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Introduction

Figure: Simulation of the merger of two neutron stars (Rezzolla et al., 2011) with gravitational mass of 1.5
solar masses each during a time of 26.5 ms.

® Despite favorable conditions (e.g., magnetic fields) no jets clearly emerge
after the BH formation (Rezzolla et al., 2011; Kiuchi et al., 2014).
Simulations by Ruiz et al. (2016) did, however, discover jet launching.

® Possible explanations for missing jets: Short simulation time or field
reversals observed over the low density funnel.

Current set of 'standard’ magnetospheric field topologies (e.g.,
split-monopole, paraboloidal) may not be sufficient for time evolution
simulations of the electromagnetic fields anymore.
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Figure: Schematic visualization of the Blandford/Znajek model (cf. MacDonald and Thorne, 1982). The black
hole is embedded in a force-free magnetosphere. Magnetic fields are supported by a thin disc in the = 7 /2
equatorial plane. The acceleration region which involves a break-down of the idealized conditions is set up at
infinity and not considered for the derivations. A non-degenerate plasma generation region is schematically
represented by the dashed lines.
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Spacetime magnetospheric electrodynamics

Blandford and Znajek (1977) intensively
exploit the covariant form of the
Maxwell equations in Kerr spacetime.
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The existence of time-like and axial-like
symmetries help to reduce the
complexity of the resulting equations.
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The force-free condition ultimately

reduces to a differential equation
governing the magnetosphere.
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® Second order non-linear elliptic PDE
® Singular surfaces (so called light
cylinders)

® Mathematical treatment differs from
the (analytical) approach in the
neutron star case
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Solving GS as an elliptic PDE

Numerical PDE solving routine with SOR scheme

The Grad-Shafranov equation is resolved into a /inear part G, and the
non-linear source terms Gs.
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o After discretization throughout the numerical grid, G, may be used

as the linear operator in a numerical PDE solving scheme with
non-linear sources Gs.

e Following Contopoulos et al. (2013), a SOR (successive
overrelaxation) method is employed for the relaxation procedure.
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Contopoulos et al. (2013) suggest a simultaneous numerical
treatment for the three functions W, w (V) and / (V) to solve the
relativistic Grad-Shafranov equation:
Numerical
strategies e Discretize initial guesses for all physical quantities on a 256 x 64

numerical grid:

V(R,0)=1—cosb (Pulsar potential)
w(V) =058y (Ideal condition)
I(V)= — 05w ((V)V(2—-WV)  (Pulsar potential)
w (V) and / (V) are stored in functional tables accessed through
interpolation.

o Use a successive overrelaxation (SOR) method to update V.
Boundaries set to Dirichlet in § and Neumann in r.
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Numerics at the light cylinders |

Close-up: Understanding the singular surfaces

Field quantities of the 3+1 decomposition
(as measured by the ZAMOs) are required to
stay finite. Lee et al. (2000) derive the
following:
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where D denotes the light cylinder condition
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Smoothness of W throughout the
magnetosphere is imposed as a regularity
condition (as also used in, e.g., Contopoulos

et al.,, 2013).

Figure: Numerical artifacts develop at the
singular surfaces of the Grad-Shafranov equation
(exaggerated). These breakings of field lines may
cause the numerical solution to blow up.

Strategy outline: Ensure smooth passing through the light cylinders and
reconstruct potential functions consistently.
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e Every other iteration, impose weighted corrections to w and /

according to the non-smoothness of W at the light cylinders
(singular surfaces of the GS-equation). Update scheme
according to:
Wpew =0.5- [V + V]
W (Wnew) = w (Woi) + pioo - [Wic — V(]
[ (Waew) =1 (Wota) + - [We — W]
\IJZ'C and W, . refer to the extrapolated potential lines at the light

cylinder. The numerical parameters are derived empirically and
depend on the setup.

Additional polynomial data fitting (order determined empirically) is
applied to the functions w (V) and / (V).

