Pulsar glitch dynamics in general relativity

Jérôme Novak (jerome.novak@obspm.fr)

Laboratoire Univers et Théories (LUTH) CNRS / Observatoire de Paris / Université Paris-Diderot

Sourie, Novak, Oertel & Chamel Phys. Rev. D **93**, 083004 (2016) & Month. Not. Roy. Astron. Soc. **464**, 4641 (2017)

CoCoNuT meeting 2017, Garching, October, 27th

PULSAR GLITCHES

Kaspi & Gavriil, ApJ, 2003

- Angular momentum loss through emission of electromagnetic waves
- \Rightarrow slowing down of the pulsar with

 $\dot{P} \sim 10^{-21} - 10^{-10}$

tiny changes in this slowing down = glitches

PULSAR GLITCHES

Kaspi & Gavriil, ApJ, 2003

- Angular momentum loss through emission of electromagnetic waves
- \Rightarrow slowing down of the pulsar with

 $\dot{P} \sim 10^{-21} - 10^{-10}$

tiny changes in this slowing down = glitches

Pulsar glitch observations

Wong, Backer & Lyne, ApJ, 2001

• glitch **amplitude** are low: $\Delta\Omega/\Omega \sim 10^{-11} - 10^{-5}$

• rise time is quite short :

 $\boxed{\tau_{\rm r} < 30~{\rm s}}$ <-- Vela

• exponential **relaxation** during several days, up to months.

 \Rightarrow glitches are driven by **internal processes**

GIANT GLITCHES

- quasi-periodic
- narrow amplitude distribution

STANDARD GLITCHES

randomly spaced in timevarious amplitudes

DIFFERENT GLITCH MODELS

 \Rightarrow moment of inertia reduction, with crustquakes \Rightarrow transfer of angular momentum between two components, with superfluidity

GIANT GLITCHES

- quasi-periodic
- narrow amplitude distribution

TANDARD GLITCHES

randomly spaced in time
 various amplitudes

DIFFERENT GLITCH MODELS

⇒moment of inertia reduction, with crustquakes ⇒transfer of angular momentum between two components, with superfluidity

GIANT GLITCHES

- quasi-periodic
- narrow amplitude distribution

STANDARD GLITCHES

- randomly spaced in time
- various amplitudes

DIFFERENT GLITCH MODELS

⇒moment of inertia reduction, with crustquakes ⇒transfer of angular momentum between two components, with superfluidity

GIANT GLITCHES

- quasi-periodic
- narrow amplitude distribution

STANDARD GLITCHES

- randomly spaced in time
- various amplitudes

Different glitch models

 \Rightarrow moment of inertia reduction, with crustquakes \Rightarrow transfer of angular momentum between two components, with superfluidity

NUMERICAL MODELS ROTATING NEUTRON STARS IN GR

HYPOTHESES

- General relativity to describe gravity
- Need to describe rotation \Rightarrow axisymmetry
- Glitch time-scale \gg hydro time-scale \Rightarrow stationarity

⇒Contrary to spherical symmetry no matching to any known vacuum solution is possible (no Birkhoff theorem). ⇒Only boundary condition at $r \to \infty$: flat metric.

Numerical solution obtained using spectral methods (Grandclément & Novak 2009) and the LORENE library (http://lorene.obspm.fr).

ANDERSON & ITOH 1975

- Superfluid vortices can pin into the crust nuclei
- When a critical threshold is reached in terms of $\delta\Omega = \Omega_n \Omega_p$, some vortices unpin and can freely move in radial direction
- \Rightarrow Transfer of angular momentum between both fluids and glitch

ANDERSON & ITOH 1975

time

- Superfluid vortices can pin into the crust nuclei
- When a critical threshold is reached in terms of $\delta\Omega = \Omega_n \Omega_p$, some vortices unpin and can freely move in radial direction
- \Rightarrow Transfer of angular momentum between both fluids and glitch

ANDERSON & ITOH 1975

- Superfluid vortices can pin into the crust nuclei
- When a critical threshold is reached in terms of $\delta\Omega = \Omega_n \Omega_p$, some vortices unpin and can freely move in radial direction
- \Rightarrow Transfer of angular momentum between both fluids and glitch

ANDERSON & ITOH 1975

- Superfluid vortices can pin into the crust nuclei
- When a critical threshold is reached in terms of $\delta\Omega = \Omega_n \Omega_p$, some vortices unpin and can freely move in radial direction
- \Rightarrow Transfer of angular momentum between both fluids and glitch

PRIX, NOVAK & COMER 2005

EQUILIBRIUM CONFIGURATIONS:

- uniform composition : $n, p, e^ \rightsquigarrow$ crust is neglected
- rigid rotation : • Ω_n and $\Omega_p = \text{const.}$
- stationary and axisymmetric spacetime + isolated star.
- $T \ll T_F$, and no magnetic field.
- dissipation effects are neglected.

