
An introduction to Lean 4

E. Cosme Llópez∗,†

L. Gong†

September 2025

∗Universitat de València, Departament de Matemàtiques.
†Nantong University, School of Mathematics and Statistics.



Contents
1 Basic Syntax 8

1.1 What is a type? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Comment code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 def . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 fun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 The function type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.8 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.10 let . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.11 eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.12 variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.13 namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.14 open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Propositions 14
2.1 First proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 have . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 apply? exact? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 sorry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Logical connectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Disjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Double implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.5 True . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 False . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Decidable propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Classical Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Quantifiers 24
3.1 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Examples of predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Operations on predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Universal Quantifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Existential Quantifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Equalities 27
4.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3 Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4 Rewrite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.5 calc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Types with meaningful equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Decidable Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Equality in Prop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2



5 Functions 31
5.0.1 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.0.2 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.0.3 Identity function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Injections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.1.1 An example: The identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Surjections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 An example: The identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Bijections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 An example: The identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Natural numbers 36
6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Dedekind-Peano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.4.1 Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4.2 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.4.3 noConfusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.6 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.6.1 Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.2 Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.3 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6.4 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.7 Decidable Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.8.1 Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.8.2 Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.8.3 Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.8.4 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.8.5 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Choice 43
7.1 Inhabited types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Nonempty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3.1 Choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Subtypes 46
8.0.1 Examples of subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.0.2 Elements of a subtype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.0.3 The inclusion function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.1 Functions and Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.1 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.2 Correstriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.1.3 Birrestriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.2 Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2.1 Universal property of the equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.1 Subtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.2 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.3 Correstriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.3.4 Equalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3



9 Relations 50
9.0.1 Examples of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.1 Types of relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.1.1 An example: The diagonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
9.1.2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2 Operations on relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
9.2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

10 Quotients 56
10.1 Equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.1.1 Examples of equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.2 Equivalence relation generated by a relation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3 Setoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10.3.1 Examples of setoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.4 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

10.4.1 Examples of quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4.2 Elements of a quotient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.4.3 The projection function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.5 Functions and Quotient types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.5.1 Astriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.5.2 Coastriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.5.3 Biastriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

10.6 Coequalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.6.1 Universal property of the coequalizer . . . . . . . . . . . . . . . . . . . . . . . . . . 61

10.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.7.1 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.7.2 Astriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.7.3 Coastriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
10.7.4 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.7.5 Coequalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

11 Orders 64
11.1 Preorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11.2 Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11.3 Partially Ordered Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

11.3.1 Special Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
11.3.2 Bounded Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.3.3 Special Elements relative to a Subtype . . . . . . . . . . . . . . . . . . . . . . . . . 65

11.4 Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.4.1 Lattice as a poset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.4.2 Lattice as an algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.4.3 From Lattice to LatticeAlg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
11.4.4 From LatticeAlg to Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.4.5 Compositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
11.4.6 Distributive Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

11.5 Complete Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.5.1 From CompleteLattice to Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.5.2 From CompleteLattice to BoundedPoset . . . . . . . . . . . . . . . . . . . . . . 73

11.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.6.1 Inverse Partial Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
11.6.2 Special Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
11.6.3 Restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
11.6.4 Special Elements relative to a Subtype . . . . . . . . . . . . . . . . . . . . . . . . . 74
11.6.5 (N, ≤) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.6.6 (N, ∣) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
11.6.7 (Prop, →) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

12 Empty and Unit types 77
12.1 Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4



12.2 Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
12.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12.3.1 Empty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
12.3.2 Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

13 Product and Sum types 79
13.1 Product type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

13.1.1 Universal property of the product . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
13.2 Generalized product type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

13.2.1 Universal property of the generalized product . . . . . . . . . . . . . . . . . . . . . 81
13.3 Sum type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

13.3.1 Universal property of the sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
13.4 Generalized sum type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

13.4.1 Universal property of the generalized sum . . . . . . . . . . . . . . . . . . . . . . . 84
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

13.5.1 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
13.5.2 Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

14 Lists and Monoids 86
14.1 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
14.2 Monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14.2.1 Examples of monoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
14.2.2 The free monoid over a type α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
14.2.3 The universal property of the free monoid . . . . . . . . . . . . . . . . . . . . . . . 88
14.2.4 The length of a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

14.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5



An introduction to formal verification

Introduction
Lean 4 is a versatile programming language and interactive theorem prover designed to formalize math-
ematics, verify software, and explore computational logic. Whether you are a mathematician, computer
scientist, or a curious learner, Lean 4 offers powerful tools for rigorous reasoning and proof verification.
By combining programming and formal reasoning, Lean 4 serves as an essential tool for both learning
and research.

Lean 4 enables us to:

• Prove Theorems: Formalize and verify mathematical proofs with precision, eliminating ambigu-
ities and errors.

• Write Programs: Develop functional programs with strong type safety and reliability.

• Verify Systems: Ensure the correctness of software and hardware through formal verification
techniques.

• Explore Logic: Study dependent type theory, proof automation, and formal methods in depth.

This manual introduces the fundamentals of Lean 4, covering Basic syntax and types, Theorem proving
and verification, and Practical applications in mathematics. Each chapter includes examples, exercises,
and practical insights to help us build confidence and proficiency in Lean 4. The content of this manual
is based on informal seminar sessions conducted by the author at the Universitat de València and taught
to master’s students at Nantong University. These sessions focus on foundational topics in mathematics,
particularly the universal properties of key constructions.

This manual is available both as a web version and as a PDF. All exercises in this manual are accom-
panied by solutions available on GitHub. That said, the most effective way to learn is to dive in and
tackle them yourself. Mistakes are a natural part of the learning process!

A Brief History of Lean
Lean was developed by Leonardo de Moura and his team at Microsoft Research in 2013. It was created to
provide a robust and scalable framework for formalizing mathematics, verifying software, and exploring
type theory.

Over the years, Lean has evolved significantly, with Lean 4 offering improved performance, a redesigned
type system, and enhanced support for metaprogramming. Today, it serves as a foundational tool for
both theoretical and applied research in mathematics and computer science.

To learn more about Lean 4, visit the official website: lean-lang.org.

References and Learning Resources
While this manual provides a thorough introduction to Lean 4, there are many other excellent resources
available to deepen your understanding. Here are some recommended materials:

1. Functional Programming in Lean: The standard reference for learning how to use Lean as a pro-
gramming language.

2. Theorem Proving in Lean 4: A comprehensive guide to using Lean as a theorem prover.

3. Mathematics in Lean: A resource focused on using Lean for formalizing mathematics.

4. The Mechanics of Proof: Lecture notes designed for early university-level students on writing
rigorous mathematical proofs.

6

https://www.uv.es/coslloen/Lean4/
https://github.com/encosllo/IntroToLean4/
https://github.com/encosllo/IntroToLean4/
https://lean-lang.org/
https://lean-lang.org/functional_programming_in_lean/
https://lean-lang.org/theorem_proving_in_lean4/
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://hrmacbeth.github.io/math2001/


5. Lean Language Reference: A technical document describing the syntax, semantics, and standard
library of Lean.

6. Documentation Overview: A collection of examples, developer guides, and other essential docu-
mentation.

7. Lean Community Learning Resources: A curated list of tutorials, guides, and documentation
sources for Lean 4.

8. Lean Zulip Chat: Join the public chat room to engage with the Lean community and seek guidance.

Installation and Quickstart Guide
To start using Lean 4, follow the Quickstart Guide from the official documentation. This guide provides
step-by-step instructions on installing Lean 4 on our system, setting up a development environment and
writing and running our first Lean program

For the best experience, it is recommended to use Lean 4 with VS Code and the Lean extension,
which provides syntax highlighting, interactive proof support, and an enhanced development workflow.

Acknowledgements
Writing this textbook has been a personal endeavor, but it would not have been possible without the
support and encouragement of many individuals and institutions. First and foremost, we would like to
express our deepest gratitude to the Universitat de València and Nantong University for providing an
environment conducive to research and teaching, which greatly influenced the development of this book.
We are deeply grateful to our students, both past and present, whose curiosity and thoughtful questions
have continually inspired me to refine my explanations and enhance the clarity of the material presented
here. In particular, we would like to express our heartfelt appreciation to Yan Yan for her keen insight
and enthusiasm, which have been a driving force behind this project.

We would also like to acknowledge the contributions of the broader academic and open-source com-
munities, especially the developers and maintainers of Lean and Quarto, whose work has enabled the
seamless integration of formal verification and programming into this text.

For this work, the first author held a position as Specially Appointed Professor at the School of
Mathematics and Statistics, Nantong University. In addition, the first author is involved in the teaching
innovation project “Beyond the Theorem: Active Strategies for Developing 21st-Century Mathematicians”
(code PIEE-3900548), under the Vicerectorat de Formació Permanent, Transformació Docent i Ocupació
de la Universitat de València.

Finally, to all who have contributed in ways large and small, whether through direct collaboration or
simply by offering words of motivation, thank you.

7

https://lean-lang.org/doc/reference/latest
https://lean-lang.org/lean4/doc/
https://leanprover-community.github.io/learn.html
https://leanprover.zulipchat.com/
https://lean-lang.org/lean4/doc/quickstart.html


1 Basic Syntax
This chapter introduces the foundational elements of Lean 4s syntax. Well learn how to define variables,
write functions, and work with types and expressions, the essential building blocks of Lean 4 program-
ming. By the end, we’ll be able to read and write basic Lean 4 programs, preparing us for more advanced
topics ahead.

Lets start with a fundamental question.

1.1 What is a type?
A type classifies data, defining what values it can hold and what operations can be performed on it.
Types are essential in both programming and theorem proving, ensuring correctness and structuring
reasoning. In Lean 4, types act as a safety mechanism:

• A value of type Nat (natural number) can be 0, 1, 2, etc.

• A value of type String can be "hello", "Lean 4", etc.

• A function of type Nat → Nat takes a natural number as input and returns another natural number.

By assigning types to values and functions, Lean 4 prevents errors like adding a number to a string or
applying a function to incompatible data.

Next, we’ll explore some fundamental Lean 4 commands.

1.2 Comment code
In Lean 4, comments help make code more readable and serve as documentation. They are ignored by
the compiler and do not affect execution. Here’s how to write comments in Lean:

• Single-line comments start with -- and apply to the rest of the line.

• Multi-line comments are enclosed between /- and -/.

1 -- This is a comment

2

3 /-

4 This is a multi-line comment.

5 It can span multiple lines.

6 Useful for longer explanations.

7 -/

1.3 check
We’ll begin with the #check command, a key tool for exploring Lean’s type system. The #check

command allows us to inspect the type of an expression, definition, or theorem in Lean. It’s invaluable
for understanding how Lean interprets our code and for troubleshooting type-related issues.

1 #check true

2 #check 42

3 #check 'h'

4 #check ['h', 'e', 'l', 'l', 'o']

5 #check "hello"

6 #check Nat

In these examples:

8



1. outputs Bool.true : Bool which tells us that true is of type Bool.

2. outputs 42 : Nat which tells us that 42 is of type Nat (natural number).

3. outputs "h" : Char which tells us that "h" is of type Char (a character).

4. outputs ['h', 'e', 'l', 'l', 'o'] : List Char which tells us that ['h', 'e', 'l', 'l',

'o'] is a list of characters.

5. outputs "hello" : String which tells us that "hello" is of type String.

6. outputs Nat : Type which tells us that Nat is of type Type.

1.4 print
The #print command allows us to inspect the definition of a function, theorem, or other named entity
in Lean. It provides detailed information, including the type, implementation, and any dependencies.
This command is especially useful for understanding how Lean’s standard library works or for debugging
our own code.

1 #print Bool

2 #print Nat

3 #print Char

4 #print List

5 #print String

6 -- We cannot `#print Type` because this is a built-in concept

7 #print Type

In these examples:

• #print Bool outputs

1 inductive Bool : Type

2 number of parameters: 0

3 constructors:

4 Bool.false : Bool

5 Bool.true : Bool

This tells us that Bool is an inductive type with no parameters and two constructors. Constructors
are ways to provide elements of the given type—in this case, Bool.false represents the value false, and
Bool.true represents the value true. Thus, an inductive type defines a new type by specifying a set
of constructors that generate its elements. Each constructor may take arguments, including recursive
references to the type itself. Inductive types are fundamental in Lean, serving as the basis for both
data structures (such as natural numbers, lists, and trees) and logical propositions. We will explore
inductive types in more detail later, but for now, understand that constructors define the possible values
of a type, and Bool is a type with exactly two such values.

• #print Nat outputs

1 inductive Nat : Type

2 number of parameters: 0

3 constructors:

4 Nat.zero : Nat

5 Nat.succ : Nat → Nat

As we can see, Nat is also an inductive type representing natural numbers, which do not require
parameters. It has two constructors:

• Nat.zero, which represents the number 0.

• Nat.succ, which represents the successor of a natural number (essentially adding 1).

This definition allows natural numbers to be constructed starting from 0 and adding 1 repeatedly.
Another way of denoting natural numbers in Lean is using ℕ. To type this symbol, you can use the
shortcut \N.

9



• #print Char outputs

1 structure Char : Type

2 number of parameters: 0

3 constructor:

4 Char.mk : (val : UInt32) → val.isValidChar → Char

5 fields:

6 val : UInt32

7 valid : self.val.isValidChar

Char is a structure representing a single character and does not have parameters. A structure in Lean
is a way to define a type that groups together related data. The Char structure has a constructor called
Char.mk, which takes:

• A UInt32 value (a 32-bit unsigned integer) representing the Unicode code point of the character.

• val.isValidChar, a proof that the value is a valid Unicode character.

Moreover, every element of type Char has two associated fields:

• val: This field returns the Unicode value of the character.

• valid: This field returns the proof that the code point is valid.

Thus, the Char structure combines the character value and its validity in a structured way. We will
also explore structures in more detail in future chapters.

• #print List outputs

1 inductive List.{u} : Type u → Type u

2 number of parameters: 1

3 constructors:

4 List.nil : { α : Type u } → List α

5 List.cons : { α : Type u } → α → List α → List α

List is an inductive type that represents a sequence of elements of a given type α. This type requires
one parameter, α, where α is the type of elements in the list. The universe level u is used in the type
definition to avoid paradoxes in type theory. For example, when we instantiate List with Nat, we get
the type of lists of natural numbers (List Nat), and when instantiated with Char, we get the type of
lists of characters (List Char). The List type has two constructors:

• List.nil, which represents the empty list ([]).

• List.cons, which adds an element to the front of a list.

Thus, List allows us to work with ordered sequences of elements, either empty or with elements added
recursively.

• #print String outputs

1 structure String : Type

2 number of parameters: 0

3 constructor:

4 String.mk : List Char → String

5 fields:

6 data : List Char

This indicates that String is a structure in Lean, with no parameters, that represents strings. The
constructor for String is String.mk, which takes a List Char (a list of characters) as input and returns
a String. Each element of type String has a field called data, which returns the list of characters that
make up the string.

• #print Type outputs an error.

The reason is that Type is a fundamental, built-in concept within Lean’s logical framework, not a
user-defined term or definition. In Lean, Type denotes the universe of all types, and it cannot be queried
using #print because it is not a printable entity like user-defined terms.

10



1.5 def
The def keyword is used to define a function or a value in Lean. It is one of the most fundamental
constructs, allowing us to create reusable code—whether for simple values, functions, or more complex
computations.

1 -- Definition of number pi

2 def pi : Float := 3.1415926

Definitions can have parameters.
1 -- Definition of the sum of two natural numbers

2 def sum (a b : Nat) : Nat := a + b

1.6 fun
The fun keyword is used to define anonymous functions (also called lambda functions) in Lean. These
are functions that don’t have a name and are defined inline. The fun keyword is a core concept in
functional programming. We can also use the λ (lambda) operator to define anonymous functions, which
is written as \lambda in Lean.

1 -- Two anonymous ways of defining the sum of two natural numbers

2 #check fun (a b : Nat) => a + b

3 #check λ (a b : Nat) => a + b

The resulting type Nat → Nat → Nat represents a curried function, which is a fundamental concept
in functional programming. This type can be understood as follows:

• Nat → Nat → Nat is a function that takes a Nat (first argument) and returns another function.

• The returned function then takes a Nat (second argument) and returns a Nat (final result).

This curried function type is equivalent to Nat → (Nat → Nat)—meaning a function that takes a Nat

and returns a function from Nat to Nat. In Lean, function types are right-associative, so the parentheses
are often omitted for clarity. Thus, Nat → Nat → Nat is interpreted as Nat → (Nat → Nat).

1.7 The function type
In general, if A and B are types, then A → B is a type representing all mappings from type A to type B.
This means that any value of type A → B is a mapping that takes an element of type A and returns an
element of type B. In Lean, we use \to to type the arrow → when writing this in code. We will explore
this type in more detail later.

1 -- The type of all mappings from Nat to Nat

2 #check Nat → Nat

3 -- An example of an element of the above type

4 #check sum 3

This new construction provides an alternative approach to defining the previous sum mapping. The
goal is to construct an element of type Nat → Nat → Nat. There are several ways to achieve this: either
by using the fun keyword, as previously demonstrated, or by explicitly introducing the variables and
specifying the expression that the mapping should return.

The latter approach uses the keywords by, intro, and exact. These are used in interactive proof
mode, where you construct definitions step by step using tactics.

• by: This keyword signals that the function definition will be built interactively using tactics.

• intro: This tactic introduces the function’s arguments as hypotheses in the goal.

• exact: This tactic is used to provide the exact value that satisfies the goal.

11



1 -- Two new ways of defining the sum of two natural numbers

2 def sum2 : Nat → Nat → Nat := fun a b => a + b

3 --

4 def sum3 : Nat → Nat → Nat := by

5 intro a b

6 exact a + b

1.8 cases
The cases tactic splits the definition into two branches based on the value of the input. We will use it
to define the Negation function for Booleans.

1 def BoolNot : Bool → Bool := by

2 intro b

3 cases b

4 -- b = false

5 exact true

6 -- b = true

7 exact false

1.9 match
The match keyword is used for pattern matching. This is another way to handle different cases of the
input.

1 def BoolNot2 : Bool → Bool := by

2 intro b

3 match b with

4 | false => exact true

5 | true => exact false

1.10 let
The let keyword is used to define local variables or terms within a proof or expression.

1 def sphereVolume (r : Float) : Float :=

2 let pi : Float := 3.1415926

3 (4/3) * pi * r^3

1.11 eval
The #eval command is used to evaluate an expression and display its result. It is one of the most com-
monly used commands for testing and debugging code, as it allows us to see the output of a computation
directly.

1 #eval sum 3 4

2 #eval (sum 3) 4

3 #eval (fun (a b : Nat) => a + b) 3 4

4 --

5 #eval pi

6 #eval Nat.succ 4

7 #eval UInt32.isValidChar 104

8 #eval 'h'.val

9 #eval String.mk ['h', 'e', 'l', 'l', 'o']

10 #eval "hello".data

The first evaluations result in 7 because they compute the sum 3 + 4. After that, the following
evaluations make use of previously defined values. For example, #eval pi returns the value of pi that
was defined earlier. #eval Nat.succ 4 evaluates the successor function for natural numbers, applied
to 4, returning 5 as the result. #eval UInt32.isValidChar 104 returns true, indicating that 104 is
a valid Unicode character. #eval 'h'.val shows that the character 'h' has the Unicode value 104.

12



Additionally, #eval String.mk ['h', 'e', 'l', 'l', 'o'] transforms the list of characters ['h',
'e', 'l', 'l', 'o'] into a string, in this case "hello". Finally, #eval "hello".data returns the
list of characters that make up the string "hello", in this case ['h', 'e', 'l', 'l', 'o'].

1.12 variable
The keyword variable is used to declare variables that can be used later in the code. These variables
are implicitly available in the context of any theorem, definition, or proof that follows. They allow us
to introduce general assumptions or placeholders for types or values without needing to explicitly define
them at each step.

1 variable (m n : Nat)

2 #check m

1.13 namespaces
Namespaces in Lean are used to organize code, helping with structure and readability. We can define
variables, functions, or theorems within a namespace, and these definitions are scoped to that namespace,
meaning they are only accessible inside it. When we exit a namespace, the variables defined inside it
are no longer recognized. To access a variable defined within a namespace, we must reference it using
the namespace name.

1 namespace WorkSpace

2 -- Define a natural number `r` with the value 27

3 def r : Nat := 27

4 -- The variable `r` is perfectly defined within the namespace

5 #eval r

6 end WorkSpace

7

8 -- Evaluating `r` outside the namespace will result in an error

9 #eval r -- Error: unknown identifier 'r'

10

11 -- To access `r`, we must reference it using its namespace

12 #eval WorkSpace.r -- Output: 27

1.14 open
The open keyword is used in Lean to bring definitions, theorems, or namespaces into the current scope,
allowing us to reference them without needing to use their full qualified names. This helps make our
code more concise and easier to read by reducing the need for repetitive namespace prefixes.

1 open Workspace

2 #eval r

13



2 Propositions
This chapter introduces the type of propositions in Lean, along with fundamental logical connectives
(∧, ∨, →, ¬, ↔). We will learn how to construct basic proofs using these concepts. By the end of this
chapter, we will be able to write and prove simple logical statements in Lean.

What is a Proposition?

Propositions are statements that express a definite claim. In Lean, propositions belong to the built-in
type Prop, which is fundamental to Lean’s logical system.

Examples:

• 2 + 2 = 4 is a proposition (true).

• 3 < 1 is also a proposition (false).

1 -- Prop is the type of all propositions in Lean

2 #check Prop

3 #print Prop

4 -- Examples

5 #check 2 + 2 = 4

6 #check 3 < 1

In Lean, a proposition is a type that represents a logical statement. This means that propositions
themselves are types, and proving a proposition is equivalent to constructing a term of that type. If we
declare a variable P of type Prop, we can later define another variable h of type P. In Lean’s type-theoretic
framework, we interpret h as a proof of P.

1 variable (P : Prop)

2 variable (h : P)

3 -- We need to understand h as a proof of P

4 #check h

Declaring a variable P : Prop does not mean that P is immediately true. It simply introduces P as a
proposition. A proposition P is true if and only if there exists a term of type P—that is, a proof of P. If
we can construct a term h : P, then P is true. Conversely, if no such term exists, then P is false. For
example

• 2 + 2 = 4 is true because Lean can construct a proof of this proposition.

• 3 < 1 is false because no proof (no term of this type) can be constructed.

This perspective is central to constructive logic, where truth means having an explicit proof.

2.1 First proofs
The following Lean code defines a theorem called Th1. Let’s examine its components step by step to
understand its purpose and functionality.

1 theorem Th1 (h : P) : P := by

2 exact h

This code defines a theorem named Th1. In Lean, a theorem is a proposition that has been or will be
proven.

• (h : P) introduces a hypothesis h of type P, meaning h serves as a proof of the proposition P.

• : P represents the conclusion, stating that the theorem will establish the truth of P.

14



• := by signals that the proof will be constructed interactively using tactics, entering proof mode
through indentation.

• The exact h tactic completes the proof by instructing Lean to use h (a proof of P) to establish P.

Essentially, Th1 asserts a fundamental logical principle: if a proof of P exists (h : P), then P is true.
While seemingly obvious, this concept underlies the foundations of formal reasoning in Lean.

The theorem Th1 is now a reusable component that can be referenced and applied wherever needed,
allowing us to build on previous results.

When checking its type, Lean shows ∀ (P : Prop), P → P. This indicates that P is an arbitrary
proposition, and Th1 is a function that takes a proof of P and returns a proof of P. In other words, Th1
P belongs to the function type P → P.

Since we previously defined h : P, applying Th1 to P and h —written as Th1 P h— yields an element
of type P. We will explore this concept further in the next sections.

1 -- Th1 has type ∀ (P : Prop), P → P

2 #check Th1

3 -- Th1 P has type P → P

4 #check Th1 P

5 -- Th1 P h has type P

6 #check Th1 P h

Notice that Th1 is adaptable to any proposition it is applied to. For example, if we introduce a new
variable Q : Prop, then Th1 Q becomes an element of type Q → Q. This means Th1 can be used with
any proposition, reinforcing its generality in formal reasoning.

1 variable (Q : Prop)

2 -- Th1 Q has type Q → Q

3 #check Th1 Q

It is worth noting that when we use #print Th1, Lean returns the following code:
1 theorem Th1 : ∀ (P : Prop), P → P := fun P h => h

The difference occurs because Lean automatically generalizes Th1 to its most abstract form.
However, this notation can sometimes be cumbersome since applying a theorem requires explicitly

providing all necessary hypotheses. To simplify this, we can define implicit variables. For example, let’s
introduce our second theorem:

1 theorem Th2 {P : Prop} (h : P) : P := by

2 exact h

The curly braces around P indicate that P is an implicit variable. This means that Lean will
automatically infer the value of P based on the context when Th2 is used, so we don’t need to manually
provide P as an argument each time. This makes the code cleaner and more concise, as Lean handles the
inference for us.

1 -- Th2 has type ∀ {P : Prop}, P → P

2 #check Th2

3 -- Th2 h has type P, infered from h

4 #check Th2 h

We can also prove this theorem using a third method, where we employ the apply tactic. The apply

tactic allows us to use a previously defined theorem—in this case, Th2—to progress towards the current
goal.

For apply to work, the conclusion of the theorem we want to apply must match or be unifiable with
the current goal, which is true in this case. Once we apply Th2, Lean will prompt us to prove the
necessary hypotheses required by the theorem to complete the proof. This approach leverages the power
of previously established results to build new proofs more efficiently.

1 theorem Th3 {P : Prop} (h : P) : P := by

2 apply Th2

3 exact h

15



2.1.1 have
The have keyword in Lean is a powerful tool used in proofs to introduce intermediate results or hypothe-
ses. It helps break down complex proofs into smaller, more manageable steps by allowing us to prove
and name intermediate statements. These intermediate results can be referenced later in the proof, mak-
ing the overall structure clearer and easier to follow. This approach is particularly useful when working
through multi-step arguments, as it enables us to focus on individual pieces of the proof before combining
them to reach the final conclusion.

1 theorem Th4 {P : Prop} (h : P) : P := by

2 have h2 : P := by

3 exact h

4 exact h2

2.1.2 apply? exact?
One of the most powerful features of Lean is the ability to use the apply? command within a proof.
The apply? tactic automatically searches through the available theorems in the current context and
suggests relevant ones that could be applied to prove the current goal. For example, in the theorem Th3

above, if we write apply?, Lean responds with
1 Try this: exact h

Additionally, we can use the exact? tactic to prompt Lean to suggest the hypothesis needed to
conclude a theorem. When invoked, exact? analyzes the current goal and offers possible hypotheses or
terms that could directly satisfy the goal.

These tactics are especially useful when working with numerous results, as they save time by auto-
matically searching for and suggesting relevant theorems or hypotheses. This eliminates the need to
manually search for the specific result needed, streamlining the proof process significantly.

2.1.3 example
We can use the example keyword to define an anonymous theorem. This allows us to demonstrate a
proof without giving it a specific name. The structure is similar to a regular theorem, but the difference
is that it’s not assigned a name, making it ideal for quick demonstrations or illustrating concepts. Here’s
an example that follows the structure from above:

1 example (h : P) : P := by

2 exact h

Since examples are anonymous, they cannot be referenced or reused later in the code.

2.1.4 sorry
The sorry command in Lean is a placeholder that allows us to temporarily skip the proof of a theorem
or definition. When we use sorry, Lean assumes that the proof is correct without actually verifying it.
This can be useful during the development process when we want to focus on the structure of our code
or test parts of our work without completing all the proofs. However, it’s important to note that sorry
does not provide a valid proof. If left in the code, Lean cannot guarantee the correctness of the theorem
or definition, as the proof is incomplete. It’s a useful tool for incremental development, but should be
removed or replaced with a valid proof before finalizing the code.

1 theorem Th3 (h : P) : P := by

2 sorry

2.2 Logical connectives
In this section, we will introduce logical connectives, explore their implementation in Lean, and demon-
strate how to prove statements involving them.

