
Graphics with R
R Development Core Group

R-core@R-project.org

Graphics with R – p.1/37

Graphical capabilities

One of the strengths of the S language is graphics.

Simple, exploratory graphics are easy to produce.

Publication quality graphics can be created.

Several device drivers are available including:
On-screen graphics - either Windows, or X11, or Macintosh
postscript - PostScript graphics commands
pdf - Adobe Portable Document Format
png - PNG bitmap device (like .gif but free of software
patents)
jpeg - JPEG bitmap
WMF - Windows meta-file (Windows only)

Graphics with R – p.2/37

Declaring graphics devices

The on-screen devices are the most commonly used. For
publication-quality graphics the postscript, pdf, or WMF devices are
preferred because they produce scalable images. Use bitmap
devices only when there is no alternative.

The preferred sequence is to specify a graphics device then call
graphics functions. If you do not specify a device first, the
on-screen device is started.

A contributed R package called lattice provides Trellis graphics
functions. When using lattice it is important to declare the device
using trellis.device before issuing graphics commands.

Graphics with R – p.3/37

Types of graphics functions

High-level - functions such as plot, hist, boxplot, or pairs that
produce an entire plot or initialize a plot.

low-level - functions that add to an existing plot created with a
high-level plotting function. Examples are points, lines,
text, axis, � � �

Trellis functions - functions such as xyplot, bwplot, or
histogram that can produce an entire multipanel display in a
single call.

After creating a new plot with a high-level plotting function, you can
add to the plot by making calls to low-level plotting functions. You
cannot, however, do this after a trellis function call.

Graphics with R – p.4/37

An example

It is common to illustrate the central-limit effect by computing
means of samples from a nonsymmetric distribution and showing
that the distribution of the mean tends to a normal distribution as
the sample size increases. This is best illustrated with graphical
displays.
> # generate the samples as a matrix
> rmt <- matrix(rexp(1000 * 16), nrow = 16)
> mns <- # Apply the mean function to columns
+ cbind(rmt[1,], # means of samples of 1
+ apply(rmt[1:4,], 2, mean), # means of samples of 4
+ apply(rmt[1:16,], 2, mean) # means of samples of 16
+)
> meds <- # Apply the median function to columns
+ cbind(rmt[1,], # medians of samples of 1
+ apply(rmt[1:4,], 2, median), # medians of samples of 4
+ apply(rmt[1:16,], 2, median) # medians of samples of 16
+)

Graphics with R – p.5/37

Using high-level plotting functions

> hist(mns[, 1]) # a histogram of the means of samples of 1

Histogram of mns[, 1]

mns[, 1]

F
re

qu
en

cy

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0

Graphics with R – p.6/37

Enhancing high-level plots

> hist(mns[,2], main = "Means of samples of size 4",
+ xlab = "Size 4 means", las = 1) # sets the axis label style

Means of samples of size 4

Size 4 means

F
re

qu
en

cy

0 1 2 3 4

0

100

200

300

400

Graphics with R – p.7/37

Using low-level graphics functions

> hist(mns[,3], main = "Means of samples of size 16",
+ xlab = "Size 16 means", las = 1, col = "darkred", prob = TRUE)
> lines(density(mns[,3]), col = "blue")

Means of samples of size 16

Size 16 means

D
en

si
ty

0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

Graphics with R – p.8/37

Using lattice graphics

> library(lattice)
> histogram(˜ mns | ssz, data = data.frame(mns = c(mns),
+ ssz = gl(3, 1000, labels = c("1", "4", "16"))),
+ layout = c(3, 1), main = "Histograms of means by sample size")

Histograms of means by sample size

mns

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

50

60

70

0 2 4 6

 1 4

0 2 4 6

0 2 4 6

 16

Graphics with R – p.9/37

Using the formula-data specification

Most of the high-level R graphics functions allow a formula-data
specification for the plot. In trellis-style graphics from the lattice
package the formula-data specification is the only way to specify a
plot.

A formula in S is indicated by the � character. Because formulas
are used to specify statistical models, this character is often read
as “is modelled as”. The second argument in a formula-data
specification is usually a data frame with variables corresponding
to the names in the formula.

To use the formula-data specification, first construct a data frame
with the data to be plotted. The preferred form is to “stack” all the
data into a single column with accompanying columns that indicate
the groups of observations.

Graphics with R – p.10/37

Stacking the simulation data

Recall the simulated data of means and medians of samples of
size 1, 4, and 16 from an exponential distribution. We arrange this
into a data frame with 6000 rows and three columns - the simulated
data, the sample size being simulated, and an indicator of mean or
median.

