

Can Gravitational Waves provide insights about the Core-Collapse Supernova mechanism?

Haakon Andresen 15.12.2016

......

MPA

Bernhard Müller, Ewald Müller and Thomas Janka arxiv:1607.05199

$$Q^{ij} = \int d^3x \rho(x^i x^j - \frac{1}{3}r^2 \delta^{ij})$$
$$h^{TT}(\mathbf{X}, t) = \frac{1}{D} [A_+ \mathbf{e}_+ + A_\times \mathbf{e}_\times]$$
$$A_{\times/+} = f(\ddot{Q}^{ij}),$$

Core collapse

- Massive stars (Ertl et al 2015)
- Shell burning
- Iron core collapse
- Repulsive nucleon interactions
- \cdot Core bounce

Image Credit: NASA, ESA, J. Hester

Post bounce

- Stalled accretion shock
 - Hot bubble convection
 - Large scale shock deformation (SASI)
- Shock revival
 - Neutrino heating
 - Supported by SASI activity

Image credit: F.Hanke et al 2013

Progenitors: 11.2 M_{\odot} , 20 M_{\odot} and 27 M_{\odot} (Woosley et al 2002 & 2007)

Numerical simulations

- Three non-exploding models: s11.2, s20, s27 (Hanke et al 2013)
- One successful explosion: s20s (Melson et al 2015)
 - Strange quark contributions to the nucleon spin

7

Spectrograms

- Large scale shock deformation (SASI)
 - Only seen in models with strong SASI activity
 - Frequency overlap with the SASI

Low frequency signal

- Large scale shock deformation (SASI)
 - Only seen in models with strong SASI activity
 - Frequency overlap with the SASI

- Large scale shock deformation
 - Post-shock volume mass distribution
 - Interaction with proto-neutron star

- \cdot Seen in all models
- Consistent with the theoretical frequency of buoyancy driven effects

High frequency signal

- $\cdot\,$ Seen in all models
- Consistent with the theoretical frequency of buoyancy driven effects
- Convection inside the proto-neutron star

High frequency signal

- \cdot Seen in all models
- Consistent with the theoretical frequency of buoyancy driven effects
- Convection inside the proto-neutron star

- Similar to non-exploding models before onset of shock expansion
- Increased gravitational wave emission

Exploding model

- Geometry of the convectively unstable region with in the PNS
- Shifts to a l = 2 dominated state

$$a_l^m(t_n) = \frac{(-1)^{|m|}}{\sqrt{4\pi(2l+1)}} \int v_r(\theta,\phi,t) Y_l^m \mathrm{d}\Omega.$$
⁽²⁾

- Optimal orientate detector signal-to-noise ratio
 - Ratio of power in the low and high frequency band
- Advance LIGO (D \sim 1 kpc)
- \cdot Einstein Telescope (D \sim 10 kpc)

- Optimal orientate detector signal-to-noise ratio
 - Ratio of power in the low and high frequency band
- Advance LIGO (D \sim 1 kpc)
- \cdot Einstein Telescope (D \sim 10 kpc)

Detection prospects

- Optimal orientate detector signal-to-noise ratio
 - Ratio of power in the low and high frequency band
- \cdot Advance LIGO (D \sim 1 kpc)
- \cdot Einstein Telescope (D \sim 10 kpc)

- Low frequency: SASI
- High frequency: PNS convection
- $\cdot\,$ Good detection possibilities in future detectors

Can Gravitational Waves provide insights about the Core-Collapse Supernova mechanism?

Haakon Andresen

15.12.2016

MPA

Bernhard Müller, Ewald Müller and Thomas Janka arxiv:1607.05199

Energy

Low frequency amplitude

2D Models

- Impact on the dynamics
 - Prompt convection
 - Dimmelmeier et al. 2008
 - Ott et al. 2012
 - Enhanced growth rate of the spiral SASI
 - Blondin & Mezzacappa 2007
 - Yamasaki & Foglizzo 2008
 - Iwakami et al. 2009
 - Kazeroni et al. 2016
 - Janka et al. 2016
- \cdot Rotation
 - Stellar evolution
 - Heger et al. 2005 (Magnetic fields)
 - Cantiello et al. 2014 (Winds, asteroseismology)
 - Pulsars
 - Popov & Turolla 2012
 - Noutsos et al. 2013

Name of Galaxy |Distance (kly) |

Sagittarius Dwarf 78±7 Ursa Major II 100±156 Coma Berenices Dwarf 144±136 Large Magellanic Cloud 165±5 Small Magellanic Cloud 195±15 Boötes Dwarf 197+9 Ursa Minor Dwarf 215+104 Sculptor Dwarf 258±137 Draco Dwarf 267+204 Sextans Dwarf 280±130 Ursa Major I 325