16



2.2.1 Conjunction
The logical And connective, represented by the symbol ∧ (which can be typed in Lean using \and), is used
to combine two propositions, asserting that both are true simultaneously. In Lean, the And connective is
implemented as a built-in logical construct. Specifically, if P and Q are propositions, then P ∧ Q is also
a proposition. This is read as “P and Q,” meaning that P is true and Q is true.

1 #check And P Q

2 #check P ∧ Q

If we #print And, Lean returns
1 structure And : Prop → Prop → Prop

2 number of parameters: 2

3 constructor:

4 And.intro : ∀ {a b : Prop}, a → b → a ∧ b

5 fields:

6 left : a

7 right : b

This declares And as a structure in Lean. And takes two arguments of type Prop and returns a new
Prop. In other words, And is a binary logical connective, requiring two parameters, both of type Prop.
The constructor for And is And.intro, which is a function that takes two propositions a and b (implicitly
defined) and two proofs —one proof of a (of type a) and one proof of b (of type b)— and returns a proof
of a ∧ b. Here’s an example of how the constructor works:

1 -- To prove a proposition of the form P ∧ Q we need a proof of P and a proof of Q

2 theorem ThAndIn (hP : P) (hQ : Q) : P ∧ Q := by

3 exact And.intro hP hQ

The And structure has two fields: left and right. The left field stores the proof of the first
proposition a, and the right field stores the proof of the second proposition b. These fields are essential
for constructing a proof of a ∧ b, as they hold the individual proofs required to establish the truth of
both propositions simultaneously. Here’s an example of how the fields work:

1 -- From a proof of P ∧ Q, we can obtain a proof of P

2 theorem ThAndOutl (h : P ∧ Q) : P := by

3 exact h.left

4 -- We can also obtain a proof for Q

5 theorem ThAndOutr (h : P ∧ Q) : Q := by

6 exact h.right

2.2.2 Disjunction
The logical Or connective, represented by the symbol (which can be typed in Lean using \or), is used
to combine two propositions, asserting that at least one of them is true. In Lean, the Or connective is
implemented as a built-in logical construct. Specifically, if P and Q are propositions, then P Q is also
a proposition. This is read as “P or Q,” meaning that P is true or Q is true.

1 #check Or P Q

2 #check P ∨ Q

If we #print Or, Lean returns
1 inductive Or : Prop → Prop → Prop

2 number of parameters: 2

3 constructors:

4 Or.inl : ∀ {a b : Prop}, a → a ∨ b

5 Or.inr : ∀ {a b : Prop}, b → a ∨ b

This declares Or as an inductive type in Lean. Or takes two arguments of type Prop and returns
a new Prop. In other words, Or is a binary logical connective that requires two parameters, both of
which are of type Prop. There are two constructors for Or: Or.inl and Or.inr. These constructors
are functions that take two propositions, a and b, implicitly defined, and a proof—either a proof of a

(of type a) or a proof of b (of type b)—and return a proof of a ∨ b. The two constructors Or.inl and
Or.inr correspond to the two possible ways a disjunction can be true: either by proving a or by proving
b. Here’s an example of how the constructors work:

17



1 -- From a proof of P, we can obtain a proof of P ∨ Q

2 theorem ThOrInl (h : P) : P ∨ Q := by

3 exact Or.inl h

4 -- From a proof of Q, we can obtain a proof of P ∨ Q

5 theorem ThOrInr (h : Q) : P ∨ Q := by

6 exact Or.inr h

Unlike the And type, Or does not have fields associated with it. However, the absence of fields does
not mean we cannot reason with elements of this type. In cases where we have a hypothesis of type P ∨

Q, we can reason by cases. In Lean, the cases keyword is used for pattern matching and case analysis
on inductive types. It allows us to break down a hypothesis or term into its possible constructors and
handle each case separately.

For example, if we have a hypothesis of type P ∨ Q, we know that there are two possible cases to
consider: either we have a proof of P (using Or.inl), or we have a proof of Q (using Or.inr). The
cases tactic will break down the goal into two branches, one for each case, allowing us to reason about
each case individually. Let’s look at how we can use cases to handle such a scenario:

1 -- From a proof of P ∨ Q, we can obtain a proof of Q ∨ P

2 theorem ThOrCases (h : P ∨ Q) : Q ∨ P := by

3 cases h

4 -- Case 1

5 rename_i hP

6 exact Or.inr hP

7 -- Case 2

8 rename_i hQ

9 exact Or.inl hQ

This code defines a theorem in Lean that demonstrates how to reason by cases using the cases tactic.
The theorem proves that if you have a proof of P ∨ Q, you can derive a proof of Q ∨ P. Here’s how the
proof works:

1. Hypothesis: We start with the hypothesis h : P ∨ Q, which asserts that at least one of the propo-
sitions P or Q is true.

2. Case Analysis with cases: The cases tactic is applied to h to break it into two subgoals, each
corresponding to a possible way the disjunction could have been constructed:

• Case 1: If h is constructed using Or.inl, it means we have a proof of P (denoted hP using
rename_i), so hP : P. To prove Q ∨ P, we use Or.inr to inject P into the right side of the
disjunction, giving us the proof Q ∨ P.

• Case 2: If h is constructed using Or.inr, it means we have a proof of Q (denoted hQ using
rename_i), so hQ : Q. To prove Q ∨ P, we use Or.inl to inject Q into the left side of the
disjunction, completing the proof.

In both cases, we construct a valid proof of Q ∨ P by appropriately using the constructors Or.inl and
Or.inr. The cases tactic allows us to handle each scenario separately and derive the desired result.

We can alternatively use the keyword Or.elim to provide an alternative proof by cases.
1 theorem ThOrCases2 (h : P ∨ Q) : Q ∨ P := by

2 apply Or.elim h

3 -- Case P

4 intro hP

5 exact Or.inr hP

6 -- Case Q

7 intro hQ

8 exact Or.inl hQ

2.2.3 Implication
The logical implication connective, represented by the symbol → (which can be typed in Lean using \to),
is used to combine two propositions and describe a conditional relationship between them. Specifically, if
P and Q are propositions, then P → Q is also a proposition, which reads as “if P, then Q”, or “P implies Q.”
This means that if P is true, then Q must also be true. If P is false, the implication P → Q is considered
true regardless of the truth value of Q. This is known as a vacuous truth.

18



In Lean, implication is treated as a function type: a proof of P → Q is a function that takes a proof of
P and produces a proof of Q. To prove an implication P → Q, you assume that P is true and then show
that Q must also be true under this assumption. This is typically done using the intro tactic, which
introduces the assumption P into the proof context. Let’s look at an example to illustrate this.

1 -- From a proof of Q, we can obtain a proof of P → Q

2 theorem ThImpIn (hQ : Q) : P → Q := by

3 intro hP

4 exact hQ

Additionally, if we have a proof of P → Q and a proof of P, we can derive a proof of Q. This is an
application of modus ponens, a fundamental rule of inference in logic. The process involves applying the
proof of P → Q to the proof of P, which allows us to conclude Q.

Conceptually, this process is similar to how a function operates: just as a function takes an input and
transforms it into an output, the implication P → Q takes the proof of P (the input) and transforms it
into a proof of Q (the output).

1 -- From a proof P → Q and a proof of P, we can obtain a proof of Q

2 theorem ThModusPonens (h : P → Q) (hP : P) : Q := by

3 exact h hP

2.2.4 Double implication
The double implication connective, Iff (represented by the symbol ↔, which can be typed in Lean
using \iff), is used to combine two propositions, expressing a biconditional relationship between them.
Specifically, if P and Q are propositions, then P ↔ Q is also a proposition. This is read as “P if, and only
if, Q,” meaning that P is true if Q is true, and Q is true if P is true.

In other words, P ↔ Q asserts that P and Q are logically equivalent: if one is true, the other must also
be true, and if one is false, the other must also be false. This biconditional relationship combines two
implications: P → Q and Q → P. Both directions must hold for P ↔ Q to be true, meaning that P and Q

are interchangeable in terms of truth values.
1 #check Iff P Q

2 #check P ↔ Q

If we #print Iff, Lean returns
1 structure Iff : Prop → Prop → Prop

2 number of parameters: 2

3 constructor:

4 Iff.intro : ∀ {a b : Prop}, (a → b) → (b → a) → (a ↔ b)

5 fields:

6 mp : a → b

7 mpr : b → a

Thus, Iff is a structure that takes two propositions (a and b) as inputs and returns a new proposition
(a ↔ b). The constructor for Iff is named Iff.intro. It requires two proofs: one of a → b and one of
b → a. Using these two proofs, it constructs a proof of a ↔ b.

Additionally, the Iff structure has two fields: - mp (short for modus ponens), which is a proof of a →

b - mpr (short for modus ponens reverse), which is a proof of b → a.
These fields store the two implications that together prove the equivalence a ↔ b. Essentially, the

double implication a ↔ b is shorthand for the conjunction (a → b) ∧ (b → a), as we can see below:
1 -- From P ↔ Q we can derive (P → Q) ∧ (Q → P)

2 theorem ThIffOut (h : P ↔ Q) : (P → Q) ∧ (Q → P) := by

3 apply And.intro

4 -- Left

5 exact h.mp

6 -- Right

7 exact h.mpr

In the previous proof, from P ↔ Q, we can derive (P → Q) ∧ (Q → P). To do this, we use the
And.intro constructor To obtain the left hand side of the desired proposition we use the mp field
and to obtain the right hand side we use the mpr field.

19



1 -- From (P → Q) ∧ (Q → P) we can derive P ↔ Q

2 theorem ThIffIn (h1 : P → Q) (h2 : Q → P) : P ↔ Q := by

3 exact Iff.intro h1 h2

In the previous proof, from P → Q and Q → P we can derive P ↔ Q. To do this, we use the Iff.intro

constructor.

2.2.5 True
The logical constant True is a proposition that is always true.

1 #check True

If we #print True, Lean returns
1 inductive True : Prop

2 number of parameters: 0

3 constructors:

4 True.intro : True

The True type in Lean represents the logical proposition true. It is a proposition and has no pa-
rameters. The only constructor for True is True.intro. This constructor is the canonical proof of the
proposition True. When we use True.intro, we are essentially providing a proof that True is true,
which completes any proof that requires a True proposition.

1 -- True can always be obtained

2 theorem ThTrueIn : True := by

3 exact True.intro

An alternative way to obtain a proof of True is to write trivial, which is an element of type True.
1 -- Trivial is an element of type True

2 theorem ThTrivial : True := by

3 exact trivial

2.2.6 False
The logical constant False is a proposition that is always false.

1 #check False

If we #print False, Lean returns
1 inductive False : Prop

2 number of parameters: 0

3 constructors:

The False type in Lean represents the logical proposition false. It is an inductive type, but unlike
True, it has no constructors. This means that no terms or proofs of type False can exist. The absence
of constructors implies that the type is uninhabited—there is no way to construct a proof of False.
Given that False has no constructors, the principle of ex falso quodlibet (from falsehood, anything
follows) holds: if we can derive a proof of False, we can derive any other proposition. This is the logical
principle that allows us to infer arbitrary conclusions from a contradiction. To apply this principle, Lean
provides the tactic False.elim. This tactic allows us to derive any proposition from a proof of False.

1 -- False implies any proposition

2 theorem ThExFalso : False → P := by

3 intro h

4 exact False.elim h

2.2.7 Negation
In Lean, the negation connective Not, represented by the symbol ¬, is used to express the negation of
a proposition. Specifically, if P is a proposition, then ¬P is another proposition that reads as not P. In
logical terms, ¬P means that P is false.

20



1 #check Not P

2 #check ¬P

If we #print Not, Lean returns
1 def Not : Prop → Prop :=

2 fun a => a → False

That is, ¬P is an abbreviation for the implication P → False. Therefore, to prove ¬P, we need to show
that assuming P leads to a contradiction. Let’s see an example.

1 theorem ThModusTollens (h1 : P → Q) (h2 : ¬Q) : ¬P := by

2 -- Assume P is true (to prove ¬P, which is P → False).

3 intro h3

4 -- Derive Q from P → Q and P.

5 have h4 : Q := by

6 exact h1 h3

7 -- Use ¬Q (Q → False) and Q to derive False.

8 exact h2 h4

In the above theorem, we are given the hypotheses h1 : P → Q and h2 : ¬Q, and our goal is to prove
¬P. To do this, we begin by assuming P and aim to derive False. From the assumption P, we can use
h1 : P → Q to derive Q. Then, since we also have h2 : ¬Q, which asserts that Q is false, we reach a
contradiction. This contradiction allows us to conclude False, which completes the proof of ¬P. The
theorem demonstrates the well-known logical principle of Modus Tollens, a fundamental rule in classical
logic.

2.3 Decidable propositions
A proposition is decidable if we can constructively determine whether it is true or false. That is, we
have either a proof of the proposition or a proof of its negation. In Lean, decidability of a proposition
is captured by the inductive type Decidable.

If we #print Decidable, Lean returns
1 inductive Decidable : Prop → Type

2 number of parameters: 1

3 constructors:

4 Decidable.isFalse : {p : Prop} → ¬p → Decidable p

5 Decidable.isTrue : {p : Prop} → p → Decidable p

Decidable takes a proposition p : Prop as a parameter. This type expresses the idea that we can
constructively decide whether p holds or not—that is, we can either prove p or prove its negation ¬p. The
Decidable type has two constructors: Decidable.isTrue and Decidable.isFalse. The constructor
isTrue takes a proof of p and yields a value of type Decidable p, indicating that p is provably true.
Conversely, isFalse takes a proof of ¬p and returns a value of type Decidable p, indicating that p is
provably false.

In the code below, we prove that True and False are decidable, and that each logical connective is
decidable—provided that the propositions they operate on are themselves decidable.

1 -- True is decidable

2 def DecidableTrue : Decidable True := by

3 exact isTrue trivial

4

5 -- False is decidable

6 def DecidableFalse : Decidable False := by

7 exact isFalse id

8

9 -- If `P` is decidable, then `¬ P` is decidable

10 def DecidableNot {P : Prop} : Decidable P → Decidable (¬ P) := by

11 intro hP

12 match hP with

13 | isFalse hP => exact isTrue (fun h => False.elim (hP h))

14 | isTrue hP => exact isFalse (fun h => False.elim (h hP))

15

16 -- If `P` and `Q` are decidable, then `P ∧ Q` is decidable

17 def DecidableAnd {P Q : Prop} : Decidable P → Decidable Q → Decidable (P ∧ Q) := by

18 intro hP hQ

21



19 match hP, hQ with

20 | isFalse hP, _ => exact isFalse (fun h => hP h.left)

21 | _ , isFalse hQ => exact isFalse (fun h => hQ h.right)

22 | isTrue hP , isTrue hQ => exact isTrue (And.intro hP hQ)

23

24 -- If `P` and `Q` are decidable, then `P ∨ Q` is decidable

25 def DecidableOr {P Q : Prop} : Decidable P → Decidable Q → Decidable (P ∨ Q) := by

26 intro hP hQ

27 match hP, hQ with

28 | isTrue hP , _ => exact isTrue (Or.inl hP)

29 | _ , isTrue hQ => exact isTrue (Or.inr hQ)

30 | isFalse hP, isFalse hQ => exact isFalse (fun h => h.elim hP hQ)

31

32 -- If `P` and `Q` are decidable, then `P → Q` is decidable

33 def DecidableImplies {P Q : Prop} : Decidable P → Decidable Q → Decidable (P → Q) := by

34 intro hP hQ

35 match hP, hQ with

36 | isFalse hP , _ => exact isTrue (fun h => False.elim (hP h))

37 | _ , isTrue hQ => exact isTrue (fun _ => hQ)

38 | isTrue hP , isFalse hQ => exact isFalse (fun h => hQ (h hP))

39

40 -- If `P` and `Q` are decidable, then `P ↔ Q` is decidable

41 def DecidableIff {P Q : Prop} : Decidable P → Decidable Q → Decidable (P ↔ Q) := by

42 intro hP hQ

43 have hPtoQ : Decidable (P → Q) := DecidableImplies hP hQ

44 have hQtoP : Decidable (Q → P) := DecidableImplies hQ hP

45 match hPtoQ, hQtoP with

46 | isFalse hPtoQ, _ => exact isFalse (fun h => hPtoQ h.mp)

47 | _, isFalse hQtoP => exact isFalse (fun h => hQtoP h.mpr)

48 | isTrue hPtoQ, isTrue hQtoP => exact isTrue (Iff.intro hPtoQ hQtoP)

2.4 Classical Logic
The statement P ∨ ¬P is a classic example of a proposition that cannot be proven in general without
additional assumptions. This is because Lean’s logic is based on intuitionistic logic by default, which
does not assume that every proposition must be either true or false. In intuitionistic logic, to prove
P ∨ ¬P, we would need to provide a constructive proof for either P or ¬P, but such a proof does not
always exist. Without more information about P, there is no general method to construct a proof of
either P or ¬P. However, if we wish to work within classical logic in Lean, we can explicitly assume the
law of excluded middle as an axiom. Lean provides a mechanism for doing this through the Classical

namespace. Here’s how we can prove P ∨ ¬P using classical logic.
1 -- We open the `Classical` namespace

2 open Classical

3 -- We use `Classical.em` to prove the excluded middle

4 theorem ThExcludedMiddle : P ∨ ¬P := by

5 exact em P

Another important classical equivalence is between P and ¬¬P. In classical logic, this equivalence allows
for proving propositions by contradiction. To prove a proposition P by contradiction, we assume ¬P and
derive a contradiction. This gives us ¬¬P, and by the equivalence between P and ¬¬P, we can conclude
that P is true. This form of reasoning, known as proof by contradiction, can be reproduced in Lean by
using the byContradiction tactic, as demonstrated below.

1 -- Classical Logic allows proofs by contradiction

2 theorem ThDoubNeg : P ↔ ¬¬P := by

3 apply Iff.intro

4 -- Implication P → ¬¬P

5 intro hP

6 intro hNP

7 exact hNP hP

8 -- Implication ¬¬P → P

9 intro hNNP

10 have hF : ¬P → False := by

11 intro hNP

12 exact hNNP hNP

13 apply byContradiction hF

22



We observe that in the equivalence between P and ¬¬P, the implication P → ¬¬P holds in intuitionistic
logic. However, the converse, ¬¬P → P, is the key result that the byContradiction tactic relies on. In
intuitionistic logic, we cannot conclude P simply because assuming ¬P leads to a contradiction. Instead,
intuitionistic logic only allows us to derive ¬¬P from such a contradiction, meaning that we can assert it is
not the case that P is false, but we cannot constructively prove P itself. Therefore, the step from ¬¬P to P

(double negation elimination) is not valid in intuitionistic logic, as it goes beyond what is constructively
derivable.

An alternative is to use false_or_by_contra, which transforms the goal into False, switching to
classical reasoning if the goal is not decidable.

2.5 Exercises
The following exercises are sourced from Daniel Clemente’s website.

1 variable (A B C D I L M P Q R : Prop)

2

3 theorem T51 (h1 : P) (h2 : P → Q) : P ∧ Q := by sorry

4

5 theorem T52 (h1 : P ∧ Q → R) (h2 : Q → P) (h3 : Q) : R := by sorry

6

7 theorem T53 (h1 : P → Q) (h2 : Q → R) : P → (Q ∧ R) := by sorry

8

9 theorem T54 (h1 : P) : Q → P := by sorry

10

11 theorem T55 (h1 : P → Q) (h2 : ¬Q) : ¬P := by sorry

12

13 theorem T56 (h1 : P → (Q → R)) : Q → (P → R) := by sorry

14

15 theorem T57 (h1 : P ∨ (Q ∧ R)) : P ∨ Q := by sorry

16

17 theorem T58 (h1 : (L ∧ M) → ¬P) (h2 : I → P) (h3 : M) (h4 : I) : ¬L := by sorry

18

19 theorem T59 : P → P := by sorry

20

21 theorem T510 : ¬ (P ∧ ¬P) := by sorry

22

23 theorem T511 : P ∨ ¬P := by sorry

24

25 theorem T512 (h1 : P ∨ Q) (h2 : ¬P) : Q := by sorry

26

27 theorem T513 (h1 : A ∨ B) (h2 : A → C) (h3 : ¬D → ¬B) : C ∨ D := by sorry

28

29 theorem T514 (h1 : A ↔ B) : (A ∧ B) ∨ (¬A ∧ ¬B) := by sorry

23

https://www.danielclemente.com/logica/dn.en.pdf
https://www.danielclemente.com/


3 Quantifiers
This chapter introduces the core concepts of quantifiers in Lean, which are pivotal in expressing logical
statements. Quantifiers allow us to make general statements about elements of a type. The universal
quantifier (∀) asserts that a property holds for all elements of a type, while the existential quantifier (∃)
states that there exists at least one element of the type for which the property holds. Through examples
and exercises, this chapter will help us understand how to use these quantifiers effectively in Lean.

3.1 Predicates
For simplicity, we will assume that A is an arbitrary type and P is a predicate on P, i.e., P : A → Prop,
which is a function mapping elements of A to logical propositions.

1 variable (A : Type)

2 variable (P Q : A → Prop)

3.1.1 Examples of predicates
Given a type A, we can define various predicates on it. One trivial example is the predicate that always
evaluates to False, meaning it never holds for any element of A. Similarly, we can define a predicate that
always evaluates to True, meaning it holds for every element of A. These can be expressed as follows:

1 -- False predicate

2 def PFalse {A : Type} : A → Prop := fun _ => False

3 -- True predicate

4 def PTrue {A : Type} : A → Prop := fun _ => True

In the definitions above, the underscore _ is a placeholder for an arbitrary input of type A, indicating
that the function ignores its argument and always returns a constant value—either False or True. This
underscores the fact that PFalse and PTrue do not depend on any particular element of A, but rather
define predicates that are uniformly false or true for all elements of A.

3.1.2 Operations on predicates
Given two predicates P, Q : A → Prop, we can define their conjunction, a new predicate that holds for
an element a : A if and only if both P a and Q a are true. This is captured by the following definition:

1 -- Conjunction of two predicates

2 def PAnd {A : Type} (P Q : A → Prop) : A → Prop := by

3 intro a

4 exact P a ∧ Q a

Here, the function PAnd takes two predicates P and Q and returns a new predicate PAnd P Q on A.
This new predicate holds at a : A if and only if both P a and Q a hold.

In Lean, the notation keyword allows us to define custom symbolic representations for functions and
expressions, improving readability and aligning with standard mathematical conventions. It introduces
shorthand notation for existing definitions, making logical and algebraic expressions more intuitive.

For example, we can define a custom infix operator ∧ for the conjunction of two predicates:
1 notation : 65 lhs:65 " ∧ " rhs:66 => PAnd lhs rhs

Here, notation specifies that P ∧ Q should be interpreted as PAnd P Q. The numbers 65 and 66

indicate precedence levels, ensuring that expressions involving ∧ are parsed correctly relative to other
operators. The lhs and rhs keywords designate the left-hand side and right-hand side of the notation,
ensuring proper binding behavior.

By using notation, we can write logical expressions in a way that closely resembles traditional math-
ematical notation, making proofs and definitions more readable. To verify the notation, we can check
the type of P ∧ Q:

24



1 #check P ∧ Q

Lean confirms that P ∧ Q is a predicate on A, reinforcing that this notation correctly represents the
conjunction of two predicates.

Building on the previous example, we can similarly define other fundamental logical operations on
predicates. These include the disjunction P ∨ Q; the implication P → Q; the biconditional P ↔ Q; and
the negation ¬P. Each of these operations extends our ability to reason about predicates.

3.2 Universal Quantifier
The ∀ command (typed as \forall) represents the universal quantifier. It is used to express statements
of the form ∀ (a : A), P a, which reads as “for every a of type A, the proposition P a holds.” This
enables us to make general statements about all elements of a given type. Specifically, if P is a predicate
on A, then ∀ (a : A), P a is of type Prop. The proposition ∀ (a : A), P a is true if P a is true for
every element a of type A. The following three forms serve to denote the universal quantifier in Lean.

1 #check ∀ (a : A), P a

2 #check ∀ a, P a

3 #check ∀ {a : A}, P a

In the second form, the type of the variable is not explicitly stated, as Lean can infer it from context.
In the third form, the quantifier binding is implicit, indicated by curly braces {}. This allows Lean to
automatically infer the value of a whenever possible, reducing the need for explicit annotations.

To prove a statement of the form ∀ (a : A), P a, we typically use the intro tactic (or just write a
lambda function directly in term mode). This introduces an arbitrary element a of type A and requires
us to prove P a for that arbitrary a.

1 theorem T1 : ∀ (a : A), P a := by

2 intro a

3 sorry

On the other hand, if we have a hypothesis h : ∀ (a : A), P a and we want to use it for a specific
value a : A, we can apply h on a to get P a.

1 variable (a : X)

2 variable (h : ∀ (a : A), P a)

3 #check h a

The specialize tactic is used to apply a hypothesis that is a universally quantified statement to
specific arguments. This allows us to instantiate a general hypothesis with particular values, making it
easier to work with in our proof. When we have a hypothesis of the form h : ∀ (a : A), P a, we
can use specialize to apply h to a specific value a : A, resulting in a new hypothesis h : P a. This is
particularly useful when we want to focus on a specific instance of a general statement.

1 theorem T2 (a : A) (h : ∀ (a : A), P a) : P a := by

2 specialize h a

3 exact h

3.3 Existential Quantifier
The ∃ command (typed as \exists) represents the existential quantifier. It is used to express statements
of the form ∃ (a : A), P a, which reads as “for some a of type A, the proposition P a holds.” This
enables us to make particular statements about elements of a given type. Specifically, if P is a predicate
on A, then ∃ (a : A), P a is of type Prop. The proposition ∃ (a : A), P a is true if P a is true for
some element a of type A. The following three forms serve to denote the existential quantifier in Lean.

1 #check ∃ (a : A), P a

2 #check ∃ a, P a

3 #check Exists P

Unlike the universal quantifier, the existential quantifier does not support implicit binding. Attempting
to write ∃ {a : A}, P a results in an error because Lean requires the bound variable a to be explicitly
declared.

25



If we #print Exists, Lean returns
1 inductive Exists.{u} : α{ : Sort u} → α( → Prop) → Prop

2 number of parameters: 2

3 constructors:

4 Exists.intro : ∀ α{ : Sort u} {p : α → Prop} (w : α), p w → Exists p

This code defines the existential quantifier as an inductive type, Exists. It has two parameters: α :

Sort u, the type of the witness, and p : α → Prop, the predicate that the witness must satisfy. The
function type (α → Prop) → Prop ensures that Exists takes a predicate p : α → Prop and returns a
proposition asserting the existence of an element of α that satisfies p.

The single constructor, Exists.intro, constructs a proof of Exists p given a witness a : α and a
proof that a satisfies p. Lean infers α and p from context, so to obtain an element of type Exists p, it
suffices to provide a and a proof of p a. Here’s an example of how the constructor works:

1 theorem T3 (a : A) (h : P a) : ∃ (a : A), P a := by

2 exact Exists.intro a h

Since Exists is an inductive type, we can use cases on a proof of this type to extract both the witness
and the proof that it satisfies the predicate P.

1 variable (Q : Prop)

2 theorem T4 (h1 : ∃ (a : A), P a) (h2 : ∀ (a : A), P a → Q) : Q := by

3 cases h1

4 rename_i a h3

5 specialize h2 a

6 exact h2 h3

Another alternative is to use Exists.elim the eliminator for the Exists type, allowing us to use the
witness and the proof of predicate on the witness.

