation radius is not a sufficient condition for instability (e.g. $Fr_1=3$, R=2)

- the transition from SASI to an instability with a corotation is very smooth

ad-hoc shock condition: total acoustic reflexion, no vorticity

- when acoustic reflexion at the shock is total, the existence of the corotation radius is a sufficient condition for instability: similar to differentialy rotating NS (Watts+05, Passamonti & Andersson 15, Yoshida & Saijo 17)

- a corotation radius can exist for rotation rates as low as 6% v_{Kepler} at r_{\star} (T/W~0.02%)

- however, the growth rate of this corotation instability seems loosely correlated with the growth rate of the shocked flow.

- estimated growth rate:

$$\frac{\omega_i}{\Omega_{\rm sh}} \propto (2.2 \pm 0.4) \left(\frac{\Omega_{\rm sh}}{\Omega_*}\right)^{\frac{1}{2}} \left[1 - \frac{\Omega_{\rm corot}}{\Omega_*}\right]$$

Acoustic over-reflection and corotation

^z↑

$$Q_{0}e^{i\omega\tau_{Q}} + \mathcal{R}_{0}e^{i\omega\tau_{R}} = 1$$

Ingoing acoustic waves are over-refected as soon as a corotation radius stands within the flow boundaries.

This takes place for moderate centrifugal support (9-25% v_{Kepler})

However, this over-reflection is insufficient to compensate for the acoustic damping at the shock.

The advective-acoustic cycle Q is strongly destabilized by rotation. The acoustic cycle can add a constructive and sometimes decisive contribution.

In the astrophysical gas with neutrino cooling, some additional acoustic damping is expected upon reflection in the inner region of the flow (Bruno Pagani)

Growth time: hint for the advection time to the corotation radius

 $\mathcal{Q}_0 e^{i\omega\tau_{\mathcal{Q}}} + \mathcal{R}_0 e^{i\omega\tau_{\mathcal{R}}} = 1$

Towards higher Reynolds numbers with Gilles Durand Diameter 3m50, Reynolds x 10

Conclusions

2D Cylindrical gas dynamics (Kazeroni+17) suggests that

-SASI can account for pulsar rotation periods down to ~50ms

-for rotation rates >100Hz the 'corotation instability' decreases the pulsar spin by <30%

Both instability regimes are captured in the supernova fountain experiment

-the offset growth rate in the experiment suggests advection may play a dominant role even when a corotation is present

The shallow water model offers a simple analytical framework to study the interplay of SASI & corotation

-equations are both simple and connected to a real experiment -the rotational destabilization of the prograde mode of SASI can be explained by its lower doppler shifted frequency which benefits to the advective-acoustic coupling

-a classical corotation instability is recovered as a purely acoustic process, despite radial advection, if the shock is artificially replaced by a total acoustic reflection and no advected vorticity

-the existence of a corotation radius does produce an acoustic over-reflection but this is not a sufficient condition for instability in a shocked flow

-the prograde mode of SASI can be more unstable than an acoustic corotation instability: the stationary phase at the corotation radius favours a strong advective-acoustic coupling -the growth time scales like the advection time from the shock to the corotation radius

 \rightarrow A sharp transition between SASI and the 'low T/|W|' instability in a shocked flow is not expected

→These results have to be tested in non adiabatic gas dynamics including cooling and the protoneutron star interior which may develop (or not) a classical low T/W instability

