Development of a new fourth-order hydrodynamic code for Astrophysics

Annop Wongwathanarat Hannes Grimm-Strele Ewald Müller

CoCoNuT Meeting 2017

Max-Planck-Institut für Astrophysik

Motivation

Euler equations

$$\frac{\partial \mathbf{U}}{\partial t} + \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} + \frac{\partial \mathbf{G}(\mathbf{U})}{\partial y} + \frac{\partial \mathbf{H}(\mathbf{U})}{\partial z} = 0 \qquad \text{Differential form}$$
$$\mathbf{U} = \begin{pmatrix} \rho u \\ \rho u \\ \rho v \\ \rho w \\ \rho w \\ \rho E \end{pmatrix}, \qquad \mathbf{F}(\mathbf{U}) = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho uv \\ \rho uw \\ \rho uW \\ \rho uW \\ \rho uH \end{pmatrix},$$
$$\mathbf{G}(\mathbf{U}) = \begin{pmatrix} \rho v \\ \rho v \\ \rho uv \\ \rho v^2 + p \\ \rho v W \\ \rho vH \end{pmatrix}, \qquad \mathbf{H}(\mathbf{U}) = \begin{pmatrix} \rho w \\ \rho w \\ \rho w \\ \rho v W \\ \rho w W \\ \rho wH \end{pmatrix}.$$

Euler equations

$$\frac{\partial}{\partial t} \int_{V_i} \mathbf{U}^s \, \mathrm{d}V + \int_{V_i} \mathbf{\nabla} \cdot \mathbf{\mathfrak{F}}^s \, \mathrm{d}V = 0$$

For finite-volume scheme, we work with integral form

Domain of interest is divided into small control volumes V_i

Grid in astrophysics

http://http.developer.nvidia.com/GPUGems3/ elementLinks/22fig03.jpg

Spherical polar grid

Singularities at poles and origin

Time steps severely limited by CFL condition

$$C = \Delta t \sum_{i=1}^{n} \frac{u_{x_i}}{\Delta x_i} \le C_{\max}.$$

But, singularity at the origin still remains

Method

A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS

PETER MCCORQUODALE AND PHILLIP COLELLA

High-order, finite-volume methods in mapped coordinates

P. Colella^{a,1}, M.R. Dorr^{b,2}, J.A.F. Hittinger^{b,*,2}, D.F. Martin^{a,1}

^a Applied Numerical Algorithms Group, Lawrence Berkeley National Laboratory, One Cyclotron Road Mail Stop 50A-1148, Berkeley, CA 94720, United States ^b Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, 7000 East Avenue L-561, Livermore, CA 94550, United States

A Freestream-Preserving High-Order Finite-Volume Method for Mapped Grids with Adaptive-Mesh Refinement

S. Guzik, P. McCorquodale , P. Colella

December 19, 2011

Apsara: A multidimensional unsplit fourth-order explicit Eulerian hydrodynamics code for arbitrary curvilinear grids

A. Wongwathanarat, H. Grimm-Strele, and E. Müller

(figure from wikipedia)

An Apsara is a female spirit of the clouds and water in Hindu mythology. Apsaras are said to be able to change their shape at will.

Mapped grid technique

Non-uniform grid in physical space is mapped to equidistant Cartesian grid in computational space

Mapped grid technique

$$\frac{\partial}{\partial t} \int_{V_{i}} \mathbf{U}^{s} \, \mathrm{d}V + \int_{V_{i}} \nabla \cdot \mathbf{\tilde{g}}^{s} \, \mathrm{d}V = 0 \implies \frac{\partial}{\partial t} \int_{\Omega_{i}} J \mathbf{U}^{s} \, \mathrm{d}\Omega + \int_{\Omega_{i}} \nabla_{\xi} \cdot (\mathbf{N}\mathbf{\tilde{g}}^{s}) \, \mathrm{d}\Omega = 0$$
Define one-to-one mapping function
$$\mathbf{M}(\xi) = \mathbf{x}, \ \mathbf{M} : \mathbb{R}^{3} \to \mathbb{R}^{3}.$$

$$\frac{\partial}{\partial t} \int_{\Omega_{i}} J \mathbf{U}^{s} \, \mathrm{d}\Omega + \int_{\partial\Omega_{i}} \mathbf{N}\mathbf{\tilde{g}}^{s} \cdot \, \mathrm{d}\mathbf{A}_{\xi} = 0.$$

