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Core-Collapse Supernova Explosion
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Neutrinos carry 99% of the  
released energy (~ 10    erg).53

Neutrino energies: ~ 10 MeV. 
Neutrino emission time: ~ 10 s.



Existing Detectors

Recent review papers: Scholberg (2017). Mirizzi, Tamborra, Janka, Scholberg et al. (2016). 

Expected number of events for a SN at 10 kpc and dominant flavor sensitivity in parenthesis.
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Next Generation Large Scale Detectors



Lang, McCabe, Reichard, Selvi, Tamborra, PRD (2016). Horowitz et al. PRD (2003). Drukier and Stodolsky, PRD (1984).

Xenon Dark Matter Detector: Nu Telescope

• Flavor insensitive (no uncertainties due to oscillation physics).  

• Very low background and excellent time resolution. 

• Good reconstruction of neutrino light-curve and neutrino emission properties. 
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General Features of Neutrino Signal

General features of the neutrino signal well described by 1D hydro simulations.

Figure: 1D spherically symmetric SN simulation (M=27 M    ), Garching group. sun

Figure 4-1: Three phases of neutrino emission from a core-collapse SN, from left to right: (1) Infall,
bounce and initial shock-wave propagation, including prompt νe burst. (2) Accretion phase with
significant flavor differences of fluxes and spectra and time variations of the signal. (3) Cooling of
the newly formed neutron star, only small flavor differences between fluxes and spectra. (Based on a
spherically symmetric Garching model with explosion triggered by hand during 0.5–0.6 ms [168,169].
See text for details.) We show the flavor-dependent luminosities and average energies as well as
the IBD rate in JUNO assuming either no flavor conversion (curves ν̄e) or complete flavor swap
(curves ν̄x). The elastic proton (electron) scattering rate uses all six species and assumes a detection
threshold of 0.2 MeV of visible proton (electron) recoil energy. For the electron scattering, two
extreme cases of no flavor conversion (curves no osc.) and flavor conversion with a normal neutrino
mass ordering (curves NH) are presented.
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2 Melson et al.

Fig. 1.— 3D iso-entropy surfaces for di↵erent times after bounce for exploding model 3Ds. Colors represent radial velocities. The supernova shock is visible
by a thin surrounding line, the proto-neutron star by a whitish iso-density surface of 1011 g cm�3. The yardstick indicates the length scale. Strong SASI activity
occurs between ⇠120 ms and ⇠280 ms. (An animation and interactive version of this figure are available in the HTML version of this article.)

still be missing in the models. One of the aspects to be scruti-
nized are the pre-collapse initial conditions, which result from
1D stellar evolution modeling. Couch & Ott (2013), Couch
et al. (2015), and Müller & Janka (2015) indeed confirmed
speculations that large-amplitude perturbations of low-order
modes in the convective shell-burning layers (e.g., Arnett &
Meakin 2011, and references therein) might facilitate the de-
velopment of explosions. Further progress will require 3D
modeling of the final stages of stellar evolution.

Here we demonstrate that remaining uncertainties in the
neutrino opacities, in particular the neutrino-nucleon interac-
tions at subnuclear densities, can change the outcome of 3D
core-collapse simulations. As an example we consider pos-
sible strange-quark contributions to the nucleon spin in their
e↵ect on weak neutral-current scatterings. We show that a
moderate isoscalar strange-quark contribution of gs

a = �0.2 to

the axial-vector coupling constant ga = 1.26, which is not far
from current experimental results, su�ces to convert our pre-
vious non-exploding 20 M� 3D core-collapse run into a suc-
cessful explosion.

We briefly describe our numerical approach in Sect. 2, sum-
marize basic facts about the strange-quark e↵ects in neutrino-
nucleon scattering in Sect. 3, discuss our results in Sect. 4,
and conclude in Sect. 5.

2. NUMERICAL SETUP AND PROGENITOR MODEL

We performed 2D and full (4⇡) 3D simulations of a nonro-
tating, solar-metallicity 20 M� pre-SN progenitor (Woosley &
Heger 2007).

We used the Prometheus-Vertex hydrodynamics code with
three-flavor, energy-dependent, ray-by-ray-plus (RbR+) neu-
trino transport including the full set of neutrino reactions and
microphysics (Rampp & Janka 2002; Buras et al. 2006) ap-

Neutrino-Driven Mechanism



Delayed Neutrino-Driven Explosion

Recent review papers: Janka (2017). Mirizzi, Tamborra et al. (2016). 

• Shock wave forms within the iron core.  
It dissipates energy dissociating iron layer. 

• Neutrinos provide energy to stalled 
shock wave to start re-expansion. 

• Convection and shock oscillations 
(standing accretion shock instability, 
SASI) enhance efficiency of neutrino 
heating and revive the shock.

10 Hans-Thomas Janka
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Fig. 3 Dynamical phases of stellar core collapse and explosion by the neutrino-driven mechanism:
infall, core bounce, stagnation of the bounce shock, accretion and neutrino heating, shock revival,
and outward acceleration of the neutrino-powered SN shock front (from top left to bottom right).
The horizontal scales of the plots are roughly 15,000 km, 4000 km, 4000 km, 2000 km, 2000 km,
and 10,000 km, respectively. The different shells are not displayed to scale, but the central regions
and the new-born, hot NS (the “proto-NS”) are (approximately logarithmically) enlarged compared
to the outer layers. Superimposed on the graphical elements are results from 3D simulations of
pre-collapse convective O-shell burning by Müller et al (2016b) and of postshock asymmetries
(buoyant plumes of high-entropy matter and accretion cooler downflows) during the first second
of the SN explosion as computed by Wongwathanarat et al (2013). In the bottom-right image
the spherical neutrino-driven wind, composed of free neutrons and protons (n, p), is visible in
green. It recombines to a-particles and heavy nuclei (Zk,Nk) when the temperatures decrease in
the expanding outflow. The sharp, nearly spherical discontinuity bounding the green area is the
reverse shock that terminates the supersonic expansion of the neutrino-driven wind



SASI Detection Perspectives (27 M     )sun

 Expected rate above IceCube background

 Hyper-K rate = 1/3 IceCube rate

SASI still detectable

Strong signal modulation 
(optimistic observer direction)

Weak signal modulation 
(pessimistic observer direction)

2

tum distribution to be axisymmetric around the radial
direction everywhere, implying that the neutrino fluxes
are radial. The detectable energy-dependent neutrino
emission from the hemisphere facing an observer is de-
termined with a post-processing procedure that includes
projection and limb-darkening effects [30]. We will use
the 27M⊙ model as our benchmark case because its prop-
erties have been published [15]. Details of the other two
simulations will be provided elsewhere [47].

Detector signal.—In the largest operating detectors,
IceCube and Super-K, neutrinos are primarily detected
by inverse beta decay, ν̄e+p → n+e+, through Cherenkov
radiation of the positron. We represent the neutrino
emission spectra in the form of Gamma distributions
[48, 49]. We estimate the neutrino signal following the
IceCube Collaboration [37], accounting for a ∼13% dead-
time effect for background reduction. We use a cross sec-
tion that includes recoil effects and other corrections [50],
overall reducing the detection rate by 30% relative to ear-
lier studies [20, 21, 51]. On the other hand, we increase
the rate by 6% to account for detection channels other
than inverse beta decay [37].

We assume an average background of 0.286 ms−1 for
each of the 5160 optical modules, i.e., an overall back-
ground rate of Rbkgd = 1.48× 103 ms−1, comparable to
the signal rate for a SN at 10 kpc. The IceCube data ac-
quisition system has been upgraded since the publication
of Ref. [37] so that the full neutrino time sequence will
be available instead of time bins.

IceCube will register in total around 106 events above
background for a SN at 10 kpc, to be compared with
around 104 events for Super-K (fiducial mass 32 kton),
i.e., IceCube has superior statistics. On the other hand,
the future Hyper-K will have a fiducial mass of 740 kton,
providing a background-free signal of roughly 1/3 the Ice-
Cube rate. Therefore, Hyper-K can have superior signal
statistics, depending on SN distance. In addition, it has
event-by-event energy information which we do not use
for our simple comparison.

Signal modulation in the 27M⊙ model.—To get a first
impression of the neutrino signal modulation we consider
our published 27M⊙ model [15], meanwhile simulated
until ∼550 ms. This model shows clear SASI activity at
120–260ms. At ∼220ms a SASI spiral mode sets in and
remains largely confined to an almost stable plane, which
is not aligned with the polar grid of the simulation. We
select an observer in this plane in a favorable direction
and show the expected IceCube signal in the top panel
of Fig. 1. One case assumes the signal to be caused by
anti-neutrinos emitted as ν̄e at the source, i.e., we ignore
flavor conversions. The other case takes into account
complete flavor conversion so that the signal is caused by
ν̄x, i.e., a combination of ν̄µ and ν̄τ . Both cases reveal
large signal modulations with a clear periodicity.

The first SASI episode ends abruptly with the accre-
tion of the Si/SiO interface, followed by large-scale con-
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FIG. 1: Detection rate for our 27 M⊙ SN progenitor, upper
panels for IceCube, bottom one for Hyper-K. The observer
direction is chosen for strong signal modulation, except for
the second panel (minimal modulation). Upper two panels:
IceCube rate at 10 kpc for ν̄e (no flavor conversion) and for
ν̄x (complete flavor conversion). The lower two panels include
a random shot-noise realization, 5ms bins, for the indicated
SN distances. For IceCube also the background fluctuations
without a SN signal are shown.

vection with much smaller and less periodic signal mod-
ulations (see also Figs. 1, 2, and 6 of Ref. [15]). After
about 410 ms, SASI activity begins again until the end
of our simulation. The signal modulation is now weaker,
partly owing to a lower SASI amplitude and partly to the
chosen observer direction being no longer optimal.

Tamborra et al., PRL (2013). Tamborra et al., PRD (2014). 



Power Spectrum of the Event Rate

Power spectrum of the IceCube event rate in [100,300] ms
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A peak appears at the SASI frequency of ~ 80 Hz for the 20 and 27 M     SN progenitors.sun

Tamborra, Hanke, Mueller, Janka, Raffelt, PRL (2013).



Tamborra, Hanke, Janka, Mueller, Raffelt, Marek, ApJ (2014). See also: Janka, Melson, Summa, ARNPS (2016).

LESA Instability

2 Tamborra et al.

Figure 1. Lepton-number flux (⌫e minus ⌫̄e) for our 11.2 M� model as a function of direction for the indicated times post bounce. The latitudes and longitudes,
indicated by dotted lines, correspond to the angular coordinates of the polar grid of the numerical simulation. The flux in each panel is normalized to its average,
i.e., the quantity (F⌫e � F⌫̄e )/hF⌫e � F⌫̄e i is color coded. The lepton-number emission asymmetry is a large-scale feature which at later times has clear dipole
character. The black dots indicate the positive dipole direction of the flux distribution, the black crosses mark the negative dipole direction. The dipole track
between 70 and 340 ms is shown as a dark-gray line. Once the dipole is strongly developed, its direction remains essentially stable and shows no correlation with
the x-, y-, and z-axes of the numerical grid. The dipole direction is also independent of polar hot spots, which are persistent, local features of moderate amplitude
and an artifact connected with numerical peculiarities near the z-axis as coordinate singularity of the polar grid.

expands the shock, increases the gain layer and, again, can
enhance the e�ciency of neutrino-energy deposition (Marek
& Janka 2009) even when convection is weak or its growth
is suppressed because of a small shock-stagnation radius
and correspondingly fast infall velocities in the gain layer
(Foglizzo, Scheck, & Janka 2006; Scheck et al. 2008). This
nonradial instability was first observed in 2D simulations with
a full 180� grid (Janka & Müller 1996; Mezzacappa et al.
1998; Janka et al. 2003, 2004), but not immediately rec-

ognized as a new e↵ect beyond large-scale convection. It
was unambiguously identified in 2D hydrodynamical simu-
lations of idealized, adiabatic (and thus non-convective) post-
shock accretion flows (Blondin, Mezzacappa, & DeMarino
2003). SASI was found to possess the highest growth rates
for the lowest-order (dipole and quadrupole) spherical har-
monics (Blondin & Mezzacappa 2006; Foglizzo et al. 2007;
Iwakami et al. 2008) and to give rise to spiral-mode mass
motions in 3D simulations (Blondin & Mezzacappa 2007;
Iwakami et al. 2009; Fernández 2010; Hanke et al. 2013) or
in 2D setups without the constraint of axisymmetry (Blondin
& Mezzacappa 2007; Yamasaki & Foglizzo 2008; Foglizzo
et al. 2012). The instability can be explained by an advective-
acoustic cycle of amplifying entropy and vorticity perturba-
tions in the cavity between accretion shock and PNS surface
(Foglizzo 2002; Foglizzo et al. 2007; Scheck et al. 2008;
Guilet & Foglizzo 2012) and has important consequences for
NS kicks (Scheck et al. 2004, 2006; Nordhaus et al. 2010b,
2012; Wongwathanarat, Janka, & Müller 2010, 2013) and
spins (Blondin & Mezzacappa 2007; Rantsiou et al. 2011;
Guilet & Fernández 2013), quasi-periodic neutrino emission
modulations (Marek, Janka, & Müller 2009; Lund et al.
2010; Tamborra et al. 2013), and SN gravitational-wave sig-

nals (Marek, Janka, & Müller 2009; Murphy, Ott, & Burrows
2009; Müller, Janka, & Marek 2013).

