An introduction to Lean 4

E. Cosme Llópez*,†

L. $Gong^{\dagger}$

September 2025

 $^{^*}$ Universitat de València, Departament de Matemàtiques.

 $^{^\}dagger \mbox{Nantong University},$ School of Mathematics and Statistics.

Contents

	1.1 1.2	What is a type?	8								
	1.9		_								
	1.4	Comment code	8								
	1.3	check	8								
	1.4	print	9								
	1.5	\det	11								
	1.6	fun	11								
	1.7	The function type	11								
	1.8	cases	12								
	1.9	match	12								
		let	12								
		eval	12								
		variable	13								
	1.13	namespaces	13								
	1.14	open	13								
_	_		14								
2	2 Propositions										
	2.1	First proofs	14								
		2.1.1 have	16								
		2.1.2 apply? exact?	16								
		2.1.3 example	16								
		2.1.4 sorry	16								
	2.2	Logical connectives	16								
		2.2.1 Conjunction	17								
		2.2.2 Disjunction	17								
		2.2.3 Implication	18								
		2.2.4 Double implication	19								
		2.2.5 True	20								
		2.2.6 False	20								
		2.2.7 Negation	20								
	2.3	Decidable propositions	21								
	$\frac{2.5}{2.4}$	Classical Logic	$\frac{21}{22}$								
	$\frac{2.4}{2.5}$		23								
	2.0	Exercises	20								
3	Quantifiers 24										
3.1 Predicates											
		3.1.1 Examples of predicates	24								
		3.1.2 Operations on predicates	24								
	3.2	Universal Quantifier	25								
	3.3	Existential Quantifier	25								
	3.4	Exercises	$\frac{26}{26}$								
	0.1	LACTORES	20								
4	Equa	lities	27								
	4.1	Equality	27								
		4.1.1 Reflexivity	27								
		4.1.2 Symmetry	28								
		4.1.3 Transitivity	28								
		4.1.4 Rewrite	28								
		4.1.5 calc	28								
	4.2	Types with meaningful equality	29								
	4.2	4.2.1 Decidable Equality	29								

5	Fund	ctions	3	1
		5.0.1	Equality	1
		5.0.2	Composition	32
		5.0.3	Identity function	2
	5.1	Injecti	ons	2
		5.1.1		3
		5.1.2	ı v	3
	5.2			3
	•	5.2.1		34
		5.2.2	ı v	34
	5.3			34
	0.0	5.3.1		5 5
		5.3.2	ı v	5 5
		0.0.2	EXCIONES	U
6	Nati	ural nu	mbers 3	6
•	6.1		iion	
	6.2	Cases		37
	6.3	Cabab		, . 37
	6.4			, . 37
	0.1	6.4.1		, . 37
		6.4.2		,, 88
		6.4.2	y	88
	6.5	-		0 8
	6.6			8
		6.6.1		39
		6.6.2		39
		6.6.3		89
	a =	6.6.4	1	89
	6.7		able Equality	
	6.8	Exerci		
		6.8.1	Injection	
		6.8.2	Maximum	
		6.8.3	Minimum	
		6.8.4	Addition	
		6.8.5	Multiplication	2
_	٠	_		_
7	Cho		4	_
	7.1		ted types	
	7.2		npty	
	7.3		e	
		7.3.1	Choose	
		7.3.2	Exercises	.5
	Colo			c
8	Subi	types	4 The state of the	
		8.0.1	Examples of subtypes	-
		8.0.2	Elements of a subtype	
		8.0.3	The inclusion function	
	8.1		ons and Subtypes	
		8.1.1	Restriction	
		8.1.2	Correstriction	
		8.1.3	Birrestriction	
	8.2	Equali	zers	8
		8.2.1	Universal property of the equalizer	8
	8.3	Exerci	ses	9
		8.3.1	Subtypes	9
		8.3.2	Restriction	9
		8.3.3	Correstriction	.9
		8.3.4	Equalizers	.9

9	Rela	tions		50
		9.0.1 E	camples of relations	. 50
	9.1	Types of	relations	. 50
		9.1.1 A	n example: The diagonal	. 52
		9.1.2 E	xercises	. 53
	9.2	Operation	ns on relations	. 53
		9.2.1 E	xercises	. 54
	_	_		
10		tients		56
	10.1	-	ace relations	
	100		camples of equivalence relations	
			ace relation generated by a relation	
	10.3			
			camples of setoids	
	10.4	-	8	
			camples of quotients	
			ements of a quotient	
	40.5		ne projection function	
	10.5		s and Quotient types	
			striction	
			pastriction	
			astriction	
	10.6	_	ver	
			niversal property of the coequalizer	
	10.7			
			quivalences	
			striction	
			pastriction	
			omorphisms	
		10.7.5 C	pequalizers	. 63
11	Orde	~ rc		64
11				
			rder	
			Ordered Set	
	11.0		pecial Elements	
			ounded Posets	
			pecial Elements relative to a Subtype	
	11 /	-		
	11.4		attice as a poset	
			attice as an algebra	
			om Lattice to LatticeAlg	
			om Lattice to Lattice	
			om LatticeAtg to Lattice	
			stributive Lattice	
	11 5		Lattice	
	11.0	-	om CompleteLattice to Lattice	
			om CompleteLattice to BoundedPoset	
	11.6	Exercises	on compteterative to bounded oset	
	11.0		verse Partial Order	
			pecial Elements	
		_	estriction	
			pecial Elements relative to a Subtype	
		_	v -	
			l, ≤)	
		•	Prop, →)	
		11.0.1 (1	1 (γ) τ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	. 10
12	Emp	ty and U	nit types	77
_				

	12.2	Unit	7
	12.3	Exercises	3
		12.3.1 Empty	3
		12.3.2 Unit	3
13	Prod	luct and Sum types 79	9
		Product type	9
		13.1.1 Universal property of the product	
	13.2	Generalized product type	
		13.2.1 Universal property of the generalized product	
	13.3	Sum type	
		13.3.1 Universal property of the sum	
	13.4	Generalized sum type	
		13.4.1 Universal property of the generalized sum	
	13.5	Exercises	4
		13.5.1 Product	4
		13.5.2 Sum	5
14	Lists	and Monoids	õ
	14.1	Lists	_
		Monoids	
		14.2.1 Examples of monoids	
		14.2.2 The free monoid over a type α	
		14.2.3 The universal property of the free monoid	
		14.2.4 The length of a list	
	14 3	Evereiges	

An introduction to formal verification

Introduction

Lean 4 is a versatile programming language and interactive theorem prover designed to formalize mathematics, verify software, and explore computational logic. Whether you are a mathematician, computer scientist, or a curious learner, Lean 4 offers powerful tools for rigorous reasoning and proof verification. By combining programming and formal reasoning, Lean 4 serves as an essential tool for both learning and research.

Lean 4 enables us to:

- **Prove Theorems**: Formalize and verify mathematical proofs with precision, eliminating ambiguities and errors.
- Write Programs: Develop functional programs with strong type safety and reliability.
- Verify Systems: Ensure the correctness of software and hardware through formal verification techniques.
- Explore Logic: Study dependent type theory, proof automation, and formal methods in depth.

This manual introduces the fundamentals of Lean 4, covering Basic syntax and types, Theorem proving and verification, and Practical applications in mathematics. Each chapter includes examples, exercises, and practical insights to help us build confidence and proficiency in Lean 4. The content of this manual is based on informal seminar sessions conducted by the author at the Universitat de València and taught to master's students at Nantong University. These sessions focus on foundational topics in mathematics, particularly the universal properties of key constructions.

This manual is available both as a web version and as a PDF. All exercises in this manual are accompanied by solutions available on GitHub. That said, the most effective way to learn is to dive in and tackle them yourself. Mistakes are a natural part of the learning process!

A Brief History of Lean

Lean was developed by Leonardo de Moura and his team at Microsoft Research in 2013. It was created to provide a robust and scalable framework for formalizing mathematics, verifying software, and exploring type theory.

Over the years, Lean has evolved significantly, with Lean 4 offering improved performance, a redesigned type system, and enhanced support for metaprogramming. Today, it serves as a foundational tool for both theoretical and applied research in mathematics and computer science.

To learn more about Lean 4, visit the official website: lean-lang.org.

References and Learning Resources

While this manual provides a thorough introduction to Lean 4, there are many other excellent resources available to deepen your understanding. Here are some recommended materials:

- 1. Functional Programming in Lean: The standard reference for learning how to use Lean as a programming language.
- 2. Theorem Proving in Lean 4: A comprehensive guide to using Lean as a theorem prover.
- 3. Mathematics in Lean: A resource focused on using Lean for formalizing mathematics.
- 4. The Mechanics of Proof: Lecture notes designed for early university-level students on writing rigorous mathematical proofs.

- 5. Lean Language Reference: A technical document describing the syntax, semantics, and standard library of Lean.
- 6. Documentation Overview: A collection of examples, developer guides, and other essential documentation.
- 7. Lean Community Learning Resources: A curated list of tutorials, guides, and documentation sources for Lean 4.
- 8. Lean Zulip Chat: Join the public chat room to engage with the Lean community and seek guidance.

Installation and Quickstart Guide

To start using Lean 4, follow the Quickstart Guide from the official documentation. This guide provides step-by-step instructions on installing Lean 4 on our system, setting up a development environment and writing and running our first Lean program

For the best experience, it is recommended to use Lean 4 with **VS Code** and the Lean extension, which provides syntax highlighting, interactive proof support, and an enhanced development workflow.

Acknowledgements

Writing this textbook has been a personal endeavor, but it would not have been possible without the support and encouragement of many individuals and institutions. First and foremost, we would like to express our deepest gratitude to the Universitat de València and Nantong University for providing an environment conducive to research and teaching, which greatly influenced the development of this book. We are deeply grateful to our students, both past and present, whose curiosity and thoughtful questions have continually inspired me to refine my explanations and enhance the clarity of the material presented here. In particular, we would like to express our heartfelt appreciation to Yan Yan for her keen insight and enthusiasm, which have been a driving force behind this project.

We would also like to acknowledge the contributions of the broader academic and open-source communities, especially the developers and maintainers of Lean and Quarto, whose work has enabled the seamless integration of formal verification and programming into this text.

For this work, the first author held a position as Specially Appointed Professor at the School of Mathematics and Statistics, Nantong University. In addition, the first author is involved in the teaching innovation project "Beyond the Theorem: Active Strategies for Developing 21st-Century Mathematicians" (code PIEE-3900548), under the Vicerectorat de Formació Permanent, Transformació Docent i Ocupació de la Universitat de València.

Finally, to all who have contributed in ways large and small, whether through direct collaboration or simply by offering words of motivation, thank you.

1 Basic Syntax

This chapter introduces the foundational elements of Lean 4s syntax. Well learn how to define variables, write functions, and work with types and expressions, the essential building blocks of Lean 4 programming. By the end, we'll be able to read and write basic Lean 4 programs, preparing us for more advanced topics ahead.

Lets start with a fundamental question.

1.1 What is a type?

A type classifies data, defining what values it can hold and what operations can be performed on it. Types are essential in both programming and theorem proving, ensuring correctness and structuring reasoning. In Lean 4, types act as a safety mechanism:

- A value of type Nat (natural number) can be 0, 1, 2, etc.
- A value of type String can be "hello", "Lean 4", etc.
- A function of type Nat → Nat takes a natural number as input and returns another natural number.

By assigning types to values and functions, Lean 4 prevents errors like adding a number to a string or applying a function to incompatible data.

Next, we'll explore some fundamental Lean 4 commands.

1.2 Comment code

In Lean 4, comments help make code more readable and serve as documentation. They are ignored by the compiler and do not affect execution. Here's how to write comments in Lean:

- Single-line comments start with -- and apply to the rest of the line.
- Multi-line comments are enclosed between /- and -/.

```
-- This is a comment

/-
This is a multi-line comment.
It can span multiple lines.
Useful for longer explanations.
/-/
```

1.3 check

We'll begin with the #check command, a key tool for exploring Lean's type system. The #check command allows us to inspect the type of an expression, definition, or theorem in Lean. It's invaluable for understanding how Lean interprets our code and for troubleshooting type-related issues.

```
#check true

#check 42

#check 'h'

#check ['h', 'e', 'l', 'o']

#check "hello"

#check Nat
```

In these examples:

- 1. outputs Bool.true: Bool which tells us that true is of type Bool.
- 2. outputs 42: Nat which tells us that 42 is of type Nat (natural number).
- 3. outputs "h": Char which tells us that "h" is of type Char (a character).
- 4. outputs ['h', 'e', 'l', 'l', 'o'] : List Char which tells us that ['h', 'e', 'l', 'l', 'o'] is a list of characters.
- 5. outputs "hello": String which tells us that "hello" is of type String.
- 6. outputs Nat: Type which tells us that Nat is of type Type.

1.4 print

The **#print** command allows us to inspect the definition of a function, theorem, or other named entity in Lean. It provides detailed information, including the type, implementation, and any dependencies. This command is especially useful for understanding how Lean's standard library works or for debugging our own code.

```
#print Bool
#print Nat
#print Char
#print List
#print String
-- We cannot `#print Type` because this is a built-in concept
#print Type
```

In these examples:

• #print Bool outputs

```
inductive Bool: Type
number of parameters: 0
constructors:
Bool.false: Bool
Bool.true: Bool
```

This tells us that Bool is an inductive type with no parameters and two constructors. Constructors are ways to provide elements of the given type—in this case, Bool.false represents the value false, and Bool.true represents the value true. Thus, an inductive type defines a new type by specifying a set of constructors that generate its elements. Each constructor may take arguments, including recursive references to the type itself. Inductive types are fundamental in Lean, serving as the basis for both data structures (such as natural numbers, lists, and trees) and logical propositions. We will explore inductive types in more detail later, but for now, understand that constructors define the possible values of a type, and Bool is a type with exactly two such values.

• #print Nat outputs

```
inductive Nat : Type
number of parameters: 0
constructors:
Nat.zero : Nat
Nat.succ : Nat → Nat
```

As we can see, Nat is also an inductive type representing natural numbers, which do not require parameters. It has two constructors:

- Nat.zero, which represents the number 0.
- Nat.succ, which represents the successor of a natural number (essentially adding 1).

This definition allows natural numbers to be constructed starting from 0 and adding 1 repeatedly. Another way of denoting natural numbers in Lean is using \mathbb{N} . To type this symbol, you can use the shortcut \mathbb{N} .

• #print Char outputs

```
structure Char : Type
number of parameters: 0
constructor:
Char.mk : (val : UInt32) → val.isValidChar → Char
fields:
val : UInt32
valid : self.val.isValidChar
```

Char is a structure representing a single character and does not have parameters. A *structure* in Lean is a way to define a type that groups together related data. The Char structure has a constructor called Char.mk, which takes:

- A UInt32 value (a 32-bit unsigned integer) representing the Unicode code point of the character.
- val.isValidChar, a proof that the value is a valid Unicode character.

Moreover, every element of type Char has two associated fields:

- val: This field returns the Unicode value of the character.
- valid: This field returns the proof that the code point is valid.

Thus, the Char structure combines the character value and its validity in a structured way. We will also explore structures in more detail in future chapters.

• #print List outputs

```
inductive List.{u} : Type u → Type u
number of parameters: 1
constructors:
List.nil : { α : Type u } → List α
List.cons : { α : Type u } → α → List α
```

List is an inductive type that represents a sequence of elements of a given type α . This type requires one parameter, α , where α is the type of elements in the list. The universe level u is used in the type definition to avoid paradoxes in type theory. For example, when we instantiate List with Nat, we get the type of lists of natural numbers (List Nat), and when instantiated with Char, we get the type of lists of characters (List Char). The List type has two constructors:

- List.nil, which represents the empty list ([]).
- List.cons, which adds an element to the front of a list.

Thus, List allows us to work with ordered sequences of elements, either empty or with elements added recursively.

• #print String outputs

```
structure String : Type
number of parameters: 0
constructor:
String.mk : List Char → String
fields:
data : List Char
```

This indicates that String is a structure in Lean, with no parameters, that represents strings. The constructor for String is String.mk, which takes a List Char (a list of characters) as input and returns a String. Each element of type String has a field called data, which returns the list of characters that make up the string.

• #print Type outputs an error.

The reason is that Type is a fundamental, built-in concept within Lean's logical framework, not a user-defined term or definition. In Lean, Type denotes the universe of all types, and it cannot be queried using #print because it is not a printable entity like user-defined terms.

1.5 def

The def keyword is used to define a function or a value in Lean. It is one of the most fundamental constructs, allowing us to create reusable code—whether for simple values, functions, or more complex computations.

```
-- Definition of number pi
def pi : Float := 3.1415926
```

Definitions can have parameters.

```
-- Definition of the sum of two natural numbers def sum (a b : Nat) : Nat := a + b
```

1.6 fun

The fun keyword is used to define anonymous functions (also called lambda functions) in Lean. These are functions that don't have a name and are defined inline. The fun keyword is a core concept in functional programming. We can also use the λ (lambda) operator to define anonymous functions, which is written as \label{lambda} in Lean.

```
The Two anonymous ways of defining the sum of two natural numbers where \lambda (a b : Nat) => a + b the two states and the two states are two states and the two states are t
```

The resulting type $Nat \rightarrow Nat$ $\rightarrow Nat$ represents a curried function, which is a fundamental concept in functional programming. This type can be understood as follows:

- Nat → Nat → Nat is a function that takes a Nat (first argument) and returns another function.
- The returned function then takes a Nat (second argument) and returns a Nat (final result).

This curried function type is equivalent to $Nat \rightarrow (Nat \rightarrow Nat)$ —meaning a function that takes a Nat and returns a function from Nat to Nat. In Lean, function types are right-associative, so the parentheses are often omitted for clarity. Thus, $Nat \rightarrow Nat \rightarrow Nat$ is interpreted as $Nat \rightarrow (Nat \rightarrow Nat)$.

1.7 The function type

In general, if A and B are types, then $A \to B$ is a type representing all mappings from type A to type B. This means that any value of type $A \to B$ is a mapping that takes an element of type A and returns an element of type B. In Lean, we use \to to type the arrow \to when writing this in code. We will explore this type in more detail later.

```
-- The type of all mappings from Nat to Nat

#check Nat → Nat

-- An example of an element of the above type

#check sum 3
```

This new construction provides an alternative approach to defining the previous sum mapping. The goal is to construct an element of type $Nat \rightarrow Nat$. There are several ways to achieve this: either by using the fun keyword, as previously demonstrated, or by explicitly introducing the variables and specifying the expression that the mapping should return.

The latter approach uses the keywords by, intro, and exact. These are used in interactive proof mode, where you construct definitions step by step using tactics.

- by: This keyword signals that the function definition will be built interactively using tactics.
- intro: This tactic introduces the function's arguments as hypotheses in the goal.
- exact: This tactic is used to provide the exact value that satisfies the goal.

```
-- Two new ways of defining the sum of two natural numbers

def sum2 : Nat → Nat → Nat := fun a b => a + b

--

def sum3 : Nat → Nat → Nat := by

intro a b

exact a + b
```

1.8 cases

The cases tactic splits the definition into two branches based on the value of the input. We will use it to define the Negation function for Booleans.

```
def BoolNot : Bool → Bool := by

intro b

cases b

-- b = false
exact true
-- b = true
exact false
```

1.9 match

The match keyword is used for pattern matching. This is another way to handle different cases of the input.

```
def BoolNot2 : Bool → Bool := by
intro b
match b with
| false => exact true
| true => exact false
```

1.10 let

The let keyword is used to define local variables or terms within a proof or expression.

```
def sphereVolume (r : Float) : Float :=
let pi : Float := 3.1415926
  (4/3) * pi * r^3
```

1.11 eval

The #eval command is used to evaluate an expression and display its result. It is one of the most commonly used commands for testing and debugging code, as it allows us to see the output of a computation directly.

```
#eval sum 3 4
#eval (sum 3) 4
#eval (fun (a b : Nat) => a + b) 3 4
--
#eval pi
#eval Nat.succ 4
#eval UInt32.isValidChar 104
#eval 'h'.val
#eval String.mk ['h', 'e', 'l', 'o']
#eval "hello".data
```

The first evaluations result in 7 because they compute the sum 3 + 4. After that, the following evaluations make use of previously defined values. For example, #eval pi returns the value of pi that was defined earlier. #eval Nat.succ 4 evaluates the successor function for natural numbers, applied to 4, returning 5 as the result. #eval UInt32.isValidChar 104 returns true, indicating that 104 is a valid Unicode character. #eval 'h'.val shows that the character 'h' has the Unicode value 104.

Additionally, #eval String.mk ['h', 'e', 'l', 'l', 'o'] transforms the list of characters ['h', 'e', 'l', 'l', 'o'] into a string, in this case "hello". Finally, #eval "hello".data returns the list of characters that make up the string "hello", in this case ['h', 'e', 'l', 'l', 'o'].

1.12 variable

The keyword variable is used to declare variables that can be used later in the code. These variables are implicitly available in the context of any theorem, definition, or proof that follows. They allow us to introduce general assumptions or placeholders for types or values without needing to explicitly define them at each step.

```
variable (m n : Nat)
#check m
```

1.13 namespaces

Namespaces in Lean are used to organize code, helping with structure and readability. We can define variables, functions, or theorems within a namespace, and these definitions are scoped to that namespace, meaning they are only accessible inside it. When we exit a namespace, the variables defined inside it are no longer recognized. To access a variable defined within a namespace, we must reference it using the namespace name.

```
namespace WorkSpace
-- Define a natural number 'r' with the value 27

def r: Nat := 27
-- The variable 'r' is perfectly defined within the namespace
#eval r
end WorkSpace

-- Evaluating 'r' outside the namespace will result in an error
#eval r -- Error: unknown identifier 'r'

-- To access 'r', we must reference it using its namespace
#eval WorkSpace.r -- Output: 27
```

1.14 open

The open keyword is used in Lean to bring definitions, theorems, or namespaces into the current scope, allowing us to reference them without needing to use their full qualified names. This helps make our code more concise and easier to read by reducing the need for repetitive namespace prefixes.

```
open Workspace
2 #eval r
```

2 Propositions

This chapter introduces the type of propositions in Lean, along with fundamental logical connectives $(\land, \lor, \rightarrow, \lnot, \leftrightarrow)$. We will learn how to construct basic proofs using these concepts. By the end of this chapter, we will be able to write and prove simple logical statements in Lean.

What is a Proposition?

Propositions are statements that express a definite claim. In Lean, propositions belong to the built-in type Prop, which is fundamental to Lean's logical system.

Examples:

- 2 + 2 = 4 is a proposition (true).
- 3 < 1 is also a proposition (false).

```
-- Prop is the type of all propositions in Lean

#check Prop
#print Prop
-- Examples
#check 2 + 2 = 4
#check 3 < 1
```

In Lean, a proposition is a type that represents a logical statement. This means that propositions themselves are types, and proving a proposition is equivalent to constructing a term of that type. If we declare a variable P of type Prop, we can later define another variable h of type P. In Lean's type-theoretic framework, we interpret h as a proof of P.

```
variable (P : Prop)
variable (h : P)

-- We need to understand h as a proof of P

#check h
```

Declaring a variable P: Prop does not mean that P is immediately true. It simply introduces P as a proposition. A proposition P is true if and only if there exists a term of type P—that is, a proof of P. If we can construct a term h: P, then P is true. Conversely, if no such term exists, then P is false. For example

- 2 + 2 = 4 is true because Lean can construct a proof of this proposition.
- 3 < 1 is false because no proof (no term of this type) can be constructed.

This perspective is central to constructive logic, where truth means having an explicit proof.

2.1 First proofs

The following Lean code defines a theorem called Th1. Let's examine its components step by step to understand its purpose and functionality.

```
theorem Th1 (h : P) : P := by exact h
```

This code defines a theorem named Th1. In Lean, a theorem is a proposition that has been or will be proven.

- (h: P) introduces a hypothesis h of type P, meaning h serves as a proof of the proposition P.
- : P represents the conclusion, stating that the theorem will establish the truth of P.

- := by signals that the proof will be constructed interactively using tactics, entering proof mode through indentation.
- The exact h tactic completes the proof by instructing Lean to use h (a proof of P) to establish P.

Essentially, Th1 asserts a fundamental logical principle: if a proof of P exists (h: P), then P is true. While seemingly obvious, this concept underlies the foundations of formal reasoning in Lean.

The theorem Th1 is now a reusable component that can be referenced and applied wherever needed, allowing us to build on previous results.

When checking its type, Lean shows \forall (P: Prop), P \rightarrow P. This indicates that P is an arbitrary proposition, and Th1 is a function that takes a proof of P and returns a proof of P. In other words, Th1 P belongs to the function type P \rightarrow P.

Since we previously defined h: P, applying Th1 to P and h —written as Th1 P h— yields an element of type P. We will explore this concept further in the next sections.

```
-- Th1 has type ♥ (P: Prop), P → P

#check Th1
-- Th1 P has type P → P

#check Th1 P
-- Th1 P h has type P

#check Th1 P

#check Th1 P h
```

Notice that Th1 is adaptable to any proposition it is applied to. For example, if we introduce a new variable Q: Prop, then Th1 Q becomes an element of type $Q \rightarrow Q$. This means Th1 can be used with any proposition, reinforcing its generality in formal reasoning.

```
variable (Q : Prop)

-- Th1 Q has type Q → Q

#check Th1 Q
```

It is worth noting that when we use **#print Th1**, Lean returns the following code:

```
theorem Th1 : ∀ (P : Prop), P → P := fun P h => h
```

The difference occurs because Lean automatically generalizes Th1 to its most abstract form.

However, this notation can sometimes be cumbersome since applying a theorem requires explicitly providing all necessary hypotheses. To simplify this, we can define implicit variables. For example, let's introduce our second theorem:

```
theorem Th2 {P : Prop} (h : P) : P := by exact h
```

The curly braces around P indicate that P is an **implicit variable**. This means that Lean will automatically infer the value of P based on the context when Th2 is used, so we don't need to manually provide P as an argument each time. This makes the code cleaner and more concise, as Lean handles the inference for us.

```
-- Th2 has type ♥ {P : Prop}, P → P

#check Th2

-- Th2 h has type P, infered from h

#check Th2 h
```

We can also prove this theorem using a third method, where we employ the apply tactic. The apply tactic allows us to use a previously defined theorem—in this case, Th2—to progress towards the current goal.