Hypotheses

Prix, Novak & Comer 2005

EQUILIBRIUM CONFIGURATIONS:

- uniform composition : $n, p, e^ \rightsquigarrow$ crust is neglected
- rigid rotation : • Ω_n and $\Omega_p = \text{const.}$
- stationary and axisymmetric spacetime + isolated star.
- ► $T \ll T_F$, and no magnetic field.
- dissipation effects are neglected.

CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998

System made of two perfect fluids :

- superfluid neutrons $\rightarrow n_{\rm n}^{\,\alpha} = n_{\rm n} u_{\rm n}^{\,\alpha}$
- protons & electrons

$$\rightarrow n_{\rm p}^{\alpha} = n_{\rm p} u_{\rm p}^{\alpha},$$

$$\rightarrow n_{\rm p}^{\alpha} = n_{\rm p} u_{\rm p}^{\alpha}.$$

Energy-momentum tensor

1 fluid : $T_{\alpha\beta} = (\mathcal{E} + P) u_{\alpha} u_{\beta} + P g_{\alpha\beta}$

CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998

System made of two perfect fluids :

- superfluid neutrons $\rightarrow n_{\rm n}^{\,\alpha} = n_{\rm n} u_{\rm n}^{\,\alpha}$
- protons & electrons

ENERGY-MOMENTUM TENSOR

1 fluid:

$$T_{\alpha\beta} = \underbrace{(\mathcal{E} + P) u_{\alpha} u_{\beta}}_{n_{\alpha} p_{\beta}} + P g_{\alpha\beta}$$

CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998

System made of two perfect fluids :

- superfluid neutrons $\rightarrow n_{\rm n}^{\,\alpha} = n_{\rm n} u_{\rm n}^{\,\alpha}$
- protons & electrons

$$\rightarrow n_{\rm p}^{\alpha} = n_{\rm p} u_{\rm p}^{\alpha}.$$

Energy-momentum tensor

 $2 \; fluids: \qquad \qquad T_{lphaeta} = n_{\mathrm{n}lpha} p^{\mathrm{n}}_{eta} + n_{\mathrm{p}lpha} p^{\mathrm{p}}_{eta} + \Psi g_{lphaeta}$

CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998

System made of two perfect fluids :

- superfluid neutrons $\rightarrow n_{\rm n}^{\,\alpha} = n_{\rm n} u_{\rm n}^{\,\alpha}$
- protons & electrons

$$\rightarrow n_{\rm p}^{\alpha} = n_{\rm p} u_{\rm p}^{\alpha},$$

$$\rightarrow n_{\rm p}^{\alpha} = n_{\rm p} u_{\rm p}^{\alpha}.$$

ENERGY-MOMENTUM TENSOR

2 fluids:

$$\Gamma_{\alpha\beta} = n_{n\alpha}p_{\beta}^{n} + n_{p\alpha}p_{\beta}^{p} + \Psi g_{\alpha\beta}
\hookrightarrow \text{ conjugate momenta}$$

$$\begin{cases} p_{\alpha}^{n} \propto u_{\alpha}^{n} \\ p_{\alpha}^{p} \propto u_{\alpha}^{p} \end{cases}$$
without entrainment

CARTER 1989; CARTER & LANGLOIS 1998; LANGLOIS, SEDRAKIAN & CARTER 1998

System made of two perfect fluids :

- superfluid neutrons $\rightarrow n_{\rm n}^{\,\alpha} = n_{\rm n} u_{\rm n}^{\,\alpha}$
- protons & electrons

ENERGY-MOMENTUM TENSOR

2 fluids :

$$T_{\alpha\beta} = n_{n\alpha}p_{\beta}^{n} + n_{p\alpha}p_{\beta}^{p} + \Psi g_{\alpha\beta}$$
$$\hookrightarrow \text{ conjugate momenta}$$

