Magnetic Field Amplification by Magnetorotational Instability in Core-Collapse Supernovae

Tomasz Rembiasz

Martin Obergaulinger, Pablo Cerdá-Durán, Miguel-Ángel Aloy Torás Universitat de València

> Jérôme Guilet*, Ewald Müller Max-Planck-Institut für Astrophysik *Max Planck/Princeton Center for Plasma Physics

CoCoNuT Meeting, Valencia, 14 December 2016

The Supernova Mechanism

The biggest roles in SN mechanisms are played by

- neutrinos
- standing accretion shock instability (SASI)
- in < 1% cases MRI (?) (magnetic fields important for $B \gtrsim 10^{15}$ G)

Typical explosion energy $\approx 10^{53} erg$, most of it in neutrinos(!), 'only' $\approx 10^{51} erg$ in kinetic energy.

Left panels from Janka et al. (2007)

Magnetic field amplification

- ullet magnetic fields dynamically important for $B\gtrsim 10^{15}~$ G
- progenitor's magnetic field $\lesssim 10^9$ G (Heger, Woosley & Spruit 2005)
- \bullet core collapse: amplification by compression 10 $^9~{\rm G} \rightarrow~10^{11}~{\rm G}$
- post bounce phase: amplification by convection $10^{11} \text{ G} \rightarrow 10^{12} \text{ G}$ (Obergaulinger, Janka & Aloy 2015)
- further amplification by MRI 10¹² G \rightarrow ?
- amplification by MRI $5 \times 10^{13} \text{ G} \rightarrow 10^{15} \text{ G}$ (TR, M. Obergaulinger, P. Cerdá-Durán, E. Müller & M.A. Aloy 2016MNRAS.456.3782R)
- what if you start from realistic magnetic fields?

Resistive-viscous MHD

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0,$$

$$\partial_t (\rho \mathbf{v}) + \nabla \cdot (\rho \mathbf{v} \otimes \mathbf{v} + \mathbf{T}) = -\rho \nabla \Phi,$$

$$\partial_t e_\star + \nabla \cdot \left[e_\star \mathbf{v} + \mathbf{v} \cdot \mathbf{T} + \eta \left(\mathbf{b} \cdot \nabla \mathbf{b} - \frac{1}{2} \nabla \mathbf{b}^2 \right) \right] = -\rho \mathbf{v} \cdot \nabla \Phi,$$

$$\partial_t \mathbf{b} - \nabla \times \left[\mathbf{v} \times \mathbf{b} + \eta (\nabla \times \mathbf{b}) \right] = 0,$$

$$\nabla \cdot \mathbf{b} = 0,$$

where
$$\mathbf{b} \equiv \mathbf{B}/\sqrt{4\pi}$$
,
 $e_{\star} = \varepsilon + \frac{1}{2}\rho \mathbf{v}^2 + \frac{1}{2}\mathbf{b}^2$; (ε - internal energy density)
 η - resistivity,
 Φ - gravitational potential,

T - stress tensor, i.e.

 $\mathbf{T} = \left[P + \frac{1}{2} \mathbf{b}^2 + \rho \left(\frac{2}{3} \nu - \xi \right) \nabla \cdot \mathbf{v} \right] \mathbf{I} - \mathbf{b} \otimes \mathbf{b} - \rho \nu \left[\nabla \otimes \mathbf{v} + (\nabla \otimes \mathbf{v})^T \right],$

- ν kinematic shear viscosity,
- ξ kinematic bulk viscosity.

Our code

- finite-volume Eulerian MHD code AENUS (Obergaulinger 2008)
- HLLD, HLL, LF Riemann solvers (with MUSTA; Toro & Titarev 2006)
- high order reconstruction: monotonicity preserving of 9th, 7th, 5th order (MP9, MP7, MP5; Suresh & Huynh 1997); and piecewise-linear (PL)
- constrained transport to keep $\nabla \cdot \mathbf{B} = 0$ (Evans & Hawley 1998)
- explicit Runge-Kutta time integration (RK2, RK3, RK4)
- resistivity and viscosity can be explicitly added (to the flux terms)

Numerical dissipation ansatz

$$\nu_* = \mathfrak{N}_{\nu}^{\Delta \mathsf{x}} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(\frac{\Delta \mathsf{x}}{\mathcal{L}}\right)^r + \mathfrak{N}_{\nu}^{\Delta t} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(\frac{\mathcal{V} \Delta t}{\mathcal{L}}\right)^q$$