For apply to work, the conclusion of the theorem we want to apply must match or be unifiable with the current goal, which is true in this case. Once we apply Th2, Lean will prompt us to prove the necessary hypotheses required by the theorem to complete the proof. This approach leverages the power of previously established results to build new proofs more efficiently.

```
theorem Th3 {P : Prop} (h : P) : P := by
apply Th2
exact h
```

2.1.1 have

The have keyword in Lean is a powerful tool used in proofs to introduce intermediate results or hypotheses. It helps break down complex proofs into smaller, more manageable steps by allowing us to prove and name intermediate statements. These intermediate results can be referenced later in the proof, making the overall structure clearer and easier to follow. This approach is particularly useful when working through multi-step arguments, as it enables us to focus on individual pieces of the proof before combining them to reach the final conclusion.

```
theorem Th4 {P : Prop} (h : P) : P := by
have h2 : P := by
exact h
exact h2
```

2.1.2 apply? exact?

One of the most powerful features of Lean is the ability to use the apply? command within a proof. The apply? tactic automatically searches through the available theorems in the current context and suggests relevant ones that could be applied to prove the current goal. For example, in the theorem Th3 above, if we write apply?, Lean responds with

```
Try this: exact h
```

Additionally, we can use the exact? tactic to prompt Lean to suggest the hypothesis needed to conclude a theorem. When invoked, exact? analyzes the current goal and offers possible hypotheses or terms that could directly satisfy the goal.

These tactics are especially useful when working with numerous results, as they save time by automatically searching for and suggesting relevant theorems or hypotheses. This eliminates the need to manually search for the specific result needed, streamlining the proof process significantly.

2.1.3 example

We can use the example keyword to define an anonymous theorem. This allows us to demonstrate a proof without giving it a specific name. The structure is similar to a regular theorem, but the difference is that it's not assigned a name, making it ideal for quick demonstrations or illustrating concepts. Here's an example that follows the structure from above:

```
example (h : P) : P := by
exact h
```

Since examples are anonymous, they cannot be referenced or reused later in the code.

2.1.4 sorry

The sorry command in Lean is a placeholder that allows us to temporarily skip the proof of a theorem or definition. When we use sorry, Lean assumes that the proof is correct without actually verifying it. This can be useful during the development process when we want to focus on the structure of our code or test parts of our work without completing all the proofs. However, it's important to note that sorry does not provide a valid proof. If left in the code, Lean cannot guarantee the correctness of the theorem or definition, as the proof is incomplete. It's a useful tool for incremental development, but should be removed or replaced with a valid proof before finalizing the code.

```
theorem Th3 (h : P) : P := by sorry
```

2.2 Logical connectives

In this section, we will introduce logical connectives, explore their implementation in Lean, and demonstrate how to prove statements involving them.

2.2.1 Conjunction

The logical And connective, represented by the symbol Λ (which can be typed in Lean using \and), is used to combine two propositions, asserting that both are true simultaneously. In Lean, the And connective is implemented as a built-in logical construct. Specifically, if P and Q are propositions, then P Λ Q is also a proposition. This is read as "P and Q," meaning that P is true and Q is true.

```
#check And P Q #check P A Q
```

If we #print And, Lean returns

```
structure And : Prop → Prop → Prop
number of parameters: 2
constructor:
And.intro : ∀ {a b : Prop}, a → b → a ∧ b
fields:
left : a
right : b
```

This declares And as a structure in Lean. And takes two arguments of type Prop and returns a new Prop. In other words, And is a binary logical connective, requiring two parameters, both of type Prop. The constructor for And is And.intro, which is a function that takes two propositions a and b (implicitly defined) and two proofs —one proof of a (of type a) and one proof of b (of type b)— and returns a proof of a \wedge b. Here's an example of how the constructor works:

```
-- To prove a proposition of the form P A Q we need a proof of P and a proof of Q theorem ThAndIn (hP: P) (hQ: Q): P A Q:= by

exact And.intro hP hQ
```

The And structure has two fields: left and right. The left field stores the proof of the first proposition a, and the right field stores the proof of the second proposition b. These fields are essential for constructing a proof of $a \wedge b$, as they hold the individual proofs required to establish the truth of both propositions simultaneously. Here's an example of how the fields work:

```
-- From a proof of P A Q, we can obtain a proof of P
theorem ThAndOutl (h: P A Q): P:= by
exact h.left
-- We can also obtain a proof for Q
theorem ThAndOutr (h: P A Q): Q:= by
exact h.right
```

2.2.2 Disjunction

The logical Or connective, represented by the symbol (which can be typed in Lean using \or), is used to combine two propositions, asserting that at least one of them is true. In Lean, the Or connective is implemented as a built-in logical construct. Specifically, if P and Q are propositions, then P Q is also a proposition. This is read as "P or Q," meaning that P is true or Q is true.

```
#check Or P Q
2 #check P v Q
```

If we #print Or, Lean returns

```
inductive Or : Prop → Prop → Prop
number of parameters: 2
constructors:
Or.inl : ∀ {a b : Prop}, a → a ∨ b
or.inr : ∀ {a b : Prop}, b → a ∨ b
```

This declares Or as an inductive type in Lean. Or takes two arguments of type Prop and returns a new Prop. In other words, Or is a binary logical connective that requires two parameters, both of which are of type Prop. There are two constructors for Or: Or.inl and Or.inr. These constructors are functions that take two propositions, a and b, implicitly defined, and a proof—either a proof of a (of type a) or a proof of b (of type b)—and return a proof of a v b. The two constructors Or.inl and Or.inr correspond to the two possible ways a disjunction can be true: either by proving a or by proving b. Here's an example of how the constructors work:

```
-- From a proof of P, we can obtain a proof of P v Q
theorem ThOrInl (h : P) : P v Q := by
exact Or.inl h
-- From a proof of Q, we can obtain a proof of P v Q
theorem ThOrInr (h : Q) : P v Q := by
exact Or.inr h
```

Unlike the And type, Or does not have fields associated with it. However, the absence of fields does not mean we cannot reason with elements of this type. In cases where we have a hypothesis of type P V Q, we can reason by cases. In Lean, the cases keyword is used for pattern matching and case analysis on inductive types. It allows us to break down a hypothesis or term into its possible constructors and handle each case separately.

For example, if we have a hypothesis of type P v Q, we know that there are two possible cases to consider: either we have a proof of P (using Or.inl), or we have a proof of Q (using Or.inr). The cases tactic will break down the goal into two branches, one for each case, allowing us to reason about each case individually. Let's look at how we can use cases to handle such a scenario:

```
-- From a proof of P v Q, we can obtain a proof of Q v P
theorem ThOrCases (h : P v Q) : Q v P := by
cases h
-- Case 1
rename_i hP
exact Or.inr hP
-- Case 2
rename_i hQ
exact Or.inl hQ
```

This code defines a theorem in Lean that demonstrates how to reason by cases using the cases tactic. The theorem proves that if you have a proof of $P \ V \ Q$, you can derive a proof of $Q \ V \ P$. Here's how the proof works:

- 1. Hypothesis: We start with the hypothesis $h : P \lor Q$, which asserts that at least one of the propositions P or Q is true.
- 2. Case Analysis with cases: The cases tactic is applied to h to break it into two subgoals, each corresponding to a possible way the disjunction could have been constructed:
 - Case 1: If h is constructed using Or.inl, it means we have a proof of P (denoted hP using rename_i), so hP: P. To prove Q v P, we use Or.inr to inject P into the right side of the disjunction, giving us the proof Q v P.
 - Case 2: If h is constructed using Or.inr, it means we have a proof of Q (denoted hQ using rename_i), so hQ: Q. To prove Q v P, we use Or.inl to inject Q into the left side of the disjunction, completing the proof.

In both cases, we construct a valid proof of Q v P by appropriately using the constructors Or.inl and Or.inr. The cases tactic allows us to handle each scenario separately and derive the desired result. We can alternatively use the keyword Or.elim to provide an alternative proof by cases.

```
theorem ThOrCases2 (h : P v Q) : Q v P := by

apply Or.elim h

-- Case P

intro hP

exact Or.inr hP

-- Case Q

intro hQ

exact Or.inl hQ
```

2.2.3 Implication

The logical implication connective, represented by the symbol \rightarrow (which can be typed in Lean using \to), is used to combine two propositions and describe a conditional relationship between them. Specifically, if P and Q are propositions, then P \rightarrow Q is also a proposition, which reads as "if P, then Q", or "P implies Q." This means that if P is true, then Q must also be true. If P is false, the implication P \rightarrow Q is considered true regardless of the truth value of Q. This is known as a vacuous truth.

In Lean, implication is treated as a function type: a proof of $P \to Q$ is a function that takes a proof of P and produces a proof of Q. To prove an implication $P \to Q$, you assume that P is true and then show that Q must also be true under this assumption. This is typically done using the <code>intro</code> tactic, which introduces the assumption P into the proof context. Let's look at an example to illustrate this.

```
-- From a proof of Q, we can obtain a proof of P → Q
theorem ThImpIn (hQ : Q) : P → Q := by
intro hP
exact hQ
```

Additionally, if we have a proof of $P \to Q$ and a proof of P, we can derive a proof of Q. This is an application of *modus ponens*, a fundamental rule of inference in logic. The process involves applying the proof of $P \to Q$ to the proof of P, which allows us to conclude Q.

Conceptually, this process is similar to how a function operates: just as a function takes an input and transforms it into an output, the implication $P \rightarrow Q$ takes the proof of P (the input) and transforms it into a proof of Q (the output).

```
-- From a proof P → Q and a proof of P, we can obtain a proof of Q
theorem ThModusPonens (h : P → Q) (hP : P) : Q := by
exact h hP
```

2.2.4 Double implication

The double implication connective, Iff (represented by the symbol \leftrightarrow , which can be typed in Lean using \iff), is used to combine two propositions, expressing a biconditional relationship between them. Specifically, if P and Q are propositions, then P \leftrightarrow Q is also a proposition. This is read as "P if, and only if, Q," meaning that P is true if Q is true, and Q is true if P is true.

In other words, $P \leftrightarrow Q$ asserts that P and Q are logically equivalent: if one is true, the other must also be true, and if one is false, the other must also be false. This biconditional relationship combines two implications: $P \rightarrow Q$ and $Q \rightarrow P$. Both directions must hold for $P \leftrightarrow Q$ to be true, meaning that P and Q are interchangeable in terms of truth values.

```
#check Iff P Q
#check P + Q
```

If we **#print** Iff, Lean returns

```
structure Iff: Prop → Prop → Prop
number of parameters: 2
constructor:
Iff.intro: ∀ {a b : Prop}, (a → b) → (b → a) → (a ↔ b)
fields:
mp: a → b
mpr: b → a
```

Thus, Iff is a structure that takes two propositions (a and b) as inputs and returns a new proposition (a \leftrightarrow b). The constructor for Iff is named Iff.intro. It requires two proofs: one of a \rightarrow b and one of b \rightarrow a. Using these two proofs, it constructs a proof of a \leftrightarrow b.

Additionally, the Iff structure has two fields: - mp (short for modus ponens), which is a proof of $a \rightarrow b$ - mpr (short for modus ponens reverse), which is a proof of $b \rightarrow a$.

These fields store the two implications that together prove the equivalence $a \leftrightarrow b$. Essentially, the double implication $a \leftrightarrow b$ is shorthand for the conjunction $(a \rightarrow b) \land (b \rightarrow a)$, as we can see below:

```
-- From P ↔ Q we can derive (P → Q) ∧ (Q → P)
theorem ThIffOut (h : P ↔ Q) : (P → Q) ∧ (Q → P) := by
apply And.intro
-- Left
exact h.mp
-- Right
exact h.mpr
```

In the previous proof, from $P \leftrightarrow Q$, we can derive $(P \rightarrow Q) \land (Q \rightarrow P)$. To do this, we use the And.intro constructor To obtain the left hand side of the desired proposition we use the mp field and to obtain the right hand side we use the mpr field.

In the previous proof, from $P \to Q$ and $Q \to P$ we can derive $P \leftrightarrow Q$. To do this, we use the Iff.intro constructor.

2.2.5 True

The logical constant True is a proposition that is always true.

```
#check True
```

If we **#print True**, Lean returns

```
inductive True : Prop
number of parameters: 0
constructors:
True.intro : True
```

The True type in Lean represents the logical proposition true. It is a proposition and has no parameters. The only constructor for True is True.intro. This constructor is the canonical proof of the proposition True. When we use True.intro, we are essentially providing a proof that True is true, which completes any proof that requires a True proposition.

```
-- True can always be obtained
theorem ThTrueIn : True := by
exact True.intro
```

An alternative way to obtain a proof of True is to write trivial, which is an element of type True.

```
-- Trivial is an element of type True
theorem ThTrivial: True := by
exact trivial
```

2.2.6 False

The logical constant False is a proposition that is always false.

```
#check False
```

If we #print False, Lean returns

```
inductive False : Prop
number of parameters: 0
constructors:
```

The False type in Lean represents the logical proposition false. It is an inductive type, but unlike True, it has no constructors. This means that no terms or proofs of type False can exist. The absence of constructors implies that the type is uninhabited—there is no way to construct a proof of False. Given that False has no constructors, the principle of *ex falso quodlibet* (from falsehood, anything follows) holds: if we can derive a proof of False, we can derive any other proposition. This is the logical principle that allows us to infer arbitrary conclusions from a contradiction. To apply this principle, Lean provides the tactic False.elim. This tactic allows us to derive any proposition from a proof of False.

```
-- False implies any proposition
theorem ThExFalso : False → P := by
intro h
exact False.elim h
```

2.2.7 Negation

In Lean, the negation connective Not, represented by the symbol \neg , is used to express the negation of a proposition. Specifically, if P is a proposition, then \neg P is another proposition that reads as *not* P. In logical terms, \neg P means that P is false.

```
#check Not P
#check ¬P
```

If we #print Not, Lean returns

```
def Not : Prop → Prop :=
1 fun a => a → False
```

That is, $\neg P$ is an abbreviation for the implication $P \rightarrow False$. Therefore, to prove $\neg P$, we need to show that assuming P leads to a contradiction. Let's see an example.

```
theorem ThModusTollens (h1 : P → Q) (h2 : ¬Q) : ¬P := by

-- Assume P is true (to prove ¬P, which is P → False).

intro h3

-- Derive Q from P → Q and P.

have h4 : Q := by

exact h1 h3

-- Use ¬Q (Q → False) and Q to derive False.

exact h2 h4
```

In the above theorem, we are given the hypotheses $h1: P \to Q$ and $h2: \neg Q$, and our goal is to prove $\neg P$. To do this, we begin by assuming P and aim to derive False. From the assumption P, we can use $h1: P \to Q$ to derive Q. Then, since we also have $h2: \neg Q$, which asserts that Q is false, we reach a contradiction. This contradiction allows us to conclude False, which completes the proof of $\neg P$. The theorem demonstrates the well-known logical principle of *Modus Tollens*, a fundamental rule in classical logic.

2.3 Decidable propositions

A proposition is **decidable** if we can constructively determine whether it is true or false. That is, we have either a proof of the proposition or a proof of its negation. In Lean, **decidability** of a proposition is captured by the inductive type **Decidable**.

If we #print Decidable, Lean returns

```
inductive Decidable : Prop → Type
number of parameters: 1
constructors:
Decidable.isFalse : {p : Prop} → ¬p → Decidable p
Decidable.isTrue : {p : Prop} → p → Decidable p
```

Decidable takes a proposition p: Prop as a parameter. This type expresses the idea that we can constructively decide whether p holds or not—that is, we can either prove p or prove its negation $\neg p$. The Decidable type has two constructors: Decidable.isTrue and Decidable.isFalse. The constructor isTrue takes a proof of p and yields a value of type Decidable p, indicating that p is provably true. Conversely, isFalse takes a proof of $\neg p$ and returns a value of type Decidable p, indicating that p is provably false.

In the code below, we prove that True and False are decidable, and that each logical connective is decidable—provided that the propositions they operate on are themselves decidable.

```
True is decidable
   def DecidableTrue : Decidable True := by
     exact isTrue trivial
   -- False is decidable
   def DecidableFalse : Decidable False := by
     exact isFalse id
    - If 'P' is decidable, then '¬ P' is decidable
   def DecidableNot \{P : Prop\} : Decidable P \rightarrow Decidable (\neg P) := by
     intro hP
     match hP with
12
         isFalse hP => exact isTrue (fun h => False.elim (hP h))
13
        isTrue hP => exact isFalse (fun h => False.elim (h hP))
   -- If 'P' and 'Q' are decidable, then 'P Λ Q' is decidable
   def DecidableAnd \{P \ Q : Prop\}: Decidable P \rightarrow Decidable \ Q \rightarrow Decidable \ (P \land Q) := by
17
   intro hP hQ
```

```
match hP, hQ with
        | isFalse hP, _
                                     => exact isFalse (fun h => hP h.left)
20
                     , isFalse hQ => exact isFalse (fun h => hQ h.right)
21
         isTrue hP , isTrue hQ => exact isTrue (And.intro hP hQ)
    - If 'P' and 'Q' are decidable, then 'P v Q' is decidable
24
   def DecidableOr \{P \ Q : Prop\} : Decidable \ P \rightarrow Decidable \ Q \rightarrow Decidable \ (P \ v \ Q) := by
25
     intro hP hQ
26
     match hP, hQ with
27
         isTrue hP , .
                                      => exact isTrue (Or.inl hP)
28
         _ , isTrue hQ => exact isTrue (Or.inr hQ)
isFalse hP, isFalse hQ => exact isFalse (fun h => h.elim hP hQ)
29
30
31
   -- If 'P' and 'Q' are decidable, then 'P → Q' is decidable
32
   def DecidableImplies \{P \ Q : Prop\} : Decidable \ P \rightarrow Decidable \ Q \rightarrow Decidable \ (P \rightarrow Q) := by
33
34
     intro hP hQ
     match hP, hQ with
35
         isFalse hP , .
                                     => exact isTrue (fun h => False.elim (hP h))
36
                       , isTrue hQ => exact isTrue (fun _ => hQ)
37
         isTrue hP , isFalse hQ => exact isFalse (fun h => hQ (h hP))
38
39
   -- If 'P' and 'Q' are decidable, then 'P ↔ Q' is decidable
40
   def DecidableIff \{P \ Q : Prop\} : Decidable \ P \rightarrow Decidable \ Q \rightarrow Decidable \ (P \leftrightarrow Q) := by
41
     intro hP hQ
42
     have hPtoQ : Decidable (P \rightarrow Q) := DecidableImplies hP hQ
     have hQtoP: Decidable (Q \rightarrow P) := DecidableImplies hQ hP
     match hPtoQ, hQtoP with
45
        | isFalse hPtoQ, _ => exact isFalse (fun h => hPtoQ h.mp)
46
          _, isFalse hQtoP => exact isFalse (fun h => hQtoP h.mpr)
         isTrue hPtoQ, isTrue hQtoP => exact isTrue (Iff.intro hPtoQ hQtoP)
```

2.4 Classical Logic

The statement $P \lor \neg P$ is a classic example of a proposition that cannot be proven in general without additional assumptions. This is because Lean's logic is based on intuitionistic logic by default, which does not assume that every proposition must be either true or false. In intuitionistic logic, to prove $P \lor \neg P$, we would need to provide a constructive proof for either $P \lor \neg P$, but such a proof does not always exist. Without more information about P, there is no general method to construct a proof of either $P \lor \neg P$. However, if we wish to work within classical logic in Lean, we can explicitly assume the law of excluded middle as an axiom. Lean provides a mechanism for doing this through the Classical namespace. Here's how we can prove $P \lor \neg P$ using classical logic.

```
-- We open the 'Classical' namespace
open Classical
-- We use 'Classical.em' to prove the excluded middle
theorem ThExcludedMiddle : P v ¬P := by
exact em P
```

Another important classical equivalence is between P and $\neg\neg P$. In classical logic, this equivalence allows for proving propositions by contradiction. To prove a proposition P by contradiction, we assume $\neg P$ and derive a contradiction. This gives us $\neg\neg P$, and by the equivalence between P and $\neg\neg P$, we can conclude that P is true. This form of reasoning, known as *proof by contradiction*, can be reproduced in Lean by using the byContradiction tactic, as demonstrated below.

```
-- Classical Logic allows proofs by contradiction

theorem ThDoubNeg: P → ¬¬P := by

apply Iff.intro

-- Implication P → ¬¬P

intro hP

intro hNP

exact hNP hP

-- Implication ¬¬P → P

intro hNNP

have hF: ¬P → False := by

intro hNP

exact hNNP hNP

apply byContradiction hF
```

We observe that in the equivalence between P and $\neg\neg P$, the implication $P \rightarrow \neg\neg P$ holds in intuitionistic logic. However, the converse, $\neg\neg P \rightarrow P$, is the key result that the byContradiction tactic relies on. In intuitionistic logic, we cannot conclude P simply because assuming $\neg P$ leads to a contradiction. Instead, intuitionistic logic only allows us to derive $\neg\neg P$ from such a contradiction, meaning that we can assert it is not the case that P is false, but we cannot constructively prove P itself. Therefore, the step from $\neg\neg P$ to P (double negation elimination) is not valid in intuitionistic logic, as it goes beyond what is constructively derivable.

An alternative is to use false_or_by_contra, which transforms the goal into False, switching to classical reasoning if the goal is not decidable.

2.5 Exercises

The following exercises are sourced from Daniel Clemente's website.

```
variable (A B C D I L M P Q R : Prop)
   theorem T51 (h1 : P) (h2 : P \rightarrow Q) : P \land Q := by sorry
   theorem T52 (h1 : P \land Q \rightarrow R) (h2 : Q \rightarrow P) (h3 : Q) : R := by sorry
   theorem T53 (h1 : P \rightarrow Q) (h2 : Q \rightarrow R) : P \rightarrow (Q \land R) := by sorry
   theorem T54 (h1 : P) : Q \rightarrow P := by sorry
   theorem T55 (h1 : P \rightarrow Q) (h2 : \neg Q) : \neg P := by sorry
   theorem T56 (h1 : P \rightarrow (Q \rightarrow R)) : Q \rightarrow (P \rightarrow R) := by sorry
   theorem T57 (h1 : P v (Q A R)) : P v Q := by sorry
   theorem T58 (h1 : (L \land M) \rightarrow ¬P) (h2 : I \rightarrow P) (h3 : M) (h4 : I) : ¬L := by sorry
17
   theorem T59 : P \rightarrow P := by sorry
20
   theorem T510 : ¬ (P ∧ ¬P) := by sorry
   theorem T511 : P v ¬P := by sorry
23
   theorem T512 (h1 : P \times Q) (h2 : \neg P) : Q := by sorry
   theorem T513 (h1 : A v B) (h2 : A \rightarrow C) (h3 : \negD \rightarrow \negB) : C v D := by sorry
28
   theorem T514 (h1 : A \leftrightarrow B) : (A \land B) v (\negA \land \negB) := by sorry
```

3 Quantifiers

This chapter introduces the core concepts of quantifiers in Lean, which are pivotal in expressing logical statements. Quantifiers allow us to make general statements about elements of a type. The universal quantifier (\forall) asserts that a property holds for all elements of a type, while the existential quantifier (\exists) states that there exists at least one element of the type for which the property holds. Through examples and exercises, this chapter will help us understand how to use these quantifiers effectively in Lean.

3.1 Predicates

For simplicity, we will assume that A is an arbitrary type and P is a predicate on P, i.e., $P : A \rightarrow Prop$, which is a function mapping elements of A to logical propositions.

```
variable (A : Type)
variable (P Q : A → Prop)
```

3.1.1 Examples of predicates

Given a type A, we can define various predicates on it. One trivial example is the predicate that always evaluates to False, meaning it never holds for any element of A. Similarly, we can define a predicate that always evaluates to True, meaning it holds for every element of A. These can be expressed as follows:

```
-- False predicate

def PFalse {A : Type} : A → Prop := fun _ => False

-- True predicate

def PTrue {A : Type} : A → Prop := fun _ => True
```

In the definitions above, the underscore $_$ is a placeholder for an arbitrary input of type A, indicating that the function ignores its argument and always returns a constant value—either False or True. This underscores the fact that PFalse and PTrue do not depend on any particular element of A, but rather define predicates that are uniformly false or true for all elements of A.

3.1.2 Operations on predicates

Given two predicates P, Q: $A \rightarrow Prop$, we can define their **conjunction**, a new predicate that holds for an element a: A if and only if both P a and Q a are true. This is captured by the following definition:

```
-- Conjunction of two predicates

def PAnd {A : Type} (P Q : A → Prop) : A → Prop := by

intro a

exact P a ∧ Q a
```

Here, the function PAnd takes two predicates P and Q and returns a new predicate PAnd P Q on A. This new predicate holds at a: A if and only if both P a and Q a hold.

In Lean, the **notation** keyword allows us to define custom symbolic representations for functions and expressions, improving readability and aligning with standard mathematical conventions. It introduces shorthand notation for existing definitions, making logical and algebraic expressions more intuitive.

For example, we can define a custom infix operator λ for the conjunction of two predicates:

```
notation : 65 lhs:65 " x " rhs:66 => PAnd lhs rhs
```

Here, notation specifies that $P \land Q$ should be interpreted as PAnd P Q. The numbers 65 and 66 indicate precedence levels, ensuring that expressions involving Λ are parsed correctly relative to other operators. The lhs and rhs keywords designate the left-hand side and right-hand side of the notation, ensuring proper binding behavior.

By using notation, we can write logical expressions in a way that closely resembles traditional mathematical notation, making proofs and definitions more readable. To verify the notation, we can check the type of $P \wedge Q$:

```
1 #check P Λ Q
```

Lean confirms that $P \wedge Q$ is a predicate on A, reinforcing that this notation correctly represents the conjunction of two predicates.