We here report the discovery of a new type of low-mode
nonradial instability, LESA, which we have observed in 3D
hydrodynamical simulations with detailed, energy-dependent,
three-flavor neutrino transport using the Prometheus-Vertex
code. Our current portfolio of simulated 3D models in-
cludes an 11.2 M� model that shows violent large-scale con-
vection but no obvious signs of SASI activity during the sim-
ulated period of postbounce evolution, a 20 M� model with
a long SASI phase, and a 27 M� model in which episodes of
SASI alternate with phases of dominant large-scale convec-
tion (Hanke et al. 2013; Tamborra et al. 2013). While all
models exhibit LESA, with di↵erent orientations of the emis-
sion dipole, the clearest case is the 11.2 M� model, because
the new e↵ect is not overlaid with SASI activity.

To provide a first impression of our new and intriguing phe-
nomenon we show in Fig. 1 the distribution of lepton-number
emission (⌫e minus ⌫̄e) for the 11.2 M� model over the stel-
lar surface at postbounce (p.b.) times of 148, 169, 210, and
240 ms. In each panel, the lepton-number flux is normalized
to the instantaneous average and the color scale covers the
range from �0.5 to 2.5 of this relative measure. We indicate
the positive dipole direction with a black dot, the negative
direction with a cross. We also show the track of the posi-
tive dipole direction as a dark-gray line, ranging from 70 ms
p.b., where the dipole begins forming, to the end of the sim-
ulation at 340 ms. While at 148 ms the dipole pattern is not
yet strong—a quadrupole component is clearly visible and
the dipole is still building up as we will see later—the subse-
quent snapshots reveal a strong dipole pattern with large am-
plitude: In the negative-dipole direction, the lepton-number

Neutrino lepton-number flux for the 11.2 M      progenitor [                               ]. (F⌫e � F⌫̄e)/hF⌫e � F⌫̄eisun

Lepton-number emission asymmetry (LESA) is a large-scale feature with dipole character.  

Once the dipole develops, its direction remains stable. No-correlation with numerical grid.  

positive dipole direction                   



Lepton Number Flux Evolution
Monopole, dipole and quadrupole of the lepton number flux

Janka, Melson, Summa, ARNPS (2016). Tamborra, Hanke, Janka, Mueller, Raffelt, Marek, ApJ (2014).
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Figure 5

Evolution of the lepton-number emission as function of post-bounce time for eight 3D simulations for nonrotating 9.6, 11.2,
27, and 20M� progenitors (with di↵erent nuclear equations of state and di↵erent prescriptions of the neutrino opacities)
and for a 15M� star with slow and fast rotation (from top left to bottom right, as labeled). Each panel shows the overall
lepton-number flux (monopole of the angular distribution; black curve), and the power of the dipolar (red curve) and
quadrupolar components (blue curve). While the monopole declines along with the contraction of the proto-neutron star
and the progenitor-dependent decrease of the mass-accretion rate, all cases show the development of a strong dipole with
similar growth behavior but considerable variation of the growth time scale. The panel in the lower right corner displays
the electron-number fraction (Y

e

; electrons per nucleon) at around the time of the dipole maximum in the proto-neutron
star of the 9.6M� model as a representative case. The cross-sectional plane contains the dipole axis with excess ⌫

e

emission in the downward direction. The white circles correspond to contours for densities of 1014, 1013, 1012, 1011, and
1010 g cm�3 (from the center outward). The bluish ring is an asymmetric low-Y

e

layer interior to the neutrinosphere,
which partly overlaps with the convective shell inside of the proto-neutron star. (Figure courtesy of Georg Stockinger)

The LESA dipole direction and the SASI shock-deformation vector are uncorrelated and

not causally connected. The characteristic neutrino-emission properties of SASI and LESA

di↵er fundamentally (95, 96). SASI asymmetries and time-modulations are synchronized

between all neutrino species and can reach 10–20% of the total energy flux. In contrast, the

amplitude of the lepton-number flux dipole can even exceed the monopole, and the ⌫
e

and

⌫̄
e

emission maxima peak in opposite hemispheres. Di↵erent from these neutrinos, whose

26 Janka, Melson, & Summa



LESA-SASI Interference

No clear correlation between LESA and SASI.  
Interplay dependent on relative orientations of SASI plane and LESA dipole.

Tamborra et al., ApJ (2014). Tamborra et al., PRD (2014).

20 Msun, [170,300] ms27 Msun, [170,260] ms

0 100 200 300 400 5000

1

2

3

4

5

Time After Bounce [ms]

27 Msun SASI SASI

SA
SI

 D
ip

ol
e 

[1
052

 e
rg

/s
]

0 100 200 3000

1

2

3

4

5

Time After Bounce [ms]

20 Msun

SASI

SA
SI

 D
ip

ol
e 

[1
052

 e
rg

/s
]

0 100 200 300 400 5000

1

2

3

4

5

Time After Bounce [ms]

SASI SASI

LE
SA

 D
ip

ol
e 

[1
056

 s
−1

]

0 100 200 3000

1

2

3

4

5

Time After Bounce [ms]

SASI

LE
SA

 D
ip

ol
e 

[1
056

 s
−1

]

LESA dipole perp. to SASI plane LESA dipole close to SASI plane 



Black-Hole Forming Supernovae

Sukhbold et al., ApJ (2016). Ertl et al., ApJ (2016). Horiuchi et al., MNRSL (2014). O’Connor & Ott, ApJ (2011). O’Connor, ApJ 
(2015).

Neutrinos reveal black-hole formation.

Successful Explosions         Failed explosions         

42 Hans-Thomas Janka

of SN 1987A on the high-mass side (testing progenitors in the 15–20 M� range) and
of Crab near the low-mass end (⇠9–10 M�) were reproduced with suitable progen-
itor models; in the case of SN 1987A also consistency with constraints set by the
neutrino detection was requested (see Ugliano et al, 2012; Ertl et al, 2016; Sukhbold
et al, 2016).

Applying this neutrino-engine treatment to the progenitor sets for different metal-
licities, a variegated landscape is obtained, with islands of non-exploding stars al-
ternating with intervals of successful explosions (Figs. 12 and 13). This astonishing
result is, on the one hand, connected to the non-monotonic variations of the pre-
collapse structure with the ZAMS mass, which is reflected by the core compactness
(see Sect. 2.1). On the other hand it is also a consequence of the tight competition be-
tween shock-confining ram pressure and shock-pushing neutrino heating, which is
characteristic of the neutrino-driven mechanism and which makes successful explo-
sions sensitive to differences in the time-dependent mass-accretion rate as discussed
in Sect. 3.2. It is reassuring that this result is not specific to the 1D explosion mod-
eling of Ugliano et al (2012) and Ertl et al (2016), but a rugged landscape was also
found by Pejcha and Thompson (2015) for one of their model sets and a different

Fig. 12 NS and BH formation cases as function of progenitor ZAMS mass, based on 1D simu-
lations with a calibrated neutrino “engine” (for more details of the modeling approach, see Ertl
et al, 2016; Sukhbold et al, 2016). The upper row displays results for the compilation of solar-
metallicity progenitors used by Sukhbold et al (2016), the middle row ultra metal-poor (10�4 solar
metallicity) models (set u2002) between 11.0 M� and 75.0 M� from Woosley et al (2002), and
the bottom row zero-metallicity models (set z2011) between 9.6 M� and 100.0 M� from Heger
and Woosley (2010) for the stars above and including 10.3 M� and from A. Heger (2015, private
communication) for the stars with lower masses. Red vertical bars indicate successful explosions
with NS formation, black bars BH formation without SN explosion, and blue bars fallback SNe
where BHs form due to massive fallback, which leads to more than 3 M� of baryonic matter in the
compact remnant. The rugged landscape of alternating intervals of NS and BH formation events is
a consequence of non-monotonicities in the pre-collapse structure of the progenitors as discussed
in Sect. 2.1. (Figure courtesy of Thomas Ertl)
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lations with a calibrated neutrino “engine” (for more details of the modeling approach, see Ertl
et al, 2016; Sukhbold et al, 2016). The upper row displays results for the compilation of solar-
metallicity progenitors used by Sukhbold et al (2016), the middle row ultra metal-poor (10�4 solar
metallicity) models (set u2002) between 11.0 M� and 75.0 M� from Woosley et al (2002), and
the bottom row zero-metallicity models (set z2011) between 9.6 M� and 100.0 M� from Heger
and Woosley (2010) for the stars above and including 10.3 M� and from A. Heger (2015, private
communication) for the stars with lower masses. Red vertical bars indicate successful explosions
with NS formation, black bars BH formation without SN explosion, and blue bars fallback SNe
where BHs form due to massive fallback, which leads to more than 3 M� of baryonic matter in the
compact remnant. The rugged landscape of alternating intervals of NS and BH formation events is
a consequence of non-monotonicities in the pre-collapse structure of the progenitors as discussed
in Sect. 2.1. (Figure courtesy of Thomas Ertl)
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Figure 10. Neutrino observables from a failed CCSN simulation of a 40 M� progenitor star from Woosley & Heger (2007) evolved with the LS220 EOS. We
show the neutrino luminosity (left panel) and the neutrino average energy (right panel). In both panels, the curves corresponding to electron neutrinos are shown
as solid black lines, electron antineutrino curves are shown as dashed red lines, and heavy-lepton neutrino curves are shown as a dashed-dotted blue line. Note the
luminosities and average energies presented here are those as measured in the lab frame at 500 km. The lapse function at 500 km is ↵⇠0.99, therefore very little
additional redshifting will take place as the neutrinos travel to infinity. This is different than Fig. 6 where the luminosities are measured in the fluid (or comoving)
frame for the sake of comparison. In order to compute the neutrino average energy in the lab frame we use the fluid frame value (where the energies are defined)
and convert to the lab frame via h✏ilab = h✏ifluidW (1 + v). Protoneutron star collapse to a black hole occurs at ⇠537 ms, due to the finite neutrino transport time,
the last ⇠1.7 ms of the neutrino signal has not yet reached the observer at 500 km.

the neutrino energies also increase.
With GR1D’s neutrino leakage scheme we found a black

hole formation time of 561 ms and a maximum protoneutron
star gravitational (baryonic) mass of ⇠ 2.31M� (⇠2.44 M�)
(O’Connor & Ott 2011). With our neutrino transport
methods we find a black hole formation time of ⇠537 ms
(⇠24 ms before the leakage calculation) and a maximum pro-
toneutron star gravitational (baryonic) mass of ⇠2.251 M�
(⇠2.377 M�). These results are remarkably close and confirm
our previous work that the progenitor structure, and not details
of the neutrino physics, is the determining factor in black hole
formation properties (O’Connor & Ott 2011). Our leakage
scheme was unable to reliably predict the total neutrino emis-
sion. However, with our transport scheme we can make a reli-
able prediction on the total energy and neutrino number emit-
ted from this particular failed supernova (i.e. for a progeni-
tor matching the 40 M� star from Woosley & Heger (2007)
with the LS220 EOS). We find a total neutrino number emis-
sion of ⇠ 2.56⇥ 1057, ⇠ 2.33⇥ 1057, and ⇠ 4.03⇥ 1057, for
electron neutrino, electron antineutrino, and all four heavy-
lepton neutrinos, respectively. The total energy emission is
⇠ 54.4⇥1051 erg, ⇠ 47.6⇥1051 erg, and ⇠ 80.6⇥1051 erg for
electron neutrino, electron antineutrino, and all four heavy-
lepton neutrinos, respectively. Summed, this corresponds to
⇠ 182.6⇥1051 erg or equivalently ⇠ 0.102M� of mass. The
remaining difference between the gravitational mass and the
baryonic mass (⇠ 0.02M�) was present in the initial progen-
itor model. We note that while this simulation corresponds to
a failed supernova, it only radiates ⇠50% of the energy ex-
pected to be radiated in successful CCSNe. The rest of the
binding energy released during the collapse is still trapped in
the matter (either as thermal energy or trapped neutrinos) at
the point when the protoneutron star begins its collapse.

