Sterile neutrinos in stellar core-collapse

Tomasz Rembiasz Martin Obergaulinger, Miguel-Ángel Aloy Torás Universitat de València

Conrado Albertus, M. Ángeles Pérez-Garía Universidad de Salamanca

> Manel Masip Universidad de Granada

CoCoNuT Meeting, Garching, 26th October 2017

The Supernova Mechanism

The biggest roles in SN mechanisms are played by

- active neutrinos
- standing accretion shock instability (SASI)
- convection
- in some cases magnetic fields (MRI)
- sterile neutrinos??

Left panels from Janka et al. (2007)

Fuller et al. 2009 sterile neutrino model

• sterile neutrino mass: $m_h = 145-250 \text{ MeV}$

• dominant production channels (via W,Z bosons) $\nu_{\tau/\mu} + \nu_{\tau/\mu} \rightarrow \nu_h + \nu_{\tau/\mu}$, etc . . .

$$Q_{\rm FKP} \approx 3 \cdot 10^{34} \left(\frac{\sin^2 \theta}{5 \cdot 10^{-8}}\right)^2 \left(\frac{Tk_{\rm B}}{35 \,{\rm MeV}}\right)^{7.2} \exp\left(-\frac{m_h c^2}{Tk_{\rm B}}\right) \frac{\rm erg}{\rm cm^3 \, s},$$

where $\sin^2 \theta = 10^{-8} - 10^{-7}$

• main decay channel $\nu_h \rightarrow \nu_{\mu,\tau} \pi^0 \rightarrow \nu_{\mu,\tau} \gamma \gamma$

$$\tau_h \approx 65 \text{ ms} \left(\frac{5 \cdot 10^{-8}}{\sin^2 \theta}\right) \left(\frac{200 \left(200^2 - 135^2\right) \text{ MeV}^3}{m_h \left(m_h^2 - m_\pi^2\right) c^6}\right)$$

• no other interactions with "normal matter"

Albertus et al. 2015 sterile neutrino model

- sterile neutrino mass: $m_h = 50-80 \, {
 m MeV}$
- dominant production channel (electromagnetic) $e^+e^-
 ightarrow ar{
 u}_h
 u_h$

$$Q_{
m AMP} pprox 1.5 \cdot 10^{36} \left(rac{\mu}{10^{-6} \, {
m GeV}^{-1}}
ight)^2 \left(rac{Tk_{
m B}}{25 \, {
m MeV}}
ight)^{7.4} \exp\left(-rac{m_h c^2 + \mu_e}{3 \, Tk_{
m B}}
ight) \, rac{{
m erg}}{{
m cm}^3 \, {
m s}}$$

• main decay mode (also electromagnetic) $\nu_h \rightarrow \nu_{\mu,\tau} \gamma$.

$$\tau_h \approx 2.6 \ \mathrm{ms} \ \left(\frac{10^{-8} \, \mathrm{GeV}^{-1}}{\mu_{\mathrm{tr}}}\right)^2 \ \left(\frac{50 \ \mathrm{MeV}}{m_h c^2}\right) \ , \label{eq:tau_hard}$$

- elastic scattering with protons $\sigma_s \approx 7.5 \cdot 10^{-42} \, {\rm cm}^2 \, \left(\frac{\mu_{\rm h}}{10^{-8} \, {\rm GeV}^{-1}} \right)^2$.
- capture through inelastic collisions with charged particles: $\nu_h X \rightarrow \nu_{\mu,\tau} X$, $\sigma_a^X = a_X \, 10^{-45} \, \mathrm{cm}^2 \, \left(\frac{\mu_{\mathrm{tr}}}{10^{-8} \, \mathrm{GeV^{-1}}} \right)^2$, with $a_p = 0.9$ and $a_e = 2.1$ for proton and electron, respectively.