Building on the previous example, we can similarly define other fundamental logical operations on predicates. These include the disjunction $P \vee Q$; the implication $P \rightarrow Q$; the biconditional $P \leftrightarrow Q$; and the negation $\neg P$. Each of these operations extends our ability to reason about predicates.

3.2 Universal Quantifier

The \forall command (typed as \forall) represents the universal quantifier. It is used to express statements of the form \forall (a: A), P a, which reads as "for every a of type A, the proposition P a holds." This enables us to make general statements about all elements of a given type. Specifically, if P is a predicate on A, then \forall (a: A), P a is of type Prop. The proposition \forall (a: A), P a is true if P a is true for every element a of type A. The following three forms serve to denote the universal quantifier in Lean.

```
1 #check ∀ (a : A), P a
2 #check ∀ a, P a
3 #check ∀ {a : A}, P a
```

In the second form, the type of the variable is not explicitly stated, as Lean can infer it from context. In the third form, the quantifier binding is implicit, indicated by curly braces {}. This allows Lean to automatically infer the value of a whenever possible, reducing the need for explicit annotations.

To prove a statement of the form \forall (a : A), P a, we typically use the intro tactic (or just write a lambda function directly in term mode). This introduces an arbitrary element a of type A and requires us to prove P a for that arbitrary a.

```
theorem T1 : ∀ (a : A), P a := by
intro a
sorry
```

On the other hand, if we have a hypothesis $h : \forall (a : A)$, P = A and we want to use it for a specific value A : A, we can apply A : A to get A : A.

```
variable (a : X)
variable (h : ∀ (a : A), P a)

#check h a
```

The specialize tactic is used to apply a hypothesis that is a universally quantified statement to specific arguments. This allows us to instantiate a general hypothesis with particular values, making it easier to work with in our proof. When we have a hypothesis of the form $h: \forall (a:A)$, P a, we can use specialize to apply h to a specific value a:A, resulting in a new hypothesis h:P a. This is particularly useful when we want to focus on a specific instance of a general statement.

```
theorem T2 (a : A) (h : ∀ (a : A), P a) : P a := by

specialize h a
exact h
```

3.3 Existential Quantifier

The \exists command (typed as \exists) represents the existential quantifier. It is used to express statements of the form \exists (a: A), P a, which reads as "for some a of type A, the proposition P a holds." This enables us to make particular statements about elements of a given type. Specifically, if P is a predicate on A, then \exists (a: A), P a is of type Prop. The proposition \exists (a: A), P a is true if P a is true for some element a of type A. The following three forms serve to denote the existential quantifier in Lean.

```
#check 3 (a : A), P a

#check 3 a, P a

#check Exists P
```

Unlike the universal quantifier, the existential quantifier does not support implicit binding. Attempting to write $\exists \{a : A\}$, P a results in an error because Lean requires the bound variable a to be explicitly declared.

If we #print Exists, Lean returns

```
inductive Exists.{u}: α{ : Sort u} → α( → Prop) → Prop
number of parameters: 2
constructors:
Exists.intro : ∀ α{ : Sort u} {p: α → Prop} (w : α), p w → Exists p
```

This code defines the existential quantifier as an inductive type, Exists. It has two parameters: α : Sort u, the type of the witness, and p: $\alpha \to \mathsf{Prop}$, the predicate that the witness must satisfy. The function type $(\alpha \to \mathsf{Prop}) \to \mathsf{Prop}$ ensures that Exists takes a predicate p: $\alpha \to \mathsf{Prop}$ and returns a proposition asserting the existence of an element of α that satisfies p.

The single constructor, Exists.intro, constructs a proof of Exists p given a witness a: α and a proof that a satisfies p. Lean infers α and p from context, so to obtain an element of type Exists p, it suffices to provide a and a proof of p a. Here's an example of how the constructor works:

```
theorem T3 (a : A) (h : P a) : ∃ (a : A), P a := by
exact Exists.intro a h
```

Since Exists is an inductive type, we can use cases on a proof of this type to extract both the witness and the proof that it satisfies the predicate P.

```
variable (Q : Prop)
theorem T4 (h1 : ∃ (a : A), P a) (h2 : ∀ (a : A), P a → Q) : Q := by
cases h1
rename_i a h3
specialize h2 a
exact h2 h3
```

Another alternative is to use Exists.elim the eliminator for the Exists type, allowing us to use the witness and the proof of predicate on the witness.

```
theorem T5 (h1 : ∃ (a : A), P a) (h2 : ∀ (a : A), P a → Q) : Q := by
apply Exists.elim h1
exact h2
```

3.4 Exercises

The following propositions are common identities involving quantifiers.

```
open Classical
    variable (a b c : A)
    variable (R : Prop)
    theorem E1 : \exists ( (a : A), R) \rightarrow R := by sorry
    theorem E2 (a : A) : R \rightarrow \exists ((a : A), R) := by sorry
    theorem E3 : \exists ( (a : A), P a \land R) \leftrightarrow \exists ( (a : A), P a) \land R := by sorry
    theorem E4 : \exists ( (a : A), (P v Q) a) \leftrightarrow \exists ( (a : A), P a) v \exists ( (a : A), Q a) := by sorry
    theorem E5 : \forall ( (a : A), P a) \leftrightarrow \neg \exists ( (a : A), (\negP) a) := by sorry
    theorem E6 : \exists ( (a : A), P a) \leftrightarrow \neg \forall ( (a : A), (\neg P) a) := by sorry
15
    theorem E7: (\exists \neg (a : A), P a) \leftrightarrow \forall ((a : A), (\neg P) a) := by sorry
    theorem E8 : (\forall \neg (a : A), P a) \leftrightarrow \exists ((a : A), (\neg P) a) := by sorry
    theorem E9 : \forall ( (a : A), P a \rightarrow R) \leftrightarrow \exists ( (a : A), P a) \rightarrow R := by sorry
21
    theorem E10 (a : A) : \exists ( (a : A), P a \rightarrow R) \rightarrow \forall ( (a : A), P a) \rightarrow R := by sorry
    theorem E11 (a : A) : \exists ( (a : A), R \rightarrow P a) \rightarrow (R \rightarrow \exists (a : A), P a) := by sorry
```

4 Equalities

This chapter provides an introduction to the concept of equality in the Lean theorem prover. It explores how equality is defined and utilized in Lean's type theory.

```
variable (X : Type)
variable (x y a b c d : X)
variable (P : X → Prop)
```

4.1 Equality

Given two terms of any given type we can consider the type of their equality (Eq), which is a term of type Prop.

```
#check Eq #check Eq x y #check x = y
```

If we **#print Eq**, Lean returns

```
inductive Eq.{u_1} : { \alpha : Sort u_1 } \rightarrow \alpha \rightarrow \alpha \rightarrow Prop number of parameters: 2 constructors:

Eq.refl : \forall { \alpha : Sort u_1 } (a : \alpha), a = a
```

Eq is an inductive type that takes two implicit parameters: a universe level u_1 and $\{\alpha : Sort u_1\}$, a type at this universe level. Given any two values of type α —the elements being compared for equality—it returns a proposition in Prop, asserting their equality.

The negation of an equality a = b is expressed in Lean using Ne or the symbol \neq (written as neq). This is simply the negation of the equality proposition, meaning \neg (a = b).

```
#check Ne
2 #check Ne x y
3 #check x \neq y
```

4.1.1 Reflexivity

The Eq type has a single constructor, Eq.refl, which captures the principle of reflexivity: every element is equal to itself. This constructor takes an implicit type α : Sort u_1 and an element a: α , producing a proof of the proposition a = a. In other words, it establishes that any element is identical to itself. This is a more powerful theorem than it may appear at first, because although the statement of the theorem is a = a, Lean will allow anything that is definitionally equal to that type. So, for instance, a = a, the proven in Lean by reflexivity.

As a shorthand, we can use rfl instead of Eq.refl. The key difference is that rfl infers a implicitly rather than requiring it explicitly. Here's an example demonstrating how the constructor works:

```
theorem TEqRfl (a : X) : a = a := by
exact rfl

theorem T1 : 2 + 2 = 4 := by
exact rfl
```

4.1.2 Symmetry

If we have h : a = b as a hypothesis, we can derive b = a using the symmetric property of equality. This is achieved by applying Eq.symm to h. Alternatively, the shorthand h.symm can be used in place of Eq.symm h to provide a proof of b = a.

```
theorem TEqSymm (h : a = b) : (b = a) := by
exact Eq.symm h -- also (exact h.symm)
```

4.1.3 Transitivity

If we have h1: a = b and h2: b = c as hypotheses, we can derive a = c using the transitive property of equality. This is achieved by applying Eq.trans to h1 and h2. Alternatively, the shorthand h1.trans h2 can be used in place of Eq.trans h1 h2 to provide a proof of a = c.

```
theorem TEqTrans (h1 : a = b) (h2 : b = c) : (a = c) := by
exact Eq.trans h1 h2 -- also (exact h1.trans h2)
```

4.1.4 Rewrite

The rewrite [e] tactic applies the identity e as a rewrite rule to the target of the main goal.

- The rewrite $[e_1, \ldots, e_n]$ tactic applies the given rewrite rules sequentially.
- The rewrite [e] at l variant applies the rewrite at specific locations l, which can be either * (indicating all applicable places) or a list of hypotheses in the local context.

We can also use rw, which automatically attempts to close the goal by applying rfl after performing the rewrite.

```
theorem TEqRw (h1 : a = b) : P b ↔ P a := by

apply Iff.intro

-- P b → P a

intro h2

rewrite [h1] -- rewrites the goal using h1

exact h2

-- P a → P b

intro h2

rw [h1] at h2 -- rewrites h2 using h1

exact h2
```

4.1.5 calc

The calc command allows for structured reasoning by chaining a sequence of equalities or inequalities. This approach makes multi-step proofs clearer and easier to follow. The general syntax is:

Here:

- expr_1, expr_2, expr_3, ... are expressions.
- justification_1, justification_2, ... are proofs or explanations that establish each equality or inequality.
- The _ syntax connects the steps, ensuring a logical flow.

Here's an example demonstrating the use of the calc command.

```
theorem TCalc (h1 : a = b) (h2 : b = c) (h3: c = d) : (a = d) := by

calc

a = b := by rw [h1]

_ = c := by rw [h2]

_ = d := by rw [h3]
```

4.2 Types with meaningful equality

Equality (=) is a fundamental concept in Lean, defined for all types. However, its interpretation and behavior depend on the structure of the specific type. While equality is always available, its computational properties—such as whether it is decidable—vary depending on the type.

```
#eval x = y -- Returns error
#eval 2 + 2 = 4 -- Returns true
```

4.2.1 Decidable Equality

A type has *decidable equality* if there exists an algorithm to determine whether any two elements of that type are equal. In Lean, this is captured by the <code>DecidableEq</code> type class.

If we #print DecidableEq Lean returns

An example of a type with decidable equality is **Bool**. The following proof defines an instance of **DecidableEq** for booleans:

```
def DecidableEqBool : DecidableEq Bool := by
    intro a b
    match a, b with
    | false, false => exact isTrue rfl
    | false, true => exact isFalse (fun h => Bool.noConfusion h)
    | true , false => exact isFalse (fun h => Bool.noConfusion h)
    | true , true => exact isTrue rfl
```

In Lean, the noConfusion principle is a powerful tool for reasoning about inductive types. It captures two essential properties of constructors: they are *disjoint* (no two distinct constructors can produce equal values) and *injective* (equal constructor applications imply equal arguments). For the type Bool, which has exactly two constructors—true and false—these properties mean that true \neq false and false \neq true. The expression Bool.noConfusion h exploits this fact: when we assume a contradictory equality like true = false, noConfusion produces a logical contradiction, allowing us to conclude that such an assumption is invalid. More generally, noConfusion can be used to eliminate impossible equalities between constructors or to extract equalities of their arguments when constructors match.

Some other examples of types with decidable equality include:

- Basic types such as Nat, Int, and String, which all have decidable equality.
- Inductive types and structures, provided that their components also have decidable equality.

```
#check Nat.decEq
#check Int.decEq
#check String.decEq
```

Consider the following functions.

```
-- Function Charp
   def Charp : Nat → Nat → Bool := by
     intro n m
     bv_cases n = m
     -- Case n = m
     exact true
     -- Case n ≠ m
     exact false
   -- Function Charp2
   def Charp2 : Nat \rightarrow Nat \rightarrow Bool := fun n m => if n = m then true else false
   -- Function Charpoint
   noncomputable def Charpoint {A : Type} : A → A → Bool := by
15
     intro a b
     by_cases a = b
     -- Case a = b
    exact true
```

The function Charp takes two natural numbers, n and m, and determines whether they are equal. It returns true if n = m and false otherwise. This is achieved using the by_cases tactic, which performs a case distinction: if n = m, the function returns true, and if $n \neq m$, it returns false. An alternative implementation, Charp2, expresses the same function using an if ... then ... else expression.

In general, equality in an arbitrary type is not necessarily computable. For instance, in the function Charpoint, which generalizes Charp to an arbitrary type A, the use of by_cases a = b introduces a logical case distinction that may not be computable. Consequently, the function is marked as noncomputable, indicating that it relies on classical reasoning rather than constructive computation. To ensure computability, the alternative function Charpoint2 explicitly assumes that A has decidable equality by requiring the type class instance [DecidableEq A]. This assumption allows Lean to treat equality on A as a computable procedure, ensuring that the function remains fully computable.

4.2.2 Equality in Prop

In Prop, the type of propositions, equality is defined in terms of logical equivalence, as stated by the axiom of *propositional extensionality*, written propext. An *axiom* is a fundamental assumption accepted without proof.

If we #print propext, Lean returns:

```
axiom propext : \forall \{a \ b : Prop\}, (a \leftrightarrow b) \rightarrow a = b
```

This means that if two propositions a and b are logically equivalent ($a \leftrightarrow b$), then they are considered equal. Note that propext is an axiom. Axioms are accepted by definition, rather than being derived from existing theorems. This axiom enables the substitution of equivalent propositions within any context. However, unlike equality for concrete types such as Nat or Int, logical equivalence is generally undecidable—determining whether two arbitrary propositions are equivalent is, in general, an undecidable problem.

```
theorem TEqProp {Q : Prop} : (Q \( \) True) = Q := by

apply propext

apply Iff.intro

-- Q \( \) True \( \) Q

intro \( \) b2

exact \( \) 2.left

-- Q \( \) Q \( \) True

intro \( \) 2

apply And.intro

exact \( \) 2

trivial
```

We can always inspect the axioms upon which a theorem relies by using the **#print axioms** command. For instance, to check the axioms involved in the **TEqProp** theorem, we can run:

```
#print axioms TEqProp
```

The above code returns 'TEqProp' depends on axioms: [propext].

5 Functions

In Lean, a **function** is a relation that associates each element of one type (the domain) with a unique element of another type (the codomain). This concept is foundational in both mathematics and programming. In this chapter, we delve into how functions are represented and utilized in Lean. Key topics include:

- The definition and notation of functions in Lean.
- Function composition and application.
- Special types of functions, such as injective (one-to-one), surjective (onto), and bijective (one-to-one and onto) functions, and their significance in mathematical reasoning.

By the end of this chapter, we will have a basic foundation for defining, manipulating, and formally reasoning about functions in Lean.

Throughout this chapter, we assume that A, B, C and D are arbitrary types

```
variable (A B C D : Type)
```

Given two types, A and B, the expression $A \to B$ denotes the type of all functions from A to B. The arrow \to is written in Lean using \to. In this context, A is called the *domain*, and B the *codomain*. Each element f of $A \to B$ is a function. If a: A is an element of the domain, then f a represents its image under f and belongs to B. In Lean, function application does not require parentheses, making the syntax more natural and readable. Instead of writing f(a), as in many programming languages, Lean uses f a.

```
-- The type of all functions from A to B

#check A → B

-- Declare functions f and g
variable (f g : A → B)

-- Declare an element a of type A
variable (a : A)

-- This is an element of type B

#check f a
```

5.0.1 Equality

The function type $A \rightarrow B$ comes with a natural notion of equality. Function extensionality, expressed by funext, states that if two functions with the same domain and codomain produce the same output for every input, then they are equal:

 $(\forall (a : A), f a = g a) \rightarrow f = g$. In many dependent type theory systems, function extensionality is an axiom, as it cannot be derived from the core logic alone. Conversely, if two functions are equal, then they yield the same result for every input:

 $f = g \rightarrow V$ (a : A), f = g a. This follows from the *congruence property* of functions, implemented in Lean as congrFun. The following example illustrates both principles:

```
theorem TEQApl : f = g ↔ ∀ (a : A), f a = g a := by

apply Iff.intro

-- f = g → ∀ (a : A), f a = g a

intro h a

exact congrFun h a

-- ∀( (a : X), f a = g a) → f = g

intro h

exact funext h
```

5.0.2 Composition

If $f : A \rightarrow B$ and $h : B \rightarrow C$ are functions, their composition, written as $h \circ f$, is a function of type $A \rightarrow C$. In Lean, the composition operator \circ is written using \comp or \circ.

```
variable (h : B → C)
the contract the contr
```

Composition of functions is associative.

```
theorem TCompAss {A B : Type} {f : A \rightarrow B} {g : B \rightarrow C} {h : C \rightarrow D} : h \circ (g \circ f) = (h \circ g) \circ f := by funext a exact rfl
```

5.0.3 Identity function

For any type A, we can define the *identity function* id, which has type A \rightarrow A. This function simply returns its input unchanged, meaning that for every a: A, we have id a = a.

If we #print id, Lean returns:

```
def id.{u} : { \alpha : Sort u } \rightarrow \alpha \rightarrow \alpha := fun { \alpha } a => a
```

This definition shows that id takes an implicit argument $\{\alpha : Sort u\}$ —a type in any universe—and an explicit argument $a : \alpha$, returning a unchanged.

The identity function serves as a neutral element for function composition, meaning that composing any function with id, whether on the left or the right, leaves the function unchanged.

```
theorem TIdNeutral : (f o id = f) x (id o f = f) := by

apply And.intro

-- f o id = f

funext a
exact rfl

-- id o f = f

funext a
exact rfl

exact rfl
```

Observe that in the proof above, the equality $f \circ id = f$ uses id to denote the identity function on A, while in the equality $id \circ f = f$, id refers to the identity function on B. This proof showcases Lean's capabilities for type inference.

If we want to explicitly specify the domain of the identity function, we can disable the automatic insertion of implicit parameters by using the <code>@</code> symbol before <code>id</code>. For example, <code>@id</code> A returns the identity function defined on the type <code>A</code>.

```
#check @id A
```

5.1 Injections

In this section, we introduce the concepts of injective function, monomorphism, and left inverse of a function, and we examine their relationships and key properties.

Injective

We say that a function $f : A \rightarrow B$ is *injective* or *one-to-one* if, for all pairs of elements a1, a2 : A, the equality f a1 = f a2 implies a1 = a2.

```
def injective {A B : Type} (f : A \rightarrow B) : Prop := \forall{a1 a2 : A}, (f a1 = f a2) \rightarrow (a1 = a2)
```

Monomorphism

We say that a function $f:A\to B$ is a monomorphism if, for every other type C and every pair of functions $g:A\to A$, the equality $f\circ g=f\circ h$ implies that g=h.

```
def monomorphism {A B : Type} (f : A \rightarrow B) : Prop := \forall \{C : Type\}, \ \forall \{g \ h : C \rightarrow A\}, \ f \circ g = f \circ h \rightarrow g = h
```

Left inverse

We say that a function $f : A \rightarrow B$ has a *left inverse* if there exists a function $g : B \rightarrow A$ such that $g \circ f = id$.

```
def hasleftinv {A B : Type} (f : A \rightarrow B) : Prop := \exists(g : B \rightarrow A), g \circ f = id
```

5.1.1 An example: The identity

Every identity is injective, a monomorphism and has a left inverse (the identity itself).

```
-- The identity is injective
  theorem TIdInj : injective (@id A) := by
     -- rw [injective] -- rw to recover the definition
    intro a1 a2 h
    calc
      a1 = id a1 := by exact rfl
       _ = id a2 := by exact h
       _{-} = a2
               := by exact rfl
   -- The identity is a monomorphism
  theorem TIdMon : monomorphism (@id A) := by
11
    -- rw [monomorphism] -- rw to recover the definition
13
    intro C g h h1
    calc
      g = id \circ g := by exact rfl
16
      _{-} = id \circ h := by exact h1
       _ = h
                := by exact rfl
17
   -- The identity has a left inverse
19
  theorem TIdHasLeftInv : hasleftinv (@id A) := by
     -- rw [hasleftinv] -- rw to recover the definition
    apply Exists.intro id
    exact rfl
```

5.1.2 Exercises

```
-- Negation of injective
theorem TNegInj {A B : Type} {f : A → B} : ¬ (injective f) ↔ ∃(a1 a2 : A), f a1 = f a2 ∧ a1 ≠ a2 := by
sorry

-- The composition of injective functions is injective
theorem TCompInj {A B : Type} {f : A → B} {g : B → C} (h1 : injective f) (h2 : injective g) : injective
(g ∘ f) := by sorry

-- If the composition (g ∘ f) is injective, then f is injective
theorem TCompRInj {A B : Type} {f : A → B} {g : B → C} (h1 : injective (g ∘ f)) : (injective f) := by
sorry

-- Injective and Monomorphism are equivalent concepts
theorem TCarMonoInj {A B : Type} {f : A → B} : injective f ↔ monomorphism f := by sorry

-- If a function has a left inverse then it is injective
theorem THasLeftInvtoInj {A B : Type} {f : A → B} : hasleftinv f → injective f := by sorry
```

5.2 Surjections

In this section, we introduce the concepts of surjective function, epimorphism, and right inverse of a function, and we examine their relationships and key properties.

Surjective

We say that a function $f:A\to B$ is *surjective* or *onto* if, for every element b:B, there exists an element a:A such that f:A=B.

```
def surjective {A B : Type} (f : A \rightarrow B) : Prop := \forall{b : B}, \exists(a : A), f a = b
```

Epimorphism

We say that a function $f : A \to B$ is an *epimorphism* if, for every other type C and every pair of functions $g h : B \to C$, the equality $g \circ f = h \circ f$ implies that g = h.

```
def epimorphism {A B : Type} (f : A \rightarrow B) : Prop := \forall \{C : Type\}, \forall \{g \ h : B \rightarrow C\}, g \circ f = h \circ f \rightarrow g = h
```

Right inverse

We say that a function $f : A \rightarrow B$ has a *right inverse* if there exists a function $g : B \rightarrow A$ such that $f \circ g = id$.

```
def hasrightinv {A B : Type} (f : A \rightarrow B) : Prop := \exists(g : B \rightarrow A), f \circ g = id
```

5.2.1 An example: The identity

Every identity is surjective, an epimorphism and has a right inverse (the identity itself).

```
- The identity is surjective
  theorem TIdSurj : surjective (@id A) := by
     -- rw [surjective] -- rw to recover the definition
    intro a
    apply Exists.intro a
    exact rfl
   -- The identity is an epimorphism
  theorem TIdMon : epimorphism (@id A) := by
    -- rw [epimorphism] -- rw to recover the definition
    intro C g h h1
    calc
12
      g = g o id := by exact rfl
13
      _{-} = h \circ id := by exact h1
14
                 := by exact rfl
       _{-} = h
   -- The identity has a right inverse
17
  theorem TIdHasRightInv : hasrightinv (@id A) := by
    -- rw [hasrightinv] -- rw to recover the definition
    apply Exists.intro id
    exact rfl
```

5.2.2 Exercises

```
-- Negation of surjective
theorem TNegSurj {A B : Type} {f: A → B} : ¬ (surjective f) ↔ ∃(b : B), ∀ (a : A), f a ≠ b := by sorry

-- The composition of surjective functions is surjective
theorem TCompSurj {A B : Type} {f : A → B} {g : B → C} (h1 : surjective f) (h2 : surjective g) :
    surjective (g ∘ f) := by sorry

-- If the composition (g ∘ f) is surjective, then g is surjective
theorem TCompLSurj {A B : Type} {f : A → B} {g : B → C} (h1 : surjective (g ∘ f)) : (surjective g) := by
    sorry

-- Surjective and Epimorphism are equivalent concepts
theorem TCarEpiSurj {A B : Type} {f : A → B} : surjective f ↔ epimorphism f := by sorry

-- If a function has a right inverse then it is surjective
theorem THasRightInvtoInj {A B : Type} {f : A → B} : hasrightinv f → surjective f := by sorry
```

5.3 Bijections

In this section, we introduce the concepts of bijective function and isomorphism and we examine their relationships and key properties.

Bijective

We say that a function $f : A \rightarrow B$ is *bijective* if it is injective and surjective.

```
def bijective {A B : Type} (f : A \rightarrow B) : Prop := injective f \wedge surjective f
```

Isomorphism

We say that a function $f:A\to B$ is an isomorphism if there exists a function $g:B\to A$ such that $g\circ f=id$ \wedge $f\circ g=id$.

```
def isomorphism {A B : Type} (f : A \rightarrow B) : Prop := \exists (g : B \rightarrow A), g \circ f = id \land f \circ g = id
```

5.3.1 An example: The identity

Every identity is bijective and an isomorphism.

```
-- The identity is bijective
theorem TIdBij: bijective (@id A) := by
-- rw [bijective] -- rw to recover the definition
apply And.intro
exact TIdInj A
exact TIdSurj A

-- The identity is an isomorphism
theorem TIdMon: isomorphism (@id A) := by
rw [isomorphism] -- rw to recover the definition
apply Exists.intro id
apply And.intro
exact rfl
exact rfl
```

5.3.2 Exercises

```
-- The composition of bijective functions is bijective
theorem TCompBij {A B : Type} {f : A → B} {g : B → C} (h1 : bijective f) (h2 : bijective g) : bijective
(g ∘ f) := by sorry

-- A function is an isomorphism if and only if it has left and right inverse
theorem TCarIso {A B : Type} {f : A → B} : isomorphism f ↔ (hasleftinv f ∧ hasrightinv f) := by sorry

-- Every isomorphism is bijective
theorem TCarIsotoBij {A B : Type} {f : A → B} : isomorphism f → bijective f := by sorry
```

6 Natural numbers

The natural numbers—0, 1, 2, and so on—form the foundation of mathematics. In Lean and other proof assistants, natural numbers aren't taken for granted; instead, they are built from the ground up using *inductive types*. This approach not only mirrors their intuitive construction but also unlocks powerful tools for reasoning about them formally.