® A relaxed state is said to be reached after ~ 5000 iterations.
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Numerics at the light cylinders Il
Close-up: Relaxation and smoothing procedures

Revised update scheme Simultaneous relaxation of w and /I’
w
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Figure: Visualization of the smoothing scheme applied Figure: Numerical solution of the Grad-Shafranov (spin
at the light cylinders. parameter a = 0.9999). Colored shading: Location of

the functions throughout the numerical procedure.

The Grad-Shafranov equation may be
studied on the singular surfaces after the
smoothing procedure:

Separate relaxation of w or /I’

8
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At the location of the light cylinders, a s R
simplified equation can be solved (Cf- Figure: Numerical solution of the Grad-Shafranov (spin
Uzdensky, 2004) in order to relate the parameter a = 0.9999). Colored shading: Location of

defining functions -Aq)v w and I. the functions throughout the numerical procedure.
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Make use of Grad-Shafranov solutions
Construction of initial data for time evolution

Initial vector potential Ay (Grad-Shafranov)
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Figure: Visualization of the vector potential as a
solution of the Grad-Shafranov equation for a field line
angular velocity w fixed to Qgy /2 and black hole spin
parameters between a = 0.9 and a = 0.9999. The
data points used for interpolation are depicted in the
bottom left. (Grad-Shafranov solver, 2 - 10° iterations)
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Figure: Visualization of the current potential as a
solution of the Grad-Shafranov equation for a field line
angular velocity w fixed to Qpgy /2 and black hole spin
parameters between a = 0.9 and a = 0.9999. The
data points used for interpolation are depicted in the
bottom left. (Grad-Shafranov solver, 2 - 10° iterations)
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Overview: Research stages and methods
Numerical simulations as astrophysical experiments

Stage I
Theory/Numerics

Stage |l
Simulations

Stage Ill:
Evaluation/Feedback

Grad-Shafranov initial data

® |mplementation and
testing of a numerical
solving procedure for
the GS equation.

® FExpand solving scheme
towards more
complicated field
topologies.

Einstein Toolkit setup

Fortran code segment

® Preparation of GS

solutions as initial data
for time evolution
setups.

® Adaptation of a

suitable evolution
scheme (employing 2D
and 3D codes).

call Compute_Function_Value(PsiGrid(i,3 k), ITmp
| Linear operator coefficients >>>>>>»>5>>5>>>>>f
| Linear terns from BZ77 - Simplified in Mathema
€1(1,1,1,3,k) = (1.0d0/SignaBL**2.0d0)* &
(2.6d0%bhspin_sq*cBL_sq* (bhmass+OmegaTnp*sB]
bhspin_sq* (bhmass- rL) “OmegaTnp*sBL_sq) )+ &
2.0d0*TBL*((-bhmass) * rBL+OmegaTnp*sBL_sq* (2

€11(1,1,4,3,K) = ((2.0d0*bhmass- rBL) *rBL-bhspin_{
Shapin, aq- (bhapi.2q-2.Oct-bhanss* reLiroL 5
(1,1 (32.040+ (bhspin_sq+rBL_sq) *Delta

(%8.0d0%bhspin_sq* (3.0d0*bhspin_sg+4.0d0* B
(5.0d0=bhspin*¥6.0d0+16 .00+ rBL7*6.040+16 .0
4.0d0+bhspin_sq* (-bhspin_sq+4.0d0+bhspin*bhi
sin(4.0d0*theta () ) +bhspin®*4.0d0+Del taBLAO:
(32.040+DeltaBL*5ignagL*+2,0d0)

€22(1,1,1,3,k) = ((2.0d0%bhmass- rBL)* rBL-bhspin_
Bhspin_sa* (bhspin_sq-2.000+bhmass* rBL+rBL_5

! Non-linear operator coefficients >>>>>>>>>>>>>]
! Non-linear terms from BZ77 - Simplified in Mat!
i ({4181 or. (1.gt0) or. (.16 1).0r. (f.gT0)
Source(i,3.k)=0.0
else
Source(i,j,k)= (-((sBL_sq)*(-2.0d0*bhspin*bhmq
B i (Lol il

® (lassify GS initial data
in terms of stability and
the observation of jet
launching.

® Understand the role of
force-free evolution vs.

ideal MHD implemen-
tations.
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