The gl function can be used to generate patterned data like the
sample size and the type of simulation.
> alldat <- data.frame(sim = c(mns, meds),

ssz = gl(3, 1000, len = 6000, labels = c("1", "4", "16")),
type = gl(2, 3000, labels = c("Mean", "Median")))

> str(alldat)
‘data.frame’: 6000 obs. of 3 variables:
$ sim : num 0.934 0.200 1.866 1.074 1.283 ...
$ ssz : Factor w/ 3 levels "1","4","16": 1 1 1 1 1 1 1 1 1 1 ...
$ type: Factor w/ 2 levels "Mean","Median": 1 1 1 1 1 1 1 1 1 1 ...

Graphics with R – p.11/37

Formulas specifying plots

The general form of a formula specifying a plot is
y ˜ x | g

where y is assigned to the vertical axis, x is assigned to the
horizontal axis, and g is a grouping factor or expression.

For special cases like the histogram, the vertical axis is
pre-specified. In these cases we use a one-sided formula where y
is omitted.

In trellis graphics functions the grouping expression can include
multiple factors separated by an arithmetic operator - often the *
because this indicates “crossing” the factors. For example,
histogram(˜ sim | ssz * type, data = alldat,

layout = c(3, 2),
main = "Histograms of means and medians by sample size")

Graphics with R – p.12/37

Example of multiple grouping factors

Histograms of means and medians by sample size

sim

P
er

ce
nt

 o
f T

ot
al

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7

 1
 Mean

 4
 Mean

0 1 2 3 4 5 6 7

 16
 Mean

 1
 Median

 4
 Median

0 1 2 3 4 5 6 7

0

10

20

30

40

50

60

70
 16

 Median

Graphics with R – p.13/37

Boxplots

Another way of comparing distributions of sample data is with a
boxplot (high-level graphics) or bwplot (lattice).
bwplot(ssz ˜ sim | type, data = alldat,

main = "Boxplots of means and medians by sample size")

Boxplots of means and medians by sample size

sim

1

4

16

0 1 2 3 4 5 6 7

 Mean Median

0 1 2 3 4 5 6 7

Graphics with R – p.14/37

Changing the lattice layout

The layout argument in lattice is used to rearrange the panels. It
is a two-component or three-component integer vector in the order
(columns, rows, pages) (not (rows, columns, pages)).
bwplot(ssz ˜ sim | type, data = alldat, layout = c(1,2))

main = "Boxplots of means and medians by sample size",

Boxplots of means and medians by sample size

sim

1

4

16

0 1 2 3 4 5 6 7

 Mean

1

4

16

 Median

Graphics with R – p.15/37

Scatter plots

A basic data plot is the scatter plot for x-y data. Recall
> data(Formaldehyde)
> plot(optden ˜ carb, data = Formaldehyde, xlab = "Carbohydrate (ml)",
+ ylab = "Optical Density", main = "Formaldehyde data", col = 4,
+ las = 1)

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Formaldehyde data

Carbohydrate (ml)

O
pt

ic
al

 D
en

si
ty

Graphics with R – p.16/37

Common additional graphics parameters

The call to plot on the previous slide included arguments

xlab - x axis label

ylab - y axis label

main - main title on the plot

col - color of the plotted points

las - axis label style

Although not required it is common to use these arguments.

Usually it is easy to get a first cut at a data plot, which may be
sufficient for exploratory graphics. Presentation graphics can
require considerable experimentation with different settings,
involving many cycles of editing and rerunning the code. Creating
file of R code that can be edited and rerun using R BATCH is a
good idea.

Graphics with R – p.17/37

Adding lines to plots

We often use scatter plots to picture relationships between
variables then procede to fit statistical models representing these
relationships. The lines and abline functions can be used to
add lines to a data plot depicting

scatterplot smoothers - a smooth curve generated from
the y versus x data. This is added to enhance visualization of
the y � x relationship.

predictions from fitted models - a fitted simple linear
regression model can be added directly to a plot with abline.
For more complicated models, use predict to create (x, y)
pairs to add to the plot with lines.

> abline(fm1 <- lm(optden ˜ carb, data = Formaldehyde))
> data(cars); plot(cars, xlab = "Speed (mph)",
+ ylab = "Stopping distance (ft)", las = 1, main = "cars data")
> lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")

Graphics with R – p.18/37

Adding a fitted model

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Formaldehyde data

Carbohydrate (ml)

O
pt

ic
al

 D
en

si
ty

Graphics with R – p.19/37

Adding a smoothed curve

5 10 15 20 25

0

20

40

60

80

100

120

cars data

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)

Graphics with R – p.20/37

Logarithmic axes

The plot of the stopping distance versus speed for the cars data
shows a curvilinear relationship. It also hints at increasing variance
in the stopping distance as the speed (and the mean stopping
distance) increase.