1 theorem T5 (h1 : ∃ (a : A), P a) (h2 : ∀ (a : A), P a → Q) : Q := by

2 apply Exists.elim h1

3 exact h2

3.4 Exercises
The following propositions are common identities involving quantifiers.

1 open Classical

2 variable (a b c : A)

3 variable (R : Prop)

4

5 theorem E1 : ∃( (a : A), R) → R := by sorry

6

7 theorem E2 (a : A) : R → ∃( (a : A), R) := by sorry

8

9 theorem E3 : ∃( (a : A), P a ∧ R) ↔ ∃( (a : A), P a) ∧ R := by sorry

10

11 theorem E4 : ∃( (a : A), (P ∨ Q) a) ↔ ∃( (a : A), P a) ∨ ∃( (a : A), Q a) := by sorry

12

13 theorem E5 : ∀( (a : A), P a) ↔ ¬∃( (a : A), (¬P) a) := by sorry

14

15 theorem E6 : ∃( (a : A), P a) ↔ ¬ ∀( (a : A), (¬P) a) := by sorry

16

17 theorem E7 : (∃¬ (a : A), P a) ↔ ∀( (a : A), (¬P) a) := by sorry

18

19 theorem E8 : (∀¬ (a : A), P a) ↔ ∃( (a : A), (¬P) a) := by sorry

20

21 theorem E9 : ∀( (a : A), P a → R) ↔ ∃( (a : A), P a) → R := by sorry

22

23 theorem E10 (a : A) : ∃( (a : A), P a → R) → ∀( (a : A), P a) → R := by sorry

24

25 theorem E11 (a : A) : ∃( (a : A), R → P a) → (R → ∃ (a : A), P a) := by sorry

26



4 Equalities
This chapter provides an introduction to the concept of equality in the Lean theorem prover. It explores
how equality is defined and utilized in Lean’s type theory.

Throughout this chapter, we assume that X is an arbitrary type, x and y are terms of type X, as are
a, b, c, and d. Additionally, P is a predicate on X, meaning P : X → Prop.

1 variable (X : Type)

2 variable (x y a b c d : X)

3 variable (P : X → Prop)

4.1 Equality
Given two terms of any given type we can consider the type of their equality (Eq), which is a term of
type Prop.

1 #check Eq

2 #check Eq x y

3 #check x = y

If we #print Eq, Lean returns
1 inductive Eq.{u_1} : { α : Sort u_1 } → α → α → Prop

2 number of parameters: 2

3 constructors:

4 Eq.refl : ∀ { α : Sort u_1 } (a : α), a = a

Eq is an inductive type that takes two implicit parameters: a universe level u_1 and {α : Sort

u_1}, a type at this universe level. Given any two values of type α—the elements being compared for
equality—it returns a proposition in Prop, asserting their equality.

The negation of an equality a = b is expressed in Lean using Ne or the symbol ≠ (written as \neq).
This is simply the negation of the equality proposition, meaning ¬ (a = b).

1 #check Ne

2 #check Ne x y

3 #check x ≠ y

4.1.1 Reflexivity
The Eq type has a single constructor, Eq.refl, which captures the principle of reflexivity: every element
is equal to itself. This constructor takes an implicit type α : Sort u_1 and an element a : α, producing
a proof of the proposition a = a. In other words, it establishes that any element is identical to itself.
This is a more powerful theorem than it may appear at first, because although the statement of the
theorem is a = a, Lean will allow anything that is definitionally equal to that type. So, for instance, 2
+ 2 = 4 is proven in Lean by reflexivity.

As a shorthand, we can use rfl instead of Eq.refl. The key difference is that rfl infers a implicitly
rather than requiring it explicitly. Here’s an example demonstrating how the constructor works:

1 theorem TEqRfl (a : X) : a = a := by

2 exact rfl

3

4 theorem T1 : 2 + 2 = 4 := by

5 exact rfl

27



4.1.2 Symmetry
If we have h : a = b as a hypothesis, we can derive b = a using the symmetric property of equality.
This is achieved by applying Eq.symm to h. Alternatively, the shorthand h.symm can be used in place of
Eq.symm h to provide a proof of b = a.

1 theorem TEqSymm (h : a = b) : (b = a) := by

2 exact Eq.symm h -- also (exact h.symm)

4.1.3 Transitivity
If we have h1 : a = b and h2 : b = c as hypotheses, we can derive a = c using the transitive property
of equality. This is achieved by applying Eq.trans to h1 and h2. Alternatively, the shorthand h1.trans

h2 can be used in place of Eq.trans h1 h2 to provide a proof of a = c.
1 theorem TEqTrans (h1 : a = b) (h2 : b = c) : (a = c) := by

2 exact Eq.trans h1 h2 -- also (exact h1.trans h2)

4.1.4 Rewrite
The rewrite [e] tactic applies the identity e as a rewrite rule to the target of the main goal.

• The rewrite [e₁, ..., eₙ] tactic applies the given rewrite rules sequentially.

• The rewrite [e] at l variant applies the rewrite at specific locations l, which can be either *

(indicating all applicable places) or a list of hypotheses in the local context.

We can also use rw, which automatically attempts to close the goal by applying rfl after performing
the rewrite.

1 theorem TEqRw (h1 : a = b) : P b ↔ P a := by

2 apply Iff.intro

3 -- P b → P a

4 intro h2

5 rewrite [h1] -- rewrites the goal using h1

6 exact h2

7 -- P a → P b

8 intro h2

9 rw [h1] at h2 -- rewrites h2 using h1

10 exact h2

4.1.5 calc
The calc command allows for structured reasoning by chaining a sequence of equalities or inequalities.
This approach makes multi-step proofs clearer and easier to follow. The general syntax is:

1 calc

2 expr_{1} = expr_{2} := justification_{1}

3 _ = expr_{3} := justification_{2}

4 _ = expr_{4} := justification_{3}

5

6 _ = expr_{n} := justification_{n-1}

Here:

• expr_1, expr_2, expr_3, ... are expressions.

• justification_1, justification_2, ... are proofs or explanations that establish each equal-
ity or inequality.

• The _ syntax connects the steps, ensuring a logical flow.

Here’s an example demonstrating the use of the calc command.
1 theorem TCalc (h1 : a = b) (h2 : b = c) (h3: c = d) : (a = d) := by

2 calc

3 a = b := by rw [h1]

4 _ = c := by rw [h2]

5 _ = d := by rw [h3]

28



4.2 Types with meaningful equality
Equality (=) is a fundamental concept in Lean, defined for all types. However, its interpretation and be-
havior depend on the structure of the specific type. While equality is always available, its computational
properties—such as whether it is decidable—vary depending on the type.

1 #eval x = y -- Returns error

2 #eval 2 + 2 = 4 -- Returns true

4.2.1 Decidable Equality
A type has decidable equality if there exists an algorithm to determine whether any two elements of that
type are equal. In Lean, this is captured by the DecidableEq type class.

If we #print DecidableEq Lean returns
1 @[reducible] def DecidableEq.{u} : Sort u → Sort (max 1 u) :=

2 fun α => (a b : α) → Decidable (a = b)

An example of a type with decidable equality is Bool. The following proof defines an instance of
DecidableEq for booleans:

1 def DecidableEqBool : DecidableEq Bool := by

2 intro a b

3 match a, b with

4 | false, false => exact isTrue rfl

5 | false, true => exact isFalse (fun h => Bool.noConfusion h)

6 | true , false => exact isFalse (fun h => Bool.noConfusion h)

7 | true , true => exact isTrue rfl

In Lean, the noConfusion principle is a powerful tool for reasoning about inductive types. It captures
two essential properties of constructors: they are disjoint (no two distinct constructors can produce equal
values) and injective (equal constructor applications imply equal arguments). For the type Bool, which
has exactly two constructors—true and false—these properties mean that true ≠ false and false ≠

true. The expression Bool.noConfusion h exploits this fact: when we assume a contradictory equality
like true = false, noConfusion produces a logical contradiction, allowing us to conclude that such
an assumption is invalid. More generally, noConfusion can be used to eliminate impossible equalities
between constructors or to extract equalities of their arguments when constructors match.

Some other examples of types with decidable equality include:

• Basic types such as Nat, Int, and String, which all have decidable equality.

• Inductive types and structures, provided that their components also have decidable equality.

1 #check Nat.decEq

2 #check Int.decEq

3 #check String.decEq

Consider the following functions.
1 -- Function Charp

2 def Charp : Nat → Nat → Bool := by

3 intro n m

4 by_cases n = m

5 -- Case n = m

6 exact true

7 -- Case n ≠ m

8 exact false

9

10 -- Function Charp2

11 def Charp2 : Nat → Nat → Bool := fun n m => if n = m then true else false

12

13 -- Function Charpoint

14 noncomputable def Charpoint {A : Type} : A → A → Bool := by

15 intro a b

16 by_cases a = b

17 -- Case a = b

18 exact true

29



19 -- Case a ≠ b

20 exact false

21

22 -- Function Charpoint2

23 def Charpoint2 {A : Type} [DecidableEq A] : A → A → Bool :=

24 fun n m => if n = m then true else false

The function Charp takes two natural numbers, n and m, and determines whether they are equal. It
returns true if n = m and false otherwise. This is achieved using the by_cases tactic, which performs
a case distinction: if n = m, the function returns true, and if n ≠ m, it returns false. An alternative
implementation, Charp2, expresses the same function using an if ... then ... else expression.

In general, equality in an arbitrary type is not necessarily computable. For instance, in the func-
tion Charpoint, which generalizes Charp to an arbitrary type A, the use of by_cases a = b intro-
duces a logical case distinction that may not be computable. Consequently, the function is marked as
noncomputable, indicating that it relies on classical reasoning rather than constructive computation.
To ensure computability, the alternative function Charpoint2 explicitly assumes that A has decidable
equality by requiring the type class instance [DecidableEq A]. This assumption allows Lean to treat
equality on A as a computable procedure, ensuring that the function remains fully computable.

4.2.2 Equality in Prop

In Prop, the type of propositions, equality is defined in terms of logical equivalence, as stated by the
axiom of propositional extensionality, written propext. An axiom is a fundamental assumption accepted
without proof.

If we #print propext, Lean returns:
1 axiom propext : ∀ {a b : Prop}, (a ↔ b) → a = b

This means that if two propositions a and b are logically equivalent (a ↔ b), then they are consid-
ered equal. Note that propext is an axiom. Axioms are accepted by definition, rather than being
derived from existing theorems. This axiom enables the substitution of equivalent propositions within
any context. However, unlike equality for concrete types such as Nat or Int, logical equivalence is
generally undecidable—determining whether two arbitrary propositions are equivalent is, in general, an
undecidable problem.

1 theorem TEqProp {Q : Prop} : (Q ∧ True) = Q := by

2 apply propext

3 apply Iff.intro

4 -- Q ∧ True → Q

5 intro h2

6 exact h2.left

7 -- Q → Q ∧ True

8 intro h2

9 apply And.intro

10 exact h2

11 trivial

We can always inspect the axioms upon which a theorem relies by using the #print axioms command.
For instance, to check the axioms involved in the TEqProp theorem, we can run:

1 #print axioms TEqProp

The above code returns 'TEqProp' depends on axioms: [propext].

30



5 Functions
In Lean, a function is a relation that associates each element of one type (the domain) with a unique
element of another type (the codomain). This concept is foundational in both mathematics and pro-
gramming. In this chapter, we delve into how functions are represented and utilized in Lean. Key topics
include:

• The definition and notation of functions in Lean.

• Function composition and application.

• Special types of functions, such as injective (one-to-one), surjective (onto), and bijective (one-to-one
and onto) functions, and their significance in mathematical reasoning.

By the end of this chapter, we will have a basic foundation for defining, manipulating, and formally
reasoning about functions in Lean.

Throughout this chapter, we assume that A, B, C and D are arbitrary types
1 variable (A B C D : Type)

Given two types, A and B, the expression A → B denotes the type of all functions from A to B. The
arrow → is written in Lean using \to. In this context, A is called the domain, and B the codomain. Each
element f of A → B is a function. If a : A is an element of the domain, then f a represents its image
under f and belongs to B. In Lean, function application does not require parentheses, making the syntax
more natural and readable. Instead of writing f(a), as in many programming languages, Lean uses f a.

1 -- The type of all functions from A to B

2 #check A → B

3

4 -- Declare functions f and g

5 variable (f g : A → B)

6

7 -- Declare an element a of type A

8 variable (a : A)

9

10 -- This is an element of type B

11 #check f a

5.0.1 Equality
The function type A → B comes with a natural notion of equality. Function extensionality, expressed by
funext, states that if two functions with the same domain and codomain produce the same output for
every input, then they are equal:
(∀ (a : A), f a = g a) → f = g. In many dependent type theory systems, function extensionality
is an axiom, as it cannot be derived from the core logic alone. Conversely, if two functions are equal,
then they yield the same result for every input:
f = g → ∀ (a : A), f a = g a. This follows from the congruence property of functions, implemented
in Lean as congrFun. The following example illustrates both principles:

1 theorem TEqApl : f = g ↔ ∀ (a : A), f a = g a := by

2 apply Iff.intro

3 -- f = g → ∀ (a : A), f a = g a

4 intro h a

5 exact congrFun h a

6 -- ∀( (a : X), f a = g a) → f = g

7 intro h

8 exact funext h

31



5.0.2 Composition
If f : A → B and h : B → C are functions, their composition, written as h ∘ f, is a function of type A

→ C. In Lean, the composition operator ∘ is written using \comp or \circ.
1 variable (h : B → C)

2 #check h ∘ f

Composition of functions is associative.
1 theorem TCompAss {A B : Type} {f : A → B} {g : B → C} {h : C → D} : h ∘ (g ∘ f) = (h ∘ g) ∘ f := by

2 funext a

3 exact rfl

5.0.3 Identity function
For any type A, we can define the identity function id, which has type A → A. This function simply
returns its input unchanged, meaning that for every a : A, we have id a = a.

If we #print id, Lean returns:
1 def id.{u} : { α : Sort u } → α → α := fun { α } a => a

This definition shows that id takes an implicit argument {α : Sort u}—a type in any universe—and
an explicit argument a : α, returning a unchanged.

The identity function serves as a neutral element for function composition, meaning that composing
any function with id, whether on the left or the right, leaves the function unchanged.

1 theorem TIdNeutral : (f ∘ id = f) ∧ (id ∘ f = f) := by

2 apply And.intro

3 -- f ∘ id = f

4 funext a

5 exact rfl

6 -- id ∘ f = f

7 funext a

8 exact rfl

Observe that in the proof above, the equality f ∘ id = f uses id to denote the identity function on
A, while in the equality id ∘ f = f, id refers to the identity function on B. This proof showcases Lean’s
capabilities for type inference.

If we want to explicitly specify the domain of the identity function, we can disable the automatic
insertion of implicit parameters by using the @ symbol before id. For example, @id A returns the
identity function defined on the type A.

1 #check @id A

5.1 Injections
In this section, we introduce the concepts of injective function, monomorphism, and left inverse of a
function, and we examine their relationships and key properties.

Injective

We say that a function f : A → B is injective or one-to-one if, for all pairs of elements a1, a2 : A, the
equality f a1 = f a2 implies a1 = a2.

1 def injective {A B : Type} (f : A → B) : Prop := ∀{a1 a2 : A}, (f a1 = f a2) → (a1 = a2)

Monomorphism

We say that a function f : A → B is a monomorphism if, for every other type C and every pair of
functions g h : C → A, the equality f ∘ g = f ∘ h implies that g = h.

1 def monomorphism {A B : Type} (f : A → B) : Prop := ∀{C : Type}, ∀{g h : C → A}, f ∘ g = f ∘ h → g = h

32



Left inverse

We say that a function f : A → B has a left inverse if there exists a function g : B → A such that g ∘

f = id.
1 def hasleftinv {A B : Type} (f : A → B) : Prop := ∃(g : B → A), g ∘ f = id

5.1.1 An example: The identity
Every identity is injective, a monomorphism and has a left inverse (the identity itself).

1 -- The identity is injective

2 theorem TIdInj : injective (@id A) := by

3 -- rw [injective] -- rw to recover the definition

4 intro a1 a2 h

5 calc

6 a1 = id a1 := by exact rfl

7 _ = id a2 := by exact h

8 _ = a2 := by exact rfl

9

10 -- The identity is a monomorphism

11 theorem TIdMon : monomorphism (@id A) := by

12 -- rw [monomorphism] -- rw to recover the definition

13 intro C g h h1

14 calc

15 g = id ∘ g := by exact rfl

16 _ = id ∘ h := by exact h1

17 _ = h := by exact rfl

18

19 -- The identity has a left inverse

20 theorem TIdHasLeftInv : hasleftinv (@id A) := by

21 -- rw [hasleftinv] -- rw to recover the definition

22 apply Exists.intro id

23 exact rfl

5.1.2 Exercises

1 -- Negation of injective

2 theorem TNegInj {A B : Type} {f : A → B} : ¬ (injective f) ↔ ∃(a1 a2 : A), f a1 = f a2 ∧ a1 ≠ a2 := by

sorry

3

4 -- The composition of injective functions is injective

5 theorem TCompInj {A B : Type} {f : A → B} {g : B → C} (h1 : injective f) (h2 : injective g) : injective

(g ∘ f) := by sorry

6

7 -- If the composition (g ∘ f) is injective, then f is injective

8 theorem TCompRInj {A B : Type} {f : A → B} {g : B → C} (h1 : injective (g ∘ f)) : (injective f) := by

sorry

9

10 -- Injective and Monomorphism are equivalent concepts

11 theorem TCarMonoInj {A B : Type} {f : A → B} : injective f ↔ monomorphism f := by sorry

12

13 -- If a function has a left inverse then it is injective

14 theorem THasLeftInvtoInj {A B : Type} {f : A → B} : hasleftinv f → injective f := by sorry

5.2 Surjections
In this section, we introduce the concepts of surjective function, epimorphism, and right inverse of a
function, and we examine their relationships and key properties.

Surjective

We say that a function f : A → B is surjective or onto if, for every element b : B, there exists an
element a : A such that f a = b.

1 def surjective {A B : Type} (f : A → B) : Prop := ∀{b : B}, ∃(a : A), f a = b

33



Epimorphism

We say that a function f : A → B is an epimorphism if, for every other type C and every pair of functions
g h : B → C, the equality g ∘ f = h ∘ f implies that g = h.

1 def epimorphism {A B : Type} (f : A → B) : Prop := ∀{C : Type}, ∀{g h : B → C}, g ∘ f = h ∘ f → g = h

Right inverse

We say that a function f : A → B has a right inverse if there exists a function g : B → A such that f
∘ g = id.

1 def hasrightinv {A B : Type} (f : A → B) : Prop := ∃(g : B → A), f ∘ g = id

5.2.1 An example: The identity
Every identity is surjective, an epimorphism and has a right inverse (the identity itself).

1 -- The identity is surjective

2 theorem TIdSurj : surjective (@id A) := by

3 -- rw [surjective] -- rw to recover the definition

4 intro a

5 apply Exists.intro a

6 exact rfl

7

8 -- The identity is an epimorphism

9 theorem TIdMon : epimorphism (@id A) := by

10 -- rw [epimorphism] -- rw to recover the definition

11 intro C g h h1

12 calc

13 g = g ∘ id := by exact rfl

14 _ = h ∘ id := by exact h1

15 _ = h := by exact rfl

16

17 -- The identity has a right inverse

18 theorem TIdHasRightInv : hasrightinv (@id A) := by

19 -- rw [hasrightinv] -- rw to recover the definition

20 apply Exists.intro id

21 exact rfl

5.2.2 Exercises

1 -- Negation of surjective

2 theorem TNegSurj {A B : Type} {f: A → B} : ¬ (surjective f) ↔ ∃(b : B), ∀ (a : A), f a ≠ b := by sorry

3

4 -- The composition of surjective functions is surjective

5 theorem TCompSurj {A B : Type} {f : A → B} {g : B → C} (h1 : surjective f) (h2 : surjective g) :

surjective (g ∘ f) := by sorry

6

7 -- If the composition (g ∘ f) is surjective, then g is surjective

8 theorem TCompLSurj {A B : Type} {f : A → B} {g : B → C} (h1 : surjective (g ∘ f)) : (surjective g) := by

sorry

9

10 -- Surjective and Epimorphism are equivalent concepts

11 theorem TCarEpiSurj {A B : Type} {f : A → B} : surjective f ↔ epimorphism f := by sorry

12

13 -- If a function has a right inverse then it is surjective

14 theorem THasRightInvtoInj {A B : Type} {f : A → B} : hasrightinv f → surjective f := by sorry

5.3 Bijections
In this section, we introduce the concepts of bijective function and isomorphism and we examine their
relationships and key properties.

34



Bijective

We say that a function f : A → B is bijective if it is injective and surjective.
1 def bijective {A B : Type} (f : A → B) : Prop := injective f ∧ surjective f

Isomorphism

We say that a function f : A → B is an isomorphism if there exists a function g : B → A such that g
∘ f = id ∧ f ∘ g = id.

1 def isomorphism {A B : Type} (f : A → B) : Prop := ∃ (g : B → A), g ∘ f = id ∧ f ∘ g = id

5.3.1 An example: The identity
Every identity is bijective and an isomorphism.

1 -- The identity is bijective

2 theorem TIdBij : bijective (@id A) := by

3 -- rw [bijective] -- rw to recover the definition

4 apply And.intro

5 exact TIdInj A

6 exact TIdSurj A

7

8 -- The identity is an isomorphism

9 theorem TIdMon : isomorphism (@id A) := by

10 rw [isomorphism] -- rw to recover the definition

11 apply Exists.intro id

12 apply And.intro

13 exact rfl

14 exact rfl

5.3.2 Exercises

1 -- The composition of bijective functions is bijective

2 theorem TCompBij {A B : Type} {f : A → B} {g : B → C} (h1 : bijective f) (h2 : bijective g) : bijective

(g ∘ f) := by sorry

3

4 -- A function is an isomorphism if and only if it has left and right inverse

5 theorem TCarIso {A B : Type} {f : A → B} : isomorphism f ↔ (hasleftinv f ∧ hasrightinv f) := by sorry

6

7 -- Every isomorphism is bijective

8 theorem TCarIsotoBij {A B : Type} {f : A → B} : isomorphism f → bijective f := by sorry

35



6 Natural numbers
The natural numbers—0, 1, 2, and so on—form the foundation of mathematics. In Lean and other proof
assistants, natural numbers aren’t taken for granted; instead, they are built from the ground up using
inductive types. This approach not only mirrors their intuitive construction but also unlocks powerful
tools for reasoning about them formally.

In this chapter, we’ll explore how the natural numbers are defined inductively in Lean, and how such
a definition allows us to reason about them using case analysis and mathematical induction. We’ll also
examine how to define functions on natural numbers using recursion, and use this technique to construct
the familiar operations of maximum and minimum, addition and multiplication. The chapter concludes
with exercises to reinforce our understanding and help us apply these concepts.

6.1 Definition
The natural numbers Nat are defined inductively in Lean using two constructors: zero, which represents
the base case, and succ, which takes a natural number and returns its successor. This closely follows
the Peano axioms, where 0 is a natural number and, if n is a natural number, then so is n + 1.

If we #print Nat, Lean returns:
1 inductive Nat : Type

2 number of parameters: 0

3 constructors:

4 Nat.zero : Nat

5 Nat.succ : Nat → Nat

Inductive types like Nat not only specify how values are built, but also provide fundamental principles
of recursion and induction. These principles allow functions to be defined by pattern matching on
constructors, and proofs to be carried out using structural induction.

Lean comes with the Nat type already implemented, along with many theorems related to natural
numbers. However, to gain a deeper understanding of how natural numbers can be constructed and
reasoned about, we will define our own custom type, which we will simply call N.

1 inductive N : Type where

2 | z : N

3 | s : N → N

4 deriving Repr

The deriving Repr clause is used to automatically generate an instance of the Repr type class for a
user-defined type. The Repr class defines how values of a type can be converted into a human-readable
format, primarily for the purpose of displaying them during evaluation or debugging. When a type
derives Repr, Lean synthesizes the necessary code to produce a structured string representation of any
value of that type. This is particularly useful when using commands like #eval, where Lean attempts
to evaluate an expression and display the result. Without a Repr instance, Lean would not know how to
present the value, resulting in an error. By including deriving Repr in a type declaration, users enable
Lean to show values automatically, making it easier to inspect the behaviour of programs and proofs.

If we #print N, Lean returns:
1 inductive N : Type

2 number of parameters: 0

3 constructors:

4 N.z : N

5 N.s : N → N

We can access the two constructors of N with N.z and N.s. To work with N without needing to prefix
everything with N., we can open the namespace to bring its notation into scope.

1 open N

2 #check z

3 #check s

36



6.2 Cases
Assuming x is a variable in the local context with an inductive type, cases x splits the main goal,
producing one goal for each constructor of the inductive type, in which the target is replaced by a
general instance of that constructor.

The code below defines a function Eqzero in Lean, which takes a natural number n of type N and
returns a boolean value in Bool. The purpose of this function is to compare the given number n with
zero. The function is defined using cases over the structure of a natural number n, used to perform a
case analysis. This splits the proof into two cases:

1. Case Zero: When n is zero, represented by z, the function returns true, indicating that n is equal
to zero.

2. Case Successor: When n is the successor s of some natural number m the function returns false,
indicating that n is not equal to zero.

1 def Eqzero : N → Bool := by

2 intro n

3 cases n

4 -- Case zero

5 exact true

6 -- Case successor

7 exact false

6.3 Match
Let us recall that an alternative to using cases is the match expression, which enables us to perform
pattern matching directly within a definition. In what follows, we will define an alternative version of
Eqzero using this approach.

1 def Eqzero2 : N → Bool := by

2 intro n

3 match n with

4 | z => exact true

5 | s _ => exact false

6.4 Dedekind-Peano
6.4.1 Cases
Note that the type N gives us a Dedekind–Peano algebra. We can think of this type as the free algebra
generated by a constant z and a unary operation s. In this setup, z can never be equal to s n for any
n : N.

1 theorem TZInj : ∀ (n : N), z ≠ s n := by

2 intro n

3 intro h

4 cases h

In the proof of the theorem NInj, the first step intro n introduces an arbitrary element n of type
N. This sets the stage for proving that z is not equal to s n for any such n. The next step, intro h,
assumes the contrary—that is, it introduces a hypothesis h : z = s n. To analyze this equality, we
apply the tactic cases h, which attempts to decompose the equation. However, since z and s n are built
using different constructors of the inductive type N, Lean can immediately determine that this equality
is impossible. This is a consequence of the fact that constructors of an inductive type are disjoint—they
produce values that can never be equal. As a result, Lean closes the goal automatically, completing the
proof.

37



6.4.2 Injection
Similarly, the successor function s is injective. For this we use the tactic injection which states that
constructors of inductive data types are injective.

1 theorem TSuccInj : injective s := by

2 intro n m

3 intro h

4 injection h

6.4.3 noConfusion
The noConfusion principle formalizes the fact that the different constructors of an inductive type are
distinct and that they are injective when applied to arguments. Here’s how it works in practice:

1 theorem TSuccInjAlt : injective s := by

2 intro n m h

3 exact N.noConfusion h id

In this proof, we’re saying: if s n = s m, then—by the injectivity of the s constructor—we must
have n = m. The noConfusion principle takes the equality h : s n = s m and safely removes the
constructors, handing us the equality n = m underneath. This is especially useful when we want to avoid
manual pattern matching with cases or match, and instead reason abstractly about the structure of our
inductive values.

6.5 Induction
Assuming x is a variable of inductive type in the local context, the tactic induction x applies induction
on x to the main goal. This results in one subgoal for each constructor of the inductive type, where
the target is replaced by a general instance of that constructor. For each recursive argument of the
constructor, an inductive hypothesis is introduced. If any element in the local context depends on x, it
is reverted and then reintroduced after the induction, ensuring that the inductive hypothesis properly
incorporates these dependencies.

Next theorem proves that a predicate holds for every natural number.
1 theorem TInd {P : N → Prop} (h0 : P z) (hi : ∀ (n : N), P n → P (s n)) : ∀ (n : N), P n := by

2 intro n

3 induction n

4 -- Base case: `z`

5 exact h0

6 -- Inductive step: assume the property holds for `n`, and prove it for `s n`

7 rename_i n hn

8 exact (hi n) hn

The proof proceeds by induction on n:

1. Base case: We begin with the case z. Here, we need to show that P z holds. But this is precisely
what h0 provides, so the base case is established.