6. CONCLUSIONS

Neutrinos play a crucial, if not dominant, role in reviving
the stalled accretion shock that forms after the iron-core col-
lapse of an evolved massive star. In order to achieve an accu-
rate and self-consistent treatment of neutrinos in core collapse

simulations one has to consider several important aspects of
the problem. Deep in the protoneutron star, the mean free
path of neutrinos is very small. However, by the time the neu-
trinos reach 50-130 km, the opacity has decreased enough so
that the neutrinos are essentially decoupled from the matter
and are free streaming. This transition region is between the
optically thick and optically thin region and is very important
to capture correctly since it is where the net neutrino heating
takes place. Another critical aspect of the problem that must
be considered is the strong energy dependence of the neutrino
interaction rates. This leads to neutrinos of different energies
decoupling at different densities and radii and therefore any
self-consistent treatment must be done in an energy depen-
dent way.

For the hydrodynamic evolution in the CCSN problem we
do not have to deal with these issues because the matter par-
ticles are always in thermodynamic equilibrium. We can
completely ignore the momentum dependence of the parti-
cles (other than the net value) and just solve the hydrody-
namic conservation laws for mass, energy, momentum in one,
two, or three spatial dimensions (plus time). Since neutri-
nos in CCSNe are not always in thermodynamic equilibrium,
we cannot apply the same techniques for neutrino transport.
This makes the symmetry free problem not three dimensional
(plus time) but rather a six dimensional problem (plus time).
Simulating this six dimensional system at the resolution we
need to capture all the essential physics of the CCSN cen-
tral engine is not feasible with current computational power,
so some approximations must still be made. In this paper,
we reduced the dimensionality of the problem by removing
the angular dependence from the neutrino distribution func-
tion and instead evolved moments of the neutrino distribution
function–the total energy, and the total momentum. In this
sense, our approximation is very much like the approximation
made to derive the hydrodynamic equations. The equivalent
to the matter pressure is the Eddington tensor. We applied an
analytic closure in order to derive this Eddington tensor. We
retained the energy dependence of the neutrino distribution
function. This reduces the symmetry free problem to four di-

BH-forming Supernova (40 M     )                

abrupt termination                  
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SN Neutrino Equations of Motion

Matter term  
[MSW resonant conversion] [neutrino self-interactions]

interaction term⌫ � ⌫

Georg Raffelt, MPI Physics, Munich Neutrino Astrophysics and Fundamental Properties, INT, Seattle, June 2015 

Symmetry Assumptions 
Neutrino transport and flavor oscillations: 7D problem 
 

     𝜕𝑡 + 𝑣 ⋅ 𝛻𝑥 + 𝐹 ⋅ 𝛻𝑝  𝜌 𝑡, 𝑥 , 𝑝 = −𝑖 𝐻 𝑡, 𝑥 , 𝑝 , 𝜌 𝑡, 𝑥 , 𝑝 + 𝒞[𝜌 𝑡, 𝑥 , 𝑝 ] 

Ignore collision term: 
Free streaming 

Ignore external forces 
(e.g. no grav. deflection) 

Includes vacuum, matter, 
nu-nu refraction 

• Homogeneous, isotropic system evolving in time (“early universe”) 
   or 1D homogeneous evolving in time (“colliding beams”) 
 

      𝜕𝑡𝜌 𝑡, 𝐸 = −𝑖 𝐻 𝑡, 𝐸 , 𝜌 𝑡, 𝐸  

• Stationary, spherically symmetric, evolving with radius (“supernova”) 
 

     𝑣𝑟𝜕𝑟𝜌 𝑟, 𝐸, 𝜃 = −𝑖 𝐻 𝑟, 𝐸, 𝜃 , 𝜌 𝑟, 𝐸, 𝜃  

Zenith angle of nu momentum 𝑝  
Radial velocity depends on 𝜃, leads to multi-angle matter effect  

• Ordinary differential equations in “time” or “radius” with maximal symmetries 
 

• Misses dominant solutions (spontaneous symmetry breaking) 

Collision term  
(negligible) 

External forces 
(negligible)

Vacuum term 

Full neutrino transport + flavor oscillations = 7D problem!

Challenging problem: 

• Stiff equations of motion, involving non-linear term (nu-nu interactions). 

• Quantities changing on very different time scales involved. 
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Nu-Nu and Matter Potentials
Supernova Neutrinos: Production, Oscillations and Detection

Fig. 22. – Snapshots of SN potentials for di↵erent post-bounce times (1.0�7.0 s) for a 27 M� SN
progenitor (see Sec. 2). The profile at 0.2 s is an illustrative case for a typical condition before
shock revival. The matter potential �r is drawn with thin curves, while the neutrino potential
µr with thick ones. The horizontal bands represent the vacuum oscillation frequencies relevant
for the MSW resonant conversions associated with� m

2 (!H) and �m

2 (!L), respectively (see
the text for details).

and collide with the (slower) SN ejecta, thus triggering a second (reverse) shock at

rrev = reverse shock radius ,(41)

which propagates (at lower velocity) behind the forward one [340]. Neutrinos may thus
encounter two subsequent density discontinuities, leading to significantly di↵erent spec-
tral features with respect to the case of a single discontinuity.

One expects that the matter term would lead to resonant flavor conversions via the
MSW e↵ect [261] when the matter potential is of the order of the vacuum oscillation
frequencies [Eq. (25)] !H,L [341], i.e.

�r ' !L,H .(42)

These oscillation frequencies are represented by the two horizontal strips in Fig. 22 for
a neutrino energy range E 2 [5 � 50] MeV. Note that resonant flavor conversions should
be expected for r 2 [103, 105] km.

Comparing the neutrino and matter density profiles, we realize that in the deepest
SN regions n⌫ � ne (r < 103 km, see t = 1.0 s in Fig. 22), except during the accretion

61

Nu-nu interactions relevant
MSW resonances

Neutrinosphere

� (matter potential)

µ (nu-nu potential)



Fogli, Lisi, Marrone, Mirizzi, JCAP (2007), Fogli, Lisi, Marrone, Mirizzi, Tamborra, PRD (2008). Raffelt and Smirnov, PRD 
(2007), PRD (2007). Duan et al., PRD (2007). Hannestad, Raffelt, Sigl, Wong, PRD (2006).

“Spectral splits”: For energies above a critical value, a full flavor swap occurs.

Collective neutrino flavor transitions in supernovae and the role of trajectory averaging 5
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Figure 1. Initial fluxes (at r = 10 km, in arbitrary units) for different neutrino species
as a function of energy. The fluxes are all proportional to φi(E)/⟨E⟩.

Rν being the neutrino-sphere radius, while Lν is the total emission power for a given

neutrino species. In numerical calculations, we assume reference values Rν = 10 km and

Lν = 1051 erg/s for each species ν = νe, νe, νx, νx.

Figure 1 shows the initial neutrino number fluxes per unit energy in arbitrary units
(all fluxes being proportional to φi(E)/⟨E⟩ through the same normalization constant).

Notice the significant difference (asymmetry) between neutrinos and antineutrinos, and

between different neutrino flavors. However, the νe and νx fluxes happen to coincide

at an energy Eeq ≃ 19 MeV, while for the νe and νx fluxes the equality occurs at

Eeq ≃ 24 MeV. Flavor transformations of any kind are not operative for neutrinos at

E = Eeq, and for antineutrinos at E = Eeq.
The spherical symmetry of emission reduces to a cylindrical symmetry along the

radial line-of-sight (polar axis). At any radius r > Rν along the polar axis, neutrinos will

arrive with different momenta p characterized by |p| = E, incident polar angle ϑ, and

azimuthal angle ϕ. In the calculation of self-interaction effects, the effective differential

neutrino number density dnp with momentum between p and p + dp is then [17]

dnp = jν(E)dΩ = jν(E) dϕd cosϑ , (9)

within the cone of sight of the neutrino-sphere, with ϑ ∈ [0, ϑmax], being

ϑmax = arcsin(Rν/r) . (10)

In general, angular coordinates are important, since the interaction strength

between two neutrinos of momenta p and q depends on their relative angle ϑpq through

the factor (1−cos ϑpq). Calculations embedding the full angular coordinates are dubbed

“multi-angle.” The often used “single-angle” approximation consists in averaging the

angular factor along the polar axis, which is assumed to encode the same flavor history

of any other neutrino direction. In this case, the effective neutrino number density n

Collective neutrino flavor transitions in supernovae and the role of trajectory averaging 22
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Figure 8. Multi-angle simulation in inverted hierarchy: Final fluxes (at r = 200 km,
in arbitrary units) for different neutrino species as a function of energy. Initial fluxes
are shown as dotted lines to guide the eye.

Figure 8 shows the final (r = 200 km) ν and ν fluxes as a function of energy. The

neutrino spectral swap at E > Ec ≃ 7 MeV is rather evident in the left panel, although

it is less sharp with respect to the single-angle case in Fig. 5. In the right panel of Fig. 8,

the minor feature associated to the “antineutrino spectral split” is largely smeared out

(see the same panel in Fig. 5), and survives as a small excess of νe at low energy.

The spectra in Figure 8 are largely independent from the specific mixing value
chosen for the simulations (sin2 θ13 = 10−4), as far as θ13 > 0 (as we have also

checked numerically). Variations of sin2 θ13 only lead to logarithmic variations in

the (unobservable) synchronized-bipolar transition radius, and in the depth of bipolar

oscillations [43, 44], which are anyway smeared out in multi-angle simulations, as we

have just seen. Therefore, the spectra in Figure 8 may be taken as rather general

“initial conditions” for possible later (ordinary or stochastic) matter effects, occurring
when ω ∼ λ(r) at r ≫ 200 km. These later, ordinary matter effects are instead strongly

dependent on θ13, and vanish for, say, sin2 θ13 ∼< 10−5 (see, e.g., [7]). If θ13 is indeed that

small (but nonzero), neutrino self-interaction effects could be the only source of flavor

transformations in (anti)neutrino spectra.

In conclusion, for 0 < sin2 θ13 ∼< 10−5, the observable spectra at the SN exit

would be similar to those in Fig. 1 for the normal hierarchy case (no significant flavor
transformations of any kind), and to those in Fig. 8 for the inverted hierarchy case (large

self-interaction effects). For sin2 θ13 ∼> 10−5, the same spectra should be taken as “initial

conditions” for the calculation of subsequent MSW effects. Once more, we remark that

the decoupling of self-interaction and MSW effects is a characteristic of our adopted

SN model, inspired by shock-wave simulations [7]. The phenomenology becomes more

complicated in alternative models with shallow matter profiles, when both effects can
occur in the same region, as in the simulations performed in [17, 47].

Fluxes after neutrino self-interactions

Fluxes before oscillations

Stationary & Spherically-Symmetric SN



Real SN is Space-Time Dependent

Spontaneous symmetry breaking may occur when releasing symmetry assumptions.  
Caveats: Studies only within 1D/2D toy-models. Numerical implementation very challenging.

• Breaking of axial symmetry.  
[Raffelt, Sarikas, de Sousa Seixas, PRL (2013)] 
  

• Spatial and directional symmetry breaking (inhomogeneity).  
[Mirizzi et al., PRD (2015); Duan&Shalgar, PLB (2015); Hansen&Hannestad, PRD (2014), Chakraborty et al., JCAP (2016)].  
  

• Temporal instability (non-stationarity).  
[Abbar & Duan, PLB (2015), Dasgupta & Mirizzi, PRD (2015)].

• Neutrino momentum distribution not limited to outward direction (nu halo).  
[Cherry et al., PRL (2012). Sarikas, Tamborra, Raffelt, Huedepohl, Janka, PRD (2012)].  