$$J = \left| \frac{\partial(x, y, z)}{\partial(\xi, \eta, \zeta)} \right| \qquad \mathbf{N} = \left| \frac{\partial(z, z)}{\partial(z, \xi)} \right| \quad \left| \frac{\partial(z, z)}{\partial(z, \xi)} \right| \quad \left| \frac{\partial(z, y)}{\partial(z, \xi)} \right| \\ \left| \frac{\partial(z, y)}{\partial(z, \xi)} \right| \quad \left| \frac{\partial(z, y)}{\partial(z, \xi)} \right| \quad \left| \frac{\partial(z, y)}{\partial(z, \xi)} \right|$$

 $\left(\left| \frac{\partial(y,z)}{\partial(\xi,\eta)} \right| \left| \frac{\partial(z,x)}{\partial(\xi,\eta)} \right| \left| \frac{\partial(x,y)}{\partial(\xi,\eta)} \right| \right)$

$$\frac{\partial}{\partial t} \int_{\Omega_i} J \mathbf{U}^s \, \mathrm{d}\Omega + \int_{\partial \Omega_i} \mathbf{N} \mathfrak{F}^s \cdot \, \mathrm{d}\mathbf{A}_{\boldsymbol{\xi}} = 0.$$

Approximate the volume and face integrals to high-order using Taylor expansions

$$\frac{\partial}{\partial t} \langle J \mathbf{U}^{s} \rangle_{i} + \sum_{d=1}^{3} (\langle \mathbf{N}_{d} \mathfrak{F}^{s} \rangle_{i+\frac{1}{2}e^{d}} - \langle \mathbf{N}_{d} \mathfrak{F}^{s} \rangle_{i-\frac{1}{2}e^{d}}) = 0$$

$$\langle f \rangle_{\boldsymbol{i}} = f_{\boldsymbol{i}} + \frac{h^2}{24} \nabla_{\boldsymbol{\xi}}^2 f \qquad \langle f \rangle_{\boldsymbol{i} \pm \frac{1}{2} \boldsymbol{e}^d} = f_{\boldsymbol{i} \pm \frac{1}{2} \boldsymbol{e}^d} + \frac{h^2}{24} \nabla_{\boldsymbol{\xi}, \perp}^2 f$$

4th order cell average

4th order face average

$$\frac{\partial}{\partial t} \langle J \mathbf{U}^{s} \rangle_{i} + \sum_{d=1}^{3} (\langle \mathbf{N}_{d} \mathfrak{F}^{s} \rangle_{i+\frac{1}{2}e^{d}} - \langle \mathbf{N}_{d} \mathfrak{F}^{s} \rangle_{i-\frac{1}{2}e^{d}}) = 0$$

Product of two functions

$$\langle fg \rangle_i = \langle f \rangle_i \langle g \rangle_i + \frac{h^2}{12} \sum_{d=1}^3 \frac{\partial f}{\partial \xi_d} \frac{\partial g}{\partial \xi_d}.$$

Use RK4 for time integration

Similarly, for face averages use only transverse gradients here

$$\frac{\Delta t}{h} \max_{i} \left(\sum_{d=1}^{3} J^{-1}(|\mathbf{N}\mathbf{v} \cdot \boldsymbol{e}^{d}| + c_{s}|(\mathbf{N}_{d})^{T}|) \right) \leq 1.3925,$$

How to calculate <N>??

We need to be very careful here --> Freestream preservation

Consider an initial condition where rho=p=const. and u=v=w=0

$$\sum_{\pm=+,-}\sum_{d=1}^{3}\pm \langle N_d^c\rangle_{i\pm\frac{1}{2}e^d}=0.$$

How to calculate fluxes <F>??

Non-linear conversion

then, reconstruct ---> solve Riemann problem ---> get new <W>_{i+1/2}

$$\langle W \rangle_{i+1/2} \longrightarrow W_{i+1/2} \longrightarrow F_{i+1/2} \longrightarrow \langle F \rangle_{i+1/2}$$