2. Inductive step: For the inductive case, we assume a natural number n and the inductive hypoth-
esis hn : P n, which states that the property holds for n. Our goal is to show that P (s n) holds.
This follows directly from the hypothesis hi.

6.6 Recursion
Recursion is a fundamental concept in both mathematics and computer science, allowing us to define
functions in terms of simpler instances of themselves. In the context of natural numbers, recursive
definitions mirror the inductive structure of the numbers themselves. This structure lends itself naturally
to recursive functions, where we specify the result for the base case and describe how to compute the
result for a successor in terms of the result for its predecessor. In this subsection, we will explore how
recursion works in Lean, with simple examples like the definition of the maximum and the minimum,
the addition and the multiplication.

38



6.6.1 Maximum
Recursive definition of the maximum of two natural numbers.

1 def max : N → N → N := by

2 intro n m

3 match n, m with

4 | z, m => exact m

5 | n, z => exact n

6 | s n', s m' => exact s (max n' m')

6.6.2 Minimum
Recursive definition of the minimum of two natural numbers.

1 def min : N → N → N := by

2 intro n m

3 match n, m with

4 | z, _ => exact z

5 | _, z => exact z

6 | s n', s m' => exact s (min n' m')

6.6.3 Addition
We now define the function Addition, which recursively specifies the addition of natural numbers by
recursion on the first argument. For clarity and readability, we will use the shorthand notation n + m

in place of Addition n m.
1 def Addition : N → N → N := by

2 intro n m

3 cases n with

4 | z => exact m

5 | s n => exact s (Addition n m)

6 -- Notation for Addition

7 notation : 65 lhs:65 " + " rhs:66 => Addition lhs rhs

Addition takes two natural numbers n and m as input and computes their addition by recursion on
n. The base case handles the situation when n is zero in which case the result is simply m, since adding
zero to any number yields that number. In the inductive case, where we consider s n, the successor of
n, the function returns the successor of the recursive addition of n and m, that is, s (Addition n m).
This reflects the intuitive idea that to compute (s n) + m, we first compute n + m and then take its
successor.

Fibonacci

Thanks to Addition we can define the Fibonacci function recursively.
1 def Fib : N → N := by

2 intro n

3 match n with

4 | z => exact z

5 | s z => exact (s z)

6 | s (s n) => exact n + (s n)

6.6.4 Multiplication
With a similar idea, we can define the function Multiplication, which recursively specifies the multi-
plication of natural numbers by recursion on the first argument. For clarity and readability, we will use
the shorthand notation n * m in place of Multiplication n m.

1 def Multiplication : N → N → N := by

2 intro n m

3 cases n with

4 | z => exact z

5 | s n => exact (Multiplication n m) + m

6 -- Notation for Multiplication

7 notation : 70 lhs:70 " * " rhs:71 => Multiplication lhs rhs

39



Multiplication takes two natural numbers n and m as input and computes their addition by recursion
on n. The base case handles the situation when n is zero in which case the result is simply z, since
multiplying zero to any number yields zero. In the inductive case, where we consider s n, the successor of
n, the function returns the sum of the recursive multiplication of n and m and m, that is, (Multiplication
n m) + m. This reflects the intuitive idea that to compute (s n) * m, we first compute n * m and then
add m.

Factorial

Thanks to Multiplication we can define the factorial function recursively.
1 def Fact : N → N := by

2 intro n

3 cases n with

4 | z => exact (s z)

5 | s n => exact (s n) * (Fact n)

6.7 Decidable Equality
Thanks to the inductive structure of N, we can define a recursive procedure to determine whether two
values of type N are equal. This means providing an instance of the DecidableEq type class for N. The
idea is simple: we compare two values by structurally analyzing their form—whether they are both zero,
both successors, or mismatched. In the case of successors, we reduce the problem to their predecessors
and apply the same logic recursively. Here’s how this can be implemented:

1 def instDecidableEqN : DecidableEq N := by

2 intro n m

3 match n, m with

4 | z, z => exact isTrue rfl

5 | z, s _ => exact isFalse (by intro h; cases h)

6 | s _, z => exact isFalse (by intro h; cases h)

7 | s n', s m' =>

8 match instDecidableEqN n' m' with

9 | isTrue h => exact isTrue (congrArg s h)

10 | isFalse h => exact isFalse (fun h' => N.noConfusion h' (fun h'' => h h''))

6.8 Exercises
6.8.1 Injection

1 -- Prove that no natural number is equal to its own successor

2 theorem TInjSucc {n : N} : ¬ (n = s n) := by sorry

6.8.2 Maximum

1 -- Max (z, n) = n

2 theorem TMaxzL : ∀ {n : N}, (maxi z n) = n := by sorry

3

4 -- Max (n, z) = n

5 theorem TMaxzR : ∀ {n : N}, (maxi n z) = n := by sorry

6

7 -- Max (n, m) = Max (m, n)

8 theorem TMaxComm : ∀ {n m : N}, (maxi n m) = (maxi m n) := by sorry

9

10 -- Max (n, m) = n ∨ Max (n, m) = m

11 theorem TMaxOut : ∀ {n m : N}, ((maxi n m) = n) ∨ ((maxi n m) = m) := by sorry

12

13 -- Max (n, n) = n

14 theorem TMaxIdpt : ∀ {n : N}, maxi n n = n := by sorry

40



6.8.3 Minimum

1 -- Min (z, n) = z

2 theorem TMinzL : ∀ {n : N}, (mini z n) = z := by sorry

3

4 -- Min (n, z) = z

5 theorem TMinzR : ∀ {n : N}, (mini n z) = z := by sorry

6

7 -- Min (n, m) = Min (m, n)

8 theorem TMinComm : ∀ {n m : N}, (mini n m) = (mini m n) := by sorry

9

10 -- Min (n, m) = n ∨ Min (n, m) = m

11 theorem TMinOut : ∀ {n m : N}, ((mini n m) = n) ∨ ((mini n m) = m) := by sorry

12

13 -- Min (n, n) = n

14 theorem TMinIdpt : ∀ {n : N}, mini n n = n := by sorry

15

16 -- Min (n, m) = Max (n, m) → n = m

17 theorem TMinMaxEq : ∀ {n m : N}, mini n m = maxi n m → n = m := by sorry

18

19 -- Min (n, m) = n ↔ Max (n, m) = m

20 theorem TMinMax : ∀ {n m : N}, mini n m = n ↔ maxi n m = m := by sorry

6.8.4 Addition

1 -- z is a left identity for addition

2 theorem TAdd0L : ∀ {n : N}, z + n = n := by sorry

3

4 -- z is a right identity for addition

5 theorem TAdd0R : ∀ {n : N}, n + z = n := by sorry

6

7 -- Addition of natural numbers is commutative up to a successor

8 theorem TAddOne : ∀ {n m : N}, (s n) + m = n + (s m) := by sorry

9

10 -- Addition is commutative

11 theorem TAddComm : ∀ {n m : N}, n + m = m + n := by sorry

12

13 -- If the sum of two natural numbers is zero, then the first number must be zero

14 theorem TAddZ : ∀ {n m : N}, n + m = z → n = z := by sorry

15

16 -- If the sum of two natural numbers is zero, then both numbers are zero

17 theorem TAddZ2 : ∀ {n m : N}, n + m = z → (n = z) ∧ (m = z) := by sorry

18

19 -- Addition is associative

20 theorem TAddAss : ∀{n m p : N}, (n + m) + p = n + (m + p) := by sorry

21

22 -- n can never be equal to n + s k

23 theorem TAddSucc : ∀ {n k : N}, n = n + (s k) → False := by sorry

24

25 -- A number cannot be both ahead of and behind another number by a positive amount

26 theorem TIncAdd : ∀ {n m k : N}, m = n + (s k) → n = m + (s k) → False := by sorry

27

28 -- Right congruence of addition

29 theorem TAddCongR : ∀ {n m k : N}, m = k → n + m = n + k := by sorry

30

31 -- Left congruence of addition

32 theorem TAddCongL : ∀ {n m k : N}, m = k → m + n = k + n := by sorry

33

34 -- Addition on the left is cancellative

35 theorem TAddCancL : ∀ {n m k : N}, n + m = n + k → m = k := by sorry

36

37 -- Addition on the right is cancellative

38 theorem TAddCancR : ∀ {n m k : N}, m + n = k + n → m = k := by sorry

39

40 -- Left cancellation property of addition with zero

41 theorem TAddCancLZ : ∀ {n m : N}, n + m = n → m = z := by sorry

42

43 -- Right cancellation property of addition with zero

44 theorem TAddCancRZ : ∀ {n m : N}, m + n = n → m = z := by sorry

41



6.8.5 Multiplication

1 -- z is a left zero for multiplication

2 theorem TMult0L : ∀ {n : N}, z * n = z := by sorry

3

4 -- z is a right zero for multiplication

5 theorem TMult0R : ∀ {n : N}, n * z = z := by sorry

6

7 -- We introduce `one`

8 def one : N := s z

9

10 -- one + n = s n

11 theorem TOneAddR : ∀ {n : N}, one + n = s n := by sorry

12

13 -- n + one = s n

14 theorem TOneAddL : ∀ {n : N}, n + one = s n := by sorry

15

16 -- The different cases for two numbers adding to one

17 theorem TAddOneCases : ∀ {n m : N}, n + m = one → (n = z ∧ m = one) ∨

18 (n = one ∧ m = z) := by sorry

19

20 -- one is a left identity for multiplication

21 theorem TMult1L : ∀ {n : N}, one * n = n := by sorry

22

23 -- one is a right identity for multiplication

24 theorem TMult1R : ∀ {n : N}, n * one = n := by sorry

25

26 -- Multiplication is left distributive over addition

27 theorem TMultDistL : ∀ {n m k : N}, (n + m) * k = (n * k) + (m * k) := by sorry

28

29 -- Multiplication is right distributive over addition

30 theorem TMultDistR : ∀ {n m k : N}, n * (m + k) = (n * m) + (n * k) := by sorry

31

32 -- Multiplication is commutative

33 theorem TMultComm : ∀ {n m : N}, n * m = m * n := by sorry

34

35 -- If the product of two natural numbers is zero, then one of them must be zero

36 theorem TMultZ : ∀ {n m : N}, n * m = z → (n = z) ∨ (m = z) := by sorry

37

38 -- Right congruence of multiplication

39 theorem TMultCongR : ∀ {n m k : N}, m = k → n * m = n * k := by sorry

40

41 -- Left congruence of addition

42 theorem TMultCongL : ∀ {n m k : N}, m = k → m * n = k * n := by sorry

43

44 -- Multiplication is associative

45 theorem TMultAss : ∀{n m p : N}, (n * m) * p = n * (m * p) := by sorry

46

47 -- Fix points for multiplication

48 theorem TMultFix : ∀{n m : N}, n * m = n → n = z ∨ m = one := by sorry

49

50 -- One is the unique idempotent for multiplication

51 theorem TMultOne : ∀ {n m : N}, n * m = one ↔ (n = one ∧ m = one) := by sorry

42



7 Choice
Reasoning about types often requires distinguishing between those that are merely nonempty and those
that are inhabited. While both concepts assert the existence of elements in a type, they differ in logical
strength and computational implications. A type is nonempty if it contains at least one element, but
this existence is not necessarily constructive—it does not provide an explicit example. In contrast, a
type is inhabited if we can specify a concrete default element, making it more useful in computational
contexts. This distinction becomes particularly significant when comparing constructive and classical
reasoning. In constructive logic, knowing that a type is nonempty does not guarantee that we can
extract an element from it, whereas in classical logic, the axiom Classical.choice allows us to select
an element from a nonempty type, thereby making it inhabited.

In this chapter, we will explore the definitions of Inhabited and Nonempty, examine their properties,
and analyze their relationship. We will also discuss the role of Classical.choice in bridging the
gap between nonemptiness and inhabitation, along with the implications of relying on nonconstructive
principles in formal proofs.

7.1 Inhabited types
The Inhabited α typeclass ensures that the type α has a designated element, known as default : α.
This property is sometimes referred to as making α a “pointed type.”

If we #print Inhabited, Lean returns:
1 class Inhabited.{u} : Sort u → Sort (max 1 u)

2 number of parameters: 1

3 constructor:

4 Inhabited.mk : { α : Sort u } → α → Inhabited α

5 fields:

6 default : α

A typeclass is a special kind of structure that defines a set of properties or operations that a type
can possess. We will explore typeclasses further in later chapters. The definition above shows that
Inhabited is a typeclass with a single parameter, α, and a constructor, Inhabited.mk, which takes
an element of α and produces an instance of Inhabited α. The default field provides access to this
designated element.

To define a specific instance of a type class, we use the instance or def keywords. For the Inhabited
typeclass, we only need to specify a default element. In the example below, we declare an instance of
Inhabited Bool where the default value is true.

1 instance InBool : Inhabited Bool := { default := true }

2

3 #check InBool -- returns InBool : Inhabited Bool

4 #print InBool -- returns def InBool : Inhabited Bool := { default := true }

5 #eval InBool.default -- returns true

Lean provides predefined instances of the Inhabited type class for several types. These instances
specify a default value for each type.

1 #print instInhabitedBool -- default := false

2 #print instInhabitedProp -- default := True

3 #print instInhabitedNat -- default := Nat.zero

In these cases, Bool has false as its default value, Prop has True, and Nat has 0. These defaults
ensure that each type has at least one canonical element available.

7.2 Nonempty
The Nonempty type is an inductive proposition that asserts the existence of at least one element in a
given type.

43



If we #print Nonempty, Lean returns
1 inductive Nonempty.{u} : Sort u → Prop

2 number of parameters: 1

3 constructors:

4 Nonempty.intro : ∀ { α : Sort u }, α → Nonempty α

This means that Nonempty is an inductive type that requires a type α : Sort u as a parameter. The
only constructor of Nonempty is Nonempty.intro. This states that for any type α, if we have an element
a : α, then we can construct a proof of Nonempty α. In other words, Nonempty α is true if there exists
at least one instance of α. Note that Nonempty α asserts that α has at least one element but does not
specify this element. Unlike Inhabited α, which requires an explicit default value, Nonempty α only
requires an existence proof.

For example, we can prove that Bool is nonempty by constructing a Nonempty Bool instance using
the intro constructor.

1 theorem TNEBool : Nonempty Bool := Nonempty.intro true

This proof shows that Bool is nonempty by providing true as a witness. Since Nonempty α only
requires the existence of at least one element in α, choosing true suffices to establish the proof.

Inhabited implies Nonempty

We have a straightforward implication: if a type is inhabited, then it is also nonempty. The following
code defines a function that converts an Inhabited A instance into a Nonempty A proof.

1 def InhabitedToNonempty {A : Type} : Inhabited A → Nonempty A := by

2 intro h

3 exact Nonempty.intro h.default

7.3 Choice
The reverse implication, Nonempty A → Inhabited A, does not always hold in constructive logic. A
proof of Nonempty A only asserts the existence of an element without providing a specific one, whereas
Inhabited A requires a concrete, predefined default value. In classical logic, we can recover Inhabited
A from Nonempty A using the axiom of choice (Classical.choice), but this is noncomputable,
meaning we cannot explicitly construct the default element. Consequently, while nonemptiness implies
the mere existence of an element, inhabitation requires an explicit and fixed representative, making the
two concepts distinct in constructive mathematics.

If we #print Classical.choice, Lean returns
1 axiom Classical.choice.{u} : { α : Sort u } → Nonempty α → α

This states that for any type α : Sort u, if α is nonempty, then we can obtain an actual element
of α. Note that Classical.choice is an axiom. Many axioms, such as Classical.choice, are
nonconstructive in nature, meaning they assert the existence of certain objects without providing explicit
constructions. As a result, these axioms are often noncomputable and cannot be used in computational
contexts.

Nonempty implies Inhabited in Classical Logic

Consider the following function.
1 noncomputable def NonemptyToInhabited {A : Type} : Nonempty A → Inhabited A := by

2 intro h

3 have a : A := Classical.choice h

4 exact Inhabited.mk a

The function NonemptyToInhabited demonstrates how a proof of nonemptiness can be converted into
a proof of inhabitation. Given that Nonempty A asserts the existence of at least one element in the type
A, the function uses Classical.choice to extract a : A, a specific element of type A from the existence
proof h. The extracted element is then used to construct a proof of inhabitation using Inhabited.mk,
which asserts that A has a predefined default element. This function is marked as noncomputable
because the choice of an element is nonconstructive: while the existence of an element is guaranteed, the
method of selecting it cannot be explicitly computed.

44



7.3.1 Choose
The command Classical.choose is a function from classical logic that enables the selection of an
element satisfying a given predicate. Specifically, given the existence of an element x : X such that a
proposition P x holds (i.e., ∃ x : X, P x), Classical.choose returns one such element x for which P

x is true. Classical.choose is a direct consequence of Classical.choice; in fact, the two concepts
are interderivable. Additionally, the command Classical.choose_spec guarantees that the element
extracted indeed satisfies the predicate, providing a formal guarantee that the selected element meets
the required condition.

In most situations, we can also use the alternative commands Exists.choose and Exists.choose_spec

instead of Classical.choose and Classical.choose_spec. Here is an example of how it is used.
1 theorem TCarNonempty {A : Type} : Nonempty A ↔ ∃ (a : A), a = a := by

2 apply Iff.intro

3 -- Nonempty A → ∃ a, a = a

4 intro h

5 apply Exists.intro (Classical.choice h)

6 exact rfl

7 -- ∃( a, a = a) → Nonempty A

8 intro h

9 have a : A := Exists.choose h

10 exact Nonempty.intro a

7.3.2 Exercises

1 -- Under Classical.Choice, if a function is injective and the domain is Nonempty then the function has a

left inverse

2 theorem TInjtoHasLeftInv {A B : Type} {f : A → B} : injective f → Nonempty A → hasleftinv f := by sorry

3

4 -- Under Classical.Choice, every surjective function has a right inverse

5 noncomputable def Inverse {A B : Type} (f : A → B) (h : surjective f) : B → A := by sorry

6

7 -- Under Classical.Choice, the inverse of a surjective function is a right inverse

8 theorem InvR {A B : Type} (f : A → B) (h : surjective f) : f ∘ (Inverse f h) = id := by sorry

9

10 -- Under Classical.Choice, every surjective function has a right inverse

11 theorem TSurjtoHasRightInv {A B : Type} {f : A → B} : surjective f → hasrightinv f := by sorry

12

13 -- Under Classical.Choice, the inverse of a bijective function is a left inverse

14 theorem InvL {A B : Type} (f : A → B) (h : bijective f) : (Inverse f h.right) ∘ f = id := by sorry

15

16 -- Under Classical.Choice bijective and isomorphism are equivalent concepts

17 theorem TCarBijIso {A B : Type} {f : A → B} : bijective f ↔ isomorphism f := by sorry

45



8 Subtypes
This chapter explores the definition and usage of subtypes in Lean. We will introduce their basic
properties, discuss common operations, and demonstrate their application in mathematical reasoning
and program verification.

A subtype is a way to define a restricted entity of a given type by specifying a condition that the
elements of this type must satisfy. A subtype of a type A is typically defined using a predicate P : A →

Prop, which assigns a proposition to each element of A. The corresponding subtype, denoted as Subtype
P or {a : A // P a}, consists of all elements a : A that satisfy P.

1 -- We define variables A : Type and P : A → Prop, a predicate on A

2 variable (A : Type)

3 variable (P : A → Prop)

4 -- With this information we can obtain `Subtype P`

5 #check Subtype P

6 -- An alternative notation is

7 #check { a : A // P a }

Subtypes play a crucial role in formal verification, as they allow us to encode mathematical objects
with additional properties. For example, we can define the subtype of even natural numbers, the positive
real numbers, or the set of invertible matrices. By doing so, we ensure that any element of the subtype
inherently satisfies the given condition, reducing the need for repetitive proof obligations.

If we #print Subtype, Lean returns
1 structure Subtype.{u} : { α : Sort u } → α( → Prop) → Sort (max 1 u)

2 number of parameters: 2

3 constructor:

4 Subtype.mk : { α : Sort u } → {p : α → Prop} → (val : α) → p val → Subtype p

5 fields:

6 val : α

7 property : p self.val

The Subtype structure in Lean is parameterized by a type α and a predicate p : α → Prop, which
defines adscription to the subtype. It includes a constructor, Subtype.mk, that takes a value val : α

along with a proof of p val, ensuring that val satisfies the predicate. An instance of Subtype p has
two fields: val, which holds the underlying value, and property, which provides the proof that val

satisfies p.

8.0.1 Examples of subtypes
The False subtype

Given a type A, we can consider the False subtype on A.
1 def SFalse {A : Type} := { a : A // PFalse a}

The True subtype

Given a type A, we can consider the True subtype on A.
1 def STrue {A : Type} := { a : A // PTrue a}

The image of a function

We introduce the image of a function. Given two types A and B and a function f : A → B, we define
the image of f, denoted as Im f, as the subtype of B consisting of all elements that are mapped from
some a : A under f.

1 def Im {A B : Type} (f : A → B) : Type := { b : B // ∃ (a : A), f a = b}

46



8.0.2 Elements of a subtype
To create an element of Subtype P, we use the Subtype.mk function, which maps an element a : A

and a proof h : P a to an element of type Subtype P.
1 variable (a : A)

2 variable (h : P a)

3 #check Subtype.mk a h

Two elements of type Subtype P are equal if and only if their corresponding values in A are also equal.
For this we have the the theorems Subtype.eq and Subtype.eq_iff.

1 #check Subtype.eq -- `a1.val = a2.val → a1 = a2`

2 #check Subtype.eq_iff -- `a1.val = a2.val ↔ a1 = a2`

8.0.3 The inclusion function
The inclusion function is a function of a subtype into its underlying type: it simply extracts the value
of a Subtype P element, discarding its proof.

1 def inc {A : Type} {P : A → Prop} : Subtype P → A := by

2 intro a

3 exact a.val

Thanks to Subtype.eq we can prove that the inclusion function is always injective.
1 theorem Tincinj {A : Type} {P : A → Prop} : injective (@inc A P) := by

2 intro a1 a2 h1

3 exact Subtype.eq h1

8.1 Functions and Subtypes
8.1.1 Restriction
We can formalize the notion of restricting functions to subtypes. Any function f : A → B can be
restricted to a subtype by applying f only to the underlying values of the subtype elements. Restriction
provides a way to transform elements of type A → B into elements of type Subtype P → B.

1 def rest {A B : Type} {P : A → Prop} (f : A → B) : Subtype P → B := by

2 intro a

3 exact f a.val

8.1.2 Correstriction
Given a function f : A → B and a predicate Q on B, we can correstrict f to Subtype P, provided that
every b : Im f satisfies Q. If the above condition holds, correstriction provides a way to transform
elements of type A → B into elements of type A → Subtype Q.

1 def correst {A B : Type} {Q : B → Prop} (f : A → B) (h : ∀ (b : Im f), Q b.val)

2 : A → Subtype Q := by

3 intro a

4 have ha : ∃ (a1 : A), f a1 = f a := by

5 apply Exists.intro a

6 exact rfl

7 apply Subtype.mk (f a) (h ⟨f a, ⟩ha)

8.1.3 Birrestriction
Given a function f : A → B, a predicate P on A and a predicate Q on B, we can birrestrict f to the
respective subtypes, provided that f a satisfies Q for every a : Subtype P. If the above condition
holds, birrestriction provides a way to transform elements of type A → B into elements of type Subtype

P → Subtype Q.

47



1 def birrest {A B : Type} {P : A → Prop} {Q : B → Prop} (f : A → B) (h : ∀ (a : A), P a → Q (f a)) :

Subtype P → Subtype Q := by

2 apply correst (rest f)

3 intro ⟨b, ⟨a, ⟩⟩ha

4 simp

5 specialize h a.val

6 have hb : f a.val = b := ha

7 rw [hb] at h

8 exact h a.property

In particular, given two predicates P1 and P2 on a type A, the following function establishes a trans-
formation from the subtype corresponding to P1 to the subtype corresponding to P2, provided that P1

implies P2. This is achieved by birrestricting the identity function.
1 def SubtoSub {A : Type} {P1 P2 : A → Prop} (h : ∀ (a : A), P1 a → P2 a) : Subtype P1 → Subtype P2 :=

birrest id h

8.2 Equalizers
In this section, we introduce the concept of the equalizer of two functions, a construction that identifies
the subtype of a domain where the two functions agree. Beyond its definition as a subtype, the equalizer
is also characterized by a universal property: it serves as the most general type equipped with a map
into A on which the functions agree.

Given two functions f, g : A → B, the equalizer of f and g is the subtype of A consisting on all
elements a : A such that f a = g a.

1 def Eq {A B : Type} (f g : A → B) : Type := { a : A // f a = g a}

It commes equipped with the inclusion function, from the equalizer to A.
1 def incEq {A B : Type} (f g : A → B) : Eq f g → A := @inc A (fun a => f a = g a)

This inclusion satisfies that f ∘ (incEq f g) = g ∘ (incEq f g).
1 theorem TEqInc {A B : Type} (f g : A → B) : f ∘ (incEq f g) = g ∘ (incEq f g) := by

2 apply funext

3 intro a

4 calc

5 (f ∘ (incEq f g)) a = f a.val := rfl

6 _ = g a.val := a.property

7 _ = (g ∘ (incEq f g)) a := rfl

8.2.1 Universal property of the equalizer
The universal property of the equalizer characterizes it not merely as a subtype, but as a universal
solution to the problem of mediating between f and g. The universal property states that the pair (Eq
f g, incEq f g) is initial among all pairs (C, h), where C is a type and h : C → A is a function
satisfying f ∘ h = g ∘ h.

That is, if C is a type and h : C → A is a function satisfying f ∘ h = g ∘ h, then there exists a
unique function u : C → (Eq f g) such that (incEq f g) ∘ u = h.

1 -- If there is another function h : C → A satisfying f ∘ h = g ∘ h, then there exists a function u : C

→ Eq f g

2 def u {A B C : Type} {f g : A → B} {h : C → A} (h1 : f ∘ h = g ∘ h) : C → Eq f g := by

3 intro c

4 exact Subtype.mk (h c) (congrFun h1 c)

5

6 -- The function u satisfies that incEq f g ∘ u = h

7 theorem TEqIncEq {A B C : Type} {f g : A → B} {h : C → A} (h1 : f ∘ h = g ∘ h) :

8 (incEq f g) ∘ (u h1) = h := by

9 apply funext

10 intro c

11 exact rfl

12

13 -- The function u is unique in the sense that, if there is another function v : C → Eq f g satisfying

incEq f g ∘ v = h, then v = u.

48



14 theorem TEqUni {A B C : Type} {f g : A → B} {h : C → A} (h1 : f ∘ h = g ∘ h)

15 (v : C → Eq f g) (h2 : (incEq f g) ∘ v = h) : v = u h1 := by

16 apply funext

17 intro c

18 apply Subtype.eq

19 calc

20 (v c).val = ((incEq f g) ∘ v) c := rfl

21 _ = h c := congrFun h2 c

22 _ = (u h1 c).val := rfl

In other words, any function into A that “equalizes” f and g factors uniquely through the equalizer.
This property ensures that the equalizer is the most general and canonical way to capture the elements
where two functions agree.

8.3 Exercises
8.3.1 Subtypes

1 -- If two subtypes are equivalent, the corresponding subtypes are equal.

2 theorem TEqSubtype {A : Type} {P1 P2 : A → Prop} (h : ∀ (a : A), P1 a ↔ P2 a) : Subtype P1 = Subtype P2

:= by sorry

8.3.2 Restriction

1 -- Im (inc) = Subtype

2 theorem TUPSub {A : Type} {P : A → Prop} : Im (@inc A P) = Subtype P := by sorry

3

4 -- rest f = f ∘ inc

5 theorem TRest {A B : Type} {f : A → B} {P : A → Prop}: (@rest A B P f) = f ∘ (@inc A P) := by sorry

8.3.3 Correstriction
Theorems TUPCorrest and TUPCorrestUn establish the universal property of the correstriction of a
function. The first result, TUPCorrest, states that for any function f : A → B that respects a predicate
Q on B (i.e., Q b holds for all b : Im f)), the function f can be expressed as the composition of the
inclusion function inc and its correstriction correst f h, that is f = inc ∘ (correst f h). The
second result, TUPCorrestUn, establishes the uniqueness of the correstriction. If there exists another
function g : A → Subtype P such that f = inc ∘ g, then g must be exactly correst f h.