In this chapter, we'll explore how the natural numbers are defined inductively in Lean, and how such a definition allows us to reason about them using *case analysis* and *mathematical induction*. We'll also examine how to define functions on natural numbers using *recursion*, and use this technique to construct the familiar operations of *maximum* and *minimum*, *addition* and *multiplication*. The chapter concludes with exercises to reinforce our understanding and help us apply these concepts.

6.1 Definition

The natural numbers Nat are defined inductively in Lean using two constructors: zero, which represents the base case, and succ, which takes a natural number and returns its successor. This closely follows the Peano axioms, where 0 is a natural number and, if n is a natural number, then so is n + 1.

If we #print Nat, Lean returns:

```
inductive Nat : Type
number of parameters: 0
constructors:
Nat.zero : Nat
Nat.succ : Nat → Nat
```

Inductive types like Nat not only specify how values are built, but also provide fundamental principles of recursion and induction. These principles allow functions to be defined by pattern matching on constructors, and proofs to be carried out using structural induction.

Lean comes with the Nat type already implemented, along with many theorems related to natural numbers. However, to gain a deeper understanding of how natural numbers can be constructed and reasoned about, we will define our own custom type, which we will simply call N.

```
inductive N : Type where

| z : N |
| s : N → N |
| deriving Repr
```

The deriving Repr clause is used to automatically generate an instance of the Repr type class for a user-defined type. The Repr class defines how values of a type can be converted into a human-readable format, primarily for the purpose of displaying them during evaluation or debugging. When a type derives Repr, Lean synthesizes the necessary code to produce a structured string representation of any value of that type. This is particularly useful when using commands like #eval, where Lean attempts to evaluate an expression and display the result. Without a Repr instance, Lean would not know how to present the value, resulting in an error. By including deriving Repr in a type declaration, users enable Lean to show values automatically, making it easier to inspect the behaviour of programs and proofs.

If we **#print N**, Lean returns:

```
inductive N : Type
number of parameters: 0
constructors:

N.z : N
N.s : N → N
```

We can access the two constructors of N with N.z and N.s. To work with N without needing to prefix everything with N., we can open the namespace to bring its notation into scope.

```
open N #check z #check s
```

6.2 Cases

Assuming x is a variable in the local context with an inductive type, cases x splits the main goal, producing one goal for each constructor of the inductive type, in which the target is replaced by a general instance of that constructor.

The code below defines a function Eqzero in Lean, which takes a natural number n of type N and returns a boolean value in Bool. The purpose of this function is to compare the given number n with zero. The function is defined using cases over the structure of a natural number n, used to perform a case analysis. This splits the proof into two cases:

- 1. Case Zero: When n is zero, represented by z, the function returns true, indicating that n is equal to zero.
- 2. Case Successor: When n is the successor s of some natural number m the function returns false, indicating that n is not equal to zero.

```
def Eqzero : N → Bool := by
intro n
cases n
-- Case zero
exact true
-- Case successor
exact false
```

6.3 Match

Let us recall that an alternative to using cases is the match expression, which enables us to perform pattern matching directly within a definition. In what follows, we will define an alternative version of Eqzero using this approach.

```
def Eqzero2 : N → Bool := by
intro n
match n with
| z => exact true
| s _ => exact false
```

6.4 Dedekind-Peano

6.4.1 Cases

Note that the type N gives us a Dedekind–Peano algebra. We can think of this type as the free algebra generated by a constant z and a unary operation s. In this setup, z can never be equal to s n for any n: N.

```
theorem TZInj : ∀ (n : N), z ≠ s n := by
intro n
intro h
cases h
```

In the proof of the theorem NInj, the first step intro n introduces an arbitrary element n of type N. This sets the stage for proving that z is not equal to s n for any such n. The next step, intro h, assumes the contrary—that is, it introduces a hypothesis h: z = s n. To analyze this equality, we apply the tactic cases h, which attempts to decompose the equation. However, since z and s n are built using different constructors of the inductive type N, Lean can immediately determine that this equality is impossible. This is a consequence of the fact that constructors of an inductive type are disjoint—they produce values that can never be equal. As a result, Lean closes the goal automatically, completing the proof.

6.4.2 Injection

Similarly, the successor function **s** is injective. For this we use the tactic **injection** which states that constructors of inductive data types are injective.

```
theorem TSuccInj : injective s := by
intro n m
intro h
injection h
```

6.4.3 noConfusion

The noConfusion principle formalizes the fact that the different constructors of an inductive type are distinct and that they are injective when applied to arguments. Here's how it works in practice:

```
theorem TSuccInjAlt : injective s := by
intro n m h
exact N.noConfusion h id
```

In this proof, we're saying: if s n = s m, then—by the injectivity of the s constructor—we must have n = m. The noConfusion principle takes the equality h : s n = s m and safely removes the constructors, handing us the equality n = m underneath. This is especially useful when we want to avoid manual pattern matching with cases or match, and instead reason abstractly about the structure of our inductive values.

6.5 Induction

Assuming x is a variable of inductive type in the local context, the tactic **induction** x applies induction on x to the main goal. This results in one subgoal for each constructor of the inductive type, where the target is replaced by a general instance of that constructor. For each recursive argument of the constructor, an inductive hypothesis is introduced. If any element in the local context depends on x, it is reverted and then reintroduced after the induction, ensuring that the inductive hypothesis properly incorporates these dependencies.

Next theorem proves that a predicate holds for every natural number.

```
theorem TInd {P : N → Prop} (h0 : P z) (hi : ∀ (n : N), P n → P (s n)) : ∀ (n : N), P n := by
intro n
induction n
-- Base case: 'z'
exact h0
-- Inductive step: assume the property holds for 'n', and prove it for 's n'
rename_i n hn
exact (hi n) hn
```

The proof proceeds by induction on n:

- 1. Base case: We begin with the case z. Here, we need to show that P z holds. But this is precisely what h0 provides, so the base case is established.
- 2. **Inductive step:** For the inductive case, we assume a natural number n and the inductive hypothesis hn: P n, which states that the property holds for n. Our goal is to show that P (s n) holds. This follows directly from the hypothesis hi.

6.6 Recursion

Recursion is a fundamental concept in both mathematics and computer science, allowing us to define functions in terms of simpler instances of themselves. In the context of natural numbers, recursive definitions mirror the inductive structure of the numbers themselves. This structure lends itself naturally to recursive functions, where we specify the result for the base case and describe how to compute the result for a successor in terms of the result for its predecessor. In this subsection, we will explore how recursion works in Lean, with simple examples like the definition of the maximum and the minimum, the addition and the multiplication.

6.6.1 Maximum

Recursive definition of the maximum of two natural numbers.

```
def max : N → N → N := by
    intro n m
    match n, m with
    | z, m => exact m
    | n, z => exact n
    | s n', s m' => exact s (max n' m')
```

6.6.2 Minimum

Recursive definition of the minimum of two natural numbers.

```
def min : N → N → N := by
    intro n m
    match n, m with
    | z, _ => exact z
    | _, z => exact z
    | s n', s m' => exact s (min n' m')
```

6.6.3 Addition

We now define the function Addition, which recursively specifies the addition of natural numbers by recursion on the first argument. For clarity and readability, we will use the shorthand notation n + m in place of Addition n m.

```
def Addition : N → N → N := by
    intro n m
    cases n with
    | z => exact m
    | s n => exact s (Addition n m)
    -- Notation for Addition
    notation : 65 lhs:65 " + " rhs:66 => Addition lhs rhs
```

Addition takes two natural numbers n and m as input and computes their addition by recursion on n. The base case handles the situation when n is zero in which case the result is simply m, since adding zero to any number yields that number. In the inductive case, where we consider s n, the successor of n, the function returns the successor of the recursive addition of n and m, that is, s (Addition n m). This reflects the intuitive idea that to compute (s n) + m, we first compute n + m and then take its successor.

Fibonacci

Thanks to Addition we can define the Fibonacci function recursively.

```
def Fib : N → N := by
    intro n
    match n with
    | z => exact z
    | s z => exact (s z)
    | s (s n) => exact n + (s n)
```

6.6.4 Multiplication

With a similar idea, we can define the function Multiplication, which recursively specifies the multiplication of natural numbers by recursion on the first argument. For clarity and readability, we will use the shorthand notation n * m in place of Multiplication n m.

```
def Multiplication : N → N → N := by
intro n m
cases n with
| z => exact z
| s n => exact (Multiplication n m) + m
-- Notation for Multiplication
notation : 70 lhs:70 " * " rhs:71 => Multiplication lhs rhs
```

Multiplication takes two natural numbers n and m as input and computes their addition by recursion on n. The base case handles the situation when n is zero in which case the result is simply z, since multiplying zero to any number yields zero. In the inductive case, where we consider s n, the successor of n, the function returns the sum of the recursive multiplication of n and m and m, that is, (Multiplication n m) + m. This reflects the intuitive idea that to compute (s n) * m, we first compute n * m and then add m.

Factorial

Thanks to Multiplication we can define the factorial function recursively.

```
def Fact : N → N := by
    intro n
    cases n with
    | z => exact (s z)
    | s n => exact (s n) * (Fact n)
```

6.7 Decidable Equality

Thanks to the inductive structure of N, we can define a recursive procedure to determine whether two values of type N are equal. This means providing an instance of the <code>DecidableEq</code> type class for N. The idea is simple: we compare two values by structurally analyzing their form—whether they are both zero, both successors, or mismatched. In the case of successors, we reduce the problem to their predecessors and apply the same logic recursively. Here's how this can be implemented:

6.8 Exercises

6.8.1 Injection

```
-- Prove that no natural number is equal to its own successor theorem TInjSucc {n : N} : ¬ (n = s n) := by sorry
```

6.8.2 Maximum

```
-- Max (z, n) = n

theorem TMaxzL : \forall \{n : N\}, (maxi z n) = n := by sorry

-- Max (n, z) = n

theorem TMaxzR : \forall \{n : N\}, (maxi n z) = n := by sorry

-- Max (n, m) = Max (m, n)

theorem TMaxComm : \forall \{n m : N\}, (maxi n m) = (maxi m n) := by sorry

-- Max (n, m) = n v Max (n, m) = m

theorem TMaxOut : \forall \{n m : N\}, ((maxi n m) = n) v ((maxi n m) = m) := by sorry

-- Max (n, n) = n

theorem TMaxIdpt : \forall \{n : N\}, maxi n n = n := by sorry
```

6.8.3 Minimum

```
-- Min (z, n) = z
   theorem TMinzL : ∀ {n : N}, (mini z n) = z := by sorry
   theorem TMinzR : \forall \{n : N\}, (mini n z) = z := by sorry
   -- Min (n, m) = Min (m, n)
   theorem TMinComm : \forall \{n \ m : N\}, (mini \ n \ m) = (mini \ m \ n) := by sorry
   -- Min (n, m) = n v Min (n, m) = m
   theorem TMinOut : ∀ {n m : N}, ((mini n m) = n) v ((mini n m) = m) := by sorry
    -- Min (n, n) = n
13
   theorem TMinIdpt : ∀ {n : N}, mini n n = n := by sorry
   -- Min (n, m) = Max (n, m) \rightarrow n = m
16
   theorem TMinMaxEq : \forall {n m : N}, mini n m = maxi n m \rightarrow n = m := by sorry
17
   -- Min (n, m) = n \leftrightarrow Max (n, m) = m
  theorem TMinMax : ∀ {n m : N}, mini n m = n ↔ maxi n m = m := by sorry
```

6.8.4 Addition

```
-- z is a left identity for addition
   theorem TAddOL : \forall {n : N}, z + n = n := by sorry
   -- z is a right identity for addition
   theorem TAdd\overline{OR} : \forall {n : N}, n + z = n := by sorry
   -- Addition of natural numbers is commutative up to a successor
   theorem TAddOne : \forall \{n \ m : N\}, (s \ n) + m = n + (s \ m) := by sorry
   -- Addition is commutative
   theorem TAddComm : ∀ {n m : N}, n + m = m + n := by sorry
13
   -- If the sum of two natural numbers is zero, then the first number must be zero
   theorem TAddZ : \forall {n m : N}, n + m = z \rightarrow n = z := by sorry
14
   -- If the sum of two natural numbers is zero, then both numbers are zero
   theorem TAddZ2 : \forall {n m : N}, n + m = z \rightarrow (n = z) \land (m = z) := by sorry
17
   -- Addition is associative
19
   theorem TAddAss: \forall \{n \ m \ p : N\}, (n + m) + p = n + (m + p) := by sorry
20
   -- n can never be equal to n + s k
22
   theorem TAddSucc : \forall \{n \ k : N\}, n = n + (s \ k) \rightarrow False := by sorry
23
   -- A number cannot be both ahead of and behind another number by a positive amount
25
   theorem TIncAdd : \forall {n m k : N}, m = n + (s k) \rightarrow n = m + (s k) \rightarrow False := by sorry
26
   -- Right congruence of addition
28
   theorem TAddCongR : \forall {n m k : N}, m = k \rightarrow n + m = n + k := by sorry
30
   -- Left congruence of addition
31
   theorem TAddCongL : \forall {n m k : N}, m = k \rightarrow m + n = k + n := by sorry
   -- Addition on the left is cancellative
34
   theorem TAddCancL : \forall \{n \ m \ k : N\}, n + m = n + k \rightarrow m = k := by sorry
36
   -- Addition on the right is cancellative
37
   theorem TAddCancR : \forall {n m k : N}, m + n = k + n \rightarrow m = k := by sorry
38
   -- Left cancellation property of addition with zero
   theorem TAddCancLZ : \forall {n m : N}, n + m = n \rightarrow m = z := by sorry
41
   -- Right cancellation property of addition with zero
   theorem TAddCancRZ : \forall {n m : N}, m + n = n \rightarrow m = z := by sorry
```

6.8.5 Multiplication

```
-- z is a left zero for multiplication
   theorem TMultOL : \( \{ n : N \}, z * n = z := by sorry \)
   -- z is a right zero for multiplication
   theorem TMultOR: \forall \{n : N\}, n * z = z := by sorry
   -- We introduce 'one'
   def one : N := s z
  theorem TOneAddR : \forall \{n : N\}, one + n = s n := by sorry
11
13
  theorem TOneAddL : ∀ {n : N}, n + one = s n := by sorry
   -- The different cases for two numbers adding to one
   theorem TAddOneCases : \forall {n m : N}, n + m = one \rightarrow (n = z \land m = one) v
   (n = one \land m = z) := by sorry
   -- one is a left identity for multiplication
   theorem TMult1L : \forall \{n : N\}, one * n = n := by sorry
21
   -- one is a right identity for multiplication
23
  theorem TMult1R : \forall \{n : N\}, n * one = n := by sorry
24
   -- Multiplication is left distributive over addition
   theorem TMultDistL : \forall {n m k : N}, (n + m) * k = (n * k) + (m * k) := by sorry
   -- Multiplication is right distributive over addition
29
  theorem TMultDistR : \forall \{n \ m \ k : N\}, n * (m + k) = (n * m) + (n * k) := by sorry
30
   -- Multiplication is commutative
32
   theorem TMultComm : \forall \{n \ m : N\}, n * m = m * n := by sorry
   -- If the product of two natural numbers is zero, then one of them must be zero
35
  theorem TMultZ: \forall \{n m : N\}, n * m = z \rightarrow (n = z) \lor (m = z) := by sorry
   -- Right congruence of multiplication
38
   theorem TMultCongR : \forall {n m k : N}, m = k \rightarrow n * m = n * k := by sorry
40
   -- Left congruence of addition
  theorem TMultCongL : \forall {n m k : N}, m = k \rightarrow m \ast n = k \ast n := by sorry
   -- Multiplication is associative
   theorem TMultAss : \forall \{n \ m \ p : N\}, (n * m) * p = n * (m * p) := by sorry
47
   -- Fix points for multiplication
  theorem TMultFix : \forall \{n \ m : N\}, n * m = n \rightarrow n = z \ v \ m = one := by sorry
48
   -- One is the unique idempotent for multiplication
  theorem TMultOne : \forall {n m : N}, n * m = one \leftrightarrow (n = one \land m = one) := by sorry
```

7 Choice

Reasoning about types often requires distinguishing between those that are merely **nonempty** and those that are **inhabited**. While both concepts assert the existence of elements in a type, they differ in logical strength and computational implications. A type is **nonempty** if it contains at least one element, but this existence is not necessarily constructive—it does not provide an explicit example. In contrast, a type is **inhabited** if we can specify a concrete default element, making it more useful in computational contexts. This distinction becomes particularly significant when comparing **constructive** and **classical** reasoning. In constructive logic, knowing that a type is nonempty does not guarantee that we can extract an element from it, whereas in classical logic, the axiom Classical.choice allows us to select an element from a nonempty type, thereby making it inhabited.

In this chapter, we will explore the definitions of Inhabited and Nonempty, examine their properties, and analyze their relationship. We will also discuss the role of Classical.choice in bridging the gap between nonemptiness and inhabitation, along with the implications of relying on nonconstructive principles in formal proofs.

7.1 Inhabited types

The Inhabited α typeclass ensures that the type α has a designated element, known as default: α . This property is sometimes referred to as making α a "pointed type."

If we #print Inhabited, Lean returns:

```
class Inhabited.{u}: Sort u → Sort (max 1 u)
number of parameters: 1
constructor:
Inhabited.mk: { α : Sort u } → α → Inhabited α
fields:
default: α
```

A typeclass is a special kind of structure that defines a set of properties or operations that a type can possess. We will explore typeclasses further in later chapters. The definition above shows that Inhabited is a typeclass with a single parameter, α , and a constructor, Inhabited.mk, which takes an element of α and produces an instance of Inhabited α . The default field provides access to this designated element.

To define a specific instance of a type class, we use the instance or def keywords. For the Inhabited typeclass, we only need to specify a default element. In the example below, we declare an instance of Inhabited Bool where the default value is true.

```
instance InBool : Inhabited Bool := { default := true }

#check InBool -- returns InBool : Inhabited Bool
#print InBool -- returns def InBool : Inhabited Bool := { default := true }
#eval InBool.default -- returns true
```

Lean provides predefined instances of the Inhabited type class for several types. These instances specify a default value for each type.

```
#print instInhabitedBool -- default := false
#print instInhabitedProp -- default := True
#print instInhabitedNat -- default := Nat.zero
```

In these cases, Bool has false as its default value, Prop has True, and Nat has 0. These defaults ensure that each type has at least one canonical element available.

7.2 Nonempty

The Nonempty type is an inductive proposition that asserts the existence of at least one element in a given type.

If we #print Nonempty, Lean returns

```
inductive Nonempty.{u} : Sort u → Prop
number of parameters: 1
constructors:
Nonempty.intro : ∀ { α : Sort u }, α → Nonempty α
```

This means that Nonempty is an inductive type that requires a type α : Sort u as a parameter. The only constructor of Nonempty is Nonempty.intro. This states that for any type α , if we have an element a: α , then we can construct a proof of Nonempty α . In other words, Nonempty α is true if there exists at least one instance of α . Note that Nonempty α asserts that α has at least one element but does not specify this element. Unlike Inhabited α , which requires an explicit default value, Nonempty α only requires an existence proof.

For example, we can prove that Bool is nonempty by constructing a Nonempty Bool instance using the intro constructor.

```
theorem TNEBool : Nonempty Bool := Nonempty.intro true
```

This proof shows that Bool is nonempty by providing true as a witness. Since Nonempty α only requires the existence of at least one element in α , choosing true suffices to establish the proof.

Inhabited implies Nonempty

We have a straightforward implication: if a type is inhabited, then it is also nonempty. The following code defines a function that converts an Inhabited A instance into a Nonempty A proof.

```
def InhabitedToNonempty {A : Type} : Inhabited A → Nonempty A := by
intro h
exact Nonempty.intro h.default
```

7.3 Choice

The reverse implication, Nonempty A \rightarrow Inhabited A, does not always hold in constructive logic. A proof of Nonempty A only asserts the existence of an element without providing a specific one, whereas Inhabited A requires a concrete, predefined default value. In classical logic, we can recover Inhabited A from Nonempty A using the axiom of choice (Classical.choice), but this is noncomputable, meaning we cannot explicitly construct the default element. Consequently, while nonemptiness implies the mere existence of an element, inhabitation requires an explicit and fixed representative, making the two concepts distinct in constructive mathematics.

If we #print Classical.choice, Lean returns

```
axiom Classical.choice.\{u\} : \{\alpha : Sort u \} \rightarrow Nonempty \alpha \rightarrow \alpha
```

This states that for any type α : Sort u, if α is nonempty, then we can obtain an actual element of α . Note that Classical.choice is an axiom. Many axioms, such as Classical.choice, are nonconstructive in nature, meaning they assert the existence of certain objects without providing explicit constructions. As a result, these axioms are often noncomputable and cannot be used in computational contexts.

Nonempty implies Inhabited in Classical Logic

Consider the following function.

```
noncomputable def NonemptyToInhabited {A : Type} : Nonempty A → Inhabited A := by
intro h
have a : A := Classical.choice h
exact Inhabited.mk a
```

The function NonemptyToInhabited demonstrates how a proof of nonemptiness can be converted into a proof of inhabitation. Given that Nonempty A asserts the existence of at least one element in the type A, the function uses Classical.choice to extract a: A, a specific element of type A from the existence proof h. The extracted element is then used to construct a proof of inhabitation using Inhabited.mk, which asserts that A has a predefined default element. This function is marked as noncomputable because the choice of an element is nonconstructive: while the existence of an element is guaranteed, the method of selecting it cannot be explicitly computed.

7.3.1 Choose

The command Classical.choose is a function from classical logic that enables the selection of an element satisfying a given predicate. Specifically, given the existence of an element x: X such that a proposition $P \times P$ holds (i.e., $P \times P$), Classical.choose returns one such element $P \times P$ for which $P \times P$ is true. Classical.choose is a direct consequence of Classical.choice; in fact, the two concepts are interderivable. Additionally, the command Classical.choose_spec guarantees that the element extracted indeed satisfies the predicate, providing a formal guarantee that the selected element meets the required condition.

In most situations, we can also use the alternative commands <code>Exists.choose</code> and <code>Exists.choose</code> and <code>classical.choose</code> and <code>classical.choose</code>. Here is an example of how it is used.

```
theorem TCarNonempty {A : Type} : Nonempty A ↔ ∃ (a : A), a = a := by

apply Iff.intro

-- Nonempty A → ∃ a, a = a

intro h

apply Exists.intro (Classical.choice h)

exact rfl

-- ∃(a, a = a) → Nonempty A

intro h

have a : A := Exists.choose h

exact Nonempty.intro a
```

7.3.2 Exercises

```
-- Under Classical.Choice, if a function is injective and the domain is Nonempty then the function has a left inverse
theorem TInjtoHasLeftInv {A B : Type} {f : A → B} : injective f → Nonempty A → hasleftinv f := by sorry

-- Under Classical.Choice, every surjective function has a right inverse
noncomputable def Inverse {A B : Type} (f : A → B) (h : surjective f) : B → A := by sorry

-- Under Classical.Choice, the inverse of a surjective function is a right inverse
theorem InvR {A B : Type} (f : A → B) (h : surjective f) : f ∘ (Inverse f h) = id := by sorry

-- Under Classical.Choice, every surjective function has a right inverse
theorem TSurjtoHasRightInv {A B : Type} {f : A → B} : surjective f → hasrightinv f := by sorry

-- Under Classical.Choice, the inverse of a bijective function is a left inverse
theorem InvL {A B : Type} (f : A → B) (h : bijective f) : (Inverse f h.right) ∘ f = id := by sorry

-- Under Classical.Choice bijective and isomorphism are equivalent concepts
theorem TCarBijIso {A B : Type} {f : A → B} : bijective f ↔ isomorphism f := by sorry
```

8 Subtypes

This chapter explores the definition and usage of subtypes in Lean. We will introduce their basic properties, discuss common operations, and demonstrate their application in mathematical reasoning and program verification.

A **subtype** is a way to define a restricted entity of a given type by specifying a condition that the elements of this type must satisfy. A subtype of a type A is typically defined using a predicate $P: A \rightarrow Prop$, which assigns a proposition to each element of A. The corresponding subtype, denoted as Subtype P or $\{a: A // P a\}$, consists of all elements a: A that satisfy P.

```
-- We define variables A : Type and P : A → Prop, a predicate on A
variable (A : Type)
variable (P : A → Prop)
-- With this information we can obtain `Subtype P`
tcheck Subtype P
-- An alternative notation is
tcheck { a : A // P a }
```

Subtypes play a crucial role in formal verification, as they allow us to encode mathematical objects with additional properties. For example, we can define the subtype of even natural numbers, the positive real numbers, or the set of invertible matrices. By doing so, we ensure that any element of the subtype inherently satisfies the given condition, reducing the need for repetitive proof obligations.

If we #print Subtype, Lean returns

```
structure Subtype.{u}: { α : Sort u } → α( → Prop) → Sort (max 1 u)
number of parameters: 2
constructor:
Subtype.mk: { α : Sort u } → {p : α → Prop} → (val : α) → p val → Subtype p
fields:
val : α
property: p self.val
```

The Subtype structure in Lean is parameterized by a type α and a predicate $p:\alpha\to Prop$, which defines adscription to the subtype. It includes a constructor, Subtype.mk, that takes a value val: α along with a proof of p val, ensuring that val satisfies the predicate. An instance of Subtype p has two fields: val, which holds the underlying value, and property, which provides the proof that val satisfies p.