• Large-scale 3D effects (SASI, LESA). 
[Tamborra et al., PRL (2013) & ApJ (2014), Chakraborty et al., PRD (2015)].
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Fast Pairwise Neutrino Conversions

Sawyer, PRD (2005), Sawyer, PRL (2016), Chakraborty et al., JCAP (2016).

Flavor conversion (vacuum or MSW):                       .
Lepton flavor violation by mass and mixing.

⌫e(p) ! ⌫µ(p)

Can occur without masses/mixing. No net lepton flavor change.

⌫e(p) + ⌫̄e(k) ! ⌫µ(p) + ⌫̄µ(k)
⌫e(p) + ⌫µ(k) ! ⌫µ(p) + ⌫e(k)

Pairwise flavor exchange by          scattering: ⌫ � ⌫

Growth rate:                                                vs.                            .  
p
2GF (n⌫e � n⌫̄e) ' 6.42 m�1 � �m2

2E
' 0.5 km�1 “Fast” conversions

Neutrino angular distributions crucial. 



Fast Pairwise Conversion of Supernova Neutrinos: A Dispersion Relation Approach

Ignacio Izaguirre,1 Georg Raffelt,1 and Irene Tamborra2
1Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
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Collective pair conversion νeν̄e ↔ νxν̄x by forward scattering, where x ¼ μ or τ, may be generic for
supernova neutrino transport. Depending on the local angular intensity of the electron lepton number carried by
neutrinos, the conversion rate can be “fast,” i.e., of the order of

ffiffiffi
2

p
GFðnνe − nν̄eÞ ≫ Δm2

atm=2E. We present a
novel approach to understand these phenomena: a dispersion relation for the frequency and wave number
ðΩ;KÞ of disturbances in the mean field of νeνx flavor coherence. Runaway solutions occur in “dispersion
gaps,” i.e., in “forbidden” intervals ofΩ and/orKwhere propagatingplanewaves donot exist.We stress that the
actual solutions also depend on the initial and/or boundary conditions, which need to be further investigated.

DOI: 10.1103/PhysRevLett.118.021101

Introduction.—The physics of core-collapse supernova
(SN) explosions and neutron-star (NS) mergers raise
unique questions about flavor evolution in environments
where neutrinos are dense. Their decoupling strongly
depends on flavor because β reactions dominate for νe
and ν̄e. As a result, the νeν̄e flux of the SN accretion phase
exceeds the νxν̄x fluxes [1], an effect that is even more
pronounced in NS mergers [2,3]. Moreover, the SN νe flux
is larger than the ν̄e one (deleptonization) and the other way
around in NS mergers.
The subsequent flavor evolution matters because SN

neutrinos not only carry away energy, but also deposit some
of it in the gain region below the stalled SN shock by
νe þ n → pþ e− and ν̄e þ p → nþ eþ, thus driving the
delayed explosion. At later stages, neutrinos regulate
the nucleosynthesis outcome in the neutrino-driven wind.
The neutrino signal from the next nearby SN will also
depend on the flavor ratio.
In the SN region of interest, the matter density is large

and suppresses conventional flavor conversion of the type
νeðpÞ → νxðpÞ, which is driven by neutrino masses and
mixing. This effect becomes important only at larger radii
where neutrinos undergo an MSW resonance [4].
Stochastic density variations from turbulence might stimu-
late flavor conversions [5], but have been found to be
ineffective during the accretion phase [6].
Neutrino-neutrino interactions can famously change this

picture [1,7–15] because flavor off-diagonal refraction by
νeνx coherence spawns conversion [16–18]. In this way,
neutrinos feed back upon themselves and can develop
collective runaway modes. Neutral-current interactions
preserve flavor, so we are dealing with flavor exchange
of the type νeðpÞ þ νxðkÞ ↔ νxðpÞ þ νeðkÞ and especially
νeðpÞ þ ν̄eðkÞ ↔ νxðpÞ þ ν̄xðkÞ by forward scattering.
Such pairwise swaps preserve net flavor, but still modify
subsequent charged-current interactions.
The impact of refractive νeν̄e ↔ νxν̄x conversion has

never been studied in SN simulations because such effects

seemed to arise only beyond the shock wave [19]. Yet,
Sawyer has long held that such conclusions result from
overly simplified assumptions about neutrino distributions
[20–22] and recently, other authors have followed suit
[23,24]. The key issue is the νe and ν̄e angle distributions to
be sufficiently different, in contrast to the traditional “bulb”
emission model. Another option is a “backward” νe and ν̄e
flux, which is unavoidable in the SN decoupling region and
also at larger distances [25,26]. The growth rate for “fast
multiangle instabilities” is of the order of

Φ0 ¼
ffiffiffi
2

p
GFðnνe − nν̄eÞ ¼ 6.42 m−1 nνe − nν̄e

1031 cm−3 : ð1Þ

Notice that we use natural units with ℏ ¼ c ¼ 1, where
6.42 m−1 ¼ 1.92 × 109 s−1 ¼ 1.27 μeV. This rate is “fast”
in that it far exceeds the vacuum oscillation frequency
Δm2

atm=2E ¼ 0.5 km−1 where we have used Δm2
atm ¼

2.4 × 10−3 eV2 and E ¼ 12.5 MeV. Fast flavor conversion
does not require neutrino masses or mixing, except for
providing seed perturbations. Moreover, energy drops out,
forestalling the characteristic energy-dependent flavor
swaps found in many scenarios of collective flavor con-
version [1,9]. More likely, some sort of flavor equilibration
by chaotic evolution of many nonlinearly coupled modes
will occur [20–22,27–30].
We here propose a new perspective that vastly simplifies

both the conceptual understanding and the practical treat-
ment of these phenomena. The starting point is the mean
field of νeνx coherence, essentially the off-diagonal element
of the usual ϱðt; r;pÞ flavor matrix, which normally evolves
purely kinematically. However, after including νν refrac-
tion, ϱ becomes dynamical and we can think of the neutrino
medium as supporting flavor waves described by a wave
four vector K ¼ ðΩ;KÞ and a corresponding polarization
vector.
A propagating mode is a collective disturbance with a

certain frequency Ω. To fulfill the equation of motion
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A Dispersion Relation Approach 

Classification of instabilities of “flavor waves” Classification of instabilities of plasma waves 

Landau & Lifshitz, Vol.10, Physical Kinetics 
Chapter VI, Instability Theory 

Stable Particle-like 

Tachyon-like [Landau&Lifshitz, Vol. 10, Physical 
Kinetics, Chapter VI, Instability Theory]

3

Generic example.—We assume axial symmetry of Gv

and pick k in the radial direction (z). In⇧ µ⌫ all terms
linear in v

x,y

vanish, so Eq. (7) yields two equations
for (a0, az), providing Qv = (a0 � a

z

c
✓

)/(! � k
z

c
✓

)
where we have used k = (0, 0, k

z

). These are the bi-
modal and multi-zenith angle (MZA) polarizations [32],
which are axially symmetric. The diagonal⇧ µ⌫ terms
from v2

x

and v2
y

yield degenerate solutions for a
x,y

with
Qv = �(a

x

s
✓

c
'

+a
y

s
✓

s
'

)/(!�k
z

c
✓

), the axial symmetry
breaking multi-azimuth angle (MAA) polarizations.

To be explicit, we study the simplest non-trivial case:
two ✓ modes representing two zenith ranges, i.e., Gv =
G1�(c✓ � c1) +G2�(c✓ � c2). The axially symmetric po-
larizations produce a quadratic form in both ! and k

z

,
implying that the DRs are hyperbolas in the !–k

z

–plane,
as shown in Fig. 1. The axially breaking polarizations
provide similar results.

The left panels use forward modes (0 < cos ✓1,2 < 1)
as in traditional bulb emission. If ⌫

e

dominate in both
modes (upper left), both ! and k

z

are real: No fast flavor
conversion occurs. If one mode has a ⌫̄

e

excess (G1 < 0),
the DR has a gap, providing complex ! for real k

z

and
the other way round as indicated by the red blob. Distur-
bances with k

z

in the gap grow exponentially in time. A
real ! imposed at the boundary causes exponential spa-
tial growth. These conclusions carry over to more general
G(✓) where one needs a crossing from positive to nega-
tive ELN intensities to obtain a dispersion gap, which,
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FIG. 1. Dispersion relations (black lines) for two ✓ modes.
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width of the blob is ±Im(!) or ±Im(k

z

). Left: Only outward
modes. Right: One outward and one backward mode. Top:
Both ⌫

e

excess. Bottom: Forward mode ⌫̄

e
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in turn, enables fast flavor conversion, similar to spectral
crossings for slow modes [40–42].

One forward and one backward mode with ⌫
e

excess
(upper right) produce two branches of real ! for all k

z

,
but an ! gap. All spatial disturbances propagate, but a
“forbidden” frequency imposed at the boundary causes
exponential spatial growth. If instead, one of our two
modes has ⌫̄

e

excess (lower right), there is a gap in k
z

.
Wave numbers in this range imply temporal run away.

The direction of a general k can be chosen such that
it feels forward and backward modes, even if all modes
are forward in the SN frame. If Gv > 0 everywhere
(no crossing), such cases produce a DR analogous to the
upper right panel (an ! gap). The neutrino flow is a very
anisotropic medium, so dispersion strongly depends on k̂.
Moreover, some components of k may be real and only
one of them complex, producing exponential variation in
only one spatial direction for a certain ! gap.

Realistic distribution.—The flavor-dependent neutrino
angle distributions from SN simulations are not readily
available. To gain intuition, we have extracted the ELN
distributions from a Garching simulation of a 15 M�
progenitor [26, 43, 44]. Figure 2 shows a typical case
not far from the decoupling region. For larger distances,
the ELN profile is horizontally compressed near the for-
ward (cos ✓ = 1) direction, although backward modes
(cos ✓ < 0) are never empty. One key feature is the for-
ward dip due to ⌫̄

e

being more forward peaked than ⌫
e

.
However, we have not found any place or time in this
model where this dip would go negative.

FIG. 2. Electron lepton number (ELN) angle distribution G

✓

of a 15 M� SN simulation at 280 ms post bounce and a radius
37 km. We plot an ELN number density, to be converted to
a weak potential by Eq. (1). We show a mildly smoothed
approximation suitable for analytic post processing.

Figure 3 shows the DR implied by G
✓

of Fig. 2 for
a radial-moving mode with k = (0, 0, k

z

). Without ⌫⌫
interactions, the DR is ! = c

✓

k
z

for any angle mode
c
✓

(gray-shaded region). Including ⌫⌫ interactions, this
region becomes a “zone of avoidance” for propagating
collective oscillations as Qv / 1/(!�c

✓

k
z

) would be sin-
gular. The thick blue lines are the dispersion relations for
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Existing investigations are simplified case studies. Further work needed.

Flavor equipartition might occur close to neutrino decoupling region. Explosion affected?