1 -- f = inc ∘ correst

2 theorem TUPCorrest {A B : Type} {Q : B → Prop} {f : A → B}

3 (h : ∀ (b : Im f), Q b.val) : f = (@inc B Q) ∘ (correst f h) := by sorry

4

5 -- Unicity

6 theorem TUPCorrestUn {A B : Type} {Q : B → Prop} {f : A → B}

7 (h : ∀ (b : Im f), Q b.val) (g : A → Subtype Q) (h1 : f = (@inc B Q) ∘ g) : (correst f h) = g := by

sorry

8.3.4 Equalizers

1 -- The function incEq is a monomorphism

2 theorem TincEqMono {A B : Type} {f g : A → B} : monomorphism (incEq f g) := by sorry

3

4 -- An epic incEq is an isomorphism

5 theorem TincEqEpi {A B : Type} {f g : A → B} : epimorphism (incEq f g) → isomorphism (incEq f g) := by

sorry

49



9 Relations
A relation on a type A is a predicate that takes two elements of A and returns a proposition, indicating
whether the elements are related. In Lean, a relation is represented as a function of type A → A → Prop.
Given a relation R : A → A → Prop and elements a1, a2 : A, the expression R a1 a2 asserts that
a1 and a2 are related under R. Relations play a fundamental role in mathematics, capturing concepts
such as order, equivalence, or divisibility, among others. In this chapter, we explore key properties that
relations can satisfy, laying the groundwork for their formal use in Lean.

Since relations are predicates on two input variables, two relations are equal if and only if they relate
the same elements. This can be shown by applying funext twice. Furthermore, this is equivalent to the
predicates being logically equivalent on the same elements, which follows from propext.

1 theorem TEqRel {A : Type} {R S : A → A → Prop} : R = S ↔ ∀ (a1 a2 : A),

2 R a1 a2 ↔ S a1 a2 := by

3 apply Iff.intro

4 -- R = S → ∀ (a1 a2 : A), R a1 a2 ↔ S a1 a2

5 intro h a1 a2

6 apply Iff.intro

7 -- R a1 a2 → S a1 a2

8 intro hR

9 rw [h.symm]

10 exact hR

11 -- S a1 a2 → R a1 a2

12 intro hS

13 rw [h]

14 exact hS

15 -- ∀( (a1 a2 : A), R a1 a2 ↔ S a1 a2) → R = S

16 intro h

17 apply funext

18 intro a1

19 apply funext

20 intro a2

21 apply propext

22 exact h a1 a2

9.0.1 Examples of relations
Given a type A, we can define various relations on it. For instance, the emptyRelation relation relates
no elements at all. At the other extreme, the total relation relates every element to every other element.
Another important example is the diagonal relation, diag, where each element is related only to itself.

1 -- The empty relation on A

2 def empty {A : Type} : A → A → Prop := fun x y => False

3

4 -- The total relation on A

5 def total {A : Type} : A → A → Prop := fun x y => True

6

7 -- The diag (diagonal) relation on A

8 def diag {A : Type} : A → A → Prop := fun x y => (x = y)

9.1 Types of relations
In this section, we explore various properties that a relation can satisfy.

Reflexive

A relation R : A → A → Prop is reflexive if, for every a : A, the proposition R a a holds, meaning that
a is R-related to itself.

50



1 def Reflexive {A : Type} (R : A → A → Prop) : Prop := ∀{a : A}, R a a

Symmetric

A relation R : A → A → Prop is symmetric if, for all a1, a2 : A, whenever R a1 a2 holds, R a2 a1

must also hold.
1 def Symmetric {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 : A}, R a1 a2 → R a2 a1

Antisymmetric

A relation R : A → A → Prop is antisymmetric if, for all a1, a2 : A, whenever R a1 a2 and R a2 a1

hold, it follows that a1 = a2.
1 def Antisymmetric {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 : A}, R a1 a2 → R a2 a1 → (a1 = a2)

Transitive

A relation R : A → A → Prop is transitive if, for all a1, a2 a3 : A, whenever R a1 a2 and R a2 a3

hold, it follows that R a1 a3.
1 def Transitive {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 a3 : A}, R a1 a2 → R a2 a3 → R a1 a3

Serial

A relation R : A → A → Prop is serial if, for every a1 : A, there exists an element a2 : A such that R
a1 a2

1 def Serial {A : Type} (R : A → A → Prop) : Prop := ∀{a1 : A}, ∃(a2 : A), R a1 a2

Euclidean

A relation R : A → A → Prop is Euclidean if, for every a1, a2 ,a3 : A, whenever R a1 a2 and R a1

a3 hold, it follows that R a2 a3.
1 def Euclidean {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 a3 : A}, R a1 a2 → R a1 a3 → R a2 a3

Partially functional

A relation R : A → A → Prop is partially functional if, for every a1, a2, a3 : A, whenever R a1 a2

and R a1 a3 hold, it follows that a2 = a3.
1 def PartiallyFunctional {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 a3 : A}, R a1 a2 → R a1 a3 → a2

= a3

Functional

A relation R : A → A → Prop is functional if, for every a1 : A, there exists a unique a2 : A such that
R a1 a2.

1 def Functional {A : Type} (R : A → A → Prop) : Prop := ∀(a1 : A), ∃(a2 : A), ∀(a3 : A), R a1 a3 ↔ a2 =

a3

Weakly dense

A relation R : A → A → Prop is weakly dense if, for every a1 a2 : A, if R a1 a2 holds then there
exists a3 : A such that R a1 a3 and R a3 a2.

1 def WeaklyDense {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 : A}, (R a1 a2 → ∃(a3 : A), (R a1 a3) ∧

(R a3 a2))

51



Weakly connected

A relation R : A → A → Prop is weakly connected if, for all a1, a2, a3 : A, whenever R a1 a2 and
R a1 a3 hold, at least one of the following three conditions must be satisfied: R a2 a3, a2 = a3, or R
a3 a2.

1 def WeaklyConnected {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 a3 : A}, R a1 a2 → R a1 a3 → ((R a2

a3) ∨ (a2 = a3) ∨ (R a3 a2))

Weakly directed

A relation R : A → A → Prop is weakly directed if, for all a1, a2, a3 : A, whenever R a1 a2 and R

a1 a3 then there exists a4 : A satisfying that R a2 a4 and R a3 a4.
1 def WeaklyDirected {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 a3 : A}, R a1 a2 → R a1 a3 → ∃(a4 : A

), ((R a2 a4) ∧ (R a3 a4))

9.1.1 An example: The diagonal
The diagonal relation is a relation that satisfies all the properties above.

1 -- The diagonal is reflexive

2 theorem TDiagRefl {A : Type} : Reflexive (@diag A) := by

3 intro a

4 exact rfl

5

6 -- The diagonal is symmetric

7 theorem TDiagSymm {A : Type} : Symmetric (@diag A) := by

8 intro a1 a2 h

9 exact h.symm

10

11 -- The diagonal is antisymmetric

12 theorem TDiagASymm {A : Type} : Antisymmetric (@diag A) := by

13 intro a1 a2 h1 h2

14 exact h1

15

16 -- The diagonal is transitive

17 theorem TDiagTrans {A : Type} : Transitive (@diag A) := by

18 intro a1 a2 a3 h1 h2

19 exact h1.trans h2

20

21 -- The diagonal is serial

22 theorem TDiagSer {A : Type} : Serial (@diag A) := by

23 intro a

24 apply Exists.intro a

25 exact rfl

26

27 -- The diagonal is Euclidean

28 theorem TDiagEucl {A : Type} : Euclidean (@diag A) := by

29 intro a1 a2 a3 h1 h2

30 exact h1.symm.trans h2

31

32 -- The diagonal is partially functional

33 theorem TDiagPFunc {A : Type} : PartiallyFunctional (@diag A) := by

34 intro a1 a2 a3 h1 h2

35 exact h1.symm.trans h2

36

37 -- The diagonal is functional

38 theorem TDiagFunc {A : Type} : Functional (@diag A) := by

39 intro a

40 apply Exists.intro a

41 intro z

42 apply Iff.intro

43 -- diag a z → a = z

44 intro h

45 exact h

46 -- a = z → diag a z

47 intro h

48 exact h

49

52



50 -- The diagonal is weakly dense

51 theorem TDiagWDense {A : Type} : WeaklyDense (@diag A) := by

52 intro a1 a2 h1

53 apply Exists.intro a1

54 apply And.intro

55 -- Left

56 exact rfl

57 -- Right

58 exact h1

59

60 -- The diagonal is weakly connected

61 theorem TDiagWConn {A : Type} : WeaklyConnected (@diag A) := by

62 intro a1 a2 a3 h1 h2

63 exact Or.inl (h1.symm.trans h2)

64

65 -- The diagonal is weakly directed

66 theorem TDiagWDir {A : Type} : WeaklyDirected (@diag A) := by

67 intro a1 a2 a3 h1 h2

68 apply Exists.intro a1

69 apply And.intro

70 -- Left

71 exact h1.symm

72 -- Right

73 exact h2.symm

9.1.2 Exercises
The following exercises were extracted from Zach, R. (2019) Boxes and Diamonds: An Open Introduction
to Modal Logic.

1 variable (A : Type)

2 variable (R : A → A → Prop)

3

4 -- Reflexive implies serial

5 theorem TRefltoSerial : Reflexive R → Serial R := by sorry

6

7 -- For a symmetric relation, transitive and Euclidean are equivalent

8 theorem TSymmTransIffSer (hS : Symmetric R) : Transitive R ↔ Euclidean R := by sorry

9

10 -- If a relation is symmetric then it is weakly directed

11 theorem TSymmtoWDir : Symmetric R → WeaklyDirected R := by sorry

12

13 -- If a relation is Euclidean and antisymmetric, then it is weakly directed

14 theorem TEuclASymmtoWDir : Euclidean R → Antisymmetric R → WeaklyDirected R := by sorry

15

16 -- If a relation is Euclidean, then it is weakly connected

17 theorem TEucltoWConn : Euclidean R → WeaklyConnected R := by sorry

18

19 -- If a relation is functional, then it is serial

20 theorem TFunctoSer : Functional R → Serial R := by sorry

21

22 -- If a relation is symmetric and transitive, then it is Euclidean

23 theorem TSymmTranstoEucl : Symmetric R → Transitive R → Euclidean R := by sorry

24

25 -- If a relation is reflexive and Euclidean, then it is symmetric

26 theorem TReflEucltoSymm : Reflexive R → Euclidean R → Symmetric R := by sorry

27

28 -- If a relation is symmetric and Euclidean, then it is transitive

29 theorem TSymmEucltoTrans : Symmetric R → Euclidean R → Transitive R := by sorry

30

31 -- If a relation is serial, symmetric and transitive, then it is reflexive

32 theorem TSerSymmTranstoRefl : Serial R → Symmetric R → Transitive R → Reflexive R := by sorry

9.2 Operations on relations
Composition

The composition of two binary relations captures the idea of chaining relations through an intermediate
element. Given binary relations R and S on a type A, its composition, denoted as R ∘ S, is a new

53

https://bd.openlogicproject.org/


relation on A that holds between two elements a1 and a3 if there exists an intermediate element a2 such
that R relates a1 to a2 and S relates a2 to a3.

1 def composition {A : Type} (R S : A → A → Prop) : A → A → Prop := by

2 intro a1 a3

3 exact ∃ (a2 : A), (R a1 a2) ∧ (S a2 a3)

4

5 -- Notation for the composition (\circ)

6 notation : 65 lhs:65 " ∘ " rhs:66 => composition lhs rhs

7 #check R ∘ S

Inverse

Given a relation R : A → A → Prop on a type A, its inverse, denoted R^, swaps the order of its argu-
ments. The definition of inverse takes a relation R and returns a new relation R^ where ‘R^ a1 a2

holds if and only if R a2 a1 holds in the original relation.
1 def inverse {A : Type} (R : A → A → Prop) : A → A → Prop := by

2 intro a1 a2

3 exact R a2 a1

4

5 -- Notation for the inverse (^)

6 notation : 65 lhs:65 "^" => inverse lhs

7 #check R^

Meet

Given binary relations R and S on a type A, its meet, denoted as R ∧ S, is a new relation on A that
holds between two elements a1 and a2 if both R a1 a2 and S a1 a2 hold.

1 def meet {A : Type} (R S : A → A → Prop) : A → A → Prop := by

2 intro a1 a2

3 exact (R a1 a2) ∧ (S a1 a2)

4

5 -- Notation for the meet (`\and`)

6 notation : 65 lhs:65 " ∧ " rhs:66 => meet lhs rhs

7 #check R ∧ S

Join

Given binary relations R and S on a type A, its join, denoted as R ∨ S, is a new relation on A that holds
between two elements a1 and a2 if either R a1 a2 or S a1 a2 hold.

1 def join {A : Type} (R S : A → A → Prop) : A → A → Prop := by

2 intro a1 a2

3 exact (R a1 a2) ∨ (S a1 a2)

4

5 -- Notation for the join (`\or`)

6 notation : 65 lhs:65 " ∨ " rhs:66 => join lhs rhs

7 #check R ∨ S

9.2.1 Exercises
The following propositions are common identities involving binary relations.

1 variable {A : Type}

2 variable (R S T : A → A → Prop)

3

4 -- Associativity of composition

5 theorem TAssComp : R ∘ (S ∘ T) = (R ∘ S) ∘ T := by sorry

6

7 -- The diagonal is a left neutral element for the composition

8 theorem TDiagL : R ∘ (@diag A) = R := by sorry

9

10 -- The diagonal is a right neutral element for the composition

11 theorem TDiagR : (@diag A) ∘ R = R := by sorry

12

54



13 -- The inverse relation of the inverse relation is the original relation

14 theorem TInvInv : (R^)^ = R := by sorry

15

16 -- The inverse of the composition

17 theorem TInvComp : (R ∘ S)^ = (S^) ∘ (R^) := by sorry

18

19 -- The inverse of the meet

20 theorem TInvMeet : (R ∧ S)^ = (S^) ∧ (R^) := by sorry

21

22 -- The inverse of the join

23 theorem TInvJoin : (R ∨ S)^ = (S^) ∨ (R^) := by sorry

24

25 -- Distributivity of composition on the left over join

26 theorem TDisL : R ∘ (S ∨ T) = (R ∘ S) ∨ (R ∘ T) := by sorry

27

28 -- Distributivity of composition on the right over join

29 theorem TDisR : (R ∨ S) ∘ T = (R ∘ T) ∨ (S ∘ T) := by sorry

30

31 -- Empty is a left zero for the composition

32 theorem TEmptLZ : (@empty A) ∘ R = (@empty A) := by sorry

33

34 -- Empty is a right zero for the composition

35 theorem TEmptRZ : R ∘ (@empty A) = (@empty A) := by sorry

55



10 Quotients
In mathematics, we often want to consider objects modulo some form of identification—treating different
representatives as essentially the same. This practice leads us naturally to the notion of equivalence rela-
tions, which formally define when two elements should be considered indistinguishable for our purposes.

Once we have an equivalence relation, we can group elements into equivalence classes—collections of
elements that are all equivalent to each other. The process of forming a new structure out of these
equivalence classes is called taking a quotient. Quotients allow us to construct new types that “forget”
unnecessary distinctions while preserving the structure we care about.

This chapter introduces the foundations of working with quotients in a formal setting. We begin by
reviewing equivalence relations and exploring concrete examples. We then move to the notion of setoids,
which package a type together with an equivalence relation—an essential concept in Lean.

Next, we delve into the construction of quotients themselves. We examine how to reason about their
elements, understand the projection function from a type to its quotient, and work through illustrative
examples.

We then explore how functions behave in the presence of quotient types. Specifically, we study how
functions defined on a type can be astricted, coastricted, and biastricted. These ideas are key when
reasoning about quotient structures in a type-theoretic setting.

Finally, we explore the notion of the coequalizer of two functions.
The chapter concludes with exercises to reinforce our understanding and help us apply these concepts.

10.1 Equivalence relations
A relation R : A → A → Prop is an equivalence relation if it is Reflexive, Symmetric and Transitive.
This is already implemented as Equivalence.

If we #print Equivalence, Lean returns:
1 structure Equivalence.{u} : { α : Sort u } → ( α → α → Prop ) → Prop

2 number of parameters: 2

3 constructor:

4 Equivalence.mk : ∀ { α : Sort u } { r : α → α → Prop },

5 ∀( ( x : α ), r x x) → ∀( { x y : α }, r x y → r y x) → ∀( { x y z : α }, r x y → r y z → r x z) →

Equivalence r

6 fields:

7 refl : ∀ ( x : α ), r x x

8 symm : ∀ { x y : α }, r x y → r y x

9 trans : ∀ { x y z : α }, r x y → r y z → r x z

This structure takes two parameters: a type α : Sort u and a binary relation r : α → α → Prop. It
encapsulates the three fundamental properties that define an equivalence relation: reflexivity, symmetry,
and transitivity. The Equivalence.mk constructor allows us to create an instance of Equivalence r

by providing proofs for these three properties. Specifically, the refl field ensures that every element is
related to itself ∀ (x : α), r x x, the symm field guarantees that the relation is symmetric ∀ {x y :

α}, r x y → r y x, and the trans field enforces transitivity ∀ {x y z : α}, r x y → r y z → r

x z.

10.1.1 Examples of equivalence relations
The diagonal relation

Given a type A, the diagonal relation on A is an equivalence relation on A.
1 theorem TDiagEqv {A : Type} : Equivalence (@diag A) := {

2 refl := by

3 intro a

4 exact TDiagRefl

5 symm := by

56



6 intro a1 a2

7 exact TDiagSymm

8 trans := by

9 intro a1 a2 a3

10 exact TDiagTrans

The total relation

Given a type A, the total relation on A is an equivalence relation on A.
1 theorem TTotalEqv {A : Type} : Equivalence (@total A) := {

2 refl := by

3 intro _

4 exact trivial

5 symm := by

6 intro a1 a2 _

7 exact trivial

8 trans := by

9 intro a1 a2 a3 _ _

10 exact trivial

The kernel of a function

We introduce the kernel of a function and demonstrate that it defines an equivalence relation. Given
two types A and B and a function f : A → B, we define the kernel of f, denoted as Ker f, as a binary
relation on A where two elements a1, a2 : A are related if and only if they have the same image under
f, i.e., f a1 = f a2. We then establish that Ker f satisfies the properties of an equivalence relation.

1 def Ker {A B : Type} (f : A → B) : A → A → Prop := by

2 intro a1 a2

3 exact f a1 = f a2

4

5 -- The kernel of a function is an equivalence relation

6 theorem TKerEqv {A B : Type} {f : A → B} : Equivalence (Ker f) := {

7 refl := by

8 intro a

9 exact rfl

10 symm := by

11 intro a1 a2 h1

12 exact h1.symm

13 trans := by

14 intro a1 a2 a3 h1 h2

15 exact h1.trans h2

16 }

10.2 Equivalence relation generated by a relation
The following Lean code defines the equivalence closure of a relation as an inductive type and proves
that it forms an equivalence relation. Specifically, the inductive type Eqvgen constructs the smallest
equivalence relation generated by a given relation R : A → A → Prop on a type A. The Eqvgen type is
defined with four constructors: base, which includes the original relation R; and refl, symm, and trans,
ensuring that Eqvgen R satisfies the properties for reflexivity, symmetry, and transitivity, respectively.

1 inductive Eqvgen {A : Type} (R : A → A → Prop) : A → A → Prop where

2 | base : ∀ {a1 a2 : A}, (R a1 a2 → Eqvgen R a1 a2)

3 | refl : ∀ (a : A), Eqvgen R a a

4 | symm : ∀ {a1 a2 : A}, Eqvgen R a1 a2 → Eqvgen R a2 a1

5 | trans : ∀ {a1 a2 a3 : A}, (Eqvgen R a1 a2) → (Eqvgen R a2 a3) → (Eqvgen R a1 a3)

6

7 -- The equivalence generated by a relation is an equivalence relation

8 theorem TEqvgen {A : Type} (R : A → A → Prop) : Equivalence (Eqvgen R) := {

9 refl := Eqvgen.refl

10 symm := Eqvgen.symm

11 trans := Eqvgen.trans

12 }

57



10.3 Setoids
A Setoid is a type class that encapsulates an equivalence relation on a given type.

If we #print Setoid, Lean returns
1 class Setoid.{u} : Sort u → Sort (max 1 u)

2 number of parameters: 1

3 constructor:

4 Setoid.mk : { α : Sort u } → (r : α → α → Prop) → Equivalence r → Setoid α

5 fields:

6 r : α → α → Prop

7 iseqv : Equivalence Setoid.r

Given a type α, a Setoid α consists of a binary relation r : α → α → Prop and a proof that r is an
equivalence relation. The constructor Setoid.mk allows defining such structures by providing both the
relation and its proof of equivalence. An element of type A Setoid α has two fields, r : α → α → Prop

the equivalence relation on α and iseqv : Equivalence Setoid.r, a proof that r is an equivalence
relation.

10.3.1 Examples of setoids
Since both the diagonal relation and the total relation are equivalence relations, we can define their
corresponding setoids. Additionally, we can construct the setoid associated with the kernel of a function.

The diagonal setoid

1 instance DiagSetoid {A : Type} : Setoid A := {

2 r := @diag A

3 iseqv := TDiagEqv

4 }

The total setoid

1 instance TotalSetoid {A : Type} : Setoid A := {

2 r := @total A

3 iseqv := TTotalEqv

4 }

The kernel setoid

1 instance KerSetoid {A B : Type} (f : A → B) : Setoid A := {

2 r := Ker f

3 iseqv := TKerEqv

4 }

10.4 Quotients
The significance of Setoid lies in its role in quotienting, where elements of α can be grouped into
equivalence classes based on r, leading to the Quotient construction. The Quotient type provides a
structured way to form quotient types based on equivalence relations.

If we #print Quotient, Lean returns
1 def Quotient.{u} : α{ : Sort u} → Setoid α → Sort u :=

2 fun α{} s => Quot Setoid.r

The Quotient type constructs the quotient of a given setoid, encapsulating an equivalence relation
on a type. It takes an implicit type α along with an instance of Setoid α, which defines an equivalence
relation r on α. By applying Quot Setoid.r, it forms a new type in which elements of α are identified
according to r. The resulting type remains in the same universe level Sort u, preserving the type
hierarchy of α. Unlike Quot, which can be defined for arbitrary binary relations, Quotient is specifically
tailored for equivalence relations, ensuring a structured and well-behaved quotienting mechanism in Lean.

Note that for a type A and an element S of type Setoid Am, the term Quotient S is a type.

58



1 variable (A : Type)

2 variable (S : Setoid A)

3 #check Quotient S

10.4.1 Examples of quotients
With the setoids defined above, we can construct the quotient of a type A by its diagonal relation, the
quotient of A by the total relation and the quotient of A by the kernel of a function.

The diagonal quotient

1 def QDiag {A : Type} := Quotient (@DiagSetoid A)

The total quotient

1 def QTotal {A : Type} := Quotient (@TotalSetoid A)

The kernel quotient

1 def QKer {A B : Type} (f : A → B) := Quotient (KerSetoid f)

10.4.2 Elements of a quotient
To create an element of Quotient S, we use the Quotient.mk S a function, which maps an element a
: A to its equivalence class, that is, the elements of type A that are related with a.

1 variable (a : A)

2 #check Quotient.mk S a

Two equivalence classes are equal if and only if their representatives are related by the underlying
equivalence relation. First, we use Quotient.exact, which states that if two classes are equal, then
their representatives must be related. Conversely, we apply Quotient.sound, which ensures that if two
elements are related, then their classes are equal. This result confirms that quotient types faithfully
represent equivalence classes, ensuring that equality in the quotient type corresponds precisely to the
equivalence relation in the original type.

1 theorem TEqQuotient {A : Type} {S : Setoid A} {a1 a2 : A} :

2 Quotient.mk S a1 = Quotient.mk S a2 ↔ S.r a1 a2 := by

3 apply Iff.intro

4 -- Quotient.mk S a1 = Quotient.mk S a2 → Setoid.r a1 a2

5 apply Quotient.exact

6 -- Setoid.r a1 a2 → Quotient.mk S a1 = Quotient.mk S a2

7 apply Quotient.sound

10.4.3 The projection function
The projection function is a function of a type into its quotient: it simply constructs the class of a given
element.

1 def pr {A : Type} (S : Setoid A) : A → Quotient S := by

2 intro a

3 exact Quotient.mk S a

An essential property of quotient types is that every element q of type Quotient S has a repre-
sentative in A, meaning there exists some a : A such that Quotient.mk S a produces the element q.
This property is formalized by Quotient.exists_rep. This proposition implies, in particular, that the
projection function is always surjective.

59



1 -- The projection function is surjective

2 theorem TprSurj {A : Type} (S : Setoid A) : surjective (pr S) := by

3 intro q

4 apply Quotient.exists_rep

10.5 Functions and Quotient types
10.5.1 Astriction
We can formalize the notion of astricting functions to quotients. Any function f : A → B can be astricted
to a quotient by a setoid S on B by considering classes on the images under f. Astriction provides a way
to transform elements of type A → B into elements of type A → Quotient S.

1 def ast {A B : Type} {S : Setoid B} (f : A → B) : A → Quotient S := by

2 intro a

3 exact Quotient.mk S (f a)

10.5.2 Coastriction
Given a function f : A → B and a setoid R on A, we can coastrict f to Quotient R, provided that every
pair related according to the underlying relation of R is also related according to Ker f. For this we
will apply the keyword Quotient.lift. If the above condition holds, coastriction provides a way to
transform elements of type A → B into elements of type Quotient R → B.

1 def coast {A B : Type} {R : Setoid A} (f : A → B) (h : ∀ (a1 a2 : A),

2 R.r a1 a2 → (Ker f) a1 a2) : Quotient R → B := by

3 apply Quotient.lift f

4 intro a1 a2 h1

5 exact (h a1 a2) h1

10.5.3 Biastriction
Given a function f : A → B, a setoid R on A and a setoid S on B, we can biastrict f to the respective
quotient types, provided that if a pair a1 a2 : A is related according to the underlying relation of R

then the pair (f a1), (f a2) : B is related according to the underlying relation of S. If the above
condition holds, biastriction provides a way to transform elements of type A → B into elements of type
Quotient R → Quotient S.

1 def biast {A B : Type} {R : Setoid A} {S : Setoid B} (f : A → B)

2 (h : ∀ (a1 a2 : A), R.r a1 a2 → S.r (f a1) (f a2)) : Quotient R → Quotient S := by

3 apply coast (ast f)

4 intro a1 a2 hR

5 specialize h a1 a2

6 apply Quotient.sound

7 exact h hR

In particular, given two setoids R1 and R2 on a type A, the following function establishes a transfor-
mation from the type Quotient R1 to the type Quotient R2, provided that the underlying relation of
R1 implies the underlying relation of R2. This is achieved by biastricting the identity function.

1 def QuottoQuot {A : Type} {R1 R2 : Setoid A} (h : ∀ (a1 a2 : A), R1.r a1 a2 → R2.r a1 a2) : Quotient R1

→ Quotient R2 := biast id h

10.6 Coequalizer
In this section, we introduce the concept of the coequalizer of two functions, a construction that
identifies elements in the codomain where the two functions produce equivalent outputs. Beyond its
definition as a quotient type, the coequalizer is characterized by a universal property: it serves as the
most general type equipped with a map from B that makes the two functions agree.

Given two functions f, g : A → B, the coequalizer of f and g is the quotient of B by the equivalence
relation generated by identifying f a with g a for all a : A.