8.0.1 Examples of subtypes

The False subtype

Given a type A, we can consider the False subtype on A.

```
def SFalse {A : Type} := { a : A // PFalse a}
```

The True subtype

Given a type A, we can consider the True subtype on A.

```
def STrue {A : Type} := { a : A // PTrue a}
```

The image of a function

We introduce the *image* of a function. Given two types A and B and a function $f:A \to B$, we define the image of f, denoted as $Im\ f$, as the subtype of B consisting of all elements that are mapped from some a:A under f.

```
def Im \{A B : Type\} (f : A \rightarrow B) : Type := \{ b : B // \exists (a : A), f a = b \}
```

8.0.2 Elements of a subtype

To create an element of Subtype P, we use the Subtype.mk function, which maps an element a: A and a proof h: P a to an element of type Subtype P.

```
variable (a : A)
variable (h : P a)
#check Subtype.mk a h
```

Two elements of type Subtype P are equal if and only if their corresponding values in A are also equal. For this we have the theorems Subtype.eq and Subtype.eq_iff.

```
#check Subtype.eq -- `a1.val = a2.val → a1 = a2`

#check Subtype.eq_iff -- `a1.val = a2.val ↔ a1 = a2`
```

8.0.3 The inclusion function

The *inclusion* function is a function of a subtype into its underlying type: it simply extracts the value of a Subtype P element, discarding its proof.

```
def inc {A : Type} {P : A → Prop} : Subtype P → A := by
intro a
exact a.val
```

Thanks to Subtype.eq we can prove that the inclusion function is always injective.

```
theorem Tincinj {A : Type} {P : A → Prop} : injective (@inc A P) := by
intro a1 a2 h1
exact Subtype.eq h1
```

8.1 Functions and Subtypes

8.1.1 Restriction

We can formalize the notion of restricting functions to subtypes. Any function $f:A\to B$ can be restricted to a subtype by applying f only to the underlying values of the subtype elements. Restriction provides a way to transform elements of type $A\to B$ into elements of type $A\to B$.

```
def rest {A B : Type} {P : A → Prop} (f : A → B) : Subtype P → B := by
intro a
exact f a.val
```

8.1.2 Correstriction

Given a function $f: A \to B$ and a predicate Q on B, we can *correstrict* f to Subtype P, provided that every $b: Im\ f$ satisfies Q. If the above condition holds, correstriction provides a way to transform elements of type $A \to B$ into elements of type $A \to B$ into

```
def correst {A B : Type} {Q : B → Prop} (f : A → B) (h : ∀ (b : Im f), Q b.val)
: A → Subtype Q := by
intro a
have ha : ∃ (a1 : A), f a1 = f a := by
apply Exists.intro a
exact rfl
apply Subtype.mk (f a) (h ⟨f a, ⟩ha)
```

8.1.3 Birrestriction

Given a function $f:A\to B$, a predicate P on A and a predicate Q on B, we can *birrestrict* f to the respective subtypes, provided that f a satisfies Q for every a: Subtype P. If the above condition holds, birrestriction provides a way to transform elements of type $A\to B$ into elements of type Subtype P \to Subtype Q.

In particular, given two predicates P1 and P2 on a type A, the following function establishes a transformation from the subtype corresponding to P1 to the subtype corresponding to P2, provided that P1 implies P2. This is achieved by birrestricting the identity function.

```
def SubtoSub {A : Type} {P1 P2 : A → Prop} (h : ∀ (a : A), P1 a → P2 a) : Subtype P1 → Subtype P2 := birrest id h
```

8.2 Equalizers

In this section, we introduce the concept of the **equalizer** of two functions, a construction that identifies the subtype of a domain where the two functions agree. Beyond its definition as a subtype, the equalizer is also characterized by a **universal property**: it serves as the most general type equipped with a map into A on which the functions agree.

Given two functions f, g: $A \rightarrow B$, the equalizer of f and g is the subtype of A consisting on all elements a: A such that f a = g a.

```
def Eq {A B : Type} (f g : A \rightarrow B) : Type := { a : A // f a = g a}
```

It commes equipped with the inclusion function, from the equalizer to A.

```
def incEq {A B : Type} (f g : A \rightarrow B) : Eq f g \rightarrow A := @inc A (fun a => f a = g a)
```

This inclusion satisfies that $f \circ (incEq f g) = g \circ (incEq f g)$.

```
theorem TEqInc {A B : Type} (f g : A → B) : f ∘ (incEq f g) = g ∘ (incEq f g) := by

apply funext
intro a

calc

(f ∘ (incEq f g)) a = f a.val := rfl

- = g a.val := a.property

- = (g ∘ (incEq f g)) a := rfl
```

8.2.1 Universal property of the equalizer

The universal property of the equalizer characterizes it not merely as a subtype, but as a universal solution to the problem of mediating between f and g. The universal property states that the pair (Eq f g, incEq f g) is initial among all pairs (C, h), where C is a type and h: $C \rightarrow A$ is a function satisfying $f \circ h = g \circ h$.

That is, if C is a type and $h : C \to A$ is a function satisfying $f \circ h = g \circ h$, then there exists a unique function $u : C \to (Eq f g)$ such that (incEq f g) $\circ u = h$.

```
-- If there is another function h : C → A satisfying f ∘ h = g ∘ h, then there exists a function u : C → Eq f g

def u {A B C : Type} {f g : A → B} {h : C → A} (h1 : f ∘ h = g ∘ h) : C → Eq f g := by

intro c

exact Subtype.mk (h c) (congrFun h1 c)

-- The function u satisfies that incEq f g ∘ u = h

theorem TEqIncEq {A B C : Type} {f g : A → B} {h : C → A} (h1 : f ∘ h = g ∘ h) :

(incEq f g) ∘ (u h1) = h := by

apply funext

intro c

exact rfl

-- The function u is unique in the sense that, if there is another function v : C → Eq f g satisfying incEq f g ∘ v = h, then v = u.
```

```
theorem TEqUni {A B C : Type} \{f g : A \rightarrow B\} \{h : C \rightarrow A\} (h1 : f \circ h = g \circ h)
   (v : C \rightarrow Eq f g) (h2 : (incEq f g) \circ v = h) : v = u h1 := by
     apply funext
17
     intro c
     apply Subtype.eq
18
     calc
19
        (v c).val = ((incEq f g) \circ v) c := rfl
20
21
                    = h c
                                               := congrFun h2 c
                    = (u h1 c).val
                                               := rfl
```

In other words, any function into A that "equalizes" f and g factors uniquely through the equalizer. This property ensures that the equalizer is the most general and canonical way to capture the elements where two functions agree.

8.3 Exercises

8.3.1 Subtypes

```
-- If two subtypes are equivalent, the corresponding subtypes are equal.
theorem TEqSubtype {A : Type} {P1 P2 : A → Prop} (h : ∀ (a : A), P1 a ↔ P2 a) : Subtype P1 = Subtype P2
:= by sorry
```

8.3.2 Restriction

```
-- Im (inc) = Subtype
theorem TUPSub {A : Type} {P : A → Prop} : Im (@inc A P) = Subtype P := by sorry

-- rest f = f ∘ inc
theorem TRest {A B : Type} {f : A → B} {P : A → Prop}: (@rest A B P f) = f ∘ (@inc A P) := by sorry
```

8.3.3 Correstriction

Theorems TUPCorrest and TUPCorrestUn establish the *universal property* of the correstriction of a function. The first result, TUPCorrest, states that for any function $f : A \rightarrow B$ that respects a predicate Q on B (i.e., Q b holds for all b : Im f)), the function f can be expressed as the composition of the inclusion function inc and its correstriction correst f h, that is $f = inc \circ (correst f h)$. The second result, TUPCorrestUn, establishes the *uniqueness* of the correstriction. If there exists another function $g : A \rightarrow Subtype P$ such that $f = inc \circ g$, then g must be exactly correst f h.

```
-- f = inc o correst
theorem TUPCorrest {A B : Type} {Q : B \rightarrow Prop} {f : A \rightarrow B}
(h : \forall (b : Im f), Q b.val) : f = (@inc B Q) \circ (correst f h) := by sorry

-- Unicity
theorem TUPCorrestUn {A B : Type} {Q : B \rightarrow Prop} {f : A \rightarrow B}
(h : \forall (b : Im f), Q b.val) (g : A \rightarrow Subtype Q) (h1 : f = (@inc B Q) \circ g) : (correst f h) = g := by sorry
```

8.3.4 Equalizers

```
-- The function incEq is a monomorphism
theorem TincEqMono {A B : Type} {f g : A → B} : monomorphism (incEq f g) := by sorry

-- An epic incEq is an isomorphism
theorem TincEqEpi {A B : Type} {f g : A → B} : epimorphism (incEq f g) → isomorphism (incEq f g) := by
sorry
```

9 Relations

A **relation** on a type A is a predicate that takes two elements of A and returns a proposition, indicating whether the elements are related. In Lean, a relation is represented as a function of type $A \rightarrow A \rightarrow Prop$. Given a relation R: $A \rightarrow A \rightarrow Prop$ and elements a1, a2: A, the expression R a1 a2 asserts that a1 and a2 are related under R. Relations play a fundamental role in mathematics, capturing concepts such as order, equivalence, or divisibility, among others. In this chapter, we explore key properties that relations can satisfy, laying the groundwork for their formal use in Lean.

Since relations are predicates on two input variables, two relations are equal if and only if they relate the same elements. This can be shown by applying funext twice. Furthermore, this is equivalent to the predicates being logically equivalent on the same elements, which follows from propext.

```
theorem TEqRel \{A : Type\} \{R S : A \rightarrow A \rightarrow Prop\} : R = S \leftrightarrow \forall (a1 a2 : A),
   R a1 a2 ↔ S a1 a2 := by
     apply Iff.intro
      -- R = S → ∀ (a1 a2 : A), R a1 a2 ↔ S a1 a2
     intro h a1 a2
     apply Iff.intro
      -- R a1 a2 <del>→</del> S a1 a2
     intro hR
     rw [h.symm]
     exact hR
      -- S a1 a2 → R a1 a2
12
     intro hS
     rw [h]
13
     exact hS
     -- ∀( (a1 a2 : A), R a1 a2 ↔ S a1 a2) → R = S
15
     intro h
     apply funext
     intro a1
18
     apply funext
     intro a2
     apply propext
21
     exact h a1 a2
```

9.0.1 Examples of relations

Given a type A, we can define various relations on it. For instance, the emptyRelation relation relates no elements at all. At the other extreme, the total relation relates every element to every other element. Another important example is the diagonal relation, diag, where each element is related only to itself.

```
-- The empty relation on A

def empty {A : Type} : A → A → Prop := fun x y => False

-- The total relation on A

def total {A : Type} : A → A → Prop := fun x y => True

-- The diag (diagonal) relation on A

def diag {A : Type} : A → A → Prop := fun x y => (x = y)
```

9.1 Types of relations

In this section, we explore various properties that a relation can satisfy.

Reflexive

A relation $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every a : A, the proposition $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every a : A, the proposition $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every a : A, the proposition $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every a : A, the proposition $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every a : A, the proposition $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every a : A, the proposition $R : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if, for every $a : A \rightarrow A \rightarrow Prop$ is *reflexive* if *reflexiv*

```
def Reflexive \{A : Type\} \{R : A \rightarrow Prop\} : Prop := \forall \{a : A\}, R = A
```

Symmetric

A relation $R : A \rightarrow A \rightarrow Prop$ is symmetric if, for all a1, a2 : A, whenever R a1 a2 holds, R a2 a1 must also hold.

```
def Symmetric {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 : A}, R a1 a2 \rightarrow R a2 a1
```

Antisymmetric

A relation R : A \rightarrow A \rightarrow Prop is *antisymmetric* if, for all a1, a2 : A, whenever R a1 a2 and R a2 a1 hold, it follows that a1 = a2.

```
def Antisymmetric {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 : A}, R a1 a2 \rightarrow R a2 a1 \rightarrow (a1 = a2)
```

Transitive

A relation $R : A \rightarrow A \rightarrow Prop$ is *transitive* if, for all a1, a2 a3 : A, whenever R a1 a2 and R a2 a3 hold, it follows that R a1 a3.

```
def Transitive {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 a3 : A}, R a1 a2 \rightarrow R a2 a3 \rightarrow R a1 a3
```

Serial

A relation $R : A \rightarrow A \rightarrow Prop$ is serial if, for every a1 : A, there exists an element a2 : A such that R a1 a2

```
def Serial {A : Type} (R : A → A → Prop) : Prop := ∀{a1 : A}, ∃(a2 : A), R a1 a2
```

Euclidean

A relation $R : A \rightarrow A \rightarrow Prop$ is *Euclidean* if, for every a1, a2 ,a3 : A, whenever R a1 a2 and R a1 a3 hold, it follows that R a2 a3.

```
def Euclidean {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 a3 : A}, R a1 a2 \rightarrow R a1 a3 \rightarrow R a2 a3
```

Partially functional

A relation R : A \rightarrow A \rightarrow Prop is partially functional if, for every a1, a2, a3 : A, whenever R a1 a2 and R a1 a3 hold, it follows that a2 = a3.

```
def PartiallyFunctional {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 a3 : A}, R a1 a2 \rightarrow R a1 a3 \rightarrow a2 = a3
```

Functional

A relation $R : A \rightarrow A \rightarrow Prop$ is *functional* if, for every a1 : A, there exists a unique a2 : A such that R a1 a2.

```
def Functional {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall (a1 : A), \exists (a2 : A), \forall (a3 : A), R a1 a3 \leftrightarrow a2 = a3
```

Weakly dense

A relation $R : A \rightarrow A \rightarrow Prop$ is *weakly dense* if, for every a1 a2 : A, if R a1 a2 holds then there exists a3 : A such that R a1 a3 and R a3 a2.

```
def WeaklyDense {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 : A}, (R a1 a2 \rightarrow ∃(a3 : A), (R a1 a3) ∧ (R a3 a2))
```

Weakly connected

A relation $R : A \rightarrow A \rightarrow Prop$ is weakly connected if, for all a1, a2, a3 : A, whenever R a1 a2 and R a1 a3 hold, at least one of the following three conditions must be satisfied: R a2 a3, a2 = a3, or R a3 a2.

```
def WeaklyConnected {A : Type} (R : A \rightarrow A \rightarrow Prop) : Prop := \forall{a1 a2 a3 : A}, R a1 a2 \rightarrow R a1 a3 \rightarrow ((R a2 a3) v (a2 = a3) v (R a3 a2))
```

Weakly directed

A relation $R : A \rightarrow A \rightarrow Prop$ is weakly directed if, for all a1, a2, a3 : A, whenever R a1 a2 and R a1 a3 then there exists a4 : A satisfying that R a2 a4 and R a3 a4.

```
def WeaklyDirected {A : Type} (R : A → A → Prop) : Prop := ∀{a1 a2 a3 : A}, R a1 a2 → R a1 a3 → ∃(a4 : A ), ((R a2 a4) ∧ (R a3 a4))
```

9.1.1 An example: The diagonal

The diagonal relation is a relation that satisfies all the properties above.

```
-- The diagonal is reflexive
  theorem TDiagRefl {A : Type} : Reflexive (@diag A) := by
    intro a
    exact rfl
    - The diagonal is symmetric
  theorem TDiagSymm {A : Type} : Symmetric (@diag A) := by
    intro a1 a2 h
    exact h.symm
   -- The diagonal is antisymmetric
  theorem TDiagASymm {A : Type} : Antisymmetric (@diag A) := by
    intro a1 a2 h1 h2
13
    exact h1
14
   -- The diagonal is transitive
  theorem TDiagTrans {A : Type} : Transitive (@diag A) := by
17
    intro a1 a2 a3 h1 h2
    exact h1.trans h2
20
21
   -- The diagonal is serial
  theorem TDiagSer {A : Type} : Serial (@diag A) := by
22
    intro a
    apply Exists.intro a
25
    exact rfl
  -- The diagonal is Euclidean
27
  theorem TDiagEucl {A : Type} : Euclidean (@diag A) := by
28
    intro a1 a2 a3 h1 h2
    exact h1.symm.trans h2
30
31
    - The diagonal is partially functional
  theorem TDiagPFunc {A : Type} : PartiallyFunctional (@diag A) := by
33
    intro a1 a2 a3 h1 h2
34
    exact h1.symm.trans h2
   -- The diagonal is functional
  theorem TDiagFunc {A : Type} : Functional (@diag A) := by
38
    intro a
39
    apply Exists.intro a
    intro z
41
    apply Iff.intro
     -- diag a z → a = z
    intro h
44
    exact h
45
     -- a = z → diag a z
46
    intro h
47
    exact h
```

```
-- The diagonal is weakly dense
  theorem TDiagWDense {A : Type} : WeaklyDense (@diag A) := by
    intro a1 a2 h1
52
    apply Exists.intro a1
53
    apply And.intro
54
     -- Left
    exact rfl
56
57
     -- Right
58
    exact h1
59
    - The diagonal is weakly connected
60
  theorem TDiagWConn {A : Type} : WeaklyConnected (@diag A) := by
    intro a1 a2 a3 h1 h2
    exact Or.inl (h1.symm.trans h2)
63
64
   -- The diagonal is weakly directed
65
  theorem TDiagWDir {A : Type} : WeaklyDirected (@diag A) := by
66
    intro a1 a2 a3 h1 h2
    apply Exists.intro a1
68
    apply And.intro
69
70
     -- Left
    exact h1.symm
71
     -- Right
    exact h2.symm
```

9.1.2 Exercises

The following exercises were extracted from Zach, R. (2019) Boxes and Diamonds: An Open Introduction to Modal Logic.

```
variable (A : Type)
  variable (R : A \rightarrow A \rightarrow Prop)
   -- Reflexive implies serial
  theorem TRefltoSerial: Reflexive R → Serial R := by sorry
   -- For a symmetric relation, transitive and Euclidean are equivalent
  theorem TSymmTransIffSer (hS : Symmetric R) : Transitive R ↔ Euclidean R := by sorry
   -- If a relation is symmetric then it is weakly directed
  theorem TSymmtoWDir : Symmetric R → WeaklyDirected R := by sorry
    - If a relation is Euclidean and antisymmetric, then it is weakly directed
13
  theorem TEuclaSymmtoWDir : Euclidean R → Antisymmetric R → WeaklyDirected R := by sorry
   -- If a relation is Euclidean, then it is weakly connected
16
  theorem TEucltoWConn : Euclidean R \rightarrow WeaklyConnected R := by sorry
   -- If a relation is functional, then it is serial
19
  theorem TFunctoSer : Functional R → Serial R := by sorry
   -- If a relation is symmetric and transitive, then it is Euclidean
22
  theorem TSymmTranstoEucl : Symmetric R → Transitive R → Euclidean R := by sorry
   -- If a relation is reflexive and Euclidean, then it is symmetric
  theorem TReflEucltoSymm : Reflexive R → Euclidean R → Symmetric R := by sorry
26
   -- If a relation is symmetric and Euclidean, then it is transitive
  theorem TSymmEucltoTrans : Symmetric R → Euclidean R → Transitive R := by sorry
29
   -- If a relation is serial, symmetric and transitive, then it is reflexive
  theorem TSerSymmTranstoRefl : Serial R \rightarrow Symmetric R \rightarrow Transitive R \rightarrow Reflexive R := by sorry
```

9.2 Operations on relations

Composition

The composition of two binary relations captures the idea of chaining relations through an intermediate element. Given binary relations R and S on a type A, its **composition**, denoted as $R \circ S$, is a new

relation on A that holds between two elements a1 and a3 if there exists an intermediate element a2 such that R relates a1 to a2 and S relates a3 to a3.

```
def composition {A : Type} (R S : A → A → Prop) : A → A → Prop := by
    intro a1 a3
    exact ∃ (a2 : A), (R a1 a2) ∧ (S a2 a3)

-- Notation for the composition (\circ)
    notation : 65 lhs:65 " ∘ " rhs:66 => composition lhs rhs
    #check R ∘ S
```

Inverse

Given a relation $R: A \to A \to Prop$ on a type A, its **inverse**, denoted R^{\bullet} , swaps the order of its arguments. The definition of **inverse** takes a relation R and returns a new relation R^{\bullet} where 'R' al al holds if and only if R al al holds in the original relation.

```
def inverse {A : Type} (R : A → A → Prop) : A → A → Prop := by
   intro a1 a2
   exact R a2 a1

-- Notation for the inverse (^)
notation : 65 lhs:65 "^" => inverse lhs
#check R^
```

Meet

Given binary relations R and S on a type A, its **meet**, denoted as R Λ S, is a new relation on A that holds between two elements a1 and a2 if both R a1 a2 and S a1 a2 hold.

```
def meet {A : Type} (R S : A → A → Prop) : A → A → Prop := by
    intro a1 a2
    exact (R a1 a2) ∧ (S a1 a2)

-- Notation for the meet ('\and')
notation : 65 lhs:65 " ∧ " rhs:66 => meet lhs rhs
#check R ∧ S
```

Join

Given binary relations R and S on a type A, its **join**, denoted as R v S, is a new relation on A that holds between two elements a1 and a2 if either R a1 a2 or S a1 a2 hold.

```
def join {A : Type} (R S : A → A → Prop) : A → A → Prop := by
    intro a1 a2
    exact (R a1 a2) v (S a1 a2)

-- Notation for the join ('\or')
    notation : 65 lhs:65 " v " rhs:66 => join lhs rhs
    #check R v S
```

9.2.1 Exercises

The following propositions are common identities involving binary relations.

```
variable {A : Type}
variable (R S T : A → A → Prop)

-- Associativity of composition
theorem TAssComp : R ∘ (S ∘ T) = (R ∘ S) ∘ T := by sorry

-- The diagonal is a left neutral element for the composition
theorem TDiagL : R ∘ (@diag A) = R := by sorry

-- The diagonal is a right neutral element for the composition
theorem TDiagR : (@diag A) ∘ R = R := by sorry
```

```
_{13} -- The inverse relation of the inverse relation is the original relation
  theorem TInvInv : (R^)^ = R := by sorry
   -- The inverse of the composition
  theorem TInvComp : (R \circ S)^{\wedge} = (S^{\wedge}) \circ (R^{\wedge}) := by sorry
17
   -- The inverse of the meet
19
20
  theorem TInvMeet : (R \land S)^{\wedge} = (S^{\wedge}) \land (R^{\wedge}) := by sorry
   -- The inverse of the join
   theorem TInvJoin : (R v S)^ = (S^) v (R^) := by sorry
23
   -- Distributivity of composition on the left over join
  theorem TDisL : R \circ (S \vee T) = (R \circ S) \vee (R \circ T) := by sorry
26
   -- Distributivity of composition on the right over join
  theorem TDisR : (R \vee S) \circ T = (R \circ T) \vee (S \circ T) := by sorry
29
   -- Empty is a left zero for the composition
31
  theorem TEmptLZ : (@empty A) • R = (@empty A) := by sorry
32
   -- Empty is a right zero for the composition
34
  theorem TEmptRZ : R • (@empty A) = (@empty A) := by sorry
```

10 Quotients

In mathematics, we often want to consider objects *modulo* some form of identification—treating different representatives as essentially the same. This practice leads us naturally to the notion of *equivalence relations*, which formally define when two elements should be considered indistinguishable for our purposes.

Once we have an equivalence relation, we can group elements into *equivalence classes*—collections of elements that are all equivalent to each other. The process of forming a new structure out of these equivalence classes is called taking a *quotient*. Quotients allow us to construct new types that "forget" unnecessary distinctions while preserving the structure we care about.

This chapter introduces the foundations of working with quotients in a formal setting. We begin by reviewing equivalence relations and exploring concrete examples. We then move to the notion of *setoids*, which package a type together with an equivalence relation—an essential concept in Lean.

Next, we delve into the construction of quotients themselves. We examine how to reason about their elements, understand the *projection* function from a type to its quotient, and work through illustrative examples.

We then explore how functions behave in the presence of quotient types. Specifically, we study how functions defined on a type can be *astricted*, *coastricted*, and *biastricted*. These ideas are key when reasoning about quotient structures in a type-theoretic setting.

Finally, we explore the notion of the *coequalizer* of two functions.

The chapter concludes with exercises to reinforce our understanding and help us apply these concepts.

10.1 Equivalence relations

A relation R : A \rightarrow A \rightarrow Prop is an *equivalence relation* if it is Reflexive, Symmetric and Transitive. This is already implemented as Equivalence.

If we #print Equivalence, Lean returns:

```
structure Equivalence.{u}: { α : Sort u } → ( α → α → Prop ) → Prop
number of parameters: 2
constructor:
Equivalence.mk: ∀ { α : Sort u } { r : α → α → Prop },
∀( ( x : α ), r x x) → ∀( { x y : α }, r x y → r y x) → ∀( { x y z : α }, r x y → r y z → r x z) →
Equivalence r
fields:
refl: ∀ ( x : α ), r x x
symm: ∀ { x y z : α }, r x y → r y x
trans: ∀ { x y z : α }, r x y → r y z → r x z
```

This structure takes two parameters: a type α : Sort u and a binary relation r: $\alpha \to \alpha \to \mathsf{Prop}$. It encapsulates the three fundamental properties that define an equivalence relation: reflexivity, symmetry, and transitivity. The Equivalence.mk constructor allows us to create an instance of Equivalence r by providing proofs for these three properties. Specifically, the refl field ensures that every element is related to itself \forall (x: α), r x x, the symm field guarantees that the relation is symmetric \forall {x y: α }, r x y \to r y x, and the trans field enforces transitivity \forall {x y z: α }, r x y \to r y z \to r x z.