Grid size	Apsara				Prometheus			
	L_1	Rate	L_{∞}	Rate	L_1	Rate	L_{∞}	Rate
32	6.13E-02	-	3.92E-01	-	6.02E-02	-	4.24E-01	-
64	2.04E-02	1.59	1.65E-01	1.24	2.65E-02	1.18	2.40E-01	0.82
128	4.75E-03	2.10	4.02E-02	2.04	9.60E-03	1.47	1.04E-01	1.20
256	2.99E-04	3.99	2.67E-03	3.91	2.05E-03	2.23	3.29E-02	1.67
512	1.88E-05	3.99	1.66E-04	4.01	4.33E-04	2.24	1.01E-02	1.70
1024	1.18E-06	4.00	1.04E-05	4.00	6.25E-05	2.79	3.08E-03	1.71

	Apsara								DEOMETHEUS			
Grid size	\mathbf{M}_{0}				\mathbf{M}_{1}				r kometheus			
	L_1	Rate	L_{∞}	Rate	L_1	Rate	L_{∞}	Rate	L_1	Rate	L_{∞}	Rate
32^{2}	4.74E-03	-	3.36E-01	-	7.08E-03	-	4.39E-01	-	5.12E-03	-	4.34E-01	-
64^{2}	1.27E-03	1.90	8.02E-02	2.07	1.84E-03	1.95	1.49E-01	1.56	2.58E-03	0.99	2.21E-01	0.97
128^{2}	1.16E-04	3.45	1.08E-02	2.89	2.89E-04	2.67	2.73E-02	2.45	8.15E-04	1.66	1.46E-01	0.60
256^{2}	7.39E-06	3.97	6.84E-04	3.98	1.90E-05	3.93	1.96E-03	3.80	1.51E-04	2.43	3.36E-02	2.12
512^{2}	4.64E-07	3.99	4.30E-05	3.99	1.19E-06	3.99	1.23E-04	3.99	3.09E-05	2.29	1.09E-02	1.62

Grid size	fourth-orde	er scheme	second-order scheme		
	ϵ	Rate	ϵ	Rate	
32	2.39E-09	-			
64	1.06E-10	4.50			
128	7.56E-12	3.80			
256	5.51E-12	0.46			
512	5.50E-12	0.00			
1024	5.50E-12	0.00			
32^{2}	1.36E-09	-	4.85E-09	-	
64^{2}	7.19E-11	4.24	1.19E-09	2.02	
128^{2}	6.59E-12	3.45	2.98E-10	2.00	
256^{2}	5.50E-12	0.26	7.46E-11	2.00	
512^{2}	5.50E-12	0.00	1.91E-11	1.96	
1024^{2}	5.50E-12	0.00	6.96E-12	1.46	
32^{3}	8.68E-10	-	4.34E-09	-	
64 ³	5.03E-11	4.11	1.08E-09	2.00	
128^{3}	5.99E-12	3.07	2.72E-10	1.99	
256^{3}	5.96E-12	0.01	6.82E-11	1.99	

Non-linear terms intervene

Testing the code

Linear acoustic wave

 $\rho_0 = 1 \text{ and } p_0 = \frac{3}{5}$

$$\delta \mathbf{U} = A \sin(2\pi x) \cdot (1, -1, 1, 1, 1.5)^{T}$$

Grid size	fourth-orde	er scheme	second-order scheme		
Coarse : Fine	$L_1(\Delta \rho)$	Rate	$L_1(\Delta \rho)$	Rate	
32:64	1.12E-09	-			
64:128	4.80E-11	4.55			
128 : 256	3.02E-12	3.99			
256 : 512	1.89E-13	4.00			
512 : 1024	1.20E-14	3.97			
$32^2:64^2$	6.26E-10	_	1.82E-09	-	
$64^2:128^2$	3.28E-11	4.26	4.39E-10	2.05	
$128^2:256^2$	2.07E-12	3.99	1.10E-10	2.00	
$256^2:512^2$	1.31E-13	3.98	2.74E-11	2.00	
$512^2:1024^2$	9.60E-15	3.77	6.85E-12	2.00	
$32^3:64^3$	3.95E-10	-	1.71E-09	-	
$64^3:128^3$	2.28E-11	4.11	4.31E-10	1.99	
$128^3:256^3$	1.45E-12	3.97	1.09E-10	1.99	