60



1 -- We define the relation on B relating elements of the form f a and g a for some a : A

2 def CoeqRel {A B : Type} (f g : A → B) : B → B → Prop := by

3 intro b1 b2

4 exact ∃ (a : A), (f a = b1) ∧ (g a = b2)

5

6 -- We next consider the equivalence relation generated by the previous relation

7 def CoeqEqv {A B : Type} (f g : A → B) := Eqvgen (CoeqRel f g)

8

9 -- The Coequalizer Setoid

10 instance CoeqSetoid {A B : Type} (f g : A → B): Setoid B := {

11 r := CoeqEqv f g

12 iseqv := TEqvgen (CoeqRel f g)

13 }

14

15 -- The coequalizer Coeq f g

16 def Coeq {A B : Type} (f g : A → B) : Type := Quotient (CoeqSetoid f g)

It comes equipped with the quotient map from B to the coequalizer.
1 def prCoeq {A B : Type} (f g : A → B) : B → Coeq f g := @pr B (CoeqSetoid f g)

This projection satisfies that (prCoeq f g) ∘ f = (prCoeq f g) ∘ g.
1 theorem TCoeqPr {A B : Type} (f g : A → B) : (prCoeq f g) ∘ f = (prCoeq f g) ∘ g := by

2 apply funext

3 intro a

4 apply Quotient.sound

5 apply Eqvgen.base

6 apply Exists.intro a

7 apply And.intro

8 exact rfl

9 exact rfl

10.6.1 Universal property of the coequalizer
The universal property of the coequalizer characterizes it not merely as a quotient type, but as a
universal solution to the problem of mediating between f and g. The universal property states that the
pair (Coeq f g, prCoeq f g) is final among all pairs (C, h), where C is a type and h : B → C is a
function satisfying h ∘ f = h ∘ g.

That is, if C is a type and h : B → C is a function satisfying h ∘ f = h ∘ g, then there exists a
unique function u : (Coeq f g) → C such that u ∘ (prCoeq f g) = h.

1 -- If there is another function h : B → C satisfying h ∘ f = h ∘ g, then there exists a function u :

Coeq f g → C

2 def u {A B C : Type} {f g : A → B} {h : B → C} (h1 : h ∘ f = h ∘ g) : Coeq f g → C := by

3 apply Quotient.lift h

4 intro b1 b2 h2

5 induction h2

6 -- Base case

7 rename_i c1 c2 h2

8 apply Exists.elim h2

9 intro a ⟨h2, ⟩h3

10 calc

11 h c1 = h (f a) := congrArg h (h2.symm)

12 _ = (h ∘ f) a := rfl

13 _ = (h ∘ g) a := congrFun h1 a

14 _ = h (g a) := rfl

15 _ = h c2 := congrArg h h3

16 -- Rfl Case

17 rename_i c

18 exact rfl

19 -- Symm Case

20 rename_i c1 c2 _ h3

21 exact h3.symm

22 -- Trans Case

23 rename_i c1 c2 c3 _ _ h4 h5

24 exact h4.trans h5

25

26 -- The function u satisfies that u ∘ prCoeq f g = h

61



27 theorem TCoeqPrEq {A B C : Type} {f g : A → B} {h : B → C} (h1 : h ∘ f = h ∘ g) : (u h1) ∘ (prCoeq f g)

= h := by

28 apply funext

29 intro b

30 exact rfl

31

32 -- The function u is unique in the sense that if there is another function

33 -- v : Coeq f g → C satisfying v ∘ (prCoeq f g) = h, then v = u

34 theorem TCoeqUni {A B C : Type} {f g : A → B} {h : B → C} (h1 : h ∘ f = h ∘ g) (v : Coeq f g → C) (h2 :

v ∘ (prCoeq f g) = h) : v = u h1 := by

35 apply funext

36 intro z

37 have h3 : ∃ (b : B), Quotient.mk (CoeqSetoid f g) b = z := Quotient.exists_rep z

38 apply Exists.elim h3

39 intro b h4

40 calc

41 v z = v (prCoeq f g b) := congrArg v (h4.symm)

42 _ = (v ∘ prCoeq f g) b := rfl

43 _ = h b := congrFun h2 b

44 _ = ((u h1) ∘ (prCoeq f g)) b := congrFun (TCoeqPrEq h1) b

45 _ = (u h1) (prCoeq f g b) := rfl

46 _ = (u h1) z := congrArg (u h1) (h4)

In other words, any function from B that “coequalizes” f and g factors uniquely through the coequalizer.
This property ensures that the coequalizer is the most general and canonical way to capture the quotient
where the images the two functions are identified.

10.7 Exercises
10.7.1 Equivalences

1 -- The meet of two equivalence relations is an equivalence relation

2 instance TMeetEqv {A : Type} {R S : A → A → Prop} (hR : Equivalence R)

3 (hS : Equivalence S) : Equivalence (R ∧ S) := by sorry

4

5 -- If two setoids have equivalent underlying relations, the corresponding quotient types are equal

6 theorem TEqQuotype {A : Type} {R1 R2 : Setoid A}

7 (h : ∀ (a1 a2 : A), R1.r a1 a2 ↔ R2.r a1 a2) : Quotient R1 = Quotient R2 := by sorry

Prove the The Universal Property of Quotient types, which states that the Kernel of the projection
function is precisely the original relation of the setoid.

1 -- Ker (pr R) = R.r

2 theorem TUPQuot {A : Type} {R : Setoid A} : Ker (pr R) = R.r := by sorry

10.7.2 Astriction

1 -- The astriction ast f is equal to pr ∘ f.

2 theorem TAst {A B : Type} {f : A → B} {S : Setoid B}: (@ast A B S f) =

3 (@pr B S) ∘ f := by sorry

10.7.3 Coastriction
Theorems TUPCoast and TUPCoasttUn establish the universal property of the coastriction of a function.
The first result, TUPCoast, states that for any function f : A → B that respects a setoid relation R on
A (i.e., for every pair a1 a2 : A, if R.r a1 a2 then f a1 = f a2)), the function f can be expressed as
the composition of its coastriction coast f h with the projection function pr, that is f = coast ∘ pr.
The second result, TUPCoastUn, establishes the uniqueness of the coastriction. If there exists another
function g : Quotient R → B such that f = g ∘ pr, then g must be exactly coast f h.

1 -- f = coast ∘ pr

2 theorem TUPCoast {A B : Type} {R : Setoid A} {f : A → B} (h : ∀ (a1 a2 : A),

3 R.r a1 a2 → (Ker f) a1 a2) : f = (coast f h) ∘ (@pr A R) := by sorry

4

5 -- Unicity

62



6 theorem TUPCoastUn {A B : Type} {R : Setoid A} {f : A → B} (h : ∀ (a1 a2 : A),

7 R.r a1 a2 → (Ker f) a1 a2) (g : Quotient R → B) (h1 : f = g ∘ (@pr A R)) :

8 (coast f h) = g := by sorry

10.7.4 Isomorphisms
We next introduce the concept of isomorphic types and establish that, under Classical.choice, iso-
morphism defines an equivalence relation. We first define Iso A B as the subtype of all functions from
A to B that are isomorphisms, meaning they admit a two-sided inverse. Two types A and B are then
said to be isomorphic, written A ≅ B, if there exists at least one such isomorphism, formalized as the
proposition Nonempty (Iso A B). Prove that being isomorphic is an equivalence relation on Type.

1 -- The subtype of all isomorphisms from a type `A` to a type `B`

2 def Iso (A B : Type) := {f : A → B // isomorphism f}

3

4 -- Two types A and B are isomorphic if there is some isomorphism from `A` to `B`

5 def Isomorphic : Type → Type → Prop := by

6 intro A B

7 exact Nonempty (Iso A B)

8

9 -- Notation for Isomorphic types (`\cong`)

10 notation : 65 lhs:65 " ≅ " rhs:66 => Isomorphic lhs rhs

11

12 -- Being isomorphic is an equivalence relation

13 theorem TIsoEqv : Equivalence Isomorphic := by sorry

Assuming Classical.choice, every type A is isomorphic to the quotient of A by the diagonal relation,
A / Diag.

1 theorem TDiag {A : Type} : A ≅ @QDiag A := by sorry

Under Classical.choice, any two Nonempty types A and B have isomorphic quotients A / Total

and B / Total.
1 theorem TTotal {A B : Type} (hA : Nonempty A) (hB : Nonempty B) : @Qtotal A ≅ @Qtotal B := by sorry

Assuming Classical.choice prove that, for every function f : A → B, the quotient A / Ker f is
isomorphic to Im f.

1 theorem TKerIm {A B : Type} (f : A → B) : QKer f ≅ Im f := by sorry

10.7.5 Coequalizers

1 -- The function prCoeq is an epimorphism

2 theorem TprCoeqEpi {A B : Type} {f g : A → B} : epimorphism (prCoeq f g) := by sorry

3

4 -- A monic prCoeq is an isomorphism

5 theorem TprCoeqMon {A B : Type} {f g : A → B} : monomorphism (prCoeq f g) → isomorphism (prCoeq f g) :=

by sorry

63



11 Orders
In many areas of mathematics and computer science, we are interested in how elements compare. Can
one element be considered less than another? Are two elements incomparable? Such questions motivate
the study of orders, which capture various ways of comparing elements.

In this chapter, we begin by examining different kinds of order relations and how they combine to
define preorders and partial orders. We’ll look at concrete examples and highlight their differences.
We then explore how order structures can be represented formally, particularly within a type-theoretic
framework.

The chapter concludes with a series of exercises designed to deepen our understanding and give us
hands-on practice with ordered structures.

11.1 Preorder
A preorder on a type A is a binary relation on A that is reflexive and transitive.

1 structure Preorder {A : Type} (R : A → A → Prop) : Prop where

2 refl : ∀ (a : A), R a a

3 trans : ∀ {a b c : A}, R a b → R b c → R a c

The keyword structure introduces a new structured proposition called Preorder, which is simply
a collection of logical propositions. It has two fields, refl (reflexivity) and trans (transitivity). Now,
statements of the form Preoder R are propositions and thus, can be proven.

11.2 Partial Order
A partial order is a preorder that is also antisymmetric.

1 structure PartialOrder {A : Type} (R : A → A → Prop) : Prop where

2 toPreorder : Preorder R

3 antisymm : ∀ {a b : A}, R a b → R b a → a = b

11.3 Partially Ordered Set
A partially ordered set (or poset) is a structure consisting of three components: a type base; a
binary relation R on base; and a proof that this relation forms a partial order.

1 structure Poset where

2 base : Type

3 R : base → base → Prop

4 toPartialOrder : PartialOrder R

11.3.1 Special Elements
We say that z is a least element with respect to R if R z a, for every a : A. We say that z is a
greatest element with respect to R if R a z, for every a : A.

1 -- Least

2 def Least {A : Type} (R : A → A → Prop) (z : A) : Prop := ∀ {a : A}, R z a

3 -- Greatest

4 def Greatest {A : Type} (R : A → A → Prop) (z : A) : Prop := ∀ {a : A}, R a z

We say that z is a minimal element with respect to R if, for every a : A, whenever R a z holds, it
must follow that a = z. Similarly, we say that z is a maximal element with respect to R if, for every
a : A, whenever R z a holds, it must follow that a = z.

64



1 -- Minimal

2 def Minimal {A : Type} (R : A → A → Prop) (z : A) : Prop := ∀ {a : A}, R a z → a = z

3 -- Maximal

4 def Maximal {A : Type} (R : A → A → Prop) (z : A) : Prop := ∀ {a : A}, R z a → a = z

11.3.2 Bounded Posets
A bounded poset is a poset that has both a least element and a greatest element.

1 structure BoundedPoset extends Poset where

2 l : base

3 least : Least R l

4 g : base

5 greatest : Greatest R g

11.3.3 Special Elements relative to a Subtype
We say that z is an upper bound of a subtype P if it is greater than or equal to every element of
Subtype P with respect to the relation R. An upper bound z is called the supremum (or least upper
bound) of P if, for any other upper bound x, the relation R z x holds—that is, z is less than or equal
to every other upper bound. An element z is the maximum of P if it is both a supremum of P and an
actual member of Subtype P.

1 -- UpperBound

2 def UpperBound {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop :=∀

3 (a : A), P a → R a z

4 -- Supremum

5 structure Supremum {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop where

6 -- Upper Bound

7 UB : (UpperBound R P z)

8 -- Least Upper Bound

9 LUB : ∀ (x : A), (UpperBound R P x → R z x)

10 -- Maximum

11 structure Maximum {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop where

12 -- Supremum

13 toSupremum : (Supremum R P z)

14 -- In Subtype P

15 Sub : P z

Conversely, we say that z is a lower bound of a subtype P if it is smaller than or equal to every
element of Subtype P with respect to the relation R. A lower bound z is called the infimum (or greatest
lower bound) of P if, for any other lower bound x, the relation R x z holds—that is, z is greater than
or equal to every other upper bound. An element z is the minimum of P if it is both an infimum of P
and an actual member of Subtype P.

1 -- LowerBound

2 def LowerBound {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop := ∀ (a : A), P a → R z a

3 -- Infimum

4 structure Infimum {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop where

5 -- Lower Bound

6 LB : (LowerBound R P z)

7 -- Greatest Lower Bound

8 GLB : ∀ (x : A), (LowerBound R P x → R x z)

9 -- Minimum

10 structure Minimum {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop where

11 -- Infimum

12 toInfimum : (Infimum R P z)

13 -- In Subtype P

14 Sub : P z

11.4 Lattice
A lattice is an abstract mathematical structure that can be defined in two equivalent ways: either
order-theoretically, as a partially ordered set satisfying certain conditions, or algebraically, as a structure
equipped with operations that obey specific laws.

65



11.4.1 Lattice as a poset
A lattice is a partially ordered set in which every pair of elements has a unique supremum (also called
the join) and a unique infimum (also called the meet). The following definition introduces a structure
Lattice that builds on an existing Poset by adding operations and properties for meet and join. The
corresponding fields infimum and supremum are proofs that meet a b and join a b do indeed satisfy
the formal definitions of infimum and supremum with respect to the underlying order relation R.

1 @[ext] structure Lattice extends Poset where

2 meet : base → base → base

3 infimum : ∀ {a b : base}, Infimum R (fun (x : base) => (x = a) ∨ (x = b)) (meet a b)

4 join : base → base → base

5 supremum : ∀ {a b : base}, Supremum R (fun (x : base) => (x = a) ∨ (x = b)) (join a b)

The @[ext] attribute is a convenience provided by Lean’s metaprogramming framework. It automat-
ically generates an extensionality lemma for the structure, allowing users to prove equality between
two lattice instances by showing that all their corresponding components are equal. In practice, this
means that to show two lattices are equal, it suffices to prove that their base types and the relations on
them are the same, and that the meet and join operations agree on all inputs. This can simplify proofs
and reasoning about structures built on top of Lattice, as we will see below.

11.4.2 Lattice as an algebra
An alternative way to describe a lattice is as an algebraic structure consisting of a base type equipped
with two binary operations, meet and join. These operations are required to be commutative and
associative, and they must satisfy the absorption laws, as described below.

1 @[ext] structure LatticeAlg where

2 base : Type

3 meet : base → base → base

4 join : base → base → base

5 meetcomm : ∀ {a b : base}, meet a b = meet b a

6 joincomm : ∀ {a b : base}, join a b = join b a

7 meetass : ∀ {a b c : base}, meet (meet a b) c = meet a (meet b c)

8 joinass : ∀ {a b c : base}, join (join a b) c = join a (join b c)

9 abslaw1 : ∀ {a b : base}, join a (meet a b) = a

10 abslaw2 : ∀ {a b : base}, meet a (join a b) = a

This algebraic perspective is equivalent to the order-theoretic definition and emphasizes the operational
behavior of meets and joins rather than their characterization via suprema and infima.

There are usually 2 more laws regarding the idempotency of the meet and join operations that can
be derived from the other axioms.

1 -- meet is idempotent

2 theorem meetidpt {C : LatticeAlg} : ∀ (a : C.base), C.meet a a = a := by

3 intro a

4 calc

5 C.meet a a = C.meet a (C.join a (C.meet a a)) := congrArg (C.meet a) C.abslaw1.symm

6 _ = a := C.abslaw2

7

8 -- join is idempotent

9 theorem joinidpt {C : LatticeAlg} : ∀ (a : C.base), C.join a a = a := by

10 intro a

11 calc

12 C.join a a = C.join a (C.meet a (C.join a a)) := congrArg (C.join a) C.abslaw2.symm

13 _ = a := C.abslaw1

The following result will be of interest later.
1 theorem meetjoin {C : LatticeAlg} : ∀ {a b : C.base}, (C.meet a b = a) ↔ (C.join a b = b) := by

2 intro a b

3 apply Iff.intro

4 -- C.meet a b = a → C.join a b = b

5 intro h

6 rw [C.meetcomm] at h

7 rw [C.joincomm, h.symm]

8 exact C.abslaw1

9 -- C.join a b = b → C.meet a b = a

10 intro h

66



11 rw [h.symm]

12 exact C.abslaw2

11.4.3 From Lattice to LatticeAlg

Any Lattice structure naturally induces a corresponding LatticeAlg structure on its underlying base

type with the meet and join operations from the lattice. The proof below demonstrates this construction,
using the refine keyword to explicitly specify the values of all required LatticeAlg fields.

1 def LatticetoLatticeAlg : Lattice → LatticeAlg := by

2 intro C

3 refine {

4 base := C.base,

5 meet := C.meet,

6 join := C.join,

7 meetcomm := by

8 intro a b

9 apply C.toPoset.toPartialOrder.antisymm

10 -- C.R (C.meet a b) (C.meet b a)

11 apply C.infimum.GLB

12 intro z h

13 cases h

14 -- b

15 rename_i hz

16 apply C.infimum.LB

17 exact Or.inr hz

18 -- a

19 rename_i hz

20 apply C.infimum.LB

21 exact Or.inl hz

22 -- C.R (C.meet b a) (C.meet a b)

23 apply C.infimum.GLB

24 intro z h

25 cases h

26 -- a

27 rename_i hz

28 apply C.infimum.LB

29 exact Or.inr hz

30 -- b

31 rename_i hz

32 apply C.infimum.LB

33 exact Or.inl hz

34 joincomm := by

35 intro a b

36 apply C.toPoset.toPartialOrder.antisymm

37 -- C.R (C.join a b) (C.join b a)

38 apply C.supremum.LUB

39 intro z h

40 cases h

41 -- a

42 rename_i hz

43 apply C.supremum.UB

44 exact Or.inr hz

45 -- b

46 rename_i hz

47 apply C.supremum.UB

48 exact Or.inl hz

49 -- C.R (C.join b a) (C.join a b)

50 apply C.supremum.LUB

51 intro z h

52 cases h

53 -- b

54 rename_i hz

55 apply C.supremum.UB

56 exact Or.inr hz

57 -- a

58 rename_i hz

59 apply C.supremum.UB

60 exact Or.inl hz

61 meetass := by

62 intro a b c

67



63 apply C.toPoset.toPartialOrder.antisymm

64 -- C.R (C.meet (C.meet a b) c) (C.meet a (C.meet b c))

65 apply C.infimum.GLB

66 intro z h

67 cases h

68 -- a

69 rename_i hz

70 have h1 : C.R (C.meet (C.meet a b) c) (C.meet a b) := by

71 apply C.infimum.LB

72 exact Or.inl rfl

73 have h2 : C.R (C.meet a b) z := by

74 apply C.infimum.LB

75 exact Or.inl hz

76 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

77 -- C.meet b c

78 rename_i hz

79 rw [hz]

80 apply C.infimum.GLB

81 intro d hd

82 cases hd

83 -- b

84 rename_i hd

85 rw [hd]

86 have h1 : C.R (C.meet (C.meet a b) c) (C.meet a b) := by

87 apply C.infimum.LB

88 exact Or.inl rfl

89 have h2 : C.R (C.meet a b) b := by

90 apply C.infimum.LB

91 exact Or.inr rfl

92 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

93 -- c

94 rename_i hd

95 apply C.infimum.LB

96 exact Or.inr hd

97 -- C.R (C.meet a (C.meet b c)) (C.meet (C.meet a b) c)

98 apply C.infimum.GLB

99 intro z h

100 cases h

101 -- C.meet a b

102 rename_i hz

103 rw [hz]

104 apply C.infimum.GLB

105 intro d hd

106 cases hd

107 -- a

108 rename_i hd

109 apply C.infimum.LB

110 exact Or.inl hd

111 -- b

112 rename_i hd

113 rw [hd]

114 have h1 : C.R (C.meet a (C.meet b c)) (C.meet b c) := by

115 apply C.infimum.LB

116 exact Or.inr rfl

117 have h2 : C.R (C.meet b c) b := by

118 apply C.infimum.LB

119 exact Or.inl rfl

120 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

121 -- c

122 rename_i hz

123 have h1 : C.R (C.meet a (C.meet b c)) (C.meet b c) := by

124 apply C.infimum.LB

125 exact Or.inr rfl

126 have h2 : C.R (C.meet b c) z := by

127 apply C.infimum.LB

128 exact Or.inr hz

129 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

130 joinass := by

131 intro a b c

132 apply C.toPoset.toPartialOrder.antisymm

133 -- C.R (C.join (C.join a b) c) (C.join a (C.join b c))

134 apply C.supremum.LUB

135 intro z h

68



136 cases h

137 -- C.join a b

138 rename_i hz

139 rw [hz]

140 apply C.supremum.LUB

141 intro d hd

142 cases hd

143 -- a

144 rename_i hd

145 apply C.supremum.UB

146 exact Or.inl hd

147 -- b

148 rename_i hd

149 have h1 : C.R d (C.join b c) := by

150 apply C.supremum.UB

151 exact Or.inl hd

152 have h2 : C.R (C.join b c) (C.join a (C.join b c)) := by

153 apply C.supremum.UB

154 exact Or.inr rfl

155 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

156 -- c

157 rename_i hz

158 have h1 : C.R z (C.join b c) := by

159 apply C.supremum.UB

160 exact Or.inr hz

161 have h2 : C.R (C.join b c) (C.join a (C.join b c)) := by

162 apply C.supremum.UB

163 exact Or.inr rfl

164 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

165 -- C.R (C.join a (C.join b c)) (C.join (C.join a b) c)

166 apply C.supremum.LUB

167 intro z h

168 cases h

169 -- a

170 rename_i hz

171 have h1 : C.R z (C.join a b) := by

172 apply C.supremum.UB

173 exact Or.inl hz

174 have h2 : C.R (C.join a b) (C.join (C.join a b) c) := by

175 apply C.supremum.UB

176 exact Or.inl rfl

177 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

178 -- C.join b c

179 rename_i hz

180 rw [hz]

181 apply C.supremum.LUB

182 intro d hd

183 cases hd

184 -- b

185 rename_i hd

186 have h1 : C.R d (C.join a b) := by

187 apply C.supremum.UB

188 exact Or.inr hd

189 have h2 : C.R (C.join a b) (C.join (C.join a b) c) := by

190 apply C.supremum.UB

191 exact Or.inl rfl

192 exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2

193 -- c

194 rename_i hd

195 apply C.supremum.UB

196 exact Or.inr hd

197 abslaw1 := by

198 intro a b

199 apply C.toPoset.toPartialOrder.antisymm

200 -- C.R (C.join a (C.meet a b)) a

201 apply C.supremum.LUB

202 intro d hd

203 cases hd

204 -- a

205 rename_i hd

206 rw [hd]

207 apply C.toPoset.toPartialOrder.toPreorder.refl

208 -- C.meet a b

69



209 rename_i hd

210 rw [hd]

211 apply C.infimum.LB

212 exact Or.inl rfl

213 -- C.R a (C.join a (C.meet a b))

214 apply C.supremum.UB

215 exact Or.inl rfl

216 abslaw2 := by

217 intro a b

218 apply C.toPoset.toPartialOrder.antisymm

219 -- C.R (C.meet a (C.join a b)) a

220 apply C.infimum.LB

221 exact Or.inl rfl

222 -- C.R a (C.meet a (C.join a b))

223 apply C.infimum.GLB

224 intro d hd

225 cases hd

226 -- a

227 rename_i hd

228 rw [hd]

229 apply C.toPoset.toPartialOrder.toPreorder.refl

230 -- C.join a b

231 rename_i hd

232 rw [hd]

233 apply C.supremum.UB

234 exact Or.inl rfl

235 }

11.4.4 From LatticeAlg to Lattice

Conversely, every LatticeAlg structure gives rise to a corresponding Lattice structure on its underlying
base type. The construction begins by defining a partial order LAR on the base, as shown below. We
will say that a ≤ b if, and only if, meet a b = a.

1 def LAR {C : LatticeAlg} : C.base → C.base → Prop := by

2 intro a b

3 exact C.meet a b = a

The relation LAR is a Preorder.
1 theorem TLARPreorder {C : LatticeAlg} : Preorder (@LAR C) := by

2 apply Preorder.mk

3 -- refl

4 intro a

5 rw [LAR]

6 exact meetidpt a

7 -- trans

8 intro a b c h1 h2

9 rw [LAR] at *

10 rw [h1.symm, C.meetass, h2]

The relation LAR is a PartialOrder.
1 theorem TLARPartialOrder {C : LatticeAlg} : PartialOrder (@LAR C) := by

2 apply PartialOrder.mk

3 -- toPreorder

4 exact TLARPreorder

5 -- antisymm

6 intro a b h1 h2

7 calc

8 a = C.meet a b := h1.symm

9 _ = C.meet b a := C.meetcomm

10 _ = b := h2

In summary, we are now ready to prove that every LatticeAlg structure induces a corresponding
Lattice structure on its base type, preserving the same meet and join operations.

1 def LatticeAlgtoLattice : LatticeAlg → Lattice := by

2 intro C

3 refine {

4 toPoset := {

70



5 base := C.base,

6 R := @LAR C,

7 toPartialOrder := TLARPartialOrder

8 }

9 meet := C.meet,

10 infimum := by

11 intro a b

12 apply Infimum.mk

13 -- LowerBound

14 intro z hz

15 cases hz

16 -- a

17 rename_i hz

18 rw [hz]

19 have h1 : C.meet (C.meet a b) a = (C.meet a b) := by

20 calc

21 C.meet (C.meet a b) a = C.meet a (C.meet a b) := C.meetcomm.symm

22 _ = C.meet (C.meet a a) b := C.meetass.symm

23 _ = C.meet a b := congrArg (fun x => C.meet x b) (meetidpt a)

24 exact h1

25 -- b

26 rename_i hz

27 rw [hz]

28 have h1 : C.meet (C.meet a b) b = (C.meet a b) := by

29 calc

30 C.meet (C.meet a b) b = C.meet a (C.meet b b) := C.meetass

31 _ = C.meet a b := congrArg (fun x => C.meet a x) (meetidpt b)

32 exact h1

33 -- Greatest LowerBound

34 intro x h

35 have ha : C.meet x a = x := by

36 apply h

37 exact Or.inl rfl

38 have hb : C.meet x b = x := by

39 apply h

40 exact Or.inr rfl

41 have h1 : C.meet x (C.meet a b) = x := by

42 calc

43 C.meet x (C.meet a b) = C.meet (C.meet x a) b := C.meetass.symm

44 _ = C.meet x b := congrArg (fun z => C.meet z b) ha

45 _ = x := hb

46 exact h1

47 join := C.join,

48 supremum := by

49 intro a b

50 apply Supremum.mk

51 -- UpperBound

52 intro z hz

53 cases hz

54 -- a

55 rename_i hz

56 rw [hz]

57 exact C.abslaw2

58 -- b

59 rename_i hz

60 rw [hz, C.joincomm]

61 exact C.abslaw2

62 -- Least UpperBound

63 intro x h

64 have ha : C.meet a x = a := by

65 apply h

66 exact Or.inl rfl

67 have hb : C.meet b x = b := by

68 apply h

69 exact Or.inr rfl

70 have hax : C.join a x = x := meetjoin.mp ha

71 have hbx : C.join b x = x := meetjoin.mp hb

72 have h1 : C.join (C.join a b) x = x := by

73 calc

74 C.join (C.join a b) x = C.join a (C.join b x) := C.joinass

75 _ = C.join a x := congrArg (fun z => C.join a z) hbx

76 _ = x := hax

77 exact meetjoin.mpr h1

71



78 }

11.4.5 Compositions
The ext attribute now allows us to prove that the two constructions defined above are mutually inverse.