Non-negligible inward neutrino flux may 
induce fast conversions. 
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Figure 1. Lepton-number flux (⌫e minus ⌫̄e) for our 11.2 M� model as a function of direction for the indicated times post bounce. The latitudes and longitudes,
indicated by dotted lines, correspond to the angular coordinates of the polar grid of the numerical simulation. The flux in each panel is normalized to its average,
i.e., the quantity (F⌫e � F⌫̄e )/hF⌫e � F⌫̄e i is color coded. The lepton-number emission asymmetry is a large-scale feature which at later times has clear dipole
character. The black dots indicate the positive dipole direction of the flux distribution, the black crosses mark the negative dipole direction. The dipole track
between 70 and 340 ms is shown as a dark-gray line. Once the dipole is strongly developed, its direction remains essentially stable and shows no correlation with
the x-, y-, and z-axes of the numerical grid. The dipole direction is also independent of polar hot spots, which are persistent, local features of moderate amplitude
and an artifact connected with numerical peculiarities near the z-axis as coordinate singularity of the polar grid.

expands the shock, increases the gain layer and, again, can
enhance the e�ciency of neutrino-energy deposition (Marek
& Janka 2009) even when convection is weak or its growth
is suppressed because of a small shock-stagnation radius
and correspondingly fast infall velocities in the gain layer
(Foglizzo, Scheck, & Janka 2006; Scheck et al. 2008). This
nonradial instability was first observed in 2D simulations with
a full 180� grid (Janka & Müller 1996; Mezzacappa et al.
1998; Janka et al. 2003, 2004), but not immediately rec-

ognized as a new e↵ect beyond large-scale convection. It
was unambiguously identified in 2D hydrodynamical simu-
lations of idealized, adiabatic (and thus non-convective) post-
shock accretion flows (Blondin, Mezzacappa, & DeMarino
2003). SASI was found to possess the highest growth rates
for the lowest-order (dipole and quadrupole) spherical har-
monics (Blondin & Mezzacappa 2006; Foglizzo et al. 2007;
Iwakami et al. 2008) and to give rise to spiral-mode mass
motions in 3D simulations (Blondin & Mezzacappa 2007;
Iwakami et al. 2009; Fernández 2010; Hanke et al. 2013) or
in 2D setups without the constraint of axisymmetry (Blondin
& Mezzacappa 2007; Yamasaki & Foglizzo 2008; Foglizzo
et al. 2012). The instability can be explained by an advective-
acoustic cycle of amplifying entropy and vorticity perturba-
tions in the cavity between accretion shock and PNS surface
(Foglizzo 2002; Foglizzo et al. 2007; Scheck et al. 2008;
Guilet & Foglizzo 2012) and has important consequences for
NS kicks (Scheck et al. 2004, 2006; Nordhaus et al. 2010b,
2012; Wongwathanarat, Janka, & Müller 2010, 2013) and
spins (Blondin & Mezzacappa 2007; Rantsiou et al. 2011;
Guilet & Fernández 2013), quasi-periodic neutrino emission
modulations (Marek, Janka, & Müller 2009; Lund et al.
2010; Tamborra et al. 2013), and SN gravitational-wave sig-

nals (Marek, Janka, & Müller 2009; Murphy, Ott, & Burrows
2009; Müller, Janka, & Marek 2013).

We here report the discovery of a new type of low-mode
nonradial instability, LESA, which we have observed in 3D
hydrodynamical simulations with detailed, energy-dependent,
three-flavor neutrino transport using the Prometheus-Vertex
code. Our current portfolio of simulated 3D models in-
cludes an 11.2 M� model that shows violent large-scale con-
vection but no obvious signs of SASI activity during the sim-
ulated period of postbounce evolution, a 20 M� model with
a long SASI phase, and a 27 M� model in which episodes of
SASI alternate with phases of dominant large-scale convec-
tion (Hanke et al. 2013; Tamborra et al. 2013). While all
models exhibit LESA, with di↵erent orientations of the emis-
sion dipole, the clearest case is the 11.2 M� model, because
the new e↵ect is not overlaid with SASI activity.

To provide a first impression of our new and intriguing phe-
nomenon we show in Fig. 1 the distribution of lepton-number
emission (⌫e minus ⌫̄e) for the 11.2 M� model over the stel-
lar surface at postbounce (p.b.) times of 148, 169, 210, and
240 ms. In each panel, the lepton-number flux is normalized
to the instantaneous average and the color scale covers the
range from �0.5 to 2.5 of this relative measure. We indicate
the positive dipole direction with a black dot, the negative
direction with a cross. We also show the track of the posi-
tive dipole direction as a dark-gray line, ranging from 70 ms
p.b., where the dipole begins forming, to the end of the sim-
ulation at 340 ms. While at 148 ms the dipole pattern is not
yet strong—a quadrupole component is clearly visible and
the dipole is still building up as we will see later—the subse-
quent snapshots reveal a strong dipole pattern with large am-
plitude: In the negative-dipole direction, the lepton-number
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character. The black dots indicate the positive dipole direction of the flux distribution, the black crosses mark the negative dipole direction. The dipole track
between 70 and 340 ms is shown as a dark-gray line. Once the dipole is strongly developed, its direction remains essentially stable and shows no correlation with
the x-, y-, and z-axes of the numerical grid. The dipole direction is also independent of polar hot spots, which are persistent, local features of moderate amplitude
and an artifact connected with numerical peculiarities near the z-axis as coordinate singularity of the polar grid.
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and correspondingly fast infall velocities in the gain layer
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a full 180� grid (Janka & Müller 1996; Mezzacappa et al.
1998; Janka et al. 2003, 2004), but not immediately rec-

ognized as a new e↵ect beyond large-scale convection. It
was unambiguously identified in 2D hydrodynamical simu-
lations of idealized, adiabatic (and thus non-convective) post-
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in 2D setups without the constraint of axisymmetry (Blondin
& Mezzacappa 2007; Yamasaki & Foglizzo 2008; Foglizzo
et al. 2012). The instability can be explained by an advective-
acoustic cycle of amplifying entropy and vorticity perturba-
tions in the cavity between accretion shock and PNS surface
(Foglizzo 2002; Foglizzo et al. 2007; Scheck et al. 2008;
Guilet & Foglizzo 2012) and has important consequences for
NS kicks (Scheck et al. 2004, 2006; Nordhaus et al. 2010b,
2012; Wongwathanarat, Janka, & Müller 2010, 2013) and
spins (Blondin & Mezzacappa 2007; Rantsiou et al. 2011;
Guilet & Fernández 2013), quasi-periodic neutrino emission
modulations (Marek, Janka, & Müller 2009; Lund et al.
2010; Tamborra et al. 2013), and SN gravitational-wave sig-

nals (Marek, Janka, & Müller 2009; Murphy, Ott, & Burrows
2009; Müller, Janka, & Marek 2013).

We here report the discovery of a new type of low-mode
nonradial instability, LESA, which we have observed in 3D
hydrodynamical simulations with detailed, energy-dependent,
three-flavor neutrino transport using the Prometheus-Vertex
code. Our current portfolio of simulated 3D models in-
cludes an 11.2 M� model that shows violent large-scale con-
vection but no obvious signs of SASI activity during the sim-
ulated period of postbounce evolution, a 20 M� model with
a long SASI phase, and a 27 M� model in which episodes of
SASI alternate with phases of dominant large-scale convec-
tion (Hanke et al. 2013; Tamborra et al. 2013). While all
models exhibit LESA, with di↵erent orientations of the emis-
sion dipole, the clearest case is the 11.2 M� model, because
the new e↵ect is not overlaid with SASI activity.

To provide a first impression of our new and intriguing phe-
nomenon we show in Fig. 1 the distribution of lepton-number
emission (⌫e minus ⌫̄e) for the 11.2 M� model over the stel-
lar surface at postbounce (p.b.) times of 148, 169, 210, and
240 ms. In each panel, the lepton-number flux is normalized
to the instantaneous average and the color scale covers the
range from �0.5 to 2.5 of this relative measure. We indicate
the positive dipole direction with a black dot, the negative
direction with a cross. We also show the track of the posi-
tive dipole direction as a dark-gray line, ranging from 70 ms
p.b., where the dipole begins forming, to the end of the sim-
ulation at 340 ms. While at 148 ms the dipole pattern is not
yet strong—a quadrupole component is clearly visible and
the dipole is still building up as we will see later—the subse-
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plitude: In the negative-dipole direction, the lepton-number

LESA may induce fast conversions. 
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Figure 1. Time sequence for neutrino (red lines for ⌫e and ⌫̄e and magenta line for ⌫x; ⌫x represents heavy lepton neutrino ⌫µ, ⌫⌧ , ⌫̄µ, or
⌫̄⌧ ), GW (blue line), and electromagnetic (EM, black line) signals based on our neutrino-driven core-collapse simulation of a non-rotating
17M� progenitor. The solid lines are direct or indirect results of our CCSN simulation, whereas the dashed lines are from literatures or
rough speculations. The left (right) panel x-axis shows time before (after) core bounce. Emissions of pre-CCSN neutrinos as well as the
core-collapse neutrino burst are shown as labeled. For the EM signal, the optical output of the progenitor, the SBO emission, the optical
plateau, and the decay tail are shown as labeled. The GW luminosity is highly fluctuating during our simulation and the blue shaded
area presents the region between the two straight lines fitting the high and low peaks during 3 – 5 seconds postbounce. The hight of
the curves does not reflect the energy output in each messenger; total energy emitted after bounce in the form of anti-electron neutrino,
photons, and GW is ⇠ 6⇥ 1052 erg, ⇠ 4⇥ 1049 erg, and ⇠ 7⇥ 1046 erg, respectively. See the text for details.

cannot resolve individual neutrino events. Smaller detectors
with sensitivity to CCSN neutrinos include, e.g., Baksan,
Borexino, DayaBay, HALO, KamLAND, LVD, MiniBooNE,
and NO⌫A (for their detection potentials, see, e.g., recent
review Mirizzi et al. 2015). In the near-future, the Jiang-
men Underground Neutrino Observatory (JUNO, Li 2014)
will augment Super-K and IceCube, and with future ex-
periments such as Hyper-Kamiokande (Hyper-K, Abe et al.
2011) and Deep Underground Neutrino Experiment (DUNE,
Acciarri et al. 2015), neutrino event statistics and neutrino
flavor information will be dramatically improved. GW de-
tectors such as Advanced LIGO (aLIGO), Advanced Virgo
(adVirgo), and KAGRA are expected to be able to detect
CCSN GW out to a few kpc from the Earth, while future
detectors such as the Einstein Telescope (ET) can reach the
entire Milky Way.

In order to exploit these potentials, a multi-messenger
observing strategy is necessary. In this context, the neutrino
signal is particularly important. The neutrino emission in
fact starts before the core collapse even begins. Neutrinos
emitted during the final states of silicon burning can reach
⇠ 5⇥ 1050 erg for a massive star (Arnett et al. 1989), which
can be detected by Hyper-K out to a few kpc away (Odrzy-
wolek et al. 2004), thereby providing an early warning signal.
During the first ⇠ 10 seconds after the core collapse, a co-
pious ⇠ 3 ⇥ 1053 erg of energy is emitted as neutrinos as
was confirmed in SN 1987A (Hirata et al. 1987; Bionta et al.
1987; Sato & Suzuki 1987).

In addition to signaling unambiguously the occurrence
of a nearby core collapse, the detected neutrinos will point
to the location of the core collapse within an error circle
of a few to ten degrees in the sky (Beacom & Vogel 1999;
Tomas et al. 2003; Bueno et al. 2003). This pointing infor-
mation is particularly important for electromagnetic signals,
which remain a crucial component of studies of CCSNe in
the Milky Way and nearby galaxies. A few hours to days
after the core collapse, the supernova shock breaks out of
the progenitor surface, suddenly releasing the photons be-
hind the shock in a flash bright in UV and X-rays, known as
shock breakout (SBO) emission (Matzner & McKee 1999;
Blinnikov et al. 2000; Tominaga et al. 2009; Gezari et al.
2010; Kistler et al. 2013). Although the SBO signal pro-
vides important information about the CCSN, such as the
radius of the progenitor, detection is di�cult because of its
short duration. Knowing where to anticipate the signal will
dramatically improve its detection prospects. In addition to
the SBO, more traditional studies of CCSN properties (e.g,
energy, composition, velocity) and its progenitor are impor-
tant diagnostics of a CCSN, and a well-observed early light
curve is important for accurate reconstruction of the CCSN
evolution (e.g., Tominaga et al. 2011).

Already, various aspects of multi-messenger physics of
Galactic and nearby CCSNe have been investigated. For ex-
ample, signal predictions of neutrino and GW messengers
have been investigated by many authors. In particular, the
first ⇠ 500 milliseconds following core collapse is thought to

MNRAS 000, 1–21 (2016)
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with tr = 6 ms, τr = 50 ms and Rmax
ν̄e

= 1.5 × 103 bin−1.
These parameters also provide an excellent fit to the first
100 ms of a numerical model from the Garching group [8]
that is available to us.

We may compare these assumptions with the early-
phase models of Ref. [7]. Lν̄e

rises nearly linearly to
L52 = 1.5–2 within 10 ms. The evolution of ⟨Eν̄e

⟩RMS =
(⟨E3

ν̄e

⟩/⟨Eν̄e
⟩)1/2 is also shown, a common quantity in

SN physics that characterizes, for example, the efficiency
of energy deposition; the IceCube rate is proportional
to ⟨Eν̄e

⟩2RMS. At 10 ms after onset, ⟨Eν̄e
⟩RMS reaches

15 MeV, implying ⟨E3
15⟩/⟨E15⟩ = 1. We thus estimate

10 ms after onset a rate of 280–370 bin−1, to be compared
with 270 bin−1 from Eq. (4). Therefore, our assumed sig-
nal rise is on the conservative side.

