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No clear picture from merger simulations
Failing of jet launching despite favorable conditions

Figure: Simulation of the merger of two neutron stars (Rezzolla et al., 2011) with gravitational mass of 1.5
solar masses each during a time of 26.5 ms.

• Despite favorable conditions (e.g., magnetic fields) no jets clearly emerge
after the BH formation (Rezzolla et al., 2011; Kiuchi et al., 2014).
Simulations by Ruiz et al. (2016) did, however, discover jet launching.

• Possible explanations for missing jets: Short simulation time or field
reversals observed over the low density funnel.

Current set of ’standard’ magnetospheric field topologies (e.g.,
split-monopole, paraboloidal) may not be sufficient for time evolution

simulations of the electromagnetic fields anymore.
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Blandford/Znajek explain jet powering I
Creating a force-free black hole magnetosphere

Figure: Schematic visualization of the Blandford/Znajek model (cf. MacDonald and Thorne, 1982). The black
hole is embedded in a force-free magnetosphere. Magnetic fields are supported by a thin disc in the θ = π/2

equatorial plane. The acceleration region which involves a break-down of the idealized conditions is set up at
infinity and not considered for the derivations. A non-degenerate plasma generation region is schematically
represented by the dashed lines.



Magneto-
spheric

electrody-
namics

Jens
Mahlmann

Introduction

Force-free
e-dynamics

Numerical
strategies

Outlook

Open forum

References

Blandford/Znajek explain jet powering II
Spacetime magnetospheric electrodynamics

Blandford and Znajek (1977) intensively
exploit the covariant form of the
Maxwell equations in Kerr spacetime.
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The existence of time-like and axial-like
symmetries help to reduce the
complexity of the resulting equations.

Aµ,t = Aµ,φ = 0

=⇒ Ftφ = Fφt = 0

The force-free condition ultimately
reduces to a differential equation
governing the magnetosphere.
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• Second order non-linear elliptic PDE

• Singular surfaces (so called light
cylinders)

• Mathematical treatment differs from
the (analytical) approach in the
neutron star case
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Solving GS as an elliptic PDE
Numerical PDE solving routine with SOR scheme

The Grad-Shafranov equation is resolved into a linear part Gl and the
non-linear source terms Gs .
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• After discretization throughout the numerical grid, Gl may be used
as the linear operator in a numerical PDE solving scheme with
non-linear sources Gs .

• Following Contopoulos et al. (2013), a SOR (successive
overrelaxation) method is employed for the relaxation procedure.
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Grad-Shafranov is not easily solved
The Contopoulos et al. (2013) strategy I

Contopoulos et al. (2013) suggest a simultaneous numerical
treatment for the three functions Ψ, ω (Ψ) and I (Ψ) to solve the
relativistic Grad-Shafranov equation:

• Discretize initial guesses for all physical quantities on a 256× 64
numerical grid:

Ψ (R, θ) = 1− cos θ (Pulsar potential)

ω (Ψ) = 0.5 ΩBH (Ideal condition)

I (Ψ) = − 0.5 ω (Ψ) Ψ (2−Ψ) (Pulsar potential)

ω (Ψ) and I (Ψ) are stored in functional tables accessed through
interpolation.

• Use a successive overrelaxation (SOR) method to update Ψ.
Boundaries set to Dirichlet in θ and Neumann in r .
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Numerics at the light cylinders I
Close-up: Understanding the singular surfaces

Field quantities of the 3+1 decomposition
(as measured by the ZAMOs) are required to
stay finite. Lee et al. (2000) derive the
following:
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where D denotes the light cylinder condition

D = 1−
(ω − Ω)2 $2

α2
.

Smoothness of Ψ throughout the
magnetosphere is imposed as a regularity
condition (as also used in, e.g., Contopoulos
et al., 2013).

Figure: Numerical artifacts develop at the
singular surfaces of the Grad-Shafranov equation
(exaggerated). These breakings of field lines may
cause the numerical solution to blow up.

Strategy outline: Ensure smooth passing through the light cylinders and
reconstruct potential functions consistently.
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Grad-Shafranov is not easily solved
The Contopoulos et al. (2013) strategy II

• Every other iteration, impose weighted corrections to ω and I
according to the non-smoothness of Ψ at the light cylinders
(singular surfaces of the GS-equation). Update scheme
according to:

Ψnew = 0.5 ·
[
Ψ+

LC + Ψ−LC
]

ω (Ψnew ) = ω (Ψold) + µω ·
[
Ψ+

LC − Ψ−LC
]

I (Ψnew ) = I (Ψold) + µI ·
[
Ψ+

LC − Ψ−LC
]

Ψ+
LC and Ψ−LC refer to the extrapolated potential lines at the light

cylinder. The numerical parameters are derived empirically and
depend on the setup.

• Additional polynomial data fitting (order determined empirically) is
applied to the functions ω (Ψ) and I (Ψ).

• A relaxed state is said to be reached after ∼ 5000 iterations.
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Numerics at the light cylinders II
Close-up: Relaxation and smoothing procedures

Figure: Visualization of the smoothing scheme applied
at the light cylinders.

The Grad-Shafranov equation may be
studied on the singular surfaces after the
smoothing procedure:
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At the location of the light cylinders, a
simplified equation can be solved (cf.
Uzdensky, 2004) in order to relate the
defining functions Aφ, ω and I .

Simultaneous relaxation of ω and II ′

Figure: Numerical solution of the Grad-Shafranov (spin
parameter a = 0.9999). Colored shading : Location of
the functions throughout the numerical procedure.

Separate relaxation of ω or II ′

Figure: Numerical solution of the Grad-Shafranov (spin
parameter a = 0.9999). Colored shading : Location of
the functions throughout the numerical procedure.
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Make use of Grad-Shafranov solutions
Construction of initial data for time evolution

Figure: Visualization of the vector potential as a
solution of the Grad-Shafranov equation for a field line
angular velocity ω fixed to ΩBH/2 and black hole spin
parameters between a = 0.9 and a = 0.9999. The
data points used for interpolation are depicted in the
bottom left. (Grad-Shafranov solver, 2 · 106 iterations)

Figure: Visualization of the current potential as a
solution of the Grad-Shafranov equation for a field line
angular velocity ω fixed to ΩBH/2 and black hole spin
parameters between a = 0.9 and a = 0.9999. The
data points used for interpolation are depicted in the
bottom left. (Grad-Shafranov solver, 2 · 106 iterations)
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Overview: Research stages and methods
Numerical simulations as astrophysical experiments

Stage I:
Theory/Numerics

Grad-Shafranov initial data

• Implementation and
testing of a numerical
solving procedure for
the GS equation.

• Expand solving scheme
towards more
complicated field
topologies.

Stage II:
Simulations

Einstein Toolkit setup

• Preparation of GS
solutions as initial data
for time evolution
setups.

• Adaptation of a
suitable evolution
scheme (employing 2D
and 3D codes).

Stage III:
Evaluation/Feedback

Fortran code segment

• Classify GS initial data
in terms of stability and
the observation of jet
launching.

• Understand the role of
force-free evolution vs.
ideal MHD implemen-
tations.
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Open forum: Let’s discuss

Questions. Answers. Remarks. Discussion.

Thank you.
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