10.1.1 Examples of equivalence relations

The diagonal relation

Given a type A, the diagonal relation on A is an equivalence relation on A.

```
theorem TDiagEqv {A : Type} : Equivalence (@diag A) := {
    refl := by
    intro a
    exact TDiagRefl
    symm := by
```

```
intro a1 a2
exact TDiagSymm
trans := by
intro a1 a2 a3
exact TDiagTrans
```

The total relation

Given a type A, the total relation on A is an equivalence relation on A.

```
theorem TTotalEqv {A : Type} : Equivalence (@total A) := {
    refl := by
    intro _
    exact trivial
    symm := by
    intro a1 a2 _
    exact trivial
    trans := by
    intro a1 a2 a3 _ _
    exact trivial
```

The kernel of a function

We introduce the *kernel* of a function and demonstrate that it defines an equivalence relation. Given two types A and B and a function $f: A \rightarrow B$, we define the kernel of f, denoted as Ker f, as a binary relation on A where two elements a1, a2: A are related if and only if they have the same image under f, i.e., f a1 = f a2. We then establish that Ker f satisfies the properties of an equivalence relation.

```
def Ker {A B : Type} (f : A \rightarrow B) : A \rightarrow A \rightarrow Prop := by
     intro a1 a2
     exact f a1 = f a2
   -- The kernel of a function is an equivalence relation
   theorem TKerEqv \{A \ B : Type\} \{f : A \rightarrow B\} : Equivalence (Ker f) := \{
       intro a
       exact rfl
     symm := by
       intro a1 a2 h1
       exact h1.symm
12
     trans := by
       intro a1 a2 a3 h1 h2
14
       exact h1.trans h2
   }
```

10.2 Equivalence relation generated by a relation

The following Lean code defines the equivalence closure of a relation as an inductive type and proves that it forms an equivalence relation. Specifically, the inductive type Eqvgen constructs the smallest equivalence relation generated by a given relation $R: A \rightarrow A \rightarrow Prop$ on a type A. The Eqvgen type is defined with four constructors: base, which includes the original relation R; and refl, symm, and trans, ensuring that Eqvgen R satisfies the properties for reflexivity, symmetry, and transitivity, respectively.

```
inductive Equgen {A : Type} (R : A → A → Prop) : A → A → Prop where

| base : ∀ {a1 a2 : A}, (R a1 a2 → Equgen R a1 a2)
| refl : ∀ (a : A), Equgen R a a
| symm : ∀ {a1 a2 : A}, Equgen R a1 a2 → Equgen R a2 a1
| trans : ∀ {a1 a2 a3 : A}, (Equgen R a1 a2) → (Equgen R a2 a3) → (Equgen R a1 a3)

-- The equivalence generated by a relation is an equivalence relation
theorem TEqugen {A : Type} (R : A → A → Prop) : Equivalence (Equgen R) := {
    refl := Equgen.refl
    symm := Equgen.symm
    trans := Equgen.trans
}
```

10.3 Setoids

A **Setoid** is a type class that encapsulates an equivalence relation on a given type. If we **#print Setoid**, Lean returns

```
class Setoid.{u}: Sort u → Sort (max 1 u)
number of parameters: 1
constructor:
Setoid.mk: { α : Sort u } → (r : α → α → Prop) → Equivalence r → Setoid α
fields:
r : α → α → Prop
iseqv: Equivalence Setoid.r
```

Given a type α , a Setoid α consists of a binary relation $r:\alpha\to\alpha\to Prop$ and a proof that r is an equivalence relation. The constructor Setoid.mk allows defining such structures by providing both the relation and its proof of equivalence. An element of type A Setoid α has two fields, $r:\alpha\to\alpha\to Prop$ the equivalence relation on α and iseqv: Equivalence Setoid.r, a proof that r is an equivalence relation.

10.3.1 Examples of setoids

Since both the diagonal relation and the total relation are equivalence relations, we can define their corresponding setoids. Additionally, we can construct the setoid associated with the kernel of a function.

The diagonal setoid

```
instance DiagSetoid {A : Type} : Setoid A := {
    r := @diag A
    iseqv := TDiagEqv
}
```

The total setoid

The kernel setoid

```
instance KerSetoid {A B : Type} (f : A → B) : Setoid A := {
    r := Ker f
    iseqv := TKerEqv
}
```

10.4 Quotients

The significance of Setoid lies in its role in quotienting, where elements of α can be grouped into equivalence classes based on r, leading to the Quotient construction. The Quotient type provides a structured way to form quotient types based on equivalence relations.

If we #print Quotient, Lean returns

```
def Quotient.{u} : \alpha{ : Sort u} \rightarrow Setoid \alpha \rightarrow Sort u := fun \alpha{} s => Quot Setoid.r
```

The Quotient type constructs the quotient of a given setoid, encapsulating an equivalence relation on a type. It takes an implicit type α along with an instance of Setoid α , which defines an equivalence relation r on α . By applying Quot Setoid.r, it forms a new type in which elements of α are identified according to r. The resulting type remains in the same universe level Sort u, preserving the type hierarchy of α . Unlike Quot, which can be defined for arbitrary binary relations, Quotient is specifically tailored for equivalence relations, ensuring a structured and well-behaved quotienting mechanism in Lean. Note that for a type A and an element S of type Setoid Am, the term Quotient S is a type.

```
variable (A : Type)
variable (S : Setoid A)
#check Quotient S
```

10.4.1 Examples of quotients

With the setoids defined above, we can construct the quotient of a type A by its diagonal relation, the quotient of A by the total relation and the quotient of A by the kernel of a function.

The diagonal quotient

```
def QDiag {A : Type} := Quotient (@DiagSetoid A)
```

The total quotient

```
def QTotal {A : Type} := Quotient (@TotalSetoid A)
```

The kernel quotient

```
def QKer \{A \ B : Type\} (f : A \rightarrow B) := Quotient (KerSetoid f)
```

10.4.2 Elements of a quotient

To create an element of Quotient S, we use the Quotient.mk S a function, which maps an element a : A to its equivalence class, that is, the elements of type A that are related with a.

```
variable (a : A)

#check Quotient.mk S a
```

Two equivalence classes are equal if and only if their representatives are related by the underlying equivalence relation. First, we use Quotient.exact, which states that if two classes are equal, then their representatives must be related. Conversely, we apply Quotient.sound, which ensures that if two elements are related, then their classes are equal. This result confirms that quotient types faithfully represent equivalence classes, ensuring that equality in the quotient type corresponds precisely to the equivalence relation in the original type.

```
theorem TEqQuotient {A : Type} {S : Setoid A} {a1 a2 : A} :
Quotient.mk S a1 = Quotient.mk S a2 ↔ S.r a1 a2 := by
apply Iff.intro
-- Quotient.mk S a1 = Quotient.mk S a2 → Setoid.r a1 a2
apply Quotient.exact
-- Setoid.r a1 a2 → Quotient.mk S a1 = Quotient.mk S a2
apply Quotient.sound
```

10.4.3 The projection function

The *projection* function is a function of a type into its quotient: it simply constructs the class of a given element.

```
def pr {A : Type} (S : Setoid A) : A → Quotient S := by
intro a
exact Quotient.mk S a
```

An essential property of quotient types is that every element q of type Quotient S has a representative in A, meaning there exists some a: A such that Quotient.mk S a produces the element q. This property is formalized by Quotient.exists_rep. This proposition implies, in particular, that the projection function is always surjective.

```
-- The projection function is surjective
theorem TprSurj {A : Type} (S : Setoid A) : surjective (pr S) := by
intro q
apply Quotient.exists_rep
```

10.5 Functions and Quotient types

10.5.1 Astriction

We can formalize the notion of a stricting functions to quotients. Any function $f:A \to B$ can be a stricted to a quotient by a setoid S on B by considering classes on the images under f. Astriction provides a way to transform elements of type $A \to B$ into elements of type $A \to Quotient S$.

```
def ast {A B : Type} {S : Setoid B} (f : A → B) : A → Quotient S := by
intro a
exact Quotient.mk S (f a)
```

10.5.2 Coastriction

Given a function $f: A \to B$ and a setoid R on A, we can *coastrict* f to Quotient R, provided that every pair related according to the underlying relation of R is also related according to $Ker\ f$. For this we will apply the keyword Quotient.lift. If the above condition holds, coastriction provides a way to transform elements of type $A \to B$ into elements of type Quotient $R \to B$.

```
def coast {A B : Type} {R : Setoid A} (f : A → B) (h : ∀ (a1 a2 : A),

R.r a1 a2 → (Ker f) a1 a2) : Quotient R → B := by

apply Quotient.lift f
intro a1 a2 h1
exact (h a1 a2) h1
```

10.5.3 Biastriction

Given a function $f: A \to B$, a setoid R on A and a setoid S on B, we can biastrict f to the respective quotient types, provided that if a pair all all all all all according to the underlying relation of R then the pair (f al), (f all): B is related according to the underlying relation of S. If the above condition holds, biastriction provides a way to transform elements of type A \to B into elements of type Ouotient R \to Ouotient S.

```
def biast {A B : Type} {R : Setoid A} {S : Setoid B} (f : A → B)

(h : ∀ (a1 a2 : A), R.r a1 a2 → S.r (f a1) (f a2)) : Quotient R → Quotient S := by

apply coast (ast f)
intro a1 a2 hR
specialize h a1 a2
apply Quotient.sound
exact h hR
```

In particular, given two setoids R1 and R2 on a type A, the following function establishes a transformation from the type Quotient R1 to the type Quotient R2, provided that the underlying relation of R1 implies the underlying relation of R2. This is achieved by biastricting the identity function.

```
def QuottoQuot {A : Type} {R1 R2 : Setoid A} (h : ∀ (a1 a2 : A), R1.r a1 a2 → R2.r a1 a2) : Quotient R1
  → Quotient R2 := biast id h
```

10.6 Coequalizer

In this section, we introduce the concept of the **coequalizer** of two functions, a construction that identifies elements in the codomain where the two functions produce equivalent outputs. Beyond its definition as a quotient type, the coequalizer is characterized by a **universal property**: it serves as the most general type equipped with a map from B that makes the two functions agree.

Given two functions f, g: $A \rightarrow B$, the **coequalizer** of f and g is the quotient of B by the equivalence relation generated by identifying f a with g a for all a: A.

```
-- We define the relation on B relating elements of the form f a and g a for some a : A

def CoeqRel {A B : Type} (f g : A → B) : B → B → Prop := by

intro b1 b2

exact ∃ (a : A), (f a = b1) ∧ (g a = b2)

-- We next consider the equivalence relation generated by the previous relation

def CoeqEqv {A B : Type} (f g : A → B) := Eqvgen (CoeqRel f g)

-- The Coequalizer Setoid

instance CoeqSetoid {A B : Type} (f g : A → B): Setoid B := {

r := CoeqEqv f g

iseqv := TEqvgen (CoeqRel f g)

}

-- The coequalizer Coeq f g

def Coeq {A B : Type} (f g : A → B) : Type := Quotient (CoeqSetoid f g)
```

It comes equipped with the quotient map from B to the coequalizer.

```
def prCoeq {A B : Type} (f g : A \rightarrow B) : B \rightarrow Coeq f g := @pr B (CoeqSetoid f g)
```

This projection satisfies that $(prCoeq f g) \circ f = (prCoeq f g) \circ g$.

```
theorem TCoeqPr {A B : Type} (f g : A → B) : (prCoeq f g) ∘ f = (prCoeq f g) ∘ g := by

apply funext
intro a
apply Quotient.sound
apply Eqvgen.base
apply Exists.intro a
apply And.intro
exact rfl
exact rfl
```

10.6.1 Universal property of the coequalizer

The universal property of the coequalizer characterizes it not merely as a quotient type, but as a universal solution to the problem of mediating between f and g. The universal property states that the pair (Coeq f g, prCoeq f g) is final among all pairs (C, h), where C is a type and h: $B \rightarrow C$ is a function satisfying $h \circ f = h \circ g$.

That is, if C is a type and $h : B \to C$ is a function satisfying $h \circ f = h \circ g$, then there exists a unique function $u : (Coeq f g) \to C$ such that $u \circ (prCoeq f g) = h$.

```
-- If there is another function h: B \rightarrow C satisfying h \circ f = h \circ g, then there exists a function u: f
        Coeq f g \rightarrow C
   def u {A B C : Type} {f g : A \rightarrow B} {h : B \rightarrow C} (h1 : h \circ f = h \circ g) : Coeq f g \rightarrow C := by
     apply Quotient.lift h
     intro b1 b2 h2
     induction h2
     -- Base case
     rename_i c1 c2 h2
     apply Exists.elim h2
     intro a (h2, )h3
10
       h c1 = h (f a) := congrArg h (h2.symm)
12
              = (h \circ f) a := rfl
              = (h \circ g) a := congrFun h1 a
13
              = h (g a) := rfl
1.4
              = h c2
                          := congrArg h h3
     -- Rfl Case
16
     rename_i c
     exact rfl
18
     -- Svmm Case
19
     rename_i c1 c2 _ h3
     exact h3.symm
21
     -- Trans Case
     rename_i c1 c2 c3 _ _ h4 h5
23
     exact h4.trans h5
24
25
   -- The function u satisfies that u o prCoeq f g = h
```

```
theorem TCoeqPrEq {A B C : Type} {f g : A \rightarrow B} {h : B \rightarrow C} (h1 : h \circ f = h \circ g) : (u h1) \circ (prCoeq f g)
        = h := by
     apply funext
     intro b
29
     exact rfl
30
   -- The function {\bf u} is unique in the sense that if there is another function
   -- v : Coeq f g → C satisfying v ∘ (prCoeq f g) = h, then v = u
33
   theorem TCoeqUni {A B C : Type} {f g : A \rightarrow B} {h : B \rightarrow C} (h1 : h \circ f = h \circ g) (v : Coeq f g \rightarrow C) (h2 :
        v \circ (prCoeq f g) = h) : v = u h1 := by
     apply funext
35
     intro z
36
     have h3: 3 (b: B), Quotient.mk (CoeqSetoid f g) b = z := Quotient.exists_rep z
37
     apply Exists.elim h3
38
39
     intro b h4
40
     calc
       v z = v (prCoeq f g b)
                                                            := congrArg v (h4.symm)
41
           = (v ∘ prCoeq f g) b
                                                            := rfl
42
           = h b
                                                           := congrFun h2 b
43
           = ((u h1) \circ (prCoeq f g)) b
                                                           := congrFun (TCoeqPrEq h1) b
44
            = (u h1) (prCoeq f g b)
                                                            := rfl
            = (u h1) z
                                                           := congrArg (u h1) (h4)
```

In other words, any function from B that "coequalizes" f and g factors uniquely through the coequalizer. This property ensures that the coequalizer is the most general and canonical way to capture the quotient where the images the two functions are identified.

10.7 Exercises

10.7.1 Equivalences

```
-- The meet of two equivalence relations is an equivalence relation instance TMeetEqv {A : Type} {R S : A → A → Prop} (hR : Equivalence R) (hS : Equivalence S) : Equivalence (R ∧ S) := by sorry

-- If two setoids have equivalent underlying relations, the corresponding quotient types are equal theorem TEqQuotype {A : Type} {R1 R2 : Setoid A} (h : ∀ (a1 a2 : A), R1.r a1 a2 ↔ R2.r a1 a2) : Quotient R1 = Quotient R2 := by sorry
```

Prove the *The Universal Property of Quotient types*, which states that the Kernel of the projection function is precisely the original relation of the setoid.

```
-- Ker (pr R) = R.r
theorem TUPQuot {A : Type} {R : Setoid A} : Ker (pr R) = R.r := by sorry
```

10.7.2 Astriction

```
-- The astriction ast f is equal to pr ∘ f.
theorem TAst {A B : Type} {f : A → B} {S : Setoid B}: (@ast A B S f) =
(@pr B S) ∘ f := by sorry
```

10.7.3 Coastriction

Theorems TUPCoast and TUPCoasttUn establish the universal property of the coastriction of a function. The first result, TUPCoast, states that for any function $f:A \rightarrow B$ that respects a setoid relation R on A (i.e., for every pair al alorem al

```
-- f = coast ∘ pr
theorem TUPCoast {A B : Type} {R : Setoid A} {f : A → B} (h : ∀ (a1 a2 : A),
R.r a1 a2 → (Ker f) a1 a2) : f = (coast f h) ∘ (@pr A R) := by sorry

-- Unicity
```

```
theorem TUPCoastUn {A B : Type} {R : Setoid A} {f : A \rightarrow B} (h : \forall (a1 a2 : A),

R.r a1 a2 \rightarrow (Ker f) a1 a2) (g : Quotient R \rightarrow B) (h1 : f = g \circ (@pr A R)) :

(coast f h) = g := by sorry
```

10.7.4 Isomorphisms

We next introduce the concept of *isomorphic types* and establish that, under Classical.choice, isomorphism defines an equivalence relation. We first define Iso A B as the subtype of all functions from A to B that are isomorphisms, meaning they admit a two-sided inverse. Two types A and B are then said to be *isomorphic*, written A \cong B, if there exists at least one such isomorphism, formalized as the proposition Nonempty (Iso A B). Prove that being isomorphic is an equivalence relation on Type.

```
-- The subtype of all isomorphisms from a type 'A' to a type 'B'

def Iso (A B : Type) := {f : A → B // isomorphism f}

-- Two types A and B are isomorphic if there is some isomorphism from 'A' to 'B'

def Isomorphic : Type → Type → Prop := by

intro A B

exact Nonempty (Iso A B)

-- Notation for Isomorphic types ('\cong')

notation : 65 lhs:65 " ≅ " rhs:66 ⇒ Isomorphic lhs rhs

-- Being isomorphic is an equivalence relation
theorem TIsoEqv : Equivalence Isomorphic := by sorry
```

Assuming Classical.choice, every type A is isomorphic to the quotient of A by the diagonal relation, A / Diag.

```
theorem TDiag {A : Type} : A \( \text{QQDiag A := by sorry} \)
```

Under Classical.choice, any two Nonempty types A and B have isomorphic quotients A / Total and B / Total.

```
theorem TTotal {A B : Type} (hA : Nonempty A) (hB : Nonempty B) : @Qtotal A ≅ @Qtotal B := by sorry
```

Assuming Classical.choice prove that, for every function $f : A \rightarrow B$, the quotient A / Ker f is isomorphic to Im f.

```
theorem TKerIm {A B : Type} (f : A \rightarrow B) : QKer f \cong Im f := by sorry
```

10.7.5 Coequalizers

```
-- The function prCoeq is an epimorphism
theorem TprCoeqEpi {A B : Type} {f g : A → B} : epimorphism (prCoeq f g) := by sorry

-- A monic prCoeq is an isomorphism
theorem TprCoeqMon {A B : Type} {f g : A → B} : monomorphism (prCoeq f g) → isomorphism (prCoeq f g) := by sorry
```

11 Orders

In many areas of mathematics and computer science, we are interested in how elements compare. Can one element be considered *less* than another? Are two elements *incomparable*? Such questions motivate the study of *orders*, which capture various ways of comparing elements.

In this chapter, we begin by examining different kinds of order relations and how they combine to define *preorders* and *partial orders*. We'll look at concrete examples and highlight their differences. We then explore how order structures can be represented formally, particularly within a type-theoretic framework.

The chapter concludes with a series of exercises designed to deepen our understanding and give us hands-on practice with ordered structures.

11.1 Preorder

A preorder on a type A is a binary relation on A that is reflexive and transitive.

```
structure Preorder {A : Type} (R : A → A → Prop) : Prop where
refl : ∀ (a : A), R a a
trans : ∀ {a b c : A}, R a b → R b c → R a c
```

The keyword structure introduces a new structured proposition called Preorder, which is simply a collection of logical propositions. It has two fields, refl (reflexivity) and trans (transitivity). Now, statements of the form Preoder R are propositions and thus, can be proven.

11.2 Partial Order

A partial order is a preorder that is also antisymmetric.

```
structure PartialOrder {A : Type} (R : A → A → Prop) : Prop where
toPreorder : Preorder R
antisymm : ∀ {a b : A}, R a b → R b a → a = b
```

11.3 Partially Ordered Set

A partially ordered set (or poset) is a structure consisting of three components: a type base; a binary relation R on base; and a proof that this relation forms a partial order.

```
structure Poset where
base: Type
R: base → base → Prop
toPartialOrder: PartialOrder R
```

11.3.1 Special Elements

We say that z is a **least element** with respect to R if R z a, for every a : A. We say that z is a **greatest element** with respect to R if R a z, for every a : A.

```
-- Least

def Least {A : Type} (R : A → A → Prop) (z : A) : Prop := ∀ {a : A}, R z a

-- Greatest

def Greatest {A : Type} (R : A → A → Prop) (z : A) : Prop := ∀ {a : A}, R a z
```

We say that z is a **minimal element** with respect to R if, for every a: A, whenever R a z holds, it must follow that a = z. Similarly, we say that z is a **maximal element** with respect to R if, for every a: A, whenever R z a holds, it must follow that a = z.

```
-- Minimal def Minimal {A : Type} (R : A \rightarrow A \rightarrow Prop) (z : A) : Prop := \forall {a : A}, R a z \rightarrow a = z
-- Maximal def Maximal {A : Type} (R : A \rightarrow A \rightarrow Prop) (z : A) : Prop := \forall {a : A}, R z a \rightarrow a = z
```

11.3.2 Bounded Posets

A bounded poset is a poset that has both a least element and a greatest element.

```
structure BoundedPoset extends Poset where
l: base
least: Least R l
g: base
greatest: Greatest R g
```

11.3.3 Special Elements relative to a Subtype

We say that z is an **upper bound** of a subtype P if it is greater than or equal to every element of Subtype P with respect to the relation R. An upper bound z is called the **supremum** (or least upper bound) of P if, for any other upper bound x, the relation R z x holds—that is, z is less than or equal to every other upper bound. An element z is the **maximum** of P if it is both a supremum of P and an actual member of Subtype P.

```
-- UpperBound

def UpperBound {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop :=∀

(a : A), P a → R a z

-- Supremum

structure Supremum {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop where

-- Upper Bound

UB : (UpperBound R P z)

-- Least Upper Bound

LUB : ∀ (x : A), (UpperBound R P x → R z x)

-- Maximum

structure Maximum {A : Type} (R : A → A → Prop) (P : A → Prop) (z : A) : Prop where

-- Supremum

toSupremum : (Supremum R P z)

-- In Subtype P

Sub : P z
```

Conversely, we say that z is a **lower bound** of a subtype P if it is smaller than or equal to every element of $Subtype\ P$ with respect to the relation R. A lower bound z is called the **infimum** (or greatest lower bound) of P if, for any other lower bound x, the relation R x z holds—that is, z is greater than or equal to every other upper bound. An element z is the **minimum** of P if it is both an infimum of P and an actual member of $Subtype\ P$.

```
-- LowerBound
                                                           def LowerBound \{A : Type\} \{R : A \rightarrow A \rightarrow Prop\} \{P : A
                                                               -- Infimum
                                                           structure Infimum \{A : Type\} \{R : A \rightarrow A \rightarrow Prop\} \{P : A \rightarrow Prop\} \{P 
                                                                                                                          -- Lower Bound
                                                                                                    LB: (LowerBound R P z)
                                                                                                                              - Greatest Lower Bound
                                                                                                GLB : \forall (x : A), (LowerBound R P x \rightarrow R x z)
                                                                      -- Minimum
                                                           structure Minimum \{A : Type\} \{R : A \rightarrow A \rightarrow Prop\} \{P : A \rightarrow Prop\} \{P 

    Infimum

12
                                                                                                    toInfimum : (Infimum R P z)
                                                                                                                                 - In Subtype P
13
                                                                                                    Sub : P z
```

11.4 Lattice

A lattice is an abstract mathematical structure that can be defined in two equivalent ways: either order-theoretically, as a partially ordered set satisfying certain conditions, or algebraically, as a structure equipped with operations that obey specific laws.

11.4.1 Lattice as a poset

A *lattice* is a partially ordered set in which every pair of elements has a unique supremum (also called the *join*) and a unique infimum (also called the *meet*). The following definition introduces a structure Lattice that builds on an existing Poset by adding operations and properties for meet and join. The corresponding fields infimum and supremum are proofs that meet a b and join a b do indeed satisfy the formal definitions of infimum and supremum with respect to the underlying order relation R.

```
1
    @[ext] structure Lattice extends Poset where
    meet : base → base → base
    infimum : ∀ {a b : base}, Infimum R (fun (x : base) => (x = a) v (x = b)) (meet a b)
    join : base → base → base
    supremum : ∀ {a b : base}, Supremum R (fun (x : base) => (x = a) v (x = b)) (join a b)
```

The <code>@[ext]</code> attribute is a convenience provided by Lean's metaprogramming framework. It automatically generates an **extensionality lemma** for the structure, allowing users to prove equality between two lattice instances by showing that all their corresponding components are equal. In practice, this means that to show two lattices are equal, it suffices to prove that their base types and the relations on them are the same, and that the <code>meet</code> and <code>join</code> operations agree on all inputs. This can simplify proofs and reasoning about structures built on top of <code>Lattice</code>, as we will see below.

11.4.2 Lattice as an algebra

An alternative way to describe a lattice is as an *algebraic structure* consisting of a base type equipped with two binary operations, meet and join. These operations are required to be **commutative** and **associative**, and they must satisfy the **absorption laws**, as described below.

```
@[ext] structure LatticeAlg where
base : Type
meet : base → base → base
join : base → base → base
meetcomm : ∀ {a b : base}, meet a b = meet b a
joincomm : ∀ {a b : base}, join a b = join b a
meetass : ∀ {a b c : base}, meet (meet a b) c = meet a (meet b c)
joinass : ∀ {a b c : base}, join (join a b) c = join a (join b c)
abslaw1 : ∀ {a b : base}, join a (meet a b) = a
abslaw2 : ∀ {a b : base}, meet a (join a b) = a
```

This algebraic perspective is equivalent to the order-theoretic definition and emphasizes the operational behavior of meets and joins rather than their characterization via suprema and infima.