Of course, the early models do not fix τr and Rmax
ν̄e

separately; the crucial parameters are tr and Rmax
ν̄e

/τr.
The maximum rate that is reached long after bounce is
not relevant for determining the onset of the signal.

If flavor oscillations swap the ν̄e flux with ν̄x (some
combination of ν̄µ and ν̄τ ), the rise begins earlier be-
cause the large νe chemical potential during the prompt
νe burst does not suppress the early emission of ν̄x [7].
Moreover, the rise time is faster, ⟨E⟩RMS larger, and the
maximum luminosity smaller. We use Eq. (4) also for Rν̄x

with tr = 0, τr = 25 ms, and Rmax
ν̄x

= 1.0 × 103 bin−1.
Flavor oscillations are unavoidable and have been stud-

ied, for early neutrino emission, in Ref. [7]. Assuming
the normal mass hierarchy, sin2 Θ13

>∼ 10−3, no collec-
tive oscillations,1 and a direct observation without Earth
effects, Table I of Ref. [7] reveals that the νe burst would
be completely swapped and thus nearly invisible because
the νxe− elastic scattering cross section is much smaller
than that of νe. The survival probability of ν̄e would be
cos2 Θ12 ≈ 2/3 with Θ12 the “solar” mixing angle. There-
fore, the effective detection rate would be 2

3 Rν̄e
+ 1

3 Rν̄x
.

We use this case as our main example.

IV. RECONSTRUCTING THE SIGNAL ONSET

A typical Monte Carlo realization of the IceCube signal
for our example is shown in Fig. 1. One can determine
the signal onset t0 within a few ms by naked eye. For a
SN closer than our standard distance of 10 kpc, one can
follow details of the neutrino light curve without any fit.

One can not separate the ν̄e and ν̄x components for
the example of Fig. 1. Therefore, we reconstruct a fit
with a single component of the form Eq. (4), assuming
the zero-signal background is well known and not fitted

1 In the normal hierarchy, collective oscillation effects are usually
absent. It has not been studied, however, if the early neutrino
signal can produce multiple splits that can arise also in the nor-
mal hierarchy [9]. Moreover, for a low-mass progenitor collective
phenomena can be important if the MSW resonances occur close
to the neutrino sphere [10, 11].
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FIG. 1: Typical Monte Carlo realization (red histogram) and
reconstructed fit (blue line) for the benchmark case discussed
in the text for a SN at 10 kpc.

here. Using a time interval until 100 ms post bounce,
we reconstruct t0 = 3.2 ± 1.0 ms (1σ). If we use only
data until 33 ms post bounce we find t0 = 3.0 ± 1.7 ms.
Indeed, if one fits Eq. (4) on an interval that ends long
before the plateau is reached, we effectively fit a second
order polynomial with a positive slope and negative sec-
ond derivative at tr, whereas the plateau itself is poorly
fitted and its assumed value plays little role. Depending
on the distance of the SN one will fit more or fewer details
of the overall neutrino light curve and there may be more
efficient estimators for tr. Our example only provides a
rough impression of what IceCube can do.

The reconstruction uncertainty of t0 scales approxi-
mately with neutrino flux, i.e., with SN distance squared.
The number of excess events above background marking
the onset of the signal has to be compared with the back-
ground fluctuations. Therefore, a significant number of
excess events above background requires a longer integra-
tion period if the flux is smaller, explaining this scaling
behavior.

The interpretation of t0 relative to the true bounce
time depends on the flavor oscillation scenario realized in
nature. This is influenced by many factors: The value of
Θ13, the mass ordering, the role of collective oscillation
effects, and the distance traveled in the Earth. Com-
bining the signal from different detectors, using future
laboratory information on neutrino parameters, and per-
haps the very coincidence with a gravitational-wave sig-
nal may allow one to disentangle some of these features.
However, as a first rough estimate it is sufficient to say
that the reconstructed t0 tends to be systematically de-
layed relative to the bounce time by no more than a few
ms. The statistical uncertainty of the t0 reconstruction
does not depend strongly on the oscillation scenario.

Help timing for gravitational wave detection. 

  Pagliaroli et al., PRL (2009), Halzen & Raffelt PRD (2009). Nakamura et al., MNRAS (2016). 
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Figure 5. The GW characteristics in the first 60 ms postbounce. Left: the inputted (solid red line) and reconstructed (dashed blue)
gravitational waveform. Right: the spectrogram of the reconstructed waveform in the frequency window [50, 500] Hz. Both panels are for
a CCSN at a distance of 8.5 kpc.
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Figure 6. SNR of the GW from a distance of 8.5 kpc estimated in time-frequency pixels. Left: analysis based on a GW search over
more than 1 second without a neutrino trigger. Right: SNR in the small time-frequency window with the aid of the neutrino timing
information, corresponding to the right panel of Figure 5. Note the di↵erent scale between the left and right panels.

timing information from neutrino observations. The max-
imal SNR for the prompt convection GW signal pixel in-
creases from ⇠ 3.5 to ⇠ 7.5. The latter almost meets the
conventional detection threshold.

3.3 Electromagnetic waves

The first electromagnetic signal from a CCSN is the emission
from SBO (e.g., Falk 1978; Klein & Chevalier 1978; Matzner
& McKee 1999). The e↵ective temperature of the SBO emis-
sion is estimated to be ⇠ 4⇥105K. Thus, the emission peaks
at UV wavelengths. However, as discussed below, CCSNe at
the Galactic Center are likely to su↵er from large interstellar
extinction. Therefore, the observed spectral distribution of
the SBO is likely not to peak at UV wavelengths, and ob-

servations in optical and NIR are more promising (Adams
et al. 2013). For Type IIP supernovae, the SBO emission in
optical and NIR wavelengths is expected to be fainter than
the main plateau emission, which we discuss below, by about
1 mag and 2 mag, respectively (Tominaga et al. 2011).

After cooling envelope emission following shock break-
out emission (e.g., Chevalier & Fransson 2008; Nakar & Sari
2010; Rabinak & Waxman 2011), Type IIP supernovae en-
ter the plateau phase lasting about 100 days. The luminosity
and duration of the plateau can be estimated by equations
(A16)–(A17) using Mej, Ek, and R0. The solid (blue) lines
in Figure 7 show schematic light curves after the plateau
phase for our s17.0 model placed at 8.5 kpc distance. The
luminosity is then converted to optical (V -band, 0.55 µm)
and NIR (K-band, 2.2 µm) magnitudes assuming a bolo-

MNRAS 000, 1–21 (2016)
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G-b, G-c, L-a, L-b, L-c. We use sin2(2Θ
⊙
) = 0.9 for the

solar neutrino mixing angle.
As reaction channels we use elastic scattering on elec-

trons νe− → νe−, inverse beta decay ν̄ep → ne+, and
the charged-current reaction νe + 16O → X + e−, while
neglecting the other, subdominant reactions on oxygen.
The cross sections for these reactions are summarized in
Appendix B. The oxygen reaction is included because
it provides the dominant background for the directional
electron scattering reaction in a detector configuration
with neutron tagging where the inverse beta reaction can
be rejected.

For the detector we assume perfect efficiency above an
“analysis threshold” of 7 MeV, and a vanishing efficiency
below this energy. The actual detector threshold may be
as low as 5 MeV. Though lowering the threshold increases
the ratio of elastic scattering events and the inverse beta
events, it also introduces a background from the neutral-
current excitations of oxygen (see Appendix B). In order
to avoid additional uncertainties from the cross section of
these oxygen reactions, we use the higher analysis thresh-
old. We have checked that the net improvement by low-
ering the threshold to 5 MeV is less than 10% in all cases.

We assume a fiducial detector mass of 32 kiloton of wa-
ter. Using the neutrino spectra and mixing parameters
from the six cases mentioned above, we obtain 250–300
electron scattering events, 7000–11500 inverse beta de-
cays, and 150–800 oxygen events. The ranges correspond
to the variation due to the six different combinations of
neutrino mixing scenarios and models for the initial spec-
tra.

The procedure of event generation is described in Ap-
pendix C. The angular resolution function of the Super-
Kamiokande detector does not follow a Gaussian distri-
bution, rather it is close to a Landau distribution that we
use for our simulation. In Fig. 4, the angular distribution
of ν̄ep → ne+ events (green) and elastic scattering events
νe− → νe− (blue) of one of the simulated SNe are shown
in Hammer-Aitoff projection, which is an area preserving
map from a sphere to a plane.

The position of the SN is estimated with the OMc
method. As explained in Sec. II, the optimal value of the
angular cut depends on the neutron tagging efficiency as
well as the neutrino spectra. We use a sharp cutoff with
30◦ opening angle for the OMc, which may not be opti-
mal, but is observed to be close to optimal in almost the
whole parameter range. For low values of εtag, the value
of the cut should be lowered whereas for large values of
εtag it should be increased by about 10◦. The optimal
cut depends also on the details of the detector properties
and neutrino spectra.

A histogram of the angular distances between the true
and the estimated SN position found in 40000 simulated
SNe for different neutron tagging efficiencies for the case
G-a is shown in Fig. 5. The histogram fits well the dis-
tribution

f(ℓ)dℓ =
1

δ2
exp

(

−
ℓ2

2δ2

)

ℓdℓ, (15)

FIG. 4: Angular distribution of ν̄ep → ne+ events (green)
and elastic scattering events νe− → νe− (blue) of one simu-
lated SN.

where ℓ is the angle between the actual and the estimated
SN direction, and δ is a fit parameter.
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FIG. 5: Histogram of the angular distance ℓ of the esti-
mated SN direction to the true one for 40000 simulated SNe
with neutrino parameters corresponding to G-a and neutron
tagging efficiencies εtag = 0, 0.8 and 1. The fits using the
distribution in Eq. (15) are also shown.

Defining the opening angle ℓα for a given confidence
level α as the value of ℓ for which the SN direction esti-
mated by a fraction α of all the experiments is contained
within a cone of opening angle ℓ, we show in Fig. 6 the
opening angle for 95% C. L. for the six cases of neu-
trino parameters. Clearly, the pointing accuracy depends
weakly on the neutrino mixing scenario as well as the
initial neutrino spectra. Some salient features of this de-
pendence may be understood qualitatively as follows.

The signal events are dominated by νe. Indeed, nearly
half of the elastic scattering events are due to νe, whereas
the remaining half are due to the other five neutrino

• SN location with neutrinos crucial for vanishing or weak SNe.

• Fundamental for multi-messenger searches.

• Angular uncertainty comparable to e.g., ZTF, LSST potential.

⌫ + e� ! ⌫ + e�

Super-K Hyper-K
water 6 deg 1.4 deg

water+Gd 3 deg 0.6 deg



Kachelriess et al., PRD (2005). Wallace, Burrows, Dolence, ApJ (2016). 

If mass ordering known: 

• Determination of SN distance.   

• (Test role of oscillations in dense media.)  
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Figure 17. Similar to Figure 15, but using the neutrino oscillations expected for the IH instead of the NH.

Figure 18. Same as Figure 8, but for the IH case and with only Ln

⌫

e

,max

, t
max

, and t
rise,1/2

shown. For Hyper-K, the background signals
due to IBDs and NC scatterings o↵ of oxygen have been subtracted.

Figure 19. Same as Figure 18, but for Super-K in the IH case. For Super-K, the background signals due to IBDs and NC scatterings o↵
of oxygen have been subtracted.

(peak)
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Figure 15. Similar to Figure 14, but for JUNO (left) and DUNE (right). For JUNO, IBDs and NC scatterings o↵ of carbon have been
subtracted. For DUNE, no signals from any detection channel have been subtracted.

Figure 16. Similar to Figure 14, but using the neutrino oscillations expected for the IH instead of the NH.

(no peak)

Neutrinos Tell Us Where To Look
Deleptonization peak is independent of progenitor mass & EoS but sensitive to mass ordering.



 Pllumbi, Tamborra et al., ApJ (2015). Wu et al., PRD (2015). Duan et al., J. Phys. G (2011). 

Neutrinos Affect Element Production
Location of r-process nucleosynthesis (origin elements with A >100) unknown.  

Coupling of oscillation physics to nucleosynthesis networks recently begun. 

Recent work suggests unlikely r-process 
conditions in SNe, but further work needed. 