Entrainment matrix:

$$\begin{cases} p_{\alpha}^{n} \propto u_{\alpha}^{n} \\ p_{\alpha}^{p} \propto u_{\alpha}^{p} \\ without \text{ entrainment} \end{cases} \longrightarrow \begin{cases} p_{\alpha}^{n} = \mathcal{K}^{nn} n_{\alpha}^{n} + \mathcal{K}^{np} n_{\alpha}^{p} \\ p_{\alpha}^{p} = \mathcal{K}^{pn} n_{\alpha}^{n} + \mathcal{K}^{pp} n_{\alpha}^{p} \\ \Rightarrow \text{ entrainment effect} \end{cases}$$

NEW, REALISTIC EQUATIONS OF STATE

$$\mathcal{E}\left(n_{\mathrm{n}}, n_{\mathrm{p}}, \Delta^{2}\right) \iff \Psi\left(\mu^{\mathrm{n}}, \mu^{\mathrm{p}}, \Delta^{2}\right)$$

Relativistic mean field model :

nucleon - nucleon interactions \Leftrightarrow effective meson exchange

	DDH Typel & Wolter (1999)	DDHð Avancini et al. (2009)	exp. constraints Oertel et al. (2017)	[units]
n_0	0.153	0.153	0.158 ± 0.005	$[\text{ fm}^{-3}]$
B_{sat}	16.3	16.3	15.9 ± 0.3	[MeV]
K	240	240	240 ± 40	[MeV]
J	32.0	25.1	31.7 ± 3.2	[MeV]
L	55	44	58.7 ± 28.1	[MeV]
$M_{\rm G}^{\rm max,0}$	2.08	2.16	$\gtrsim 2$	$[~{\rm M}_\odot~]$

ENTRAINMENT VS. LENSE-THIRRING The (Komar) angular momentum J_X is such that

 $\mathrm{d}J_X = I_{XX} \,\mathrm{d}\Omega_X + I_{XY} \,\mathrm{d}\Omega_Y$

Total coupling coefficient $\left| \hat{\varepsilon}_X = I_{XY} / (I_{XX} + I_{XY}) \right|$ depends

ENTRAINMENT

• due to strong interaction between nucleons

• measured with the global entrainment coefficient $\tilde{\varepsilon}$ (integration of ε over the star)

LENSE-THIRRING EFFECT

- due to GR dragging of inertial frames by each fluid
- measured with the metric term $g_{t\varphi}$

MUTUAL FRICTION

No external torque \Rightarrow exchange of angular momentum between neutrons and protons through mutual friction torque Γ_{mf}

From Langlois *et al.* (1998), with straight vortices parallel to the rotation axis: interplay between

- Magnus force due to neutron fluid
- drag force caused by charged particles

$$\Gamma_{\rm mf} = -\int \frac{\mathcal{R}}{1+\mathcal{R}^2} \Gamma_{\rm n} n_{\rm n} \varpi_{\rm n} \chi_{\perp}^2 \, \mathrm{d}\Sigma \times (\Omega_{\rm n} - \Omega_{\rm p}) = -\bar{\mathcal{B}} \times 2\hat{I}_{\rm n} \Omega_{\rm n} \zeta \times \delta\Omega$$

RISE TIME

Sidery et al. 2010

Evolution equations:

$$\begin{cases} \dot{J}_{\rm n} &= +\Gamma_{\rm mf}, \\ \dot{J}_{\rm p} &= -\Gamma_{\rm mf}. \end{cases} \longrightarrow \frac{\delta \dot{\Omega}}{\delta \Omega} = -\frac{\hat{I}\hat{I}_{\rm n}}{I_{\rm nn}I_{\rm pp} - I_{\rm np}^{-2}} \times 2\bar{\mathcal{B}}\zeta\Omega_{\rm n}$$

 \Rightarrow Analytic approximation:

$$\delta \Omega(t) = \delta \Omega_0 \times \exp\left(-\frac{t}{\tau_{\rm r}}\right)$$

 \Rightarrow Numerical modeling :

 $\Omega_{\rm n}(t)$ and $\Omega_{\rm p}(t)$ are determined by integration from $\Omega_{\rm n,0} > \Omega_{\rm p,0}$

$$\tau_{\rm r} = \frac{\hat{I}_{\rm p}}{\hat{I}} \times \frac{1 - \hat{\varepsilon}_{\rm p} - \hat{\varepsilon}_{\rm n}}{2\zeta \bar{\mathcal{B}} \Omega_{\rm n}}$$

PARAMETERS $M_G, \Omega, \Delta\Omega/\Omega, \operatorname{EoS}, \bar{\mathcal{B}}$

TIME EVOLUTION

$$\Delta \Omega / \Omega = 10^{-6}, \ \Omega_{\rm n}^f = \Omega_{\rm p}^f = 2\pi \times 11.19 \text{ Hz},$$

 $M_{\rm G} = 1.4 \text{ M}_{\odot} \& \ \bar{\mathcal{B}} = 10^{-4}$

--→ Rise times can be estimated with high accuracy without time integration, using only equilibrium models.