There are usually 2 more laws regarding the **idempotency** of the **meet** and **join** operations that can be derived from the other axioms.

```
-- meet is idempotent
theorem meetidpt {C : LatticeAlg} : ∀ (a : C.base), C.meet a a = a := by
intro a
calc

C.meet a a = C.meet a (C.join a (C.meet a a)) := congrArg (C.meet a) C.abslaw1.symm

- = a := C.abslaw2

-- join is idempotent
theorem joinidpt {C : LatticeAlg} : ∀ (a : C.base), C.join a a = a := by
intro a
calc

C.join a a = C.join a (C.meet a (C.join a a)) := congrArg (C.join a) C.abslaw2.symm

- = a := C.abslaw1
```

The following result will be of interest later.

```
theorem meetjoin {C : LatticeAlg} : ∀ {a b : C.base}, (C.meet a b = a) ↔ (C.join a b = b) := by

intro a b

apply Iff.intro

-- C.meet a b = a → C.join a b = b

intro h

rw [C.meetcomm] at h

rw [C.joincomm, h.symm]

exact C.abslaw1

-- C.join a b = b → C.meet a b = a

intro h
```

```
rw [h.symm]
exact C.abslaw2
```

11.4.3 From Lattice to LatticeAlg

Any Lattice structure naturally induces a corresponding LatticeAlg structure on its underlying base type with the meet and join operations from the lattice. The proof below demonstrates this construction, using the refine keyword to explicitly specify the values of all required LatticeAlg fields.

```
def LatticetoLatticeAlg : Lattice → LatticeAlg := by
     intro C
     refine {
       base := C.base,
       meet := C.meet,
       join := C.join,
       meetcomm := by
         intro a b
         apply C.toPoset.toPartialOrder.antisymm
         -- C.R (C.meet a b) (C.meet b a)
         apply C.infimum.GLB
         intro z h
12
         cases h
13
         -- b
         rename_i hz
         apply C.infimum.LB
16
17
         exact Or.inr hz
         -- a
18
         rename_i hz
19
         apply C.infimum.LB
20
         exact Or.inl hz
21
         -- C.R (C.meet b a) (C.meet a b)
         apply C.infimum.GLB
23
         intro z h
24
         cases h
25
         -- a
26
         rename_i hz
27
         apply C.infimum.LB
28
         exact Or.inr hz
29
         -- b
         rename_i hz
31
         apply C.infimum.LB
32
         exact Or.inl hz
33
       joincomm := by
34
         intro a b
35
         apply C.toPoset.toPartialOrder.antisymm
36
         -- C.R (C.join a b) (C.join b a)
37
38
         apply C.supremum.LUB
         intro z h
39
         cases h
40
         -- a
41
         rename_i hz
42
         apply C.supremum.UB
43
         exact Or.inr hz
44
         -- b
45
46
         rename_i hz
         apply C.supremum.UB
47
         exact Or.inl hz
48
         -- C.R (C.join b a) (C.join a b)
49
         apply C.supremum.LUB
50
51
         intro z h
         cases h
52
         -- b
5.3
54
         rename_i hz
         apply C.supremum.UB
55
         exact Or.inr hz
56
57
         -- a
         rename_i hz
58
         apply C.supremum.UB
59
         exact Or.inl hz
60
       meetass := by
61
         intro a b c
```

```
apply C.toPoset.toPartialOrder.antisymm
          -- C.R (C.meet (C.meet a b) c) (C.meet a (C.meet b c))
          apply C.infimum.GLB
65
         intro z h
66
          cases h
67
          -- a
68
69
          rename_i hz
70
          have h1 : C.R (C.meet (C.meet a b) c) (C.meet a b) := by
           apply C.infimum.LB
71
72
            exact Or.inl rfl
         have h2 : C.R (C.meet a b) z := by
73
           apply C.infimum.LB
74
            exact Or.inl hz
75
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
76
          -- C.meet b c
77
          rename_i hz
78
         rw [hz]
79
         apply C.infimum.GLB
80
          intro d hd
81
         cases hd
82
83
          -- b
         rename_i hd
84
85
         rw [hd]
          have h1 : C.R (C.meet (C.meet a b) c) (C.meet a b) := by
86
           apply C.infimum.LB
87
88
           exact Or.inl rfl
          have h2 : C.R (C.meet a b) b := by
89
           apply C.infimum.LB
90
            exact Or.inr rfl
91
         exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
92
93
          -- C
          rename_i hd
94
          apply C.infimum.LB
95
96
          exact Or.inr hd
          -- C.R (C.meet a (C.meet b c)) (C.meet (C.meet a b) c)
97
         apply C.infimum.GLB
98
          intro z h
         cases h
100
          -- C.meet a b
102
          rename_i hz
          rw [hz]
         apply C.infimum.GLB
104
          intro d hd
105
         cases hd
106
          -- a
107
          rename_i hd
108
         apply C.infimum.LB
          exact Or.inl hd
110
          -- b
112
          rename_i hd
          rw [hd]
         have h1 : C.R (C.meet a (C.meet b c)) (C.meet b c) := by
114
115
           apply C.infimum.LB
           exact Or.inr rfl
         have h2 : C.R (C.meet b c) b := by
           apply C.infimum.LB
118
           exact Or.inl rfl
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
120
          -- c
          rename_i hz
          have h1 : C.R (C.meet a (C.meet b c)) (C.meet b c) := by
123
           apply C.infimum.LB
            exact Or.inr rfl
          have h2 : C.R (C.meet b c) z := by
126
           apply C.infimum.LB
128
           exact Or.inr hz
129
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
        joinass := by
130
         intro a b c
131
          apply C.toPoset.toPartialOrder.antisymm
          -- C.R (C.join (C.join a b) c) (C.join a (C.join b c))
          apply C.supremum.LUB
         intro z h
135
```

```
cases h
136
137
          -- C.join a b
          rename_i hz
138
          rw [hz]
          apply C.supremum.LUB
140
          intro d hd
141
          cases hd
142
143
          -- a
          rename_i hd
144
145
          apply C.supremum.UB
          exact Or.inl hd
146
          -- b
147
          rename_i hd
148
          have h1 : C.R d (C.join b c) := by
149
            apply C.supremum.UB
150
            exact Or.inl hd
151
          have h2 : C.R (C.join b c) (C.join a (C.join b c)) := by
153
            apply C.supremum.UB
            exact Or.inr rfl
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
156
          rename_i hz
158
          have h1 : C.R z (C.join b c) := by
            apply C.supremum.UB
159
            exact Or.inr hz
160
          have h2 : C.R (C.join b c) (C.join a (C.join b c)) := by
161
            apply C.supremum.UB
162
            exact Or.inr rfl
163
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
164
          -- C.R (C.join a (C.join b c)) (C.join (C.join a b) c)
165
          apply C.supremum.LUB
166
          intro z h
167
          cases h
168
169
          -- a
          rename_i hz
170
          have h1 : C.R z (C.join a b) := by
            apply C.supremum.UB
172
            exact Or.inl hz
          have h2 : C.R (C.join a b) (C.join (C.join a b) c) := by
174
175
            apply C.supremum.UB
            exact Or.inl rfl
177
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
          -- C.join b c
178
          rename_i hz
          rw [hz]
180
          apply C.supremum.LUB
181
          intro d hd
182
          cases hd
183
          -- b
184
185
          rename_i hd
          have h1 : C.R d (C.join a b) := by
186
            apply C.supremum.UB
187
188
            exact Or.inr hd
          have h2 : C.R (C.join a b) (C.join (C.join a b) c) := by
189
190
            apply C.supremum.UB
            exact Or.inl rfl
191
          exact C.toPoset.toPartialOrder.toPreorder.trans h1 h2
192
193
          -- c
194
          rename_i hd
          apply C.supremum.UB
195
          exact Or.inr hd
196
        abslaw1 := by
197
          intro a b
198
          apply C.toPoset.toPartialOrder.antisymm
199
          -- C.R (C.join a (C.meet a b)) a
200
201
          apply C.supremum.LUB
          intro d hd
202
          cases hd
203
          -- a
204
          rename_i hd
205
          rw [hd]
206
          apply C.toPoset.toPartialOrder.toPreorder.refl
          -- C.meet a b
208
```

```
rename_i hd
209
210
          rw [hd]
          apply C.infimum.LB
211
          exact Or.inl rfl
          -- C.R a (C.join a (C.meet a b))
213
          apply C.supremum.UB
214
215
          exact Or.inl rfl
        abslaw2 := by
216
217
          intro a b
          apply C.toPoset.toPartialOrder.antisymm
218
          -- C.R (C.meet a (C.join a b)) a
219
          apply C.infimum.LB
220
          exact Or.inl rfl
221
          -- C.R a (C.meet a (C.join a b))
222
          apply C.infimum.GLB
223
          intro d hd
224
          cases hd
          -- a
226
          rename_i hd
227
          rw [hd]
228
229
          apply C.toPoset.toPartialOrder.toPreorder.refl
          -- C.join a b
230
231
          rename_i hd
          rw [hd]
232
          apply C.supremum.UB
          exact Or.inl rfl
234
```

11.4.4 From LatticeAlg to Lattice

Conversely, every LatticeAlg structure gives rise to a corresponding Lattice structure on its underlying base type. The construction begins by defining a partial order LAR on the base, as shown below. We will say that $a \le b$ if, and only if, meet a = a.

```
def LAR {C : LatticeAlg} : C.base → C.base → Prop := by
intro a b
exact C.meet a b = a
```

The relation LAR is a Preorder.

```
theorem TLARPreorder {C : LatticeAlg} : Preorder (@LAR C) := by
apply Preorder.mk
-- refl
intro a
rw [LAR]
exact meetidpt a
-- trans
intro a b c h1 h2
rw [LAR] at *
rw [h1.symm, C.meetass, h2]
```

The relation LAR is a PartialOrder.

```
theorem TLARPartialOrder {C : LatticeAlg} : PartialOrder (@LAR C) := by
apply PartialOrder.mk
-- toPreorder
exact TLARPreorder
-- antisymm
intro a b h1 h2
calc
a = C.meet a b := h1.symm
- = C.meet b a := C.meetcomm
- = b := h2
```

In summary, we are now ready to prove that every LatticeAlg structure induces a corresponding Lattice structure on its base type, preserving the same meet and join operations.

```
def LatticeAlgtoLattice : LatticeAlg → Lattice := by
intro C
refine {
   toPoset := {
```

```
base := C.base,
         R := @LAR C,
         toPartialOrder := TLARPartialOrder
       }
      meet := C.meet,
9
      infimum := by
        intro a b
11
12
         apply Infimum.mk
         -- LowerBound
13
14
        intro z hz
        cases hz
         -- a
16
17
         rename_i hz
         rw [hz]
18
         have h1 : C.meet (C.meet a b) a = (C.meet a b) := by
19
          calc
20
             C.meet (C.meet a b) a = C.meet a (C.meet a b) := C.meetcomm.symm
21
22
                                    = C.meet (C.meet a a) b := C.meetass.symm
                                                           := congrArg (fun x => C.meet x b) (meetidpt a)
23
         exact h1
24
25
         -- b
         rename_i hz
26
27
         rw [hz]
         have h1 : C.meet (C.meet a b) b = (C.meet a b) := by
28
          calc
29
            C.meet (C.meet a b) b = C.meet a (C.meet b b) := C.meetass
30
31
                                    = C.meet a b
                                                            := congrArg (fun x => C.meet a x) (meetidpt b)
         exact h1
32
33
         -- Greatest LowerBound
         intro x h
34
         have ha : C.meet x = x := by
35
         apply h
36
          exact Or.inl rfl
37
38
         have hb : C.meet x b = x := by
         apply h
39
          exact Or.inr rfl
40
41
         have h1 : C.meet x (C.meet a b) = x := by
42
          calc
             C.meet x (C.meet a b) = C.meet (C.meet x a) b := C.meetass.symm
43
44
                                    = C.meet x b
                                                             := congrArg (fun z => C.meet z b) ha
                                    = x
45
         exact h1
46
       join := C.join,
47
       supremum := by
48
49
        intro a b
        apply Supremum.mk
50
         -- UpperBound
51
        intro z hz
52
        cases hz
53
54
         -- a
         rename_i hz
55
         rw [hz]
56
57
         exact C.abslaw2
         -- b
58
         rename_i hz
59
         rw [hz, C.joincomm]
60
         exact C.abslaw2
61
         -- Least UpperBound
62
         intro x h
63
         have ha : C.meet a x = a := by
64
65
          apply h
           exact Or.inl rfl
66
         have hb : C.meet b x = b := by
67
         apply h
68
          exact Or.inr rfl
69
         have hax : C.join a x = x := meetjoin.mp ha
70
71
         have hbx : C.join b x = x := meetjoin.mp hb
         have h1 : C.join (C.join a b) x = x := by
72
73
          calc
             C.join (C.join a b) x = C.join a (C.join b x) := C.joinass
74
                                   = C.join a x
                                                          := congrArg (fun z => C.join a z) hbx
75
76
                                    = X
                                                             := hax
         exact meetjoin.mpr h1
77
```

78

11.4.5 Compositions

The ext attribute now allows us to prove that the two constructions defined above are mutually inverse.

LatticeAlgtoLattice • LatticetoLatticeAlg = id

```
theorem TIdLattice : LatticeAlgtoLattice • LatticetoLatticeAlg = id := by
     funext C
     apply Lattice.ext
     -- base
     exact rfl
     -- R
     have hR: (LatticeAlgtoLattice (LatticetoLatticeAlg C)).R = C.R := by
      funext a b
      apply propext
      apply Iff.intro
       -- ((LatticeAlgtoLattice \circ LatticetoLatticeAlg) C).R a b \rightarrow C.R a b
12
      intro h
      have hs : C.meet a b = a := h
13
       rw [hs.symm]
14
       apply C.infimum.LB
15
      exact Or.inr rfl
       -- C.R a b → (LatticeAlgtoLattice (LatticetoLatticeAlg C)).R a b
17
      intro h
18
      have hs : C.meet a b = a := by
19
20
         apply C.toPoset.toPartialOrder.antisymm
         -- C.R (C.meet a b) a
21
         apply C.infimum.LB
23
         exact Or.inl rfl
         -- C.R a (C.meet a b)
24
25
         apply C.infimum.GLB
         intro z hz
26
27
         cases hz
28
         -- a
         rename_i hz
29
         rw [hz]
30
         exact C.toPoset.toPartialOrder.toPreorder.refl a
31
32
         rename_i hz
33
         rw [hz]
34
         exact h
35
       exact hs
36
     exact heq_of_eq hR
37
     -- meet
38
     exact HEq.refl C.meet
     -- join
40
    exact HEq.refl C.join
```

LatticetoLatticeAlg • LatticeAlgtoLattice = id

```
theorem TIdLatticeAlg : LatticetoLatticeAlg o LatticeAlgtoLattice = id := by

funext C
apply LatticeAlg.ext
-- base
exact rfl
-- meet
exact HEq.refl C.meet
-- join
exact HEq.refl C.join
```

11.4.6 Distributive Lattice

A distributive lattice is a lattice satisfying an extra law regarding the distributivity of meet over join.

```
@[ext] structure DistLatticeAlg extends LatticeAlg where
dist: V {a b c : base}, meet a (join b c) = join (meet a b) (meet a c)
```

11.5 Complete Lattice

A complete lattice is a partially ordered set in which every subtype has both an infimum, that we will call meet, and a supremum, that we will call join.

```
structure CompleteLattice extends Poset where
meet : (base → Prop) → base
infimum : ∀ {P : base → Prop}, Infimum R P (meet P)
join : (base → Prop) → base
supremum : ∀ {P : base → Prop}, Supremum R P (join P)
```

11.5.1 From CompleteLattice to Lattice

Clearly, every CompleteLattice is, in particular, a Lattice.

```
def CompleteLatticetoLattice : CompleteLattice → Lattice := by
   intro C
   refine {
      toPoset := C.toPoset,
      meet := (fun a b => C.meet (fun (x : C.base) => (x = a) v (x = b))),
      infimum := fun {a b} => C.infimum
      join := (fun a b => C.join (fun (x : C.base) => (x = a) v (x = b))),
      supremum := fun {a b} => C.supremum
   }
}
```

11.5.2 From CompleteLattice to BoundedPoset

Also, every CompleteLattice is, in particular, a BoundedPoset. To prove this fact, we need to prove that the supremum of the PFalse predicate is, precisely, the Least element (exercise) and the infimum of the PFalse predicate is, precisely, the Greatest element (exercise). Thus, every CompleteLattice, which has both infima and suprema for all subtypes, contains a least and a greatest element, i.e., is a BoundedPoset.

```
def CompleteLatticetoBoundedPoset : CompleteLattice → BoundedPoset := by
    intro C
    refine {
        toPoset := C.toPoset,
        l := C.join (PFalse),
        least := (TLeastSupPFalse C.R (C.join PFalse)).mpr (C.supremum)
        g := C.meet (PFalse),
        greatest := (TGreatestInfPFalse C.R (C.meet PFalse)).mpr (C.infimum)
}
```

11.6 Exercises

11.6.1 Inverse Partial Order

```
-- If R is a preorder, then the inverse relation R^ is also a preorder
theorem TPreorderInv {A : Type} (R : A → A → Prop) : Preorder R → Preorder (inverse R) := by sorry

-- If R is a partial order, then the inverse relation R^ is also a partial order
theorem TPartialOrderInv {A : Type} (R : A → A → Prop) : PartialOrder R → PartialOrder (inverse R) := by
sorry
```

11.6.2 Special Elements

```
-- If R is a partial order and z1 and z2 are least elements, then they are equal.
          theorem LeastUnique {A : Type} (R : A → A → Prop) (z1 z2 : A) (h : PartialOrder R) (h1 : Least R z1) (h2
                              : Least R z2) : z1 = z2 := by sorry
          -- If R is a partial order and z1 and z2 are greatest elements, then they are equal.
          theorem GreatestUnique \{A: Type\}\ (R: A \rightarrow A \rightarrow Prop)\ (z1\ z2: A)\ (h: PartialOrder\ R)\ (h1: Greatest\ R)
                           z1) (h2 : Greatest R z2) : z1 = z2 := by sorry
          -- If R is a partial order and z is the least element, then it is a minimal element
          def LeasttoMinimal \{A : Type\} \{R : A \rightarrow A \rightarrow Prop\} \{z : A\} \{h : PartialOrder R\} : Least \{R : A \rightarrow A \rightarrow Prop\} \{x : A \rightarrow A \rightarrow Prop\}
                           := by sorry
          -- If R is a partial order and z is the greatest element, then it is a maximal element
          def GreatesttoMaximal \{A: Type\}\ (R:A \to A \to Prop)\ (z:A)\ (h:PartialOrder\ R): Greatest\ R\ z \to A \to Prop)\ (z:A)\ (h:PartialOrder\ R)
                           Maximal R z := by sorry
          -- A least element for R is a greatest element for R^
          def LeasttoGreatestInv \{A : Type\} \{R : A \rightarrow A \rightarrow Prop\} \{z : A\} : Least R z \rightarrow Greatest (inverse R) z := by
                          sorry
            -- A greatest element for R is a least element for R^
          def GreatesttoLeastInv \{A: Type\}\ (R: A \rightarrow A \rightarrow Prop)\ (z: A): Greatest R z \rightarrow Least (inverse R) z:= by
18
          -- A minimal element for R is a maximal element for R^
          def MinimaltoMaximalInv \{A : Type\} \{R : A \rightarrow A \rightarrow Prop\} \{z : A\} : Minimal \{R : Z \rightarrow Maximal\} (inverse \{R\}) \{z : A\}
          -- A maximal element for R is a minimal element for R^
22
          def MaximaltoMinimalInv \{A: Type\}\ (R: A \to A \to Prop)\ (z: A): Maximal R z \to Minimal (inverse R) z:=
```

11.6.3 Restriction

```
-- The Restriction of a relation to a Subtype

def Restriction {A : Type} (R : A → A → Prop) (P : A → Prop) : Subtype P → Subtype P → Prop := by

intro a1 a2

exact R a1.val a2.val

-- If R is a preorder then Restriction R P, for a predicate P, is a preorder

theorem TPRestriction {A : Type} (R : A → A → Prop) (P : A → Prop) : Preorder R → Preorder (Restriction R P) := by sorry

-- If R is a partial order then Restriction R P, for a predicate P, is a partial order

theorem TPORestriction {A : Type} (R : A → A → Prop) (P : A → Prop) :

PartialOrder R → PartialOrder (Restriction R P) := by sorry
```

11.6.4 Special Elements relative to a Subtype

```
-- The supremum of the False predicate is the least element
theorem TLeastSupPFalse {A : Type} (R : A → A → Prop) (z : A) : Least R z ↔ Supremum R PFalse z := by
sorry

-- The infimum of the False predicate is the greatest element
theorem TGreatestInfPFalse {A : Type} (R : A → A → Prop) (z : A) : Greatest R z ↔ Infimum R PFalse z :=
by sorry

-- The infimum of the True predicate is the least element
theorem TLeastInfPTrue {A : Type} (R : A → A → Prop) (z : A) : Least R z ↔ Infimum R PTrue z := by sorry

-- The supremum of the True predicate is the greatest element
theorem TGreatestSupPTrue {A : Type} (R : A → A → Prop) (z : A) : Greatest R z ↔ Supremum R PTrue z :=
by sorry
```

$11.6.5 (N, \leq)$

```
-- The ≤ relation for N
     def NLeq : N \rightarrow N \rightarrow Prop := by
         intro n m
         exact \exists (k : N), n + k = m
     -- Notation for ≤
     notation : 65 lhs:65 " ≤ " rhs:66 => NLeq lhs rhs
      -- ≤ is a preorder
     theorem TPreorderNLeq : Preorder NLeq := by sorry
      -- ≤ is a partial order
12
     theorem TPartialOrderNLeq : PartialOrder NLeq := by sorry
13
      -- (N, ≤) is a partially ordered type
     def instPosetNLeq : Poset := by sorry
16
      -- z is the least element
18
     theorem TNLeqzL : \forall \{n : N\}, z \le n := by sorry
19
        - No s n is below z
21
     theorem TNLeqzR : \forall \{n : N\}, \neg (s n \le z) := by sorry
22
        - If n ≤ m then s n ≤ s m
24
     theorem TNLeqSuccT : \forall \{n \ m : N\}, (n \le m) \rightarrow (s \ n \le s \ m) := by sorry
      -- If n ≰ m then s n ≰ s m
27
     theorem TNLeqSuccF : \forall \{n \ m : N\}, (\neg (n \le m)) \rightarrow (\neg (s \ n \le s \ m)) := by sorry
      -- ≤ is decidable
30
     def instDecidableNLeq : ∀ {n m : N}, Decidable (n ≤ m) := by sorry
      -- min n m is a lower bound of n
33
     theorem TMinNLeqL : ∀ {n m : N}, (mini n m) ≤ n := by sorry
     -- \min n \min
     theorem TMinNLeqR : \forall {n m : N}, (mini n m) \leq m := by sorry
37
      -- min n m is the infimum for n and m
     theorem TInfNLeq: \forall \{n m : N\}, Infimum NLeq (fun (x : N) \Rightarrow (x = n) \lor (x = m)) (mini n m) := by sorry
40
     -- max n m is an upper bound of n
     theorem TMaxNLeqL : ∀ {n m : N}, n ≤ (maxi n m) := by sorry
43
      -- max n m is an upper bound of m
45
     theorem TMaxNLeqR : ∀ {n m : N}, m ≤ (maxi n m) := by sorry
46
         - max n m is the supremum of n and m
48
     theorem TSupNLeq: \forall \{n m : N\}, Supremum NLeq (fun (x : N) \Rightarrow (x = n) \lor (x = m)) (maxi n m) := by sorry
49
        - (N, ≤) is a lattice
     def instLatticeNLeq : Lattice := by sorry
      -- \min n \pmod{max m p} = \max \pmod{n m} \pmod{min n p}
54
     theorem TDistNLeq : ∀ {n m p : N}, mini n (maxi m p) = maxi (mini n m) (mini n p) := by sorry
      -- (N≤.) is a distributive lattice
     def instDistLatticeAlgNLeq : DistLatticeAlg := by sorry
```

11.6.6 (N, |)

```
-- The | (divisor) relation for N

def NDiv: N \( \to \) N \( \to \) Prop := by

intro n m

exact \( \to \) (k: N), n \( * k = m \)

-- Notation for divisor (\mid)

notation: 65 lhs:65 " | " rhs:66 => NDiv lhs rhs
```

```
-- | is a preorder
  theorem TPreorderNDiv : Preorder NDiv := by sorry
   -- | is a partial order
  theorem TPartialOrderNDiv : PartialOrder NDiv := by sorry
13
  -- (N, |) is a partially ordered type
  def instPosetNDiv : Poset := by sorry
  -- one is the least element for |
18
  theorem TNDivOne : Least NDiv one := by sorry
19
  -- z is the 'greatest' element for | ''
  theorem TNDivZ : Greatest NDiv z := by sorry
22
   -- (N, |) is a bounded partially ordered type
24
  def instBoundedPosetNDiv : BoundedPoset := by sorry
25
   -- z does not divide any successor
27
  theorem TNDivzL : \forall \{n : N\}, \neg (z \mid s n) := by sorry
28
   -- (N, |) is a lattice
30
  def instLatticeNDiv : Lattice := by sorry
```

11.6.7 (Prop, \rightarrow)

```
-- The → relation for Prop
  def PropLeq : Prop → Prop → Prop := by
    intro P Q
    exact P → Q
  -- → is a preorder
  theorem TPreorderPropLeg: Preorder PropLeg:= by sorry
   -- → is a partial order
  theorem TPartialOrderPropLeg : PartialOrder PropLeg := by sorry
10
   -- (Prop, →) is a partially ordered type
  def instPosetPropLeq : Poset := by sorry
   -- False is the least element for →
15
  theorem TPropLeqFalse : Least PropLeq False := by sorry
16
   -- True is the greatest element for →
18
  theorem TPropLeqTrue : Greatest PropLeq True := by sorry
   -- (Prop, →) is a bounded partially ordered type
21
  def instBoundedPropLeq : BoundedPoset := by sorry
   -- (Prop, Λ, ν) is a lattice (as an algebra)
24
  def instLatticeAlgProp : LatticeAlg := by sorry
26
   -- (Prop, →) is a complete lattice
  def instCompleteLatticeProp : CompleteLattice := by sorry
```

12 Empty and Unit types

In this chapter, we explore two of the simplest—but most fundamental—types in Lean: the Empty type and the Unit type. Though these types may seem trivial at first glance, they play a crucial role in the logic and structure of formal proofs.

12.1 Empty

The **Empty type**, written as **Empty**, is a type with *no* inhabitants. If we **#print Empty**, Lean returns:

```
inductive Empty: Type
number of parameters: 0
constructors:
```

This means that if we have a value of type Empty, we can derive a value of any other type from it. In Lean, this is done using the Empty.elim function, which expresses the logical principle that from falsehood, anything follows.

```
def emptyToAny {A : Type} : Empty → A := by
intro x
exact Empty.elim x
```

An interesting property of the emptyToAny function is that it is unique up to definitional equality; any two functions with type $\mathsf{Empty} \to \mathsf{A}$ are definitionally the same.

```
theorem emptyToAnyUnique {A : Type} {f g : Empty → A} : f = g := by
funext x
exact Empty.elim x
```

This implies that the <code>emptyToAny</code> function with codomain <code>Empty</code> is, in particular, the identity function on <code>Empty</code>.

```
theorem emptyToAnyId : @emptyToAny Empty = id := by
funext x
exact Empty.elim x
```

12.2 Unit

The **Unit type**, written as **Unit**, is a type with *exactly one* inhabitant: **Unit.unit**, usually just written ().