LatticeAlgtoLattice ∘ LatticetoLatticeAlg = id

1 theorem TIdLattice : LatticeAlgtoLattice ∘ LatticetoLatticeAlg = id := by

2 funext C

3 apply Lattice.ext

4 -- base

5 exact rfl

6 -- R

7 have hR : (LatticeAlgtoLattice (LatticetoLatticeAlg C)).R = C.R := by

8 funext a b

9 apply propext

10 apply Iff.intro

11 -- ((LatticeAlgtoLattice ∘ LatticetoLatticeAlg) C).R a b → C.R a b

12 intro h

13 have hs : C.meet a b = a := h

14 rw [hs.symm]

15 apply C.infimum.LB

16 exact Or.inr rfl

17 -- C.R a b → (LatticeAlgtoLattice (LatticetoLatticeAlg C)).R a b

18 intro h

19 have hs : C.meet a b = a := by

20 apply C.toPoset.toPartialOrder.antisymm

21 -- C.R (C.meet a b) a

22 apply C.infimum.LB

23 exact Or.inl rfl

24 -- C.R a (C.meet a b)

25 apply C.infimum.GLB

26 intro z hz

27 cases hz

28 -- a

29 rename_i hz

30 rw [hz]

31 exact C.toPoset.toPartialOrder.toPreorder.refl a

32 -- b

33 rename_i hz

34 rw [hz]

35 exact h

36 exact hs

37 exact heq_of_eq hR

38 -- meet

39 exact HEq.refl C.meet

40 -- join

41 exact HEq.refl C.join

LatticetoLatticeAlg ∘ LatticeAlgtoLattice = id

1 theorem TIdLatticeAlg : LatticetoLatticeAlg ∘ LatticeAlgtoLattice = id := by

2 funext C

3 apply LatticeAlg.ext

4 -- base

5 exact rfl

6 -- meet

7 exact HEq.refl C.meet

8 -- join

9 exact HEq.refl C.join

11.4.6 Distributive Lattice
A distributive lattice is a lattice satisfying an extra law regarding the distributivity of meet over join.

72



1 @[ext] structure DistLatticeAlg extends LatticeAlg where

2 dist : ∀ {a b c : base}, meet a (join b c) = join (meet a b) (meet a c)

11.5 Complete Lattice
A complete lattice is a partially ordered set in which every subtype has both an infimum, that we will
call meet, and a supremum, that we will call join.

1 structure CompleteLattice extends Poset where

2 meet : (base → Prop) → base

3 infimum : ∀ {P : base → Prop}, Infimum R P (meet P)

4 join : (base → Prop) → base

5 supremum : ∀ {P : base → Prop}, Supremum R P (join P)

11.5.1 From CompleteLattice to Lattice

Clearly, every CompleteLattice is, in particular, a Lattice.
1 def CompleteLatticetoLattice : CompleteLattice → Lattice := by

2 intro C

3 refine {

4 toPoset := C.toPoset,

5 meet := (fun a b => C.meet (fun (x : C.base) => (x = a) ∨ (x = b))),

6 infimum := fun {a b} => C.infimum

7 join := (fun a b => C.join (fun (x : C.base) => (x = a) ∨ (x = b))),

8 supremum := fun {a b} => C.supremum

9 }

11.5.2 From CompleteLattice to BoundedPoset

Also, every CompleteLattice is, in particular, a BoundedPoset. To prove this fact, we need to prove
that the supremum of the PFalse predicate is, precisely, the Least element (exercise) and the infimum
of the PFalse predicate is, precisely, the Greatest element (exercise). Thus, every CompleteLattice,
which has both infima and suprema for all subtypes, contains a least and a greatest element, i.e., is
a BoundedPoset.

1 def CompleteLatticetoBoundedPoset : CompleteLattice → BoundedPoset := by

2 intro C

3 refine {

4 toPoset := C.toPoset,

5 l := C.join (PFalse),

6 least := (TLeastSupPFalse C.R (C.join PFalse)).mpr (C.supremum)

7 g := C.meet (PFalse),

8 greatest := (TGreatestInfPFalse C.R (C.meet PFalse)).mpr (C.infimum)

9 }

11.6 Exercises
11.6.1 Inverse Partial Order

1 -- If R is a preorder, then the inverse relation R^ is also a preorder

2 theorem TPreorderInv {A : Type} (R : A → A → Prop) : Preorder R → Preorder (inverse R) := by sorry

3

4 -- If R is a partial order, then the inverse relation R^ is also a partial order

5 theorem TPartialOrderInv {A : Type} (R : A → A → Prop) : PartialOrder R → PartialOrder (inverse R) := by

sorry

73



11.6.2 Special Elements

1 -- If R is a partial order and z1 and z2 are least elements, then they are equal.

2 theorem LeastUnique {A : Type} (R : A → A → Prop) (z1 z2 : A) (h : PartialOrder R) (h1 : Least R z1) (h2

: Least R z2) : z1 = z2 := by sorry

3

4 -- If R is a partial order and z1 and z2 are greatest elements, then they are equal.

5 theorem GreatestUnique {A : Type} (R : A → A → Prop) (z1 z2 : A) (h : PartialOrder R) (h1 : Greatest R

z1) (h2 : Greatest R z2) : z1 = z2 := by sorry

6

7 -- If R is a partial order and z is the least element, then it is a minimal element

8 def LeasttoMinimal {A : Type} (R : A → A → Prop) (z : A) (h : PartialOrder R) : Least R z → Minimal R z

:= by sorry

9

10 -- If R is a partial order and z is the greatest element, then it is a maximal element

11 def GreatesttoMaximal {A : Type} (R : A → A → Prop) (z : A) (h : PartialOrder R) : Greatest R z →

Maximal R z := by sorry

12

13 -- A least element for R is a greatest element for R^

14 def LeasttoGreatestInv {A : Type} (R : A → A → Prop) (z : A) : Least R z → Greatest (inverse R) z := by

sorry

15

16 -- A greatest element for R is a least element for R^

17 def GreatesttoLeastInv {A : Type} (R : A → A → Prop) (z : A) : Greatest R z → Least (inverse R) z := by

sorry

18

19 -- A minimal element for R is a maximal element for R^

20 def MinimaltoMaximalInv {A : Type} (R : A → A → Prop) (z : A) : Minimal R z → Maximal (inverse R) z :=

by sorry

21

22 -- A maximal element for R is a minimal element for R^

23 def MaximaltoMinimalInv {A : Type} (R : A → A → Prop) (z : A) : Maximal R z → Minimal (inverse R) z :=

by sorry

11.6.3 Restriction

1 -- The Restriction of a relation to a Subtype

2 def Restriction {A : Type} (R : A → A → Prop) (P : A → Prop) : Subtype P → Subtype P → Prop := by

3 intro a1 a2

4 exact R a1.val a2.val

5

6 -- If R is a preorder then Restriction R P, for a predicate P, is a preorder

7 theorem TPRestriction {A : Type} (R : A → A → Prop) (P : A → Prop) : Preorder R → Preorder (Restriction

R P) := by sorry

8

9 -- If R is a partial order then Restriction R P, for a predicate P, is a partial order

10 theorem TPORestriction {A : Type} (R : A → A → Prop) (P : A → Prop) :

11 PartialOrder R → PartialOrder (Restriction R P) := by sorry

11.6.4 Special Elements relative to a Subtype

1 -- The supremum of the False predicate is the least element

2 theorem TLeastSupPFalse {A : Type} (R : A → A → Prop) (z : A) : Least R z ↔ Supremum R PFalse z := by

sorry

3

4 -- The infimum of the False predicate is the greatest element

5 theorem TGreatestInfPFalse {A : Type} (R : A → A → Prop) (z : A) : Greatest R z ↔ Infimum R PFalse z :=

by sorry

6

7 -- The infimum of the True predicate is the least element

8 theorem TLeastInfPTrue {A : Type} (R : A → A → Prop) (z : A) : Least R z ↔ Infimum R PTrue z := by sorry

9

10 -- The supremum of the True predicate is the greatest element

11 theorem TGreatestSupPTrue {A : Type} (R : A → A → Prop) (z : A) : Greatest R z ↔ Supremum R PTrue z :=

by sorry

74



11.6.5 (N, ≤)

1 -- The ≤ relation for N

2 def NLeq : N → N → Prop := by

3 intro n m

4 exact ∃ (k : N), n + k = m

5

6 -- Notation for ≤

7 notation : 65 lhs:65 " ≤ " rhs:66 => NLeq lhs rhs

8

9 -- ≤ is a preorder

10 theorem TPreorderNLeq : Preorder NLeq := by sorry

11

12 -- ≤ is a partial order

13 theorem TPartialOrderNLeq : PartialOrder NLeq := by sorry

14

15 -- (N, ≤) is a partially ordered type

16 def instPosetNLeq : Poset := by sorry

17

18 -- z is the least element

19 theorem TNLeqzL : ∀ {n : N}, z ≤ n := by sorry

20

21 -- No s n is below z

22 theorem TNLeqzR : ∀ {n : N}, ¬ (s n ≤ z) := by sorry

23

24 -- If n ≤ m then s n ≤ s m

25 theorem TNLeqSuccT : ∀ {n m : N}, (n ≤ m) → (s n ≤ s m) := by sorry

26

27 -- If n ≰ m then s n ≰ s m

28 theorem TNLeqSuccF : ∀ {n m : N}, (¬ (n ≤ m)) → (¬ (s n ≤ s m)) := by sorry

29

30 -- ≤ is decidable

31 def instDecidableNLeq : ∀ {n m : N}, Decidable (n ≤ m) := by sorry

32

33 -- min n m is a lower bound of n

34 theorem TMinNLeqL : ∀ {n m : N}, (mini n m) ≤ n := by sorry

35

36 -- min n m is a lower bound of m

37 theorem TMinNLeqR : ∀ {n m : N}, (mini n m) ≤ m := by sorry

38

39 -- min n m is the infimum for n and m

40 theorem TInfNLeq : ∀ {n m : N}, Infimum NLeq (fun (x : N) => (x = n) ∨ (x = m)) (mini n m) := by sorry

41

42 -- max n m is an upper bound of n

43 theorem TMaxNLeqL : ∀ {n m : N}, n ≤ (maxi n m) := by sorry

44

45 -- max n m is an upper bound of m

46 theorem TMaxNLeqR : ∀ {n m : N}, m ≤ (maxi n m) := by sorry

47

48 -- max n m is the supremum of n and m

49 theorem TSupNLeq : ∀ {n m : N}, Supremum NLeq (fun (x : N) => (x = n) ∨ (x = m)) (maxi n m) := by sorry

50

51 -- (N, ≤) is a lattice

52 def instLatticeNLeq : Lattice := by sorry

53

54 -- min n (max m p) = max (min n m) (min n p)

55 theorem TDistNLeq : ∀ {n m p : N}, mini n (maxi m p) = maxi (mini n m) (mini n p) := by sorry

56

57 -- (N≤,) is a distributive lattice

58 def instDistLatticeAlgNLeq : DistLatticeAlg := by sorry

11.6.6 (N, ∣)

1 -- The ∣ (divisor) relation for N

2 def NDiv : N → N → Prop := by

3 intro n m

4 exact ∃ (k : N), n * k = m

5

6 -- Notation for divisor (\mid)

7 notation : 65 lhs:65 " ∣ " rhs:66 => NDiv lhs rhs

8

75



9 -- ∣ is a preorder

10 theorem TPreorderNDiv : Preorder NDiv := by sorry

11

12 -- ∣ is a partial order

13 theorem TPartialOrderNDiv : PartialOrder NDiv := by sorry

14

15 -- (N, ∣) is a partially ordered type

16 def instPosetNDiv : Poset := by sorry

17

18 -- one is the least element for ∣

19 theorem TNDivOne : Least NDiv one := by sorry

20

21 -- z is the `greatest` element for ∣``

22 theorem TNDivZ : Greatest NDiv z := by sorry

23

24 -- (N, ∣) is a bounded partially ordered type

25 def instBoundedPosetNDiv : BoundedPoset := by sorry

26

27 -- z does not divide any successor

28 theorem TNDivzL : ∀ {n : N}, ¬ (z ∣ s n) := by sorry

29

30 -- (N, ∣) is a lattice

31 def instLatticeNDiv : Lattice := by sorry

11.6.7 (Prop, →)

1 -- The → relation for Prop

2 def PropLeq : Prop → Prop → Prop := by

3 intro P Q

4 exact P → Q

5

6 -- → is a preorder

7 theorem TPreorderPropLeq : Preorder PropLeq := by sorry

8

9 -- → is a partial order

10 theorem TPartialOrderPropLeq : PartialOrder PropLeq := by sorry

11

12 -- (Prop, →) is a partially ordered type

13 def instPosetPropLeq : Poset := by sorry

14

15 -- False is the least element for →

16 theorem TPropLeqFalse : Least PropLeq False := by sorry

17

18 -- True is the greatest element for →

19 theorem TPropLeqTrue : Greatest PropLeq True := by sorry

20

21 -- (Prop, →) is a bounded partially ordered type

22 def instBoundedPropLeq : BoundedPoset := by sorry

23

24 -- (Prop, ∧, ∨) is a lattice (as an algebra)

25 def instLatticeAlgProp : LatticeAlg := by sorry

26

27 -- (Prop, →) is a complete lattice

28 def instCompleteLatticeProp : CompleteLattice := by sorry

76



12 Empty and Unit types
In this chapter, we explore two of the simplest—but most fundamental—types in Lean: the Empty type
and the Unit type. Though these types may seem trivial at first glance, they play a crucial role in the
logic and structure of formal proofs.

12.1 Empty
The Empty type, written as Empty, is a type with no inhabitants.

If we #print Empty, Lean returns:
1 inductive Empty : Type

2 number of parameters: 0

3 constructors:

This means that if we have a value of type Empty, we can derive a value of any other type from it.
In Lean, this is done using the Empty.elim function, which expresses the logical principle that from
falsehood, anything follows.

1 def emptyToAny {A : Type} : Empty → A := by

2 intro x

3 exact Empty.elim x

An interesting property of the emptyToAny function is that it is unique up to definitional equality; any
two functions with type Empty → A are definitionally the same.

1 theorem emptyToAnyUnique {A : Type} {f g : Empty → A} : f = g := by

2 funext x

3 exact Empty.elim x

This implies that the emptyToAny function with codomain Empty is, in particular, the identity function
on Empty.

1 theorem emptyToAnyId : @emptyToAny Empty = id := by

2 funext x

3 exact Empty.elim x

12.2 Unit
The Unit type, written as Unit, is a type with exactly one inhabitant: Unit.unit, usually just written
().

If we #print Unit, Lean returns:
1 @[reducible] def Unit : Type :=

2 PUnit

There is always a function from any type to the Unit type, since we can simply ignore the input and
return ().

1 def anyToUnit {A : Type} : A → Unit := by

2 intro _

3 exact ()

The anyToUnit function is unique up to definitional equality; any two functions with type A → Unit

are definitionally the same.
1 theorem anyToUnitUnique {A : Type} {f g : A → Unit} : f = g := by

2 funext x

3 exact rfl

77



This implies that when the domain is Unit, the anyToUnit function is, in particular, the identity
function on Unit.

1 theorem anyToUnitId : @anyToUnit Unit = id := by

2 funext x

3 exact rfl

12.3 Exercises
12.3.1 Empty

1 -- All the elements of Empty are equal

2 theorem emptyUnique : ∀ (x y : Empty), x = y := by sorry

3

4 -- The emptyToAny function is injective

5 theorem emptyToAnyInj {A : Type} : injective (@emptyToAny A) := by sorry

6

7 -- Under Classical.choice, if the emptyToAny function is surjective, the codomain cannot be Nonempty

8 theorem emptyToAnySurj {A : Type} : surjective (@emptyToAny A) ↔ ¬ (Nonempty A) := by sorry

12.3.2 Unit

1 -- All the elements of Unit are equal

2 theorem unitUnique : ∀ (x y : Unit), x = y := by sorry

3

4 -- The anyToUnit function is injective if, and only if, the domain has only one element

5 theorem anyToUnitInj {A : Type} : injective (@anyToUnit A) ↔ ∀( (a1 a2 : A), a1 = a2) := by sorry

6

7 -- Under Classical.choice, the anyToUnit function is surjective if and only if the domain is Nonempty

8 theorem anyToUnitSurj {A : Type} : surjective (@anyToUnit A) ↔ Nonempty A := by sorry

78



13 Product and Sum types
This chapter explores product and sum types, two foundational constructs in type theory.

We begin with the product type, which models the combination of two types into a single type
whose elements are pairs. The section introduces the construction of product types, how to access their
components, and their role in structuring data. The universal property of the product is then
presented, characterizing the product as the type that uniquely supports projections and pairing. The
concept is extended to the product of a family of types, generalizing the binary product to arbitrary
indexed collections.

Next, we examine the sum type, which represents a value that belongs to one of several types. It
captures alternatives or choices between types and is central to defining tagged unions. The universal
property of the sum provides its defining characteristic: a type that uniquely supports case analysis
using injections. This is generalized to the sum of a family of types, where each summand is indexed,
enabling more expressive and flexible type constructions.

The chapter concludes with a set of exercises aimed at reinforcing understanding through practical
applications and formal reasoning about product and sum types.

13.1 Product type
A product type combines two types into a single type whose values consist of pairs drawn from each
component. In Lean, the product type of A and B is written as Prod A B or, alternatively as, A × B,
using the × symbol (typed as \times).

If we #print Prod, Lean returns:
1 structure Prod.{u, v} : Type u → Type v → Type (max u v)

2 number of parameters: 2

3 constructor:

4 Prod.mk : { α : Type u } → { β : Type v } → α → β → α × β

5 fields:

6 fst : α

7 snd : β

Lean defines the product type internally using the Prod structure. This definition shows that Prod

takes two types—one from universe u and one from universe v—and returns a type in the larger of the
two universes, max u v. The constructor Prod.mk builds a pair from values of types α and β, and the
resulting pair belongs to the product type α × β. The structure has two fields: fst, which retrieves the
first component of the pair, and snd, which retrieves the second component.

This definition implies that to construct a value of type A × B, we must provide both a value of
type A and a value of type B. The constructor Prod.mk enforces this requirement: given a : A and b

: B, the expression Prod.mk a b (or simply ⟨a, b⟩ using Lean’s pair notation) yields a value of type
A × B. This reflects the nature of product types as containers of exactly one value from each of their
component types. In other words, a product type does not represent a choice between A and B, but
rather a combination of the two.

1 def toPair {A B : Type} : A → B → A × B := by

2 intro a b

3 exact Prod.mk a b -- alternatively ⟨a,\ ⟩b

The Prod type provides two projections, π1 and π1, or, alternatively, fst and snd, which allow us
to extract the individual components of a product. Given a value p : A × B, the expression p.fst

retrieves the first element (of type A), and p.snd retrieves the second element (of type B).
1 -- projection on the first component

2 def π1 {A B : Type} : (A × B) → A := by

3 intro p

4 exact p.fst

5

6 -- projection on the second component

79



7 def π2 {A B : Type} : (A × B) → B := by

8 intro p

9 exact p.snd

Two values of type A × B are equal if, and only if, their respective components are equal. That
is, given p1 p2 : A × B, we have p1 = p2 precisely when p1.fst = p2.fst and p1.snd = p2.snd.
Lean provides the theorem Prod.ext to formalize and prove such equalities.

1 theorem prodEq {A B : Type} (p1 p2 : A × B) : ( p1 = p2 ) ↔ ( π1 p1 = π1 p2 ) ∧ ( π2 p1 = π2 p2 ) := by

2 apply Iff.intro

3 -- p1 = p2 → π1 p1 = π1 p2 ∧ π2 p1 = π2 p2

4 intro h

5 apply And.intro

6 exact congrArg π1 h

7 exact congrArg π2 h

8 -- π1 p1 = π1 p2 ∧ π2 p1 = π2 p2 → p1 = p2

9 intro ⟨ h1, h2 ⟩

10 apply Prod.ext

11 exact h1

12 exact h2

13.1.1 Universal property of the product
The universal property of the product type characterizes it as the best type that supports pairing
of data. Specifically, given types A, B, and C, and functions f : C → A and g : C → B, there exists a
unique function h : C → A × B such that the projections of h recover f and g; that is, π₁ ∘ h = f and
π₂ ∘ h = g. In Lean, this function h is constructed by sending each c : C to the pair (f c, g c).

1 def toProd {A B C : Type} (f : C → A) (g : C → B) : (C → A × B) := by

2 intro c

3 exact Prod.mk (f c) (g c)

This function has the key property that composing it with the product projections recovers the original
functions.

1 -- Composition with π1

2 theorem toProdp1 {A B C : Type} (f : C → A) (g : C → B) : π1 ∘ (toProd f g) = f := by

3 funext c

4 exact rfl

5

6 -- Composition with π2

7 theorem toProdp2 {A B C : Type} (f : C → A) (g : C → B) : π2 ∘ (toProd f g) = g := by

8 funext c

9 exact rfl

The universal property of the product type not only guarantees the existence of the function toProd

f g : C → A × B satisfying the projection identities, but also ensures its uniqueness. That is, if we
have a function h : C → A × B such that π₁ ∘ h = f and π₂ ∘ h = g, then h must be equal to toProd
f g. This uniqueness clause completes the universal property: it tells us that toProd f g is the only
function from C to A × B whose projections are f and g. This powerful principle often allows us to
characterize and prove properties about functions into product types by reasoning solely about their
projections.

1 theorem toProdUnique {A B C : Type} {f : C → A} {g : C → B} {h : C → A × B} :

2 ( π1 ∘ h = f ) → ( π2 ∘ h = g ) → ( h = toProd f g ) := by

3 intro h1 h2

4 funext c

5 apply Prod.ext

6 exact congrFun h1 c

7 exact congrFun h2 c

13.2 Generalized product type
Given an index type I and a family of types 𝔸 : I → Type, the product type consists of a collection of
values, each corresponding to a type in the family 𝔸 i for every index i : I. In Lean, this is expressed
as the dependent function type ∀ (i : I), 𝔸 i, which can be thought of as the type of functions that
assign a value of type 𝔸 i to each index i : I.

80



1 variable ( I : Type )

2 variable ( 𝔸 : I → Type )

3 #check ∀ (i : I), 𝔸 i

To produce a value of type ∀ (i : I), 𝔸 i, we must provide a value of type 𝔸 i for each i : I.
1 def toPairg { I : Type } { 𝔸 : I → Type } : ( (i : I) → 𝔸 i ) → ∀ (i : I), 𝔸 i := by

2 intro 𝕗 i

3 exact 𝕗 i

The type ∀ (i : I), 𝔸 i has a natural projection that allows us to extract the value of type 𝔸 i

for a specific index i : I. This projection is a function that, given an element of type ∀ (i : I), 𝔸

i, returns the corresponding value of type 𝔸 i for a particular index i.
1 def π { I : Type } { 𝔸 : I → Type } ( i : I ) : ( ∀ (i : I), 𝔸 i ) → 𝔸 i := by

2 intro 𝕒

3 exact 𝕒 i

Two values of type ∀ (i : I), 𝔸 i are equal if and only if their corresponding i-th components are
equal for every index i : I.

1 theorem prodEqg { I : Type } { 𝔸 : I → Type } ( 𝕒1 𝕒2 : ∀ (i : I), 𝔸 i ) : ( 𝕒1 = 𝕒2 ) ↔ ∀ (i : I), π i

𝕒1 = π i 𝕒2 := by

2 apply Iff.intro

3 -- 𝕒1 = 𝕒2 → ∀ (i : I), π i 𝕒1 = π i 𝕒2

4 intro h i

5 exact congrArg ( π i ) h

6 -- ( ∀ (i : I), π i 𝕒1 = π i 𝕒2 ) → 𝕒1 = 𝕒2

7 intro h

8 funext i

9 exact h i

13.2.1 Universal property of the generalized product
The universal property of the product type ∀ (i : I), 𝔸 i is a key characteristic that allows us to
construct a function from a given family of functions. Specifically, if we have a family of functions 𝕗 i

: C → 𝔸 i for each i : I, the universal property guarantees the existence of a unique function h : C

→ ∀ (i : I), 𝔸 i such that for every i : I, π i ∘ h = 𝕗 i.
1 def toProdg { I C : Type } { 𝔸 : I → Type } ( 𝕗 : (i : I) → C → 𝔸 i ) : C → ( ∀ (i : I), 𝔸 i ) := by

2 intro c i

3 exact ( 𝕗 i ) c

Applying the projection π i to the result of toProdg 𝕗 yields the corresponding function 𝕗 i.
1 theorem toProdpg { I C : Type } { 𝔸 : I → Type } ( 𝕗 : (i : I) → C → 𝔸 i ) ( i : I ) : ( π i ) ∘ (

toProdg 𝕗 ) = 𝕗 i := by

2 funext c

3 exact rfl

The universal property of the product type also asserts a uniqueness condition: if we have a function
h : C → ∀ (i : I), 𝔸 i such that, for every i : I, the composition of h with the projection π i

satisfies the equality π i ∘ h = 𝕗 i, then the function h must be equal to the function constructed by
toProdg 𝕗.

1 theorem toProdgUnique { I C : Type } { 𝔸 : I → Type } { 𝕗 : (i : I) → C → 𝔸 i } { h : C → ∀ (i : I), 𝔸 i

} : ( ∀ (i : I), ( π i ) ∘ h = ( 𝕗 i ) ) → ( h = toProdg 𝕗 ) := by

2 intro hp

3 funext c

4 funext i

5 exact congrFun (hp i) c

13.3 Sum type
A sum type combines two types into a single type whose values are drawn from some component. In
Lean, the sum type of A and B is written as Sum A B or, alternatively as, A ⊕ B, using the ⊕ symbol
(typed as \oplus).

81



If we #print Sum, Lean returns:
1 inductive Sum.{u, v} : Type u → Type v → Type (max u v)

2 number of parameters: 2

3 constructors:

4 Sum.inl : { α : Type u } → { β : Type v } → α → α ⊕ β

5 Sum.inr : { α : Type u } → { β : Type v } → β → α ⊕ β

Lean defines the sum type internally using the inductive Sum type. This definition shows that Sum

takes two types—one from universe u and one from universe v—and returns a type in the larger of the
two universes, max u v. It includes two constructors: Sum.inl, which wraps a value of type α, and
Sum.inr, which wraps a value of type β. The type Sum ensures that values can be of one type or the
other.

The Sum type provides two injections, ι1 and ι2 or, alternatively, Sum.inl and Sum.inr, which
allows us to insert the individual components on a sum. Given a value a : A, the expression Sum.inl a

retrieves an element of type A ⊕ B. Given a value b : B, the expression Sum.inr b retrieves an element
of type A ⊕ B.

1 -- injection on the first component

2 def ι1 {A B : Type} : A → A ⊕ B := by

3 intro a

4 exact Sum.inl a

5

6 -- injection on the second component

7 def ι2 {A B : Type} : B → A ⊕ B := by

8 intro b

9 exact Sum.inr b

Two values of type A ⊕ B are considered equal if and only if they are both injections on the same
element. This means that if we have two elements p1, p2 : A ⊕ B, we say p1 = p2 if, for both
elements, either both are wrapped using the Sum.inl constructor (i.e., both come from type A), or
both are wrapped using the Sum.inr constructor (i.e., both come from type B), and, in each case, the
underlying values are equal.

