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Pulsar glitch observations

Wong, Backer & Lyne, ApJ, 2001

glitch amplitude are low:

∆Ω/Ω ∼ 10−11 − 10−5

rise time is quite short :

τr < 30 s L99 Vela

exponential relaxation
during several days, up to
months.

⇒ glitches are driven by internal processes



Different glitch types
Wang et al., Ap&SS, 2012
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Different glitch models

⇒moment of inertia reduction, with crustquakes
⇒transfer of angular momentum between two components, with
superfluidity
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Numerical models
Rotating neutron stars in GR

hypotheses

General relativity to describe gravity

Need to describe rotation ⇒ axisymmetry

Glitch time-scale � hydro time-scale ⇒ stationarity

⇒Contrary to spherical symmetry no matching to any known
vacuum solution is possible (no Birkhoff theorem).
⇒Only boundary condition at r →∞: flat metric.

Numerical solution obtained using spectral methods (Grandclément

& Novak 2009) and the lorene library (http://lorene.obspm.fr).



Two-fluid approach
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When a critical threshold is reached in terms of
δΩ = Ωn − Ωp, some vortices unpin and can freely move in
radial direction

⇒ Transfer of angular momentum between both fluids and
glitch
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Hypotheses
Prix, Novak & Comer 2005

Equilibrium configurations:

I uniform composition : n, p, e−

   crust is neglected

I rigid rotation :

   Ωn and Ωp = const.

I stationary and axisymmetric
spacetime + isolated star.

I T � TF , and no magnetic
field.

I dissipation effects are
neglected.
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two-fluid relativistic
hydrodynamics

Carter 1989; Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998

System made of two perfect fluids :

superfluid neutrons → nαn = nnu
α
n ,

protons & electrons → nαp = npu
α
p .

Energy-momentum tensor

1 fluid : Tαβ = (E + P )uαuβ + Pgαβ
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Entrainment matrix:

−→
{
pn
α = Knnnn

α +Knpnp
α

pp
α = Kpnnn

α +Kppnp
α

⇒ entrainment effect



New, realistic equations of state

E
(
nn, np,∆

2
)
←→ Ψ

(
µn, µp,∆2

)
Relativistic mean field model :

nucleon - nucleon interactions ⇔ effective meson exchange

DDH DDHδ exp. constraints [ units ]
Typel & Wolter (1999) Avancini et al. (2009) Oertel et al. (2017)

n0 0.153 0.153 0.158± 0.005 [ fm−3 ]

Bsat 16.3 16.3 15.9± 0.3 [ MeV ]

K 240 240 240± 40 [ MeV ]

J 32.0 25.1 31.7± 3.2 [ MeV ]

L 55 44 58.7± 28.1 [ MeV ]

Mmax,0
G 2.08 2.16 & 2 [ M� ]



Numerical results
entrainment vs. Lense-Thirring

The (Komar) angular momentum JX is such that

dJX = IXX dΩX + IXY dΩY

Total coupling coefficient ε̂X = IXY / (IXX + IXY ) depends

entrainment
• due to strong interaction between
nucleons
• measured with the global entrainment
coefficient ε̃ (integration of ε over the
star)

Lense-Thirring effect
• due to GR dragging of inertial frames
by each fluid
• measured with the metric term gtϕ
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Mutual friction

No external torque ⇒exchange
of angular momentum between
neutrons and protons through
mutual friction torque Γmf

A
n
g
u
la

r 
v
e
lo

ci
ty

time

Ωp

Ωn

δΩ0

From Langlois et al. (1998), with straight vortices parallel to the
rotation axis: interplay between

Magnus force due to neutron fluid

drag force caused by charged particles

Γmf = −
∫ R

1 +R2
Γnnn$nχ

2
⊥ dΣ×(Ωn − Ωp) = −B̄×2ÎnΩnζ×δΩ



Rise time
Sidery et al. 2010

Evolution equations:{
J̇n = + Γmf,

J̇p = − Γmf.
99K

δΩ̇

δΩ
= − Î În

InnIpp − I 2
np

× 2B̄ζΩn

⇒Analytic approximation:

δΩ(t) = δΩ0 × exp

(
− t

τr

)
τr =

Îp

Î
× 1− ε̂p − ε̂n

2ζB̄Ωn

⇒Numerical modeling :

Ωn(t) and Ωp(t) are determined by
integration from Ωn,0 > Ωp,0

parameters

MG,Ω,∆Ω/Ω,EoS, B̄



Time evolution

∆Ω/Ω = 10−6, Ωf
n = Ωf

p = 2π × 11.19 Hz,

MG = 1.4 M� & B̄ = 10−4
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Vela pulsar

∆Ω/Ω = 10−6, Ωf
n = Ωf

p = 2π × 11.19 Hz

B−

MG (M⊙)

DDH
DDHδ

10
−5

10
−4

10
−3

10
−2

 1  1.2  1.4  1.6  1.8  2

τr = 30 s

τr = 10 s

τr = 1 s

τr = 0.1 s

I B̄↗=⇒ τr ↘

I Constraints on B̄ :

τr < 30 s ⇒ B̄ > 10−5

I B̄ < 1/2  τr > 0.6 ms

↪→ a glitch event is a quasi-stationary process,
from the hydro viewpoint
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Influence of general relativity

Comparison using two analytic EoSs from Prix et al. (2005)
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depends on Ω, too.

⇒impact of general relativity on glitch dynamics can be quite
strong!



Conclusions – perspectives

Precise models of rotating neutron stars in GR

Realistic EoS for 2 fluids, including entrainment

Quasi-stationary approach, with analytic formula for rise
time

Additional coupling between fluids due to Lense-Thirring
effect

Strong overall influence of GR on glitch rise time

For the future:

Looking for accurate data to constrain rise time

Local modeling of glitch unpinning and movement

Taking into account crust in global models?
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Numerical results
entrainment

with entrainment

pαX = KXXnXuαX +KXY nY uαY

In the uiY = 0 frame:

relativity

m̃X = µX ×
(

1− εX

)

entrainment

Dynamic effective mass:

piX = m̃X uiX i ∈ {1, 2, 3}
in the fluid-Y rest-frame
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