In cases like this a logarithmic transformation can stabilize the
variance and perhaps produce a simpler relationship. The
argument log is used to request logarithmic axes. It can take the
values "x", "y", or "xy".

plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",
las = 1, log = "xy", main = "cars data (logarithmic scales)")

lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")

Graphics with R – p.21/37

Cars data - logarithmic scales

5 10 15 20 25

2

5

10

20

50

100

cars data (logarithmic scales)

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)

Graphics with R – p.22/37

Scatterplots with lattice

The lattice equivalent to plot is xyplot. You must use a
formula-data specification with xyplot. Also, you must complete the
plot in a single function call. Instead of using multiple calls to plot
points then add scatterplot smoothers, etc., you describe all the
actions for creating the plot in a panel function passed as the
panel argument.

> xyplot(optden ˜ carb, data = Formaldehyde, xlab = "Carbohydrate (ml)",
+ ylab = "Optical density", main = "Default panel function")
> xyplot(optden ˜ carb, data = Formaldehyde, xlab = "Carbohydrate (ml)",
+ ylab = "Optical density",
+ panel = function(x, y)

�
panel.xyplot(x,y); panel.lmline(x,y)

�

)
> xyplot(dist ˜ speed, data = cars, xlab = "Speed (mph)",
+ ylab = "Stopping distance (ft)",
+ panel = function(x, y)

�

panel.xyplot(x,y); panel.loess(x,y)

�

)
> xyplot(log(dist) ˜ log(speed), data = cars, xlab = "log(Speed) (log(mph))",
+ ylab = "log(Stopping distance) (log(ft))",
+ panel = function(x, y)

�

panel.xyplot(x,y); panel.loess(x,y)

�

)

Graphics with R – p.23/37

Formaldehyde xyplot with default panel

Default panel function

Carbohydrate (ml)

O
pt

ic
al

 d
en

si
ty

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Graphics with R – p.24/37

Formaldehyde xyplot with custom panel

Carbohydrate (ml)

O
pt

ic
al

 d
en

si
ty

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

Graphics with R – p.25/37

Cars xyplot with custom panel

Speed (mph)

S
to

pp
in

g
di

st
an

ce
 (

ft)

0

20

40

60

80

100

120

5 10 15 20 25

Graphics with R – p.26/37

Cars xyplot on the logarithmic scale

log(Speed) (log(mph))

lo
g(

S
to

pp
in

g
di

st
an

ce
)

(lo
g(

ft)
)

1

2

3

4

5

1.5 2 2.5 3

There is a scales = list(log = TRUE) argument for xyplot
but currently it has no effect.

Graphics with R – p.27/37

xyplots conditioned on a factor

One of the most powerful uses of trellis-style graphics is comparing
patterns of responses across different groups. For example, the
Oxboys data in the nlme package gives the height (cm) of some
boys from Oxford, England. Each subject was measured several
times throughout his adolescence. The time of measurement was
converted to an arbitrary scale centered at the midpoint of the data.

We wish to compare the growth patterns for these boys. To
facilitate comparison, the data for each boy is plotted in a separate
panel but scale of the axes is the same for each panel.
> data(Oxboys, package = nlme)
> xyplot(height ˜ age | Subject, data = Oxboys, ylab = "Height (cm)")
> xyplot(height ˜ age | Subject, data = Oxboys, ylab = "Height (cm)",
+ aspect = "xy", # calculate an optimal aspect ratio
+ panel = function(x,y)

�

panel.grid(); panel.xyplot(x,y)

�

)

Graphics with R – p.28/37

Oxboys data, standard aspect ratio

age

H
ei

gh
t (

cm
)

130
140
150
160
170

−1 −0.5 0 0.5 1

 10 26

−1 −0.5 0 0.5 1

 25 9

−1 −0.5 0 0.5 1

 2 6

−1 −0.5 0 0.5 1

 7

 17 16 15 8 20 1

130
140
150
160
170

 18

130
140
150
160
170

 5 23 11 21 3 24 22

 12 13

−1 −0.5 0 0.5 1

 14 19

−1 −0.5 0 0.5 1

 4

Graphics with R – p.29/37

Oxboys data, "xy" aspect ratio

age

H
ei

gh
t (

cm
)

130

140

150

160

170

−1−0.500.51

 10 26

−1−0.500.51

 25 9

−1−0.500.51

 2 6

−1−0.500.51

 7 17

−1−0.500.51

 16 15

−1−0.500.51

 8 20

−1−0.500.51

 1

 18 5

−1−0.500.51

 23 11

−1−0.500.51

 21 3

−1−0.500.51

 24 22

−1−0.500.51

 12 13

−1−0.500.51

 14 19

−1−0.500.51

130

140

150

160

170

 4

Graphics with R – p.30/37

Scatterplot matrices

Scatterplot matrices are helpful in initial exploration of multivariate
data. These provide scatterplots of all pairs of variables in the data
and are produced by either the high-level graphics function pairs
or the lattice function splom.