Flavor oscillations affect element production mainly via 

Neutrino flavor oscillations and neutrino-driven wind nucleosynthesis 3

(see Hüdepohl et al. 2010 for further details5). In the cho-
sen model, the accretion phase ends already at a postbounce
time of tpb ∼ 0.2 s when neutrino heating drives the expansion
of the postshock layers and powers the explosion. The subse-
quent deleptonization and cooling of the PNS were followed
for ∼ 10 s.
In order to perform the network calculations for the nu-

cleosynthesis in the neutrino-driven wind, we use 98 ejecta
trajectories. Figure 1 shows the time evolution of the dis-
tance r from the center of the PNS (top panel), temperature
T (middle panel), and matter density ρ (bottom panel) for
these mass-shell trajectories as functions of tpb. The outflow
evolution of 7 of the 98 trajectories, corresponding to ini-
tial times t0 = 0.5, 1, 2, 2.9, 4.5, 6.5, 7.5 s (t0 being measured
when the temperature T0 = 9 GK), is highlighted with dif-
ferent colors. We adopt these seven trajectories as represen-
tative of the cooling evolution of the PNS to discuss the im-
pact of neutrino oscillations (with and without an additional
light sterile neutrino) on the nucleosynthesis in the ν-driven
wind. The total ejecta mass of the 98 mass-shell trajectories
is M98 = 1.1 × 10−2M⊙.
In the network, 6300 species are included between the

proton-drip line and neutron-drip line, up to the Z = 110 iso-
topes (see Wanajo et al. 2009, for more details). All the im-
portant reactions such as νe(n, p)e−, ν̄e(p, n)e+, (n, γ), (p, γ),
(α,γ ), (p, n), (α, n), (α, p), and their inverse ones are taken
into account. The νe and ν̄e capture rates on free neutrons and
protons are calculated as in Horowitz & Li (1999) and thus in-
clude recoil and weak magnetism corrections. The neutrino-
induced reactions on heavy nuclei are not included since they
have negligible effects (Meyer et al. 1998). The nucleosyn-
thesis calculations start when the mass-shell temperature de-
creases to 9 GK, with an initial composition of free neutrons
and protons with number fractions of 1 − Ye and Ye, respec-
tively.

3. ELECTRON FRACTION EVOLUTION
The matter in a fluid element moving away from the PNS

will experience three stages of nuclear evolution. Near the
surface of the PNS, the temperature is so high that the matter
is in nuclear statistical equilibrium (NSE) and nearly all of
the baryons are in the form of free nucleons. As the material
flows away from the PNS, it cools. When the temperature is
T < 1 MeV, α particles begin to assemble to form heavier
nuclei by ααn, 3α reactions, and subsequent captures of α
particles and free nucleons.
Together with the entropy and the expansion time, a basic

quantity defining the conditions for element formation (and
eventually the r-process) is the excess of initially free n or p
expressed by the electron fraction Ye. It is locally defined as
the ratio of the net electron (electrons minus positrons) num-
ber density, Ne, to the sum of proton number density Np and
neutron number density Nn:

Ye(r) =
Ne(r)

Np(r) + Nn(r)
= Xp(r) +

Xα(r)
2
+

∑

ZA>2

ZA(r)
A(r)

XA(r) ,

(1)
where Xp, Xα, and XA are the mass fractions of free pro-
tons (p), α particles, and heavy elements (ZA > 2) as func-
tions of the radius. The charge and the mass numbers of
5 Model Sf 21 is analog to model Sf of Hüdepohl et al. (2010) but was

computed with 21 energy bins for the neutrino transport instead of the usual
17 energy groups.

the heavy nuclear species are ZA and A, respectively. In all
neutral media, Ye = Yp and Yn = 1 − Ye, with Yj being the
number density of free or bound particle species j relative to
baryons. The lower Ye is, the more the environment is neu-
tron rich, and thus the more favorable it is for the r-process
to occur (e.g., Hoffman et al. 1997). On the other hand, Ye >
0.5 implies that p-rich nuclei could be formed through the
νp−process (Fröhlich et al. 2006a; Pruet et al. 2006; Wanajo
2006).
Having in mind the overall evolution of abundances with

radius and time and assuming that the reactions of neutrinos
on nuclei are negligible, the n/p ratio in the wind ejecta is set
by β-interactions of electron neutrinos (νe) and electron an-
tineutrinos (ν̄e) with free n and p and their inverse reactions:

νe + n! p + e− , (2)
ν̄e + p! n + e+. (3)

Therefore the Ye evolution depends on the energy distribu-
tions of νe and ν̄e. Modifications of the neutrino emission
properties, such as the energy spectra, due to flavor oscilla-
tions could significantly change the n/p ratio and thus Ye in
the wind.
Because of slow time variations of the outflow conditions

during the PNS cooling phase, a near steady-state situa-
tion applies (Qian & Woosley 1996) and the rate-of-change
of Ye within an outflowing mass element can be written as
in McLaughlin et al. (1996):

dYe
dt
= v(r)

dYe
dr
≃ (λνe + λe+ )Y fn − (λν̄e + λe− )Y fp , (4)

with v(r) being the velocity of the outflowing mass element,
λi the reaction rates, and Y fn,p the abundances of free nucleons.
In the free streaming limit with neutrinos propagating radi-

ally, the forward reaction rates of Eqs. (2,3) can be written in
terms of the electron (anti)neutrino emission properties:

λνe ≃
Lνe

4πr2⟨Eνe⟩
⟨σνe⟩ , (5)

λν̄e ≃
Lν̄e

4πr2⟨Eν̄e⟩
⟨σν̄e⟩ , (6)

where Lνe and Lν̄e are the luminosities of νe and ν̄e respec-
tively, ⟨Eνe⟩ and ⟨Eν̄e⟩ the mean spectral energies6. The νe and
ν̄e capture cross sections of the forward reactions (2,3), av-
eraged over the corresponding νe and ν̄e energy spectra, are
⟨σνe⟩ and ⟨σν̄e⟩, respectively. Including the weak magnetism
and recoil corrections, the average neutrino capture cross sec-
tions are (Horowitz & Li 1999):

⟨σνe⟩ ≃ k
〈
Eνe

〉
ενe

⎡
⎢⎢⎢⎢⎢⎣1 + 2

∆

ενe
+ aνe

(
∆

ενe

)2⎤⎥⎥⎥⎥⎥⎦Wνe , (7)

⟨σν̄e⟩ ≃ k
〈
Eν̄e

〉
εν̄e

⎡
⎢⎢⎢⎢⎢⎣1 − 2

∆

εν̄e
+ aν̄e

(
∆

εν̄e

)2⎤⎥⎥⎥⎥⎥⎦Wν̄e , (8)

with k ≃ 9.3 × 10−44 cm2/MeV2, εν = ⟨E2ν⟩/⟨Eν⟩ (ν =
νe, ν̄e), aν = ⟨E2ν⟩/⟨Eν⟩2, M the nucleon mass in MeV, and
∆ = 1.293 MeV the neutron-proton mass difference. The
weak magnetism and recoil correction factors are given by

6 ⟨Enν ⟩ ≡
∫
Enν f (Eν) dE, where f (Eν) is the normalized (anti)neutrino en-

ergy spectrum. The energy spectrum which we use will be described in
Sect. 4.
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Fig. 6.— Left: Electron fraction (Ye) as a function of the distance r from the center of the PNS at all considered postbounce times (t0), and in the active and
sterile cases. The α-effect is included in all cases (“incl. α-effect”). Because of the near equality of the neutrino luminosities and mean energies of neutrinos of
all flavors, Ye in the active cases does not appreciably differ from the one obtained without neutrino oscillations. Right: Asymptotic electron fractions (Ye) as
functions of postbounce time (t0) in the active and sterile as well as no oscillations cases. The dashed lines refer to Ye calculated without the α-effect, while the
solid lines refer to Ye calculated with the full network. The α-effect is stronger especially at late times (t0 = 6.5 and 7.5 s) when the neutron star is more compact
and the neutrino luminosities are lower. The values in the cases without oscillations coincide with those in the active cases and cannot be distinguished.
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Fig. 7.— Left: Isotopic mass fractions in the active and sterile cases relative to those in the case without oscillations versus mass number A for all representative
7 trajectories. Right: Nucleosynthetic abundances in the active and sterile cases relative to those without oscillations for all the representative 7 trajectories. Since
in our model active flavor oscillations do not change the neutrino properties and the wind Ye at any significant level up to the radius of interest, the nucleosynthesis
results are essentially identical for all the cases with active oscillations and no neutrino oscillations.

the center of the PNS at different postbounce times t0 in both
the active and sterile cases and including the α-effect.

In Fig. 6 (right) the asymptotic Ye values (namely, Ye at
r ≃ 3 × 107 cm) are plotted as functions of the postbounce
time for each of the considered scenarios (active, sterile and
no oscillations cases). Note that the values in the active case
cannot be distinguished from those in the no oscillations case,
suggesting essentially negligible roles of the active-active os-
cillations on the evolution of Ye (see discussion in Sect. 5).

Furthermore, in the active case, Ye is systematically pushed
towards 0.5 by the α-effect, as we can see by comparing the
black dashed line with the black solid one (“incl. α-effect”
cases). In the sterile case (red solid line), neutrino oscilla-
tions combined with the α-effect lead to Ye being lower than
in the active case (black solid line) at early postbounce times
(t0 = 0.5 s), higher than in the active case at intermediate post-
bounce times (t0 = 1 s, 2 s, and 2.9 s) and again lower than in
the active case at late postbounce times (t0 = 6.5 s, and 7.5 s).

In particular, at late times, Ye in the sterile case and includ-
ing the α-effect becomes lower than Ye in the active case and
lower than Ye in the case without full α recombination, be-
cause both MSW νe-νs conversions happen so close to the
neutrinosphere that the α particle formation at larger radii fur-
ther enhances the Ye-reduction associated with the presence of
sterile neutrinos, although Ye remains always higher than 0.5.

In summary, the α-effect plays an important role in lower-
ing Ye especially at late times (t0 = 6.5 s and 7.5 s). This is due
to the higher entropy and the longer expansion timescale as a
result of the more compact PNS with the lower neutrino lumi-
nosities, resulting in a delay of the α recombination relative to
both the MSW νe-νs conversions and to a longer duration of
the α-effect (see also next section for more details). However,
although the α-effect has a strong impact on Ye and therefore
on the element production, it plays only a sub-leading role for
the neutrino oscillations and no detectable modifications are
expected for the neutrino fluxes at the Earth.

Because of the leading role of the α-effect compared to os-
cillations on Ye, especially at late times (see Fig. 6, where Ye
in the active and sterile cases including the α-effect is fairly
similar), we expect that the nucleosynthesis yields in the pres-
ence of oscillations are not significantly different from the
cases where oscillations are not considered (see Sect. 3.1).
This can be seen in Fig. 7, where we show the nucleosynthe-
sis yields obtained for the 7 representative trajectories in the
active and sterile cases relative to those without neutrino os-
cillations. In Fig. 7 (left) we notice that most of the isotopic
mass fraction ratios in the sterile case relative to the no oscilla-
tion case are lower than 2, with the exception of some isotopes
(with A < 60) which have enhanced production factors.

The most abundantly produced isotope in the relative com-



Synopsis

Signal independent on SN  
mass and EoS.  

• SN distance. 
• (Test oscillation physics.)

Figure 4-1: Three phases of neutrino emission from a core-collapse SN, from left to right: (1) Infall,
bounce and initial shock-wave propagation, including prompt νe burst. (2) Accretion phase with
significant flavor differences of fluxes and spectra and time variations of the signal. (3) Cooling of
the newly formed neutron star, only small flavor differences between fluxes and spectra. (Based on a
spherically symmetric Garching model with explosion triggered by hand during 0.5–0.6 ms [168,169].
See text for details.) We show the flavor-dependent luminosities and average energies as well as
the IBD rate in JUNO assuming either no flavor conversion (curves ν̄e) or complete flavor swap
(curves ν̄x). The elastic proton (electron) scattering rate uses all six species and assumes a detection
threshold of 0.2 MeV of visible proton (electron) recoil energy. For the electron scattering, two
extreme cases of no flavor conversion (curves no osc.) and flavor conversion with a normal neutrino
mass ordering (curves NH) are presented.
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EoS and mass dependence. 

• Test nuclear physics.  
• Nucleosynthesis.
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Signal has strong variations  
(mass, EoS, 3D effects).  