Sterine neutrino models

Fuller et al. 2009 (FKP09) • mass: $m_h = 145-250 \text{ MeV}$ • production rate (cooling) $Q_{\text{FKP}} \approx 3 \cdot 10^{34} \left(\frac{\sin^2 \theta}{5 \cdot 10^{-8}}\right)^2 \times \left(\frac{Tk_{\text{B}}}{35 \text{ MeV}}\right)^{7.2} \exp\left(-\frac{m_h c^2}{Tk_{\text{B}}}\right) \frac{\text{erg}}{\text{cm}^3 \text{ s}}$ • lifetime $\tau_h \approx$ 65 ms $\left(\frac{5 \cdot 10^{-8}}{\sin^2 \theta}\right) \left(\frac{200(200^2 - 135^2) \text{ MeV}^3}{m_h(m_h^2 - m_\pi^2)c^6}\right)$

Albertus et al. 2015 (AMP15)

• mass:
$$m_h = 50-80 \text{ MeV}$$

• production rate (cooling)
 $Q_{AMP} \approx 1.5 \cdot 10^{36} \left(\frac{\mu}{10^{-6} \text{ GeV}^{-1}}\right)^2 \times \left(\frac{Tk_B}{25 \text{ MeV}}\right)^{7.4} \exp\left(-\frac{m_h c^2 + \mu_e}{3 Tk_B}\right) \frac{\text{erg}}{\text{cm}^3 \text{ s}}$
• lifetime $\tau_h \approx$
 $2.6 \text{ ms} \left(\frac{10^{-8} \text{ GeV}^{-1}}{\mu_{tr}}\right)^2 \left(\frac{50 \text{ MeV}}{m_h c^2}\right)$,

Neutrino opacities

$$\kappa = \kappa_a + \kappa_s \; [\mathrm{cm}^{-1}]$$

We approximate $v_h \approx c$ and $\gamma \beta = 1$.

Numerical code

- finite-volume Eulerian relativistic (M)HD code AENUS (Obergaulinger 2008)
- TOV gravity
- M1 transport for active neutrinos
- M1 transport for sterile neutrinos (grey approximation)
- HLL Riemann solvers
- MP5 reconstruction (Suresh & Huynh 1997)
- RK3 time integration

Two-moment neutrino transport

 $\bullet~0^{\rm th}$ moment: conservation law for neutrino energy:

$$\partial_t E + \nabla_j (F^j + v^j E) + \mathcal{V}_0 + \mathcal{G}_0 = \mathcal{C}^0.$$

 $\bullet \ 1^{\rm st}$ moment: and for neutrino momentum

$$\partial_t F^i + c^2 \nabla_j (P^{ij} + v^j F^i) + \mathcal{V}_1^i + \mathcal{G}_1^i = \mathcal{C}^{1,i}$$

- *P*, the neutrino pressure tensor, is a local function of *E* and \vec{F} , which interpolates between the limits of diffusion, $P = 1/3E \operatorname{diag}(1,1,1)$, and free streaming, $P^{ij} = E F^i F^j / F^2$.
- $\bullet~\mathcal{V},~\mathcal{G}$ are the velocity and gravity terms coupling neutrino energy bins
- C are the neutrino-matter interaction terms: emission, absorption, scattering (potentially quite stiff).

Simulation setup

- 15 M_{\odot} progenitor with solar metalicity of Woosley, Heger & Weaver (2002)
- LS220 EOS
- spherical symmetry (1D)
- box length of 10^6 km resolved with 608 zones
- 16 energy bins for active neutrinos
- simulations run for 1 s post-bounce (if possible)

List of models

ш	$m_h c^2$	_	$\mu_{\rm tr}(\hbar c)^{-3/2}$	$\tau_h c$	texpl	r _{expl}	M _c	Eexpl	tend
#	[MeV]	9	[10 ⁻⁸ GeV ⁻¹]	[km]	[ms]	[km]	$[M_{\odot}]$	[erg]	[ms]
R	-	-	-	-	-	-	-	-	1000
A1	50	1	10	7.9	-	-	-	-	1000
A2	50	1	5	32	193	25	1.36	$4.4 \cdot 10^{51}$	405
A3	50	1	1	790	36	40	1.26	$4.2 \cdot 10^{52}$	168
A4	50	1	0.5	3200	38	50	1.30	$4.4 \cdot 10^{52}$	132
A5	50	1	0.1	$7.9 \cdot 10^4$	65	1700	1.49	$1.8\cdot10^{52}$	288
A6	50	1	0.05	$3.2 \cdot 10^{5}$	90	3600	1.63	$9.9 \cdot 10^{51}$	499
A7	50	0.1	1	790	68	43	1.32	$4.5 \cdot 10^{52}$	229
A8	50	10-2	1	790	132	57	1.40	$1.3 \cdot 10^{52}$	246
A9	50	10-3	1	790	230	62	1.47	$2.7 \cdot 10^{51}$	323
A10	50	10-4	1	790	-	-	-	-	657+
A11	50	0.2	2	200	67	34	1.27	$1.9\cdot10^{52}$	284
A12	80	1	1	190	73	41	1.26	$1.9\cdot10^{52}$	227
F1	150	0.2	-	6.6 · 10 ⁵	870	$2.6 \cdot 10^{4}$	2.55	$6.6 \cdot 10^{49}$	1000
F2	150	1	-	$1.3 \cdot 10^5$	464	6300	1.85	$3.0 \cdot 10^{51}$	1000
F3	200	1	-	$2.0 \cdot 10^{4}$	582	4600	1.75	1.3 · 1051	1000
F4	250	1	-	7700	-	-	-	-	1000
F5	250	2	-	3800	761	860	1.62	$2.6 \cdot 10^{50}$	820