Self convergence

Gresho vortex

$$\frac{u_{\phi}(r)}{0.4\pi} = \begin{cases} 5r & ; \ 0 \le r < 0.2, \\ 2 - 5r & ; \ 0.2 \le r < 0.4, \\ 0 & ; \ 0.4 \le r. \end{cases}$$

$$p(r) = \begin{cases} p_0 + \frac{25}{2}r^2 & ; \ 0 \le r < 0.2, \\ p_0 + \frac{25}{2}r^2 + 4(1 - 5r - \ln 0.2 + \ln r) & ; \ 0.2 \le r < 0.4, \\ p_0 - 2 + 4\ln 2 & ; \ 0.4 \le r, \end{cases}$$

$$p_0 = \frac{(0.4\pi)^2}{\gamma M_{\rm max}^2} - \frac{1}{2}$$

A new numerical solver for flows at various Mach numbers

F. Miczek¹, F. K. Röpke², and P. V. F. Edelmann^{2,1}

- ¹ Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany e-mail: fab@miczek.de
- ² Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Emil-Fischer-Str. 31, D-97074 Würzburg, Germany

Gresho vortex

Failure of Roe type flux

Fig. 4. Gresho vortex problem advanced to t = 1.0 with the Roe flux discretization scheme for different maximum Mach numbers M_{max} in the setup, as indicated in the plots. Color coded is the Mach number relative to the respective M_{max} .

Gresho vortex

APSARA can capture lowmach number flows better

Testing the code Non-linear vortex advection

$$\rho_0 = p_0 = T_0 = 1, \quad u_0 = v_0 = 1.$$

Grid size	\mathbf{M}_{1}				\mathbf{M}_{2}			
	L_1	Rate	L_{∞}	Rate	L_1	Rate	L_{∞}	Rate
32^{2}	4.56E-01	-	9.22E-02	-	5.40E-01	-	9.06E-02	-
64^{2}	4.89E-02	3.22	7.90E-03	3.54	1.39E-01	1.96	2.99E-02	1.60
128^{2}	3.25E-03	3.91	4.77E-04	4.05	4.41E-02	1.66	1.54E-02	0.96
256^{2}	2.08E-04	3.96	3.09E-05	3.95	1.48E-02	1.58	8.93E-03	0.79
512^{2}	1.31E-05	3.99	1.95E-06	3.98	5.16E-03	1.52	4.15E-03	1.11
1024^{2}	8.18E-07	4.00	1.23E-07	3.99	1.92E-03	1.42	2.13E-03	0.96

Non-smooth grid destroys convergence

Single block circular domain

Low quality grid cells along diagonals

Mapped multi-block grid

High-order finite-volume methods for hyperbolic conservation laws on mapped multiblock grids

P. McCorquodale^{a,*}, M.R. Dorr^b, J.A.F. Hittinger^b, P. Colella^a

^a Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Mail Stop 50A1148, Berkeley, CA 94720, USA

^b Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Livermore, CA 94551-0808, USA

First results

Linear advection Gaussian profile, u=1, v=0.5

4th order convergence achieved

		L1	Rate	LM	Rate
32	:	1.38E-02	0.00E+00	2.63E-01	0.00E+00
64	:	3.00E-03	2.20E+00	4.69E-02	2.49E+00
128	:	2.29E-04	3.71E+00	5.38E-03	3.12E+00
256	:	1.46E-05	3.97E+00	3.56E-04	3.92E+00
512	:	9.23E-07	3.99E+00	2.25E-05	3.98E+00
1024	:	5.80E-08	3.99E+00	1.47E-06	3.94E+00
2048	3:	3.65E-09	3.99E+00	9.77E-08	3.91E+00

First results Gaussian acoustic pulse

user: annop Thu Apr ó 12:28:00 2017

L^in	fty		
-		DIFF	Rate
16/32	:	7.92E-04	0.00E+00
32/64	:	4.41E-05	4.17E+00
64/128	:	2.81E-06	3.97E+00
128/256	:	1.79E-07	3.98E+00
256/512	:	1.06E-08	4.08E+00

1 ^1-			
L-1-		DIFF	Rate
16/32	:	1.01E-04	0.00E+00
32/64	:	7.20E-06	3.81E+00
64/128	:	4.74E-07	3.93E+00
128/256	:	3.01E-08	3.98E+00
256/512	:	1.89E-09	3.99E+00

Conclusion

- Developed 4th order accurate hydrodynamic code APSARA
- test (smooth flow) problems show 4th order convergence
- better behavior for low Mach number flows
- Extension to multi-block grids in progress ... first results looking good

Outlook

- Flows with discontinuities (e.g., dissipation mechanisms for shocks, steepening of contact discontinuity)
- Multi-fluid advection
- Self-gravity

Preliminary