- $\mathcal V$ characteristic velocity,
- \mathcal{L} characteristic length,
- r reconstruction scheme order,
- q time integration scheme order, $\mathfrak{N}_{\nu}^{\Delta \mathrm{x}}, \ \mathfrak{N}_{\nu}^{\Delta t}$ constants

$$\xi_* = \mathfrak{N}_{\xi}^{\Delta x} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(\frac{\Delta x}{\mathcal{L}}\right)^r + \mathfrak{N}_{\xi}^{\Delta t} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(\frac{\mathcal{V}\Delta t}{\mathcal{L}}\right)^q$$
$$\eta_* = \mathfrak{N}_{\eta}^{\Delta x} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(\frac{\Delta x}{\mathcal{L}}\right)^r + \mathfrak{N}_{\eta}^{\Delta t} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(\frac{\mathcal{V}\Delta t}{\mathcal{L}}\right)^q$$

Measuring numerical dissipation

From TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016arXiv161105858R)

Measuring numerical dissipation

From TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016arXiv161105858R)

Tearing Mode Instability

reconnects magnetic field linesits growth-rate

$$\Gamma_{
m TM} \propto \eta^{4/5}
u^{-1/5} B^{2/5}$$

(Furth, Killeen & Rosenbluth, 1963)

Measuring numerical dissipation

 $\mathcal{V} = c_{\mathrm{ms}},$

but! $\mathcal{L} \propto \epsilon_{
m RV}(\eta,
u,k, extbf{a}, extbf{c}_{
m A}),$ and not

 $\mathcal{L} \neq \textit{a}$

$$v_{1y} \propto sin(kx)e^{\gamma t}$$

From TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016arXiv161105858R)

 $b_{0x}(y) = b_0 \tanh(ay)$

Measuring numerical dissipation

$$u_* = \mathfrak{N}_
u^{\Delta x} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(rac{\Delta x}{\mathcal{L}}
ight)^r + \mathfrak{N}_
u^{\Delta t} \cdot \mathcal{V} \cdot \mathcal{L} \cdot \left(rac{\mathcal{V} \Delta t}{\mathcal{L}}
ight)^q$$

Magnetorotational instability

The MRI growth-rate is independent of the initial magnetic field strength

$$\Gamma_{
m MRI} = -rac{\Omega}{2}rac{{
m d}\ln\Omega}{{
m d}\ln R}$$
 $B_{
m channel} \propto V_{
m channel} \propto e^{\Gamma_{
m MRI}t}$

Kelvin-Helmholtz Instability

occurs when there is a velocity shearits growth-rate

$${\sf \Gamma}_{
m KH} \propto V\left(1-rac{
u k}{2V}
ight),$$

V - velocity, ν - shear viscosity

MRI and parasitic instabilites

 $B_{
m channel} \propto V_{
m channel} \propto e^{\Gamma_{
m MRI} t}$

According to Goodman & Xu (1994) and Pessah (2009), on top of MRI channels parasitic instabilities can develop:

Kelvin-Helmholtz:

 $\Gamma_{
m KH} \propto V_{
m channel} \propto e^{\Gamma_{
m MRI} t}$

- tearing modes: $\Gamma_{\rm TM} \propto \eta^{4/5} B_{\rm channel}^{2/5} \propto \eta^{4/5} e^{2/5 \times \Gamma_{\rm MRI} t}$
- when $\Gamma_{\rm KH}>\Gamma_{\rm MRI}$ or $\Gamma_{\rm TM}>\Gamma_{\rm MRI}\to$ termination of MRI growth
- MRI amplification:

 $B_z(t=0) \rightarrow B_{channel}^{term} = AB_z(t=0),$ where A is an **amplification factor**

MRI in SNe

- conditions in SNe very different from those in accretion discs
- complex dependence of the turbulent saturated state on the initial conditions (huge parameter space)
- MRI operates on very small length scales ($b = B/\sqrt{4\pi}$):

$$\lambda_{\rm MRI} \approx 70 \ {
m cm} \left({b \over 10^{11} \ {
m G}}
ight) \left({
ho \over 2.5 imes 10^{13} \ {
m g \ cm^{-3}}}
ight)^{-1/2} \left({\Omega \over 1900 \ {
m s}^{-1}}
ight)^{-1}$$

• very high-resolution simulations required

MRI in (numerically) resistive-viscous MHD

$$R_{\rm e}=R_{\rm m}=0.1,~1,~10,~\infty$$

From Pessah & Chan (2008)