AMP:
$$q \equiv (\mu(\hbar c)^{-3/2}/(10^{-6} \text{GeV}^{-1}))^2$$

FKP $q \equiv (\sin^2 \theta/(5 \cdot 10^{-8})^2$

Reference model (R)

AMP with default pars (A3)

Reference model (R)

FKP with default pars (F3)

T. Rembiasz (UV)

Sterile neutrinos in CC-SNe

List of models

#	$m_h c^2$		$\mu_{\rm tr}(\hbar c)^{-3/2}$	$\tau_h c$	texpl	r _{expl}	$M_{\rm c}$	E_{expl}	tend
#	[MeV]	q	$[10^{-8} \text{GeV}^{-1}]$	[km]	[ms]	[km]	$[M_{\odot}]$	[erg]	[ms]
R	-	-	-	-	-	-	-	-	1000
A1	50	1	10	7.9	-	-	-	-	1000
A2	50	1	5	32	193	25	1.36	$4.4 \cdot 10^{51}$	405
A3	50	1	1	790	36	40	1.26	$4.2 \cdot 10^{52}$	168
A4	50	1	0.5	3200	38	50	1.30	$4.4 \cdot 10^{52}$	132
A5	50	1	0.1	$7.9 \cdot 10^{4}$	65	1700	1.49	$1.8 \cdot 10^{52}$	288
A6	50	1	0.05	$3.2\cdot10^5$	90	3600	1.63	$9.9\cdot10^{51}$	499
A7	50	0.1	1	790	68	43	1.32	$4.5 \cdot 10^{52}$	229
A8	50	10-2	1	790	132	57	1.40	$1.3 \cdot 10^{52}$	246
A9	50	10-3	1	790	230	62	1.47	$2.7 \cdot 10^{51}$	323
A10	50	10 ⁻⁴	1	790	-	-	-	-	657+
A11	50	0.2	2	200	67	34	1.27	$1.9\cdot10^{52}$	284
A12	80	1	1	190	73	41	1.26	$1.9\cdot10^{52}$	227
F1	150	0.2	-	6.6 · 10 ⁵	870	$2.6 \cdot 10^{4}$	2.55	$6.6 \cdot 10^{49}$	1000
F2	150	1	-	$1.3 \cdot 10^5$	464	6300	1.85	$3.0 \cdot 10^{51}$	1000
F3	200	1	-	$2.0 \cdot 10^{4}$	582	4600	1.75	$1.3 \cdot 10^{51}$	1000
F4	250	1	-	7700	-	-	-	-	1000
F5	250	2	-	3800	761	860	1.62	$2.6 \cdot 10^{50}$	820

AMP:
$$q \equiv (\mu(\hbar c)^{-3/2}/(10^{-6} \text{GeV}^{-1}))^2$$

FKP $q \equiv (\sin^2 \theta/(5 \cdot 10^{-8})^2$

Reference model (R)

AMP q = 1e - 3 (A9)

Reference model (R)

AMP $\mu_{\rm tr} = 10$ (A1)

Summary & outlook

- succesful explosions in 1D (good news! we don't need multi-D simulations anymore) for both sterile neutrino models
- different explosion mechanisms
- some explosions too energetic! (constraints on sterile neutrino models)
- influence on convection t.b.d.
- nucleosynthesis imprint t.b.d.

Thank you for your attention!