1 theorem sumEq {A B : Type} (p1 p2 : A ⊕ B) : (p1 = p2) ↔ ( ∃ (a : A), ( ι1 a = p1 ) ∧ ( ι1 a = p2 ) ) ∨

∃( (b : B), ( ( ι2 b = p1 ) ∧ ( ι2 b = p2 ) ) := by

2 apply Iff.intro

3 -- p1 = p2 → ( ∃ a, ι1 a = p1 ∧ ι1 a = p2 ) ∨ ( ∃ b, ι2 b = p1 ∧ ι2 b = p2 )

4 intro h

5 cases p1 with

6 | inl a => cases p2 with

7 | inl b =>

8 injection h with h1

9 apply Or.inl

10 apply Exists.intro a

11 apply And.intro rfl

12 rw [h1]

13 exact rfl

14 | inr b =>

15 exact Sum.noConfusion h

16 | inr a => cases p2 with

17 | inl b =>

18 exact Sum.noConfusion h

19 | inr b =>

20 injection h with h1

21 apply Or.inr

22 apply Exists.intro a

23 apply And.intro rfl

24 rw [h1]

25 exact rfl

26 -- ( ∃ a, ι1 a = p1 ∧ ι1 a = p2 ) ∨ ( ∃ b, ι2 b = p1 ∧ ι2 b = p2 ) → p1 = p2

27 intro h

28 cases h with

29 | inl h =>

30 apply Exists.elim h

31 intro a ⟨ h1, h2 ⟩

32 exact h1.symm.trans h2

33 | inr h =>

34 apply Exists.elim h

35 intro b ⟨ h1, h2 ⟩

36 exact h1.symm.trans h2

82



13.3.1 Universal property of the sum
The universal property of the sum type characterizes it as the best type that supports pairing of
data. Specifically, given types A, B, and C, and functions f : A → C and g : B → C, there exists a
unique function h : A ⊕ B → C such that h , when composed with the injections, recover f and g; that
is, h ∘ ι1 = f and h ∘ ι2 = g. In Lean, this function h is constructed by sending o : A ⊕ B to f o

or to g o depending on its nature.
1 def fromSum {A B C : Type} (f : A → C) (g : B → C) : (A ⊕ B) → C := by

2 intro o

3 cases o with

4 | inl a => exact f a

5 | inr b => exact g b

This function has the key property that composing it with the sum injections recovers the original
functions.

1 -- Composition with ι1

2 theorem fromSumi1 {A B C : Type} (f : A → C) (g : B → C) : (fromSum f g) ∘ ι1 = f := by

3 funext a

4 exact rfl

5

6 -- Composition with ι2

7 theorem fromSumi2 {A B C : Type} (f : A → C) (g : B → C) : (fromSum f g) ∘ ι2 = g := by

8 funext b

9 exact rfl

The universal property of the sum type not only guarantees the existence of the function fromSum f

g : A ⊕ B → C satisfying the injection identities, but also ensures its uniqueness. That is, if we have
a function h : A ⊕ B → C such that h ∘ ι1 = f and h ∘ ι2 = g, then h must be equal to fromSum

f g. This uniqueness clause completes the universal property: it tells us that fromSum f g is the
only function from A ⊕ B to C whose injections are f and g. This powerful principle often allows us
to characterize and prove properties about functions from sum types by reasoning solely about their
injections.

1 theorem fromSumUnique {A B C : Type} {f : A → C} {g : B → C} {h : (A ⊕ B) → C} : (h ∘ ι1 = f) → (h ∘ ι2

= g) → (h = fromSum f g) := by

2 intro h1 h2

3 funext o

4 cases o with

5 | inl a => exact congrFun h1 a

6 | inr b => exact congrFun h2 b

13.4 Generalized sum type
Given an index type I and a family of types 𝔸 : I → Type, the sum type consists of a collection of
values, corresponding to some type in the family 𝔸 i for some index i : I. In Lean, this is expressed as
the type Sigma 𝔸 or, alternatively, (Σ (i : I), 𝔸 i), which can be thought of as the type of functions
that assign a value of type 𝔸 i to some index i : I.

1 variable ( I : Type )

2 variable ( 𝔸 : I → Type )

3 #check ( Σ (i : I), 𝔸 i )

The type (Σ (i : I), 𝔸 i) has a natural injection that allows us to insert the value of type 𝔸 i for
an specific index i : I. This injection is a function that, given an index i : I and an element of type
𝔸 i, returns an element of type (Σ (i : I), 𝔸 i).

1 def ι { I : Type } { 𝔸 : I → Type } (i : I) : 𝔸 i → ( Σ (i : I), 𝔸 i ) := by

2 intro a

3 exact ⟨ i, a ⟩

Two values of type (Σ (i : I), 𝔸 i) are equal if and only if they are injected from the same index
i : I on the same element. For this we will use Sigma.ext keyword.

1 theorem sumEqg { I : Type } { 𝔸 : I → Type } ( 𝕒1 𝕒2 : ( Σ (i : I), 𝔸 i ) ) : ( 𝕒1 = 𝕒2 ) ↔ ∃ (i : I),

∃ (a : 𝔸 i), ( 𝕒1 = ι i a ) ∧ ( 𝕒2 = ι i a ) := by

83



2 apply Iff.intro

3 -- 𝕒1 = 𝕒2 → ∃ i a, 𝕒1 = ι i a ∧ 𝕒2 = ι i a

4 intro h

5 cases 𝕒1 with

6 | mk i a => cases 𝕒2 with

7 | mk j b =>

8 injection h with h1 h2

9 apply Exists.intro i

10 apply Exists.intro a

11 apply And.intro rfl

12 exact Sigma.ext h1.symm h2.symm

13 -- ∃ i a, 𝕒1 = ι i a ∧ 𝕒2 = ι i a → 𝕒1 = 𝕒2

14 intro ⟨ i, ⟨ a, ⟨ h1, h2 ⟩ ⟩ ⟩

15 exact h1.trans h2.symm

13.4.1 Universal property of the generalized sum
The universal property of the sum type (Σ (i : I), 𝔸 i) is a key characteristic that allows us to
construct a function from a given family of functions. Specifically, if we have a family of functions 𝕗 i

:𝔸 i → C for each i : I, the universal property guarantees the existence of a unique function h :

(Σ (i : I), 𝔸 i) → C such that for every i : I, h ∘ (ι i) = 𝕗 i.
1 def fromSumg { I C : Type } { 𝔸 : I → Type } ( 𝕗 : (i : I) → 𝔸 i → C ) : ( Σ (i : I), 𝔸 i ) → C := by

2 intro ⟨ i, a ⟩

3 exact 𝕗 i a

Applying the injection ι i and then fromSumg 𝕗 yields the corresponding function 𝕗 i.
1 theorem fromSumig { I C : Type } { 𝔸 : I → Type } ( 𝕗 : (i : I) → 𝔸 i → C ) (i : I) : ( fromSumg 𝕗 ) ∘ (

ι i ) = 𝕗 i := by

2 funext c

3 exact rfl

The universal property of the sum type also asserts a uniqueness condition: if we have a function
h : (Σ (i : I), 𝔸 i) → C such that, for every i : I, the composition of h with the injection ι i

satisfies the equality h ∘ (ι i) = 𝕗 i, then the function h must be equal to the function constructed
by fromSumg 𝕗.

1 theorem fromSumgUnique { I C : Type } { 𝔸 : I → Type } { 𝕗 : (i : I) → 𝔸 i → C } { h : ( Σ (i : I), 𝔸 i

) → C } : ( ∀ (i : I), h ∘ ( ι i ) = ( 𝕗 i ) ) → ( h = fromSumg 𝕗) := by

2 intro hs

3 funext ⟨ i, a ⟩

4 exact congrFun (hs i) a

13.5 Exercises
13.5.1 Product

1 -- The product is commutative

2 theorem prodComm {A B : Type} : (A × B) ≅ (B × A) := by sorry

3

4 -- The product is associative

5 theorem prodAssoc {A B C : Type} : ((A × B) × C) ≅ (A × (B × C)) := by sorry

6

7 -- Empty is a left zero

8 theorem TEmptyProdL {A : Type} : (Empty × A) ≅ Empty := by sorry

9

10 -- Empty is a right zero

11 theorem TEmptyProdR {A : Type} : (A × Empty) ≅ Empty := by sorry

12

13 -- Unit is a right unit

14 theorem TUnitProdR {A : Type} : (A × Unit) ≅ A := by sorry

15

16 -- Unit is a left unit

17 theorem TUnitProdL {A : Type} : (Unit × A) ≅ A := by sorry

84



13.5.2 Sum

1 -- The sum is commutative

2 theorem sumComm {A B : Type} : (A ⊕ B) ≅ (B ⊕ A) := by sorry

3

4 -- The sum is associative

5 theorem sumAssoc {A B C : Type} : ((A ⊕ B) ⊕ C) ≅ (A ⊕ (B ⊕ C)) := by sorry

6

7 -- Empty is a left unit

8 theorem TEmptySumL {A : Type} : (Empty ⊕ A) ≅ A := by sorry

9

10 -- Empty is a right unit

11 theorem TEmptySumR {A : Type} : (A ⊕ Empty) ≅ A := by sorry

12

13 -- Product distributes over sum on the right

14 theorem TProdSumDistR {A B C : Type} : (A × (B ⊕ C)) ≅ ((A × B) ⊕ (A × C)) := by sorry

15

16 -- Product distributes over sum on the left

17 theorem TProdSumDistL {A B C : Type} : ((A ⊕ B) × C) ≅ ((A × C) ⊕ (B × C)) := by sorry

85



14 Lists and Monoids
In this chapter, we explore the foundational concept of monoids and their deep connection to lists,
one of the most fundamental data structures in both mathematics and computer science. We begin by
examining lists as sequences of elements drawn from a type α, highlighting their structure and operations
such as concatenation and the empty list. Building on this, we introduce monoids—algebraic structures
consisting of a list equipped with an associative binary operation and an identity element.

We will see that addition and multiplication over the natural numbers naturally form monoids. We
then introduce the free monoid over a type α and examine its defining properties. A central focus of
the chapter is the universal property of the free monoid, which characterizes it as the most general
monoid generated by a type of elements.

We conclude the theoretical discussion by applying the universal property to define the length of a
list as a monoid homomorphism into the natural numbers with addition. This example showcases the
practical utility of the abstract theory. Finally, the chapter ends with a set of exercises designed to
reinforce the concepts presented in this chapter.

14.1 Lists
In functional programming and formal systems like Lean, a list is a fundamental data structure that
represents a sequence of elements of a given type.

If we #print List, Lean returns:
1 inductive List.{u} : Type u → Type u

2 number of parameters: 1

3 constructors:

4 List.nil : { α : Type u } → List α

5 List.cons : { α : Type u } → α → List α → List α

The List type is defined as an inductive type. List is a parametric type that takes one type
parameter—say, α—and produces the type List α, representing lists of elements of type α. This defini-
tion includes two constructors. The first, List.nil, represents the empty list, also written [], meaning
it can construct an empty list for any type α. The second constructor, List.cons, builds a nonempty
list by taking an element of type α, say x, and a list of elements of type α, say xs, returning a new list
of type List α, List.cons x xs, also written x :: xs. This new list will have x as its head and the
list xs as its tail. This construction makes lists easy to process recursively, as each list is either empty
or built by adding an element to the front of another list.

For example, in List N, the expression [] represents the empty list, z :: [] is a list containing a
single element—namely [z], and z :: s z :: [] constructs a list with two elements, written as [z,

s z].
Using the List.cons constructor we can define the concatenation operation, List.append, which

takes two lists l1 and l2 of type List α and returns a new list List.append l1 l2, also written l1

++ l2, which appends the two lists together. For example, for the lists [z, s z] and [z] in List N,
[z, s z] ++ [z] returns the list [z, s z, z].

14.2 Monoids
The following Lean code defines the algebraic structure of a monoid and monoid homomorphisms
as structure types in Lean.

1 -- A monoid

2 @[ext] structure Monoid.{u} where

3 base : Type u

4 mul : base → base → base

5 one : base

6 assoc : ∀ {a b c : base}, mul a (mul b c) = mul (mul a b) c

86



7 idl : ∀ {a : base}, mul one a = a

8 idr : ∀ {a : base}, mul a one = a

9

10 -- A monoid homomorphism

11 @[ext] structure MonoidHom (M N : Monoid) where

12 map : M.base → N.base

13 map_mul : ∀ {a b : M.base}, map (M.mul a b) = N.mul (map a) (map b)

14 map_one : map M.one = N.one

The first structure, Monoid, represents a monoid as a type base equipped with a binary operation mul

(interpreted as multiplication), an identity element one, and three axioms. The associativity axiom
(assoc) asserts that multiplication is associative: for all elements a, b, and c, we have mul a (mul

b c) = mul (mul a b) c. The left identity (idl) and right identity (idr) laws state that the
element one behaves as left and right identity for multiplication: mul one a = a and mul a one = a,
respectively. The attribute @[ext] enables Lean to automatically generate extensionality lemmas for
these structures, making it easier to prove equalities between instances.

The second structure, MonoidHom, formalizes monoid homomorphisms between two monoids M and
N. A homomorphism consists of a function map between the underlying sets of M and N, which preserves
the monoid operations: it satisfies map (M.mul a b) = N.mul (map a) (map b) for all a, b, and also
maps the identity element of M to that of N, i.e., map M.one = N.one. Together, these definitions provide
a foundation for reasoning formally about monoids and their structure-preserving maps within Lean’s
type theory framework.

14.2.1 Examples of monoids
We present two examples of monoid structures defined over the natural numbers. In the first example,
the binary operation is addition, with 0 serving as the identity element. In the second example, the
operation is multiplication, and the identity element is 1. Both structures satisfy the monoid axioms.

1 -- (N, +, 0) is a monoid

2 def instMonoidNAdd : Monoid where

3 base := N

4 mul := Addition

5 one := z

6 assoc := TAddAss.symm

7 idl := TAdd0L

8 idr := TAdd0R

9

10 -- (N, *, 1) is a monoid

11 def instMonoidNMul : Monoid where

12 base := N

13 mul := Multiplication

14 one := one

15 assoc := TMultAss.symm

16 idl := TMult1L

17 idr := TMult1R

14.2.2 The free monoid over a type α

For any type α, the free monoid over α is given by the type List α, equipped with list concatenation (++)
as the binary operation and the empty list [] as the identity element. This structure forms a monoid
because concatenation is associative and the empty list acts as a neutral element for concatenation on
both sides.

1 -- (List α, ++, []) is a monoid for any type α

2 def FreeMonoid { α : Type u } : Monoid where

3 base := List α

4 mul := List.append

5 one := []

6 assoc := by

7 intro a b c

8 induction a with

9 | nil => simp [List.append]

10 | cons x xs ih => simp [List.append, ih]

11 idl := by

12 intro a

13 induction a with

87



14 | nil => simp [List.append]

15 | cons x xs ih => simp [List.append, ih]

16 idr := by

17 intro a

18 induction a with

19 | nil => simp [List.append]

20 | cons x xs ih => simp [List.append, ih]

14.2.3 The universal property of the free monoid
The following Lean code defines the canonical insertion of generators function η from a type α into
List α.

1 -- Insertion of generators

2 def η { α : Type u } : α → (@FreeMonoid α).base := by

3 intro a

4 exact List.cons a []

The function η takes an element a : α and returns the singleton list [a], implemented here as
List.cons a []. This reflects the standard way of embedding generators into a free monoid: each
element of α is mapped to a list containing just that element.

The universal property of the FreeMonoid α states that for any monoid M and any function f : α

→ M.base, there exists a unique monoid homomorphism Lift f : FreeMonoid α → M such that
Lift f ∘ η = f. This means that Lift f extends f in a way that respects the monoid structure,
making FreeMonoid α the most general monoid generated freely by the elements of α.

The definition of Lift f is defined recursively on lists, as follows:
1 def Lift { α : Type u } {M : Monoid} (f : α → M.base) : (@FreeMonoid α).base → M.base := by

2 intro xs

3 cases xs with

4 | nil => exact M.one

5 | cons x xs => exact M.mul (f x) (Lift f xs)

The base case corresponds to the empty list: Lift f [] = M.one, ensuring the identity element of
the monoid is preserved. For non-empty lists, Lift f applies the homomorphism recursively to the tail
of the list and then combines it with the image of the head element using the monoid multiplication
M.mul. Specifically, for a list x::xs', we have Lift f (x::xs) = M.mul (f x) (Lift f xs).

This construction guarantees that Lift f is a monoid homomorphism, mapping the empty list to the
identity element and preserving the monoid operation, as we can prove below.

1 -- The function Lift f is a monoid homomorphism from the free monoid to the monoid M

2 def LiftMonoidHom { α : Type u } {M : Monoid} (f : α → M.base) : MonoidHom (@FreeMonoid α) M where

3 map := Lift f

4 map_mul := by

5 intro a b

6 induction a with

7 | nil => calc

8 Lift f (FreeMonoid.mul [] b) = Lift f b := rfl

9 _ = M.mul (M.one) (Lift f b) := M.idl.symm

10 _ = M.mul (Lift f []) (Lift f b) := congrArg (fun x => M.mul x (Lift

f b)) rfl

11 | cons x xs ih => calc

12 Lift f (FreeMonoid.mul (x::xs) b) = Lift f (x :: (FreeMonoid.mul xs b)) := rfl

13 _ = M.mul (f x) (Lift f (FreeMonoid.mul xs b)) := rfl

14 _ = M.mul (f x) (M.mul (Lift f xs) (Lift f b)) := congrArg (fun

y => M.mul (f x) y) ih

15 _ = M.mul (M.mul (f x) (Lift f xs)) (Lift f b) := M.assoc

16 _ = M.mul (Lift f (x::xs)) (Lift f b) := congrArg (fun

y => M.mul y (Lift f b)) rfl

17 map_one := rfl

Furthermore, Lift f extends f in the sense that for each element a : α, it satisfies Lift f (η a) =

f a, where η is the insertion map that sends a to the singleton list [a]. This is proven in the theorem
below.

1 theorem LiftEta { α : Type u } {M : Monoid} (f : α → M.base) : Lift f ∘ η = f := by

2 funext a

3 calc

88



4 Lift f η( a) = Lift f (a::[]) := rfl

5 _ = M.mul (f a) (Lift f []) := rfl

6 _ = M.mul (f a) M.one := congrArg (fun x => M.mul (f a) x) rfl

7 _ = f a := M.idr

Finally, we can prove that the function Lift f is the unique monoid homomorphism from the free
monoid FreeMonoid α to any monoid M that satisfies the property Lift f ∘ η = f. This is proven in
the theorem below.

1 theorem LiftUnique { α : Type u } {M : Monoid} (f : α → M.base) (g : MonoidHom (@FreeMonoid α) M) : g.

map ∘ η = f → g = LiftMonoidHom f := by

2 intro h

3 apply MonoidHom.ext

4 funext a

5 induction a with

6 | nil => calc

7 g.map [] = M.one := g.map_one

8 _ = (LiftMonoidHom f).map [] := (LiftMonoidHom f).map_one

9 | cons x xs ih => calc

10 g.map (x::xs) = g.map (FreeMonoid.mul ( η x ) xs) := rfl

11 _ = M.mul (g.map ( η x )) (g.map xs) := g.map_mul

12 _ = M.mul (f x) (g.map xs) := congrArg (fun y => M.mul y (g.map xs)) (congrFun h x)

13 _ = M.mul ((LiftMonoidHom f).map ( η x )) (g.map xs) := congrArg (fun y => M.mul y (g.map xs)) (

congrFun (LiftEta f).symm x)

14 _ = M.mul ((LiftMonoidHom f).map ( η x) ) ((LiftMonoidHom f).map xs) := congrArg (fun y => M.mul

((LiftMonoidHom f).map ( η x )) y) ih

15 _ = (LiftMonoidHom f).map (FreeMonoid.mul ( η x ) xs) := (LiftMonoidHom f).map_mul.symm

16 _ = (LiftMonoidHom f).map (x::xs) := rfl

14.2.4 The length of a list
As an application of the universal property of the free monoid, we define a function Length that computes
the length of a list. First, we define Len : α → N, a function that maps each element of type α to the
natural number 1, representing the fact that each element in a list contributes exactly one to the length.

1 def Len : α → N := by

2 intro _

3 exact one

Using the universal property of the free monoid, we extend Len to a monoid homomorphism Length

: (List α,++,[]) → (N,+,0) by applying the Lift function.
1 def Length { α : Type u } : (@FreeMonoid α).base → instMonoidNAdd.base := Lift Len

This guarantees that Length satisfies the required monoid homomorphism properties: it maps the
empty list to 0 (the identity in (N,+,0)), and for any two lists, the length of their concatenation is the
sum of their individual lengths. Thus, Length is a monoid homomorphism that respects the structure
of the free monoid and computes the number of elements in a list. This example highlights how the
universal property of the free monoid enables the definition of homomorphisms that extend functions
from the generators to any target monoid.

14.3 Exercises

1 -- The definition of Monoid Isomorphism

2 @[ext] structure MonoidIso (M N : Monoid) extends (MonoidHom M N) where

3 iso : isomorphism map

4

5 -- Prove that the monoids (N,+,0) and (List Unit,++,[]) are isomorphic

6 def NFreeMonoidIso : MonoidIso (@FreeMonoid Unit) instMonoidNAdd where

7 sorry

89



Bibliography
[1] Lean 4 documentation. https://lean-lang.org/lean4/doc/, 2025. Accessed: 2025-08-27; com-

prehensive manual covering installation, language manual, reference manual, FAQs, development
guide, and more.

[2] The lean language reference. https://lean-lang.org/doc/reference/latest/, 2025. Accessed:
2025-08-27; covers Lean version 4.23.0-rc2.

[3] Lean prover community zulip chat. https://leanprover.zulipchat.com/, 2025. Accessed: 2025-
08-27; primary community discussion hub for Lean users, browsable without registering.

[4] Learning lean 4. https://leanprover-community.github.io/learn.html, 2025. Accessed:
2025-08-27; introduction to learning resources, tutorials, books, metaprogramming guides, and more.

[5] Mathematics in lean. https://leanprover-community.github.io/mathematics_in_lean/

index.html, 2025. Accessed: 2025-08-27.

[6] J. Avigad, L. de Moura, S. Kong, and S. Ullrich. Theorem proving in lean 4. https://lean-lang.
org/theorem_proving_in_lean4/, 2025. Accessed: 2025-08-27; based on version v4.21.0.

[7] D. T. Christiansen. Functional programming in lean. https://lean-lang.org/functional_

programming_in_lean/, 2025. Accessed: 2025-08-27; code samples tested with Lean 4.21.0; Copy-
right Microsoft Corporation 2023 and Lean FRO, LLC 20232025.

[8] D. Clemente Laboreo. Introduction to natural deduction. https://www.danielclemente.com/

logica/dn.en.pdf, 2004. August 2004; reviewed May 2005; accessed 2025-08-27.

[9] J. Climent Vidal. Teoría de conjuntos. https://www.uv.es/jkliment/Documentos/SetTheory.
pc.pdf, 2010. Date: 25 de junio de 2010; accessed: 2025-08-27; comprehensive lecture notes on
Zermelo-Fraenkel set theory.

[10] L. de Moura and S. Ullrich. The Lean 4 theorem prover and programming language. In A. Platzer and
G. Sutcliffe, editors, Automated Deduction CADE 28, volume 12699 of Lecture Notes in Artificial
Intelligence, pages 625–635. Springer, 2021.

[11] H. Macbeth. The mechanics of proof. https://hrmacbeth.github.io/math2001/, 2025. Accessed:
2025-08-27; course Math 2001, Fordham University; Lean code available at GitHub.

[12] P. Smith. Introducing category theory. https://www.logicmatters.net/resources/pdfs/

SmithCat.pdf, 2025. Version 2.9, ľ 2025; second edition; PDF available for educational use; print-
on-demand from June 2025; accessed 2025-08-27.

[13] R. Zach. Boxes and diamonds: An open introduction to modal logic. https://bd.

openlogicproject.org/, 2025. Accessed: 2025-08-27; based on the Open Logic Project; licensed
under CC BY 4.0.

90

https://lean-lang.org/lean4/doc/
https://lean-lang.org/doc/reference/latest/
https://leanprover.zulipchat.com/
https://leanprover-community.github.io/learn.html
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://leanprover-community.github.io/mathematics_in_lean/index.html
https://lean-lang.org/theorem_proving_in_lean4/
https://lean-lang.org/theorem_proving_in_lean4/
https://lean-lang.org/functional_programming_in_lean/
https://lean-lang.org/functional_programming_in_lean/
https://www.danielclemente.com/logica/dn.en.pdf
https://www.danielclemente.com/logica/dn.en.pdf
https://www.uv.es/jkliment/Documentos/SetTheory.pc.pdf
https://www.uv.es/jkliment/Documentos/SetTheory.pc.pdf
https://hrmacbeth.github.io/math2001/
https://www.logicmatters.net/resources/pdfs/SmithCat.pdf
https://www.logicmatters.net/resources/pdfs/SmithCat.pdf
https://bd.openlogicproject.org/
https://bd.openlogicproject.org/

	Basic Syntax
	What is a type?
	Comment code
	check
	print
	def
	fun
	The function type
	cases
	match
	let
	eval
	variable
	namespaces
	open

	Propositions
	First proofs
	have
	apply? exact?
	example
	sorry

	Logical connectives
	Conjunction
	Disjunction
	Implication
	Double implication
	True
	False
	Negation

	Decidable propositions
	Classical Logic
	Exercises

	Quantifiers
	Predicates
	Examples of predicates
	Operations on predicates

	Universal Quantifier
	Existential Quantifier
	Exercises

	Equalities
	Equality
	Reflexivity
	Symmetry
	Transitivity
	Rewrite
	calc

	Types with meaningful equality
	Decidable Equality
	Equality in Prop


	Functions
	Equality
	Composition
	Identity function
	Injections
	An example: The identity
	Exercises

	Surjections
	An example: The identity
	Exercises

	Bijections
	An example: The identity
	Exercises


	Natural numbers
	Definition
	Cases
	Match
	Dedekind-Peano
	Cases
	Injection
	noConfusion

	Induction
	Recursion
	Maximum
	Minimum
	Addition
	Multiplication

	Decidable Equality
	Exercises
	Injection
	Maximum
	Minimum
	Addition
	Multiplication


	Choice
	Inhabited types
	Nonempty
	Choice
	Choose
	Exercises


	Subtypes
	Examples of subtypes
	Elements of a subtype
	The inclusion function
	Functions and Subtypes
	Restriction
	Correstriction
	Birrestriction

	Equalizers
	Universal property of the equalizer

	Exercises
	Subtypes
	Restriction
	Correstriction
	Equalizers


	Relations
	Examples of relations
	Types of relations
	An example: The diagonal
	Exercises

	Operations on relations
	Exercises


	Quotients
	Equivalence relations
	Examples of equivalence relations

	Equivalence relation generated by a relation
	Setoids
	Examples of setoids

	Quotients
	Examples of quotients
	Elements of a quotient
	The projection function

	Functions and Quotient types
	Astriction
	Coastriction
	Biastriction

	Coequalizer
	Universal property of the coequalizer

	Exercises
	Equivalences
	Astriction
	Coastriction
	Isomorphisms
	Coequalizers


	Orders
	Preorder
	Partial Order
	Partially Ordered Set
	Special Elements
	Bounded Posets
	Special Elements relative to a Subtype

	Lattice
	Lattice as a poset
	Lattice as an algebra
	From Lattice to LatticeAlg
	From LatticeAlg to Lattice
	Compositions
	Distributive Lattice

	Complete Lattice
	From CompleteLattice to Lattice
	From CompleteLattice to BoundedPoset

	Exercises
	Inverse Partial Order
	Special Elements
	Restriction
	Special Elements relative to a Subtype
	(N, ≤)
	(N, ∣)
	(Prop, →)


	Empty and Unit types
	Empty
	Unit
	Exercises
	Empty
	Unit


	Product and Sum types
	Product type
	Universal property of the product

	Generalized product type
	Universal property of the generalized product

	Sum type
	Universal property of the sum

	Generalized sum type
	Universal property of the generalized sum

	Exercises
	Product
	Sum


	Lists and Monoids
	Lists
	Monoids
	Examples of monoids
	The free monoid over a type α
	The universal property of the free monoid
	The length of a list

	Exercises