VELA PULSAR

 \hookrightarrow a glitch event is a quasi-stationary process, from the hydro viewpoint

VELA PULSAR

 \hookrightarrow a glitch event is a quasi-stationary process, from the hydro viewpoint

INFLUENCE OF GENERAL RELATIVITY

 \Rightarrow impact of general relativity on glitch dynamics can be quite strong!

CONCLUSIONS - PERSPECTIVES

- Precise models of rotating neutron stars in GR
- Realistic EoS for 2 fluids, including entrainment
- Quasi-stationary approach, with analytic formula for rise time
- Additional coupling between fluids due to Lense-Thirring effect
- Strong overall influence of GR on glitch rise time

For the future:

- Looking for accurate data to constrain rise time
- Local modeling of glitch unpinning and movement
- Taking into account crust in global models?

References

Anderson, P.W. and Itoh, N., "Pulsar glitches and restlessness as a hard superfluidity phenomenon", Nature, 256, 25 (1975).

- Bonazzola, S., Gourgoulhon, E., Salgado, M., and Marck, J.-A., "Axisymmetric rotating relativistic bodies: a new numerical approach for "exact" solutions", *Astron. & Astrophys.*, **278**, 421 (1993).
 - Carter, B., "Covariant theory of conductivity in ideal fluid or solid media", *Lect. Notes Math.*, **1385** (1989).
 - "Relativistic models for superconducting-superfluid mixtures", Nucl. Phys. B, 531, 478 (1998).
 - Grandclément, Ph. and Novak, J., "Spectral Methods for numerical Relativity", *Liv. Rev. Relat.*, **12**, 1 (2009).
 - Kaspi, V.M. and Gavriil, F.P., "A second glitch from the anomalous X-ray pulsar 1RXS J170849.0-4000910", Astrophys. J., 576, L71 (2003).
 - Langlois, D., Sedrakian, D. and Carter, B., "Differential rotation of relativistic superfluid in neutron stars", Month. Not. Roy. Astron. Soc., 297, 1189 (1998).
 - "Relativistic numerical models for stationary superfluid neutron stars", *Phys. Rev. D* **71**, 043005 (2005).
 - Swesty, F.D., "Thermodynamically Consistent Interpolation for Equation of State Tables", J. Comp. Phys., **127**, 118 (1996).
 - Wang, J., Wang, N., Tong, H. and Yuan, J., "Recent glitches detected in the Crab pulsar", Astrophys. Space Sci., 340, 307 (2012).
 - Wong, T., Backer, D.C. and Lyne, A.G., "Observations of a series of six recent glitches in the Crab pulsar", *Astrophys. J.*, **548**, 447 (2001).

ENTRAINMENT

WITH ENTRAINMENT

$$p_X^\alpha = \mathcal{K}^{XX} n_X u_X^\alpha + \mathcal{K}^{XY} n_Y u_Y^\alpha$$

Dynamic effective mass:

$$p_X^i = \tilde{m}_X \ u_X^i \qquad i \in \{1, 2, 3\}$$

in the fluid-Y rest-frame

ENTRAINMENT

WITH ENTRAINMENT

$$p_X^{\alpha} = \mathcal{K}^{XX} n_X u_X^{\alpha} + \mathcal{K}^{XY} n_Y u_Y^{\alpha}$$

Dynamic effective mass:

$$p_X^i = \tilde{m}_X \ u_X^i \qquad i \in \{1, 2, 3\}$$

in the fluid- \boldsymbol{Y} rest-frame

ENTRAINMENT

WITH ENTRAINMENT

$$p_X^{\alpha} = \mathcal{K}^{XX} n_X u_X^{\alpha} + \mathcal{K}^{XY} n_Y u_Y^{\alpha}$$

Dynamic effective mass:

$$p_X^i = \tilde{m}_X \ u_X^i \qquad i \in \{1, 2, 3\}$$

in the fluid- \boldsymbol{Y} rest-frame