Both pairs and splom allow a panel function to be specified.
Check the documentation for details.
> data(USArrests)
> pairs(USArrests)
> splom(˜ USArrests)
> splom(˜ USArrests,
+ panel = function(x,y)

�

panel.xyplot(x,y); panel.loess(x,y)

�

)

Graphics with R – p.31/37

Pairs plot of USArrests data

Murder

50 150 250 10 20 30 40

5
10

15

50
15

0
25

0

Assault

UrbanPop

30
50

70
90

5 10 15

10
20

30
40

30 50 70 90

Rape

Graphics with R – p.32/37

Default splom plot of USArrests data

Murder

0
0

5

5

10

10
15

15

Assault

5050

100

100

150

150

200

200

200

200

250

250
300

300
350

350

UrbanPop

30
30

40
40

50

50

60

60

60

60

70

70

80

8090 90

Rape

1010

20

20

30

30
40

40

Graphics with R – p.33/37

Enhanced splom plot of USArrests data

Murder

0
0

5

5

10

10
15

15

Assault

5050

100

100

150

150

200

200

200

200

250

250
300

300
350

350

UrbanPop

30
30

40
40

50

50

60

60

60

60

70

70

80

8090 90

Rape

1010

20

20

30

30
40

40

Graphics with R – p.34/37

Multiple figures per page

We have seen the use of the lattice package to produce multipanel
plots where all the panels are related in some way. Occasionally
we wish to put multiple unrelated figures on a page. In the
high-level graphics, the par function can be used to set the
graphics parameters mfrow (multiple figures created row-wise) or
mfcol (multiple figures created columnwise) to do this.
> data(Formaldehyde)
> fm1 <- lm(optden ˜ carb, data = Formaldehyde)
> par(mfrow = c(1,2)) # the next plot command produces 4 figures
> plot(fm1)

Note - Creating an attractive multipanel plot in this way is difficult.
The default setting for the axis spacing, etc., do not work well and
usually require adjustment. If your multipanel plot can be created in
the lattice style, use that instead. When browsing statistics journals
one often sees figures created with par(mfrow =) that should
instead have been done with trellis/lattice. Graphics with R – p.35/37

First two diagnostic plots

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−
0.

01
0

0.
00

0
0.

00
5

Fitted values

R
es

id
ua

ls

Residuals vs Fitted

6

54

−1.0 −0.5 0.0 0.5 1.0

−
2.

0
−

1.
0

0.
0

0.
5

1.
0

Theoretical Quantiles

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Normal Q−Q plot

6

1

5

lm(formula = optden ~ carb, data = Formaldehyde)

Graphics with R – p.36/37

Second two diagnostic plots

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s

Scale−Location plot

6

1

5

1 2 3 4 5 6

0.
0

0.
5

1.
0

1.
5

2.
0

Obs. number

C
oo

k’
s

di
st

an
ce

Cook’s distance plot

6

1

5

lm(formula = optden ~ carb, data = Formaldehyde)

Graphics with R – p.37/37

	Graphical capabilities
	Declaring graphics devices
	Types of graphics functions
	An example
	Using high-level plotting functions
	Enhancing high-level plots
	Using low-level graphics functions
	Using lattice graphics
	Using the formula-data specification
	Stacking the simulation data
	Formulas specifying plots
	Example of multiple grouping factors
	Boxplots
	Changing the lattice layout
	Scatter plots
	Common additional graphics parameters
	Adding lines to plots
	Adding a fitted model
	Adding a smoothed curve
	Logarithmic axes
	Cars data - logarithmic scales
	Scatterplots with lattice
	Formaldehyde xyplot with default panel
	Formaldehyde xyplot with custom panel
	Cars xyplot with custom panel
	Cars xyplot on the logarithmic scale
	xyplots conditioned on a factor
	Oxboys data, standard aspect ratio
	Oxboys data, "xy" aspect ratio
	Scatterplot matrices
	Pairs plot of USArrests data
	Default splom plot of USArrests data
	Enhanced splom plot of USArrests data
	Multiple figures per page
	First two diagnostic plots
	Second two diagnostic plots