If we #print Unit, Lean returns:

```
@[reducible] def Unit : Type :=
PUnit
```

There is always a function from any type to the ${\tt Unit}$ type, since we can simply ignore the input and return ().

```
def anyToUnit {A : Type} : A → Unit := by
intro _
exact ()
```

The anyToUnit function is unique up to definitional equality; any two functions with type $A \rightarrow Unit$ are definitionally the same.

```
theorem anyToUnitUnique {A : Type} {f g : A → Unit} : f = g := by
funext x
exact rfl
```

This implies that when the domain is Unit, the anyToUnit function is, in particular, the identity function on Unit.

```
theorem anyToUnitId : @anyToUnit Unit = id := by

funext x
exact rfl
```

12.3 Exercises

12.3.1 Empty

```
-- All the elements of Empty are equal theorem emptyUnique: \( \forall \) (x y : Empty), x = y := by sorry

-- The emptyToAny function is injective theorem emptyToAnyInj \( \forall \) : Type\( \forall \) : injective (@emptyToAny A) := by sorry

-- Under Classical.choice, if the emptyToAny function is surjective, the codomain cannot be Nonempty theorem emptyToAnySurj \( \forall A : Type\( \forall : Type\( \foral
```

12.3.2 Unit

```
-- All the elements of Unit are equal theorem unitUnique: ∀ (x y : Unit), x = y := by sorry

-- The anyToUnit function is injective if, and only if, the domain has only one element theorem anyToUnitInj {A : Type} : injective (@anyToUnit A) ↔ ∀( (a1 a2 : A), a1 = a2) := by sorry

-- Under Classical.choice, the anyToUnit function is surjective if and only if the domain is Nonempty theorem anyToUnitSurj {A : Type} : surjective (@anyToUnit A) ↔ Nonempty A := by sorry
```

13 Product and Sum types

This chapter explores **product and sum types**, two foundational constructs in type theory.

We begin with the **product type**, which models the combination of two types into a single type whose elements are pairs. The section introduces the construction of product types, how to access their components, and their role in structuring data. The **universal property of the product** is then presented, characterizing the product as the type that uniquely supports projections and pairing. The concept is extended to the **product of a family of types**, generalizing the binary product to arbitrary indexed collections.

Next, we examine the **sum type**, which represents a value that belongs to one of several types. It captures alternatives or choices between types and is central to defining tagged unions. The **universal property of the sum** provides its defining characteristic: a type that uniquely supports case analysis using injections. This is generalized to the **sum of a family of types**, where each summand is indexed, enabling more expressive and flexible type constructions.

The chapter concludes with a set of **exercises** aimed at reinforcing understanding through practical applications and formal reasoning about product and sum types.

13.1 Product type

A **product type** combines two types into a single type whose values consist of pairs drawn from each component. In Lean, the product type of A and B is written as $Prod\ A\ B$ or, alternatively as, $A\times B$, using the \times symbol (typed as \times).

If we #print Prod, Lean returns:

```
structure Prod.{u, v} : Type u → Type v → Type (max u v)
number of parameters: 2
constructor:
Prod.mk : { α : Type u } → { β : Type v } → α → β → α × β
fields:
fst : α
snd : β
```

Lean defines the product type internally using the Prod structure. This definition shows that Prod takes two types—one from universe u and one from universe v—and returns a type in the larger of the two universes, max u v. The constructor Prod.mk builds a pair from values of types α and β , and the resulting pair belongs to the product type $\alpha \times \beta$. The structure has two fields: fst, which retrieves the first component of the pair, and snd, which retrieves the second component.

This definition implies that to construct a value of type $A \times B$, we must provide **both** a value of type A and a value of type B. The constructor Prod.mk enforces this requirement: given a:A and b:B, the expression Prod.mk a b (or simply $\langle a,b \rangle$ using Lean's pair notation) yields a value of type $A \times B$. This reflects the nature of product types as containers of exactly one value from each of their component types. In other words, a product type does not represent a choice between A and B, but rather a combination of the two.

```
def toPair {A B : Type} : A → B → A × B := by
intro a b
exact Prod.mk a b -- alternatively ⟨a,\ ⟩b
```

The Prod type provides two **projections**, $\pi 1$ and $\pi 1$, or, alternatively, fst and snd, which allow us to extract the individual components of a product. Given a value $p:A\times B$, the expression p.fst retrieves the first element (of type A), and p.snd retrieves the second element (of type B).

```
-- projection on the first component

def π1 {A B : Type} : (A × B) → A := by

intro p

exact p.fst

-- projection on the second component
```

```
7 def π2 {A B : Type} : (A × B) → B := by
8 intro p
9 exact p.snd
```

Two values of type $A \times B$ are **equal** if, and only if, their respective components are equal. That is, given $p1 p2 : A \times B$, we have p1 = p2 precisely when p1.fst = p2.fst and p1.snd = p2.snd. Lean provides the theorem Prod.ext to formalize and prove such equalities.

```
theorem prodEq {A B : Type} (p1 p2 : A × B) : (p1 = p2 ) ↔ (π1 p1 = π1 p2 ) ∧ (π2 p1 = π2 p2 ) := by

apply Iff.intro

-- p1 = p2 → π1 p1 = π1 p2 ∧ π2 p1 = π2 p2

intro h

apply And.intro

exact congrArg π1 h

exact congrArg π2 h

-- π1 p1 = π1 p2 ∧ π2 p1 = π2 p2 → p1 = p2

intro ⟨ h1, h2 ⟩

apply Prod.ext

exact h1

exact h2
```

13.1.1 Universal property of the product

The universal property of the product type characterizes it as the *best* type that supports pairing of data. Specifically, given types A, B, and C, and functions $f: C \to A$ and $g: C \to B$, there exists a unique function $h: C \to A \times B$ such that the projections of h recover f and g; that is, $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$. In Lean, this function h is constructed by sending each c: C to the pair ($f \circ c, g \circ c$).

```
def toProd {A B C : Type} (f : C → A) (g : C → B) : (C → A × B) := by
intro c
exact Prod.mk (f c) (g c)
```

This function has the key property that composing it with the product projections recovers the original functions.

```
-- Composition with π1
theorem toProdp1 {A B C : Type} (f : C → A) (g : C → B) : π1 ∘ (toProd f g) = f := by
funext c
exact rfl

-- Composition with π2
theorem toProdp2 {A B C : Type} (f : C → A) (g : C → B) : π2 ∘ (toProd f g) = g := by
funext c
exact rfl
```

The universal property of the product type not only guarantees the **existence** of the function **toProd** $f g : C \to A \times B$ satisfying the projection identities, but also ensures its **uniqueness**. That is, if we have a function $h : C \to A \times B$ such that $\pi_1 \circ h = f$ and $\pi_2 \circ h = g$, then h must be equal to toProd f g. This uniqueness clause completes the universal property: it tells us that toProd f g is the *only* function from C to $A \times B$ whose projections are f and g. This powerful principle often allows us to characterize and prove properties about functions into product types by reasoning solely about their projections.

```
theorem toProdUnique {A B C : Type} {f : C → A} {g : C → B} {h : C → A × B} :

( π1 ∘ h = f ) → ( π2 ∘ h = g ) → ( h = toProd f g ) := by

intro h1 h2

funext c

apply Prod.ext

exact congrFun h1 c

exact congrFun h2 c
```

13.2 Generalized product type

Given an index type I and a family of types $\mathbb{A}: I \to \mathsf{Type}$, the product type consists of a collection of values, each corresponding to a type in the family \mathbb{A} i for every index i: I. In Lean, this is expressed as the dependent function type \forall (i: I), \mathbb{A} i, which can be thought of as the type of functions that assign a value of type \mathbb{A} i to each index i: I.

```
variable ( I : Type )
variable ( A : I → Type )
#check ∀ (i : I), A i
```

To produce a value of type \forall (i: I), \mathbb{A} i, we must provide a value of type \mathbb{A} i for each i: I.

```
def toPairg { I : Type } { A : I → Type } : ( (i : I) → A i ) → ∀ (i : I), A i := by
intro f i
exact f i
```

The type \forall (i : I), \mathbb{A} i has a natural projection that allows us to extract the value of type \mathbb{A} i for a specific index i : I. This projection is a function that, given an element of type \forall (i : I), \mathbb{A} i, returns the corresponding value of type \mathbb{A} i for a particular index i.

```
def π { I : Type } { A : I → Type } ( i : I ) : ( ∀ (i : I), A i ) → A i := by
intro a
exact a i
```

Two values of type \forall (i : I), \mathbb{A} i are equal if and only if their corresponding i-th components are equal for every index i : I.

```
theorem prodEqg { I : Type } { A : I → Type } ( a1 a2 : ∀ (i : I), A i ) : ( a1 = a2 ) ↔ ∀ (i : I), π i a1 = π i a2 := by apply Iff.intro

-- a1 = a2 → ∀ (i : I), π i a1 = π i a2 intro h i exact congrArg ( π i ) h

-- ( ∀ (i : I), π i a1 = π i a2 ) → a1 = a2 intro h funext i exact h i
```

13.2.1 Universal property of the generalized product

The universal property of the product type \forall (i : I), \mathbb{A} i is a key characteristic that allows us to construct a function from a given family of functions. Specifically, if we have a family of functions \mathbb{f} i : $C \to \mathbb{A}$ i for each i : I, the universal property guarantees the existence of a unique function $h : C \to \mathbb{V}$ (i : I), \mathbb{A} i such that for every i : I, π i \circ $h = \mathbb{f}$ i.

```
def toProdg { I C : Type } { A : I \rightarrow Type } ( f : (i : I) \rightarrow C \rightarrow A i ) : C \rightarrow ( \forall (i : I), A i ) := by intro c i exact ( f i ) c
```

Applying the projection π i to the result of toProdg f yields the corresponding function f i.

The universal property of the product type also asserts a uniqueness condition: if we have a function $h : C \to V$ (i : I), A i such that, for every i : I, the composition of h with the projection π i satisfies the equality π i \circ h = f i, then the function h must be equal to the function constructed by toProdg f.

```
theorem toProdgUnique { I C : Type } { A : I → Type } { f : (i : I) → C → A i } { h : C → ∀ (i : I), A i } : ( ∀ (i : I), ( π i ) ∘ h = ( f i ) ) → ( h = toProdg f ) := by
intro hp
funext c
funext i
exact congrFun (hp i) c
```

13.3 Sum type

A **sum type** combines two types into a single type whose values are drawn from some component. In Lean, the sum type of A and B is written as Sum A B or, alternatively as, A \oplus B, using the \oplus symbol (typed as \polimits).

If we **#print Sum**, Lean returns:

```
inductive Sum.{u, v}: Type u → Type (max u v)
number of parameters: 2
constructors:
Sum.inl: { α : Type u } → { β : Type v } → α → α ⊕ β
Sum.inr: { α : Type u } → { β : Type v } → β → α ⊕ β
```

Lean defines the sum type internally using the inductive Sum type. This definition shows that Sum takes two types—one from universe u and one from universe v—and returns a type in the larger of the two universes, max u v. It includes two constructors: Sum.inl, which wraps a value of type α , and Sum.inr, which wraps a value of type β . The type Sum ensures that values can be of one type or the other.

The Sum type provides two **injections**, 11 and 12 or, alternatively, Sum.inl and Sum.inr, which allows us to insert the individual components on a sum. Given a value a:A, the expression Sum.inl a retrieves an element of type $A \oplus B$. Given a value b:B, the expression Sum.inr b retrieves an element of type $A \oplus B$.

```
-- injection on the first component

def i1 {A B : Type} : A → A ⊕ B := by
    intro a
    exact Sum.inl a

-- injection on the second component

def i2 {A B : Type} : B → A ⊕ B := by
    intro b
    exact Sum.inr b
```

Two values of type $A \oplus B$ are considered equal if and only if they are both injections on the same element. This means that if we have two elements p1, p2: $A \oplus B$, we say p1 = p2 if, for both elements, either both are wrapped using the Sum.inl constructor (i.e., both come from type A), or both are wrapped using the Sum.inr constructor (i.e., both come from type B), and, in each case, the underlying values are equal.

```
theorem sumEq \{A B : Type\} (p1 p2 : A \oplus B) : (p1 = p2) \leftrightarrow (∃ (a : A), ( 11 a = p1 ) ∧ ( 11 a = p2 ) ) v
        \exists ( (b : B), ( (12 b = p1 ) \land (12 b = p2 ) ) := by
     apply Iff.intro
     -- p1 = p2 → (∃a, ι1 a = p1 ∧ ι1 a = p2 ) v (∃b, ι2 b = p1 ∧ ι2 b = p2 )
     intro h
     cases p1 with
     | inl a => cases p2 with
       | inl b =>
         injection h with h1
         apply Or.inl
          apply Exists.intro a
         apply And.intro rfl
          rw [h1]
          exact rfl
13
        l inr b =>
14
         exact Sum.noConfusion h
15
     | inr a => cases p2 with
16
       | inl b =>
17
          exact Sum.noConfusion h
18
        | inr b =>
19
         injection h with h1
20
21
          apply Or.inr
         apply Exists.intro a
22
         apply And.intro rfl
23
24
          rw [h1]
         exact rfl
25
     -- (\exists a, \iota1 a = p1 \land \iota1 a = p2 ) \lor (\exists b, \iota2 b = p1 \land \iota2 b = p2 ) \rightarrow p1 = p2
     intro h
27
     cases h with
28
     | inl h =>
29
       apply Exists.elim h
30
       intro a ( h1, h2 )
31
       exact h1.symm.trans h2
32
     | inr h =>
33
       apply Exists.elim h
34
       intro b ( h1, h2 )
35
       exact h1.symm.trans h2
```

13.3.1 Universal property of the sum

The universal property of the sum type characterizes it as the *best* type that supports pairing of data. Specifically, given types A, B, and C, and functions $f: A \to C$ and $g: B \to C$, there exists a unique function $h: A \oplus B \to C$ such that h, when composed with the injections, recover f and g; that is, $h \circ 11 = f$ and $h \circ 12 = g$. In Lean, this function h is constructed by sending $o: A \oplus B$ to f or to g o depending on its nature.

```
def fromSum {A B C : Type} (f : A → C) (g : B → C) : (A ⊕ B) → C := by
intro o
cases o with
| inl a => exact f a
| inr b => exact g b
```

This function has the key property that composing it with the sum injections recovers the original functions.

```
-- Composition with 11
theorem fromSumi1 {A B C : Type} (f : A → C) (g : B → C) : (fromSum f g) ∘ 11 = f := by

funext a
exact rfl

-- Composition with 12
theorem fromSumi2 {A B C : Type} (f : A → C) (g : B → C) : (fromSum f g) ∘ 12 = g := by

funext b
exact rfl
```

The universal property of the sum type not only guarantees the **existence** of the function fromSum f g: A \oplus B \to C satisfying the injection identities, but also ensures its **uniqueness**. That is, if we have a function h: A \oplus B \to C such that h \circ 11 = f and h \circ 12 = g, then h must be equal to fromSum f g. This uniqueness clause completes the universal property: it tells us that fromSum f g is the only function from A \oplus B to C whose injections are f and g. This powerful principle often allows us to characterize and prove properties about functions from sum types by reasoning solely about their injections.

```
theorem fromSumUnique {A B C : Type} {f : A → C} {g : B → C} {h : (A ⊕ B) → C} : (h ∘ 11 = f) → (h ∘ 12 = g) → (h = fromSum f g) := by intro h1 h2 funext o cases o with | inl a => exact congrFun h1 a | inr b => exact congrFun h2 b
```

13.4 Generalized sum type

Given an index type I and a family of types $\mathbb{A}: I \to \mathsf{Type}$, the sum type consists of a collection of values, corresponding to some type in the family \mathbb{A} i for some index i : I. In Lean, this is expressed as the type $\mathsf{Sigma}\ \mathbb{A}$ or, alternatively, $(\Sigma\ (i:I),\ \mathbb{A}\ i)$, which can be thought of as the type of functions that assign a value of type \mathbb{A} i to some index i : I.

```
variable ( I : Type ) variable ( A:I \rightarrow Type ) #check ( \Sigma (i : I), A:I
```

The type (Σ (i : I), \mathbb{A} i) has a natural injection that allows us to insert the value of type \mathbb{A} i for an specific index i : I. This injection is a function that, given an index i : I and an element of type \mathbb{A} i, returns an element of type (Σ (i : I), \mathbb{A} i).

```
def ι { I : Type } { A : I → Type } (i : I) : A i → ( Σ (i : I), A i ) := by
intro a
exact ⟨ i, a ⟩
```

Two values of type (Σ (i : I), \mathbb{A} i) are equal if and only if they are injected from the same index i : I on the same element. For this we will use Sigma.ext keyword.

```
theorem sumEqg { I : Type } { A : I \rightarrow Type } ( a1 a2 : ( \Sigma (i : I), A i ) ) : ( a1 = a2 ) \leftrightarrow ∃ (i : I), ∃ (a : A i), ( a1 = \(\pi\) i a ) \(\Lambda (a2 = \(\pi\) i a ) := by
```

```
apply Iff.intro
     -- a1 = a2 → ∃ i a, a1 = ı i a ∧ a2 = ı i a
    intro h
    cases a1 with
     | mk i a => cases a2 with
      | mk j b =>
        injection h with h1 h2
        apply Exists.intro i
        apply Exists.intro a
        apply And.intro rfl
        exact Sigma.ext h1.symm h2.symm
12
     --∃ia, a1 = ıia ∧ a2 = ıia → a1 = a2
13
    intro ( i, ( a, ( h1, h2 ) ) )
    exact h1.trans h2.symm
```

13.4.1 Universal property of the generalized sum

The universal property of the sum type (Σ (i : I), \mathbb{A} i) is a key characteristic that allows us to construct a function from a given family of functions. Specifically, if we have a family of functions \mathbb{f} i : \mathbb{A} i \to C for each i : I, the universal property guarantees the existence of a unique function \mathbb{h} : (Σ (i : I), \mathbb{A} i) \to C such that for every i : I, \mathbb{h} \circ ($\mathbb{1}$ i) = \mathbb{f} i.

```
def fromSumg { I C : Type } { A : I \rightarrow Type } ( f : (i : I) \rightarrow A i \rightarrow C ) : ( \Sigma (i : I), A i ) \rightarrow C := by intro \langle i, a \rangle exact f i a
```

Applying the injection ι i and then from Sumg f yields the corresponding function f i.

The universal property of the sum type also asserts a uniqueness condition: if we have a function $h : (\Sigma (i : I), \land i) \rightarrow C$ such that, for every i : I, the composition of h with the injection l is satisfies the equality $h \circ (l i) = f$ i, then the function h must be equal to the function constructed by from Sumg f.

```
theorem fromSumgUnique { I C : Type } { A : I \rightarrow Type } { f : (i : I) \rightarrow A i \rightarrow C } { h : ( \Sigma (i : I), A i ) \rightarrow C } : ( \forall (i : I), h \circ ( l i ) = ( f i ) ) \rightarrow ( h = fromSumg f) := by intro hs funext \langle i, a \rangle exact congrFun (hs i) a
```

13.5 Exercises

13.5.1 Product

```
-- The product is commutative
theorem prodComm {A B : Type} : (A × B) \( \alpha \) (B × A) := by sorry

-- The product is associative
theorem prodAssoc {A B C : Type} : ((A × B) × C) \( \alpha \) (A × (B × C)) := by sorry

-- Empty is a left zero
theorem TEmptyProdL {A : Type} : (Empty × A) \( \alpha \) Empty := by sorry

-- Empty is a right zero
theorem TEmptyProdR {A : Type} : (A × Empty) \( \alpha \) Empty := by sorry

-- Unit is a right unit
theorem TUnitProdR {A : Type} : (A × Unit) \( \alpha \) A := by sorry

-- Unit is a left unit
theorem TUnitProdL {A : Type} : (Unit × A) \( \alpha \) A := by sorry
```

13.5.2 Sum

```
-- The sum is commutative
theorem sumComm {A B : Type} : (A ⊕ B) ≅ (B ⊕ A) := by sorry

-- The sum is associative
theorem sumAssoc {A B C : Type} : ((A ⊕ B) ⊕ C) ≅ (A ⊕ (B ⊕ C)) := by sorry

-- Empty is a left unit
theorem TEmptySumL {A : Type} : (Empty ⊕ A) ≅ A := by sorry

-- Empty is a right unit
theorem TEmptySumR {A : Type} : (A ⊕ Empty) ≅ A := by sorry

-- Product distributes over sum on the right
theorem TProdSumDistR {A B C : Type} : (A × (B ⊕ C)) ≅ ((A × B) ⊕ (A × C)) := by sorry

-- Product distributes over sum on the left
theorem TProdSumDistL {A B C : Type} : ((A ⊕ B) × C) ≅ ((A × C) ⊕ (B × C)) := by sorry
```

14 Lists and Monoids

In this chapter, we explore the foundational concept of **monoids** and their deep connection to **lists**, one of the most fundamental data structures in both mathematics and computer science. We begin by examining lists as sequences of elements drawn from a type α , highlighting their structure and operations such as concatenation and the empty list. Building on this, we introduce **monoids**—algebraic structures consisting of a list equipped with an associative binary operation and an identity element.

We will see that addition and multiplication over the natural numbers naturally form monoids. We then introduce the **free monoid** over a type α and examine its defining properties. A central focus of the chapter is the **universal property** of the free monoid, which characterizes it as the most general monoid generated by a type of elements.

We conclude the theoretical discussion by applying the universal property to define the **length of a list** as a monoid homomorphism into the natural numbers with addition. This example showcases the practical utility of the abstract theory. Finally, the chapter ends with a set of **exercises** designed to reinforce the concepts presented in this chapter.

14.1 Lists

In functional programming and formal systems like Lean, a **list** is a fundamental data structure that represents a sequence of elements of a given type.

If we **#print List**, Lean returns:

```
inductive List.{u} : Type u → Type u
number of parameters: 1
constructors:
List.nil : { α : Type u } → List α
List.cons : { α : Type u } → α → List α
```

The List type is defined as an **inductive type**. List is a **parametric type** that takes one type parameter—say, α —and produces the type List α , representing lists of elements of type α . This definition includes two constructors. The first, List.nil, represents the **empty list**, also written [], meaning it can construct an empty list for any type α . The second constructor, List.cons, builds a nonempty list by taking an element of type α , say x, and a list of elements of type α , say xs, returning a new list of type List α , List.cons x xs, also written x :: xs. This new list will have x as its **head** and the list xs as its **tail**. This construction makes lists easy to process recursively, as each list is either empty or built by adding an element to the front of another list.

For example, in List N, the expression [] represents the empty list, z :: [] is a list containing a single element—namely [z], and z :: s z :: [] constructs a list with two elements, written as [z, s z].

Using the List.cons constructor we can define the **concatenation** operation, List.append, which takes two lists l1 and l2 of type List α and returns a new list List.append l1 l2, also written l1 ++ l2, which appends the two lists together. For example, for the lists [z, s z] and [z] in List N, [z, s z] ++ [z] returns the list [z, s z, z].

14.2 Monoids

The following Lean code defines the algebraic structure of a **monoid** and **monoid homomorphisms** as **structure** types in Lean.

```
-- A monoid
[ext] structure Monoid.{u} where
base : Type u
mul : base → base → base
one : base
assoc : ∀ {a b c : base}, mul a (mul b c) = mul (mul a b) c
```

```
idl: ∀ {a : base}, mul one a = a
idr: ∀ {a : base}, mul a one = a

-- A monoid homomorphism

@[ext] structure MonoidHom (M N : Monoid) where

map: M.base → N.base
map_mul: ∀ {a b : M.base}, map (M.mul a b) = N.mul (map a) (map b)

map_one : map M.one = N.one
```

The first structure, Monoid, represents a monoid as a type base equipped with a binary operation mul (interpreted as multiplication), an identity element one, and three axioms. The associativity axiom (assoc) asserts that multiplication is associative: for all elements a, b, and c, we have mul a (mul b c) = mul (mul a b) c. The left identity (idl) and right identity (idr) laws state that the element one behaves as left and right identity for multiplication: mul one a = a and mul a one = a, respectively. The attribute @[ext] enables Lean to automatically generate extensionality lemmas for these structures, making it easier to prove equalities between instances.

The second structure, MonoidHom, formalizes monoid homomorphisms between two monoids M and N. A homomorphism consists of a function map between the underlying sets of M and N, which preserves the monoid operations: it satisfies map (M.mul a b) = N.mul (map a) (map b) for all a, b, and also maps the identity element of M to that of N, i.e., map M.one = N.one. Together, these definitions provide a foundation for reasoning formally about monoids and their structure-preserving maps within Lean's type theory framework.

14.2.1 Examples of monoids

We present two examples of monoid structures defined over the natural numbers. In the first example, the binary operation is addition, with 0 serving as the identity element. In the second example, the operation is multiplication, and the identity element is 1. Both structures satisfy the monoid axioms.

```
-- (N, +, 0) is a monoid
  def instMonoidNAdd : Monoid where
    base := N
    mul.
          := Addition
    one
          := Z
    assoc := TAddAss.symm
    idl := TAddOL
    idr
          := TAdd0R
    - (N, *, 1) is a monoid
  def instMonoidNMul : Monoid where
    base := N
12
    mul.
          := Multiplication
          := one
14
    assoc := TMultAss.symm
    idl
           := TMult1L
          := TMult1R
```

14.2.2 The free monoid over a type α

For any type α , the free monoid over α is given by the type List α , equipped with list concatenation (++) as the binary operation and the empty list [] as the identity element. This structure forms a monoid because concatenation is associative and the empty list acts as a neutral element for concatenation on both sides.

```
-- (List α, ++, []) is a monoid for any type α

def FreeMonoid { α : Type u } : Monoid where