Our goal ${\it R}_{
m e}^{*}, {\it R}_{
m m}^{*} \leq 100$

From TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016arXiv161105858R)

MRI in (numerically) resistive-viscous MHD

name	reco.	reso.	box	$\gamma_{\mathrm{MRI}} [\mathrm{s}^{-1}]$	$\mathcal{M}_{r\phi}^{ m term}~[10^{30}~{ m G}^2]$
PLM-8	PLM	8	s	926	2.2
PLM-10	PLM	10	s	959	2.3
PLM-16	PLM	16	s	1089	1.9
PLM-20	PLM	20	1	1116	1.9
PLM-34	PLM	34	s	1123	1.8
MP5-8	MP5	8	s	1093	1.1
MP5-10	MP5	10	s	1104	1.4
MP5-16	MP5	16	s	1127	1.05
MP5-20	MP5	20	s	1133	0.82
MP5-34	MP5	34	s	1127	1.03
MP9-8	MP9	8	s	1104	0.79
MP9-10	MP9	10	s	1122	1.3
MP9-16	MP9	16	s	1130	1.1
MP9-20	MP9	20	1	1126	1.1
MP9-25	MP9	25	1	1127	1.0
MP9-34	MP9	34	s	1127	0.93
MP9-67	MP9	67	1	1127	0.73
MP9-134	MP9	134	s	1128	0.73

From TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016JPhCS.719a2009R)

Simulation box & 3D MRI geometry

MRI in 3D is terminated by the KH instability

From TR, M. Obergaulinger, P. Cerdá-Durán, E. Müller & M.A. Aloy (2016MNRAS.456.3782R)

MRI in 3D is terminated by the KH instability

From TR, M. Obergaulinger, P. Cerdá-Durán, E. Müller & M.A. Aloy (2016MNRAS.456.3782R)

MRI termination by the KH insta^L (A party)

From TR, Obergaulinger, Cerdá-Durán, Müller & Aloy (2016MNRAS.456.3782R)

T. Rembiasz (UV)

MRI in CC-SNe

The MRI termination

For the MP9 reconstruction scheme

for other reconstruction schemes see TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016JPhCS.719a2009R) $\bullet \ 2D \rightarrow tearing \ mode \ instability$

 $\bullet \ 3D \rightarrow \text{Kelvin-Helmholtz instability}$

MRI in (numerically) resistive-viscous MHD

name	reco.	reso.	box	$\gamma_{\mathrm{MRI}} [\mathrm{s}^{-1}]$	$\mathcal{M}_{r\phi}^{ m term}~[10^{30}~{ m G}^2]$
PLM-8	PLM	8	s	926	2.2
PLM-10	PLM	10	s	959	2.3
PLM-16	PLM	16	s	1089	1.9
PLM-20	PLM	20	1	1116	1.9
PLM-34	PLM	34	s	1123	1.8
MP5-8	MP5	8	s	1093	1.1
MP5-10	MP5	10	s	1104	1.4
MP5-16	MP5	16	s	1127	1.05
MP5-20	MP5	20	s	1133	0.82
MP5-34	MP5	34	s	1127	1.03
MP9-8	MP9	8	s	1104	0.79
MP9-10	MP9	10	s	1122	1.3
MP9-16	MP9	16	s	1130	1.1
MP9-20	MP9	20	1	1126	1.1
MP9-25	MP9	25	1	1127	1.0
MP9-34	MP9	34	s	1127	0.93
MP9-67	MP9	67	1	1127	0.73
MP9-134	MP9	134	s	1128	0.73

From TR, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016JPhCS.719a2009R)

Tracing the parasites (AENUS)

From TR, J. Guilet, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016MNRAS.460.3316R)

Tracing the parasites (SNOOPY)

From TR, J. Guilet, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016MNRAS.460.3316R)

Amplification Factor

From TR, J. Guilet, M. Obergaulinger, P. Cerdá-Durán, M.A. Aloy & E. Müller (2016MNRAS.460.3316R)

For typical core-collapse SNe, we expect $\mathcal{A}\approx 10$

Conclusions

- $\bullet\,$ 3D simulations indicate that the MRI grows by a factor of $\mathcal{A}\approx$ 20, therefore
- magnetic field amplification from 10^{12} G to 10^{15} G is hard to achieve by MRI channel modes
- further amplification by (?): MRI-driven turbulence, large-scale dynamo, ...

Thank you for your attention!