• Core collapse astrophysics. 
• (Test oscillation physics.)
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DSNB detection may happen soon with, e.g., upcoming JUNO and Gd-Super-K project  
(sensitivity strongly improved).                 

Diffuse Supernova Neutrino Background

Recent review papers: Mirizzi, Tamborra et al. (2016). Lunardini (2010). Beacom (2010). 
Super-Kamiokande Collaboration, Astrop. Phys. (2015). Beacom & Vagins, PRL (2004). JUNO Coll., 2015. Priya & Lunardini 2017. 
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ABSTRACT

The spectrum of the supernova relic neutrino (SRN) background from past stellar collapses includ-
ing black hole formation (failed supernovae) is calculated. The redshift dependence of the black hole
formation rate is considered on the basis of the metallicity evolution of galaxies. Assuming the mass
and metallicity ranges of failed supernova progenitors, their contribution to SRNs is quantitatively
estimated for the first time. Using this model, the dependences of SRNs on the cosmic star formation
rate density, shock revival time and equation of state are investigated. The shock revival time is intro-
duced as a parameter that should depend on the still unknown explosion mechanism of core collapse
supernovae. The dependence on equation of state is considered for failed supernovae, whose collapse
dynamics and neutrino emission are certainly affected. It is found that the low-energy spectrum of
SRNs is mainly determined by the cosmic star formation rate density. These low-energy events will
be observed in the Super-Kamiokande experiment with gadolinium-loaded water.
Subject headings: diffuse radiation — galaxies: evolution — neutrinos — supernovae: general

1. INTRODUCTION

Since the creation of the Universe, many generations of
stars have been born and died. During the cosmic evolu-
tion, stars eject synthesized elements by stellar winds or
explosions such as supernovae, and the ejecta are mixed
with the interstellar gas. Therefore, the mass fraction of
elements heavier than carbon (metallicity), Z, increases
gradually with the cosmic time. Meanwhile, many neu-
trinos are emitted from core collapse supernova (CCSN)
explosions of massive stars and accumulate to give a dif-
fuse background radiation that is redshifted owing to cos-
mic expansion. These neutrinos are called the supernova
relic neutrino (SRN) background, or the diffuse super-
nova neutrino background (DSNB) in some papers.
Neutrinos emitted from a supernova have actually

been detected for SN1987A (e.g., Hirata et al. 1987;
Bionta et al. 1987; Alexeyev et al. 1988). In the obser-
vation of SRNs, on the other hand, terrestrial neutrino
detectors are affected by various backgrounds such as
solar neutrinos, reactor neutrinos, atmospheric neutri-
nos and contamination by cosmic muon events, radio
activity events and so forth. However, some observa-
tional upper bounds for the flux of SRNs have been
reported (e.g., Malek et al. 2003). Roughly speaking,
all species of neutrinos (νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ) are
equally emitted from a supernova with average energies
of ∼10 MeV. Nowadays, SRNs with ν̄e of approximately
20 MeV are expected to be observable in running exper-
iments. The most stringent limits reported for ν̄e flux
were obtained in the Super-Kamiokande experiment as
<0.1-1 cm−2 s−1 MeV−1 for neutrino energies between
17.3 MeV and 30.8 MeV (Bays et al. 2012) and in the
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Fig. 1.— 90% C.L. differential upper limits on ν̄e flux of SRNs.
The squares, circles and triangles are results for Super-Kamiokande
(SK-I/II/III, Bays et al. 2012), Super-Kamiokande with a neutron-
tagging (SK-IV, Zhang et al. 2015) and KamLAND (Gando et al.
2012). Dashed and dotted lines correspond to our theoretical mod-
els with maximum and minimum values of SRN event rate, respec-
tively (see also Table 3).

KamLAND experiment as <10-100 cm−2 s−1 MeV−1

between 8.3 MeV and 18.3 MeV (Gando et al. 2012).
Super-Kamiokande derived a new upper limit of <5-
30 cm−2 s−1 MeV−1 for energies between 13.3 MeV
and 17.3 MeV by performing a new analysis with a
neutron-tagging technique (Zhang et al. 2015). In Fig-
ure 1, we show the upper limits for ν̄e flux with the-
oretical estimations presented later in this paper. For
νe flux, the SNO experiment obtained an upper limit of
70 cm−2 s−1 MeV−1 for energies between 22.9 MeV and
36.9 MeV (Aharmim et al. 2006). These observational
upper limits are larger than various theoretical predic-
tions (e.g., Ando & Sato 2004; Beacom 2010, and refer-
ences therein). Nevertheless, the Super-Kamiokande up-
per limit is reasonably close to the predictions; thus, it is
expected that SRNs will be observed in the near future.
Cosmic metallicity evolution has been proven by obser-

vations of galaxies (e.g., Maiolino et al. 2008, hereafter
M08). Recently, the correlation between the metallic-
ity and the star formation rate (SFR) of galaxies has



Diffuse Supernova Neutrino Background

DSNB sensitive to failed supernova fraction.

Lien et al., PRD (2010), Nakazato et al., ApJ (2015), Yuksel&Kistler, PLB (2015). Priya & Lunardini 2017. Lunardini, PRL(2009), 

• Independent test of the global SN rate. 

• Constraints on the fraction of core-collapse and failed supernovae.  

• Constraints on average neutrino emission properties.
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SN-GRB Connection



Core-Collapse Supernovae

Margutti et al., ApJ (2014). Woosley & Bloom (2006). Bloom & Hjorth (2011). Lazzati et al. (2012). Piran et al., arXiv: 
1704.08298. Sobacchi et al., arXiv: 1705.00281.

SN 2012ap in the X-rays 3

FIG. 2.— Kinetic energy profile of the ejecta of ordinary type Ibc SNe (red) and E-SNe, a class of explosions that includes GRBs (blue), sub-E GRBs (light-
blue) and relativistic SNe (orange). Squares and circles are used for the slow-moving and the fast-moving ejecta, respectively, as measured from optical and
radio observations. The velocity of the fast-moving ejecta has been computed at �t = 1d (rest-frame). Black solid lines: ejecta kinetic energy profile of a pure
hydrodynamical explosion (Ek / (��)-5.2, Tan et al. 2001), and for explosions powered by a short-lived (Ek / (��)-2.4) and long-lived (Ek / (��)-0.4) central
engine (Lazzati et al. 2012). Open black circles identify explosions with broad-lined optical spectra. The purple arrows identify the directions of increasing
collimation and mass of the fastest ejecta. SN 2012ap bridges the gap between cosmological GRBs and ordinary SNe Ibc. Its kinetic energy profile, significantly
flatter than what expected from a pure hydrodynamical explosion, indicates the presence of a central engine. References: Margutti et al. (2013a) and references
therein; Ben-Ami et al. (2012); Horesh et al. (2013); Corsi et al. (2014), Walker et al. (2014); C14; M14.

that has been shown to scale as ⇢SN / R-n with n ⇠ 10 (see
e.g. Matzner & McKee 1999; Chevalier & Fransson 2006).

Assuming a wind-like CSM structure ⇢CSM / R-2 as ap-
propriate for massive stars, a power-law electron distribution
ne(�) = n0�-p with p ⇠ 3 as indicated by radio observations
of type Ib/c SNe (Chevalier & Fransson 2006) and by ra-
dio observations of SN 2012ap (C14) and a fraction of en-
ergy into relativistic electrons ✏e = 0.1 as supported by well
studied SN shocks (e.g. Chevalier & Fransson 2006), the
Chandra non-detection of SN 2012ap at �t ⇡ 24d implies
Ṁ/vw < 5 ⇥ 10-6(M�y-1/1000kms-1). Ṁ is the mass loss
rate of the progenitor star and vw is the wind velocity. We
renormalize the mass-loss to vw = 1000kms-1 as appropriate
for a Wolf Rayet progenitor stars. In this calculation we used
the bolometric luminosity we derived in M14, Ek ⇠ 1052 erg
and Mej ⇠ 3M� as obtained by modeling the bolometric lu-
minosity in M14.

The inferred limit to the mass-loss rate Ṁ < 5 ⇥
10-6(M�y-1) is independent from any assumption on
magnetic-field related parameters, it is not affected by pos-
sible uncertainties on the SN distance and indicates that the
pre-explosion mass-loss of SN 2012ap lies at the low end
of the interval of values derived by C14 (4⇥ 10-6 M�y-1 <
Ṁ < 5 ⇥ 10-5 M�y-1) based on the modeling of the radio
observations with synchrotron emission.8 This result is in

8 Note that the synchrotron formalism is instead dependent on assumptions

line with the value derived for the relativistic SN 2009bb
(Ṁ ⇠ 2 ⇥ 10-6 M�y-1, Soderberg et al. 2010b) and consis-
tent with the wide range of values inferred for sub-E GRBs
(10-7 M�y-1 . Ṁ . 10-5 M�y-1).

4. SN 2012AP IN THE CONTEXT OF ENGINE-DRIVEN EXPLOSIONS

The radio observations of SN 2012ap are well modeled
by synchrotron emission arising from the interaction of the
SN shock with the environment (C14). C14 derive Ek =
(1.6±0.1)⇥1049 erg carried by mildly relativistic ejecta with
velocity v ⇠ 0.7c at �t = 1d. By modeling the observed
optical emission, M14 infer Ek ⇠ 1052 erg in slow moving
(v ⇡ 20000kms-1) material. These two values define an Ek
profile significantly flatter than what expected in the case of a
pure hydrodynamical collapse (Ek / (��)-5.2, e.g. Tan et al.
2001), thus pointing to the presence of an engine driving the
SN 2012ap explosion (see Fig. 2).

Engine-driven SNe (E-SNe) constitute a diverse class of ex-
plosions that includes relativistic SNe, sub-E GRBs and or-
dinary GRBs. SN 2012ap is intermediate between ordinary
non-relativistic SNe and fully relativistic GRBs and falls into
a region of the parameter space populated by sub-E GRBs and
the other known relativistic SN, SN 2009bb (Fig. 2)9. With
reference to figures 3 and 4 we find that:

on magnetic field related parameters.
9 The relativistic nature of SN 2007gr has been questioned by Soderberg

et al. (2010a) and it is not included here. See however Paragi et al. (2010).

Evidence towards a continuum of stellar explosions originating from hydrogen-stripped 
envelopes.



GRB Redshift Evolution

Figure taken from Tamborra & Ando, JCAP (2015).
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GRBs potentially scarcely visible in photons may be more abundant than ordinary ones.



Supernova Aftermath

Neutrinos may be the only particles emerging from the stellar envelope.

⌫�
⌫

Successful GRB  
(photons & neutrinos)

Choked GRB  
(neutrinos only)

Failed GRB  
(no particles)



Talk by Kopper @ ICRC 2017. IceCube Collaboration, Science (2013), PRL (2014), PRD (2015). IceCube Collaboration, ApJ 
(2015);  PRL (2015). 

★ IceCube observed O(80) events over six years in the TeV-PeV range. 
★ Zenith Distribution compatible with isotropic flux. 
★ Flavor distribution consistent with                                   .⌫e : ⌫µ : ⌫� = 1 : 1 : 1

     >      evidence for astrophysical flux 7�

2013

energy spectrum (6 years)ν 26

Compatible with benchmark 
single power-law model.  

Things might be more 
complicated, but this is not 
the analysis to decide that. 

Best fit spectral index (E-ɣ): 
ɣ=-2.92+0.33

-0.29 

E2ɸ = 2.46 ± 0.8 x 10-8 x 
   (E / 100TeV)-0.92 GeV cm-2 s-1 sr-1

IceCube Preliminary

2017

Upper Limit on Neutrino Emission



IceCube flux indirectly constraints the fraction of SNe evolving in jets and their jet energy. 

Denton & Tamborra, in preparation. Tamborra & Ando, PRD (2016). Senno et al., PRD (2015). Meszaros & Waxman, PRL 
(2001). 

SN-GRB Connection
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Conclusions

• Neutrinos play a fundamental role in supernovae. 

• Intriguing neutrino features from 3D SN simulations.  

• Nu-nu interactions: Work still needed to grasp their role, especially for fast conversions.  

• Each SN phase offers different opportunities to learn about SN (and nu) physics.   

• Realistic perspectives to detect the DSNB in the near future. 

• Neutrinos are intriguing probes of the supernova aftermath.



Thank you for your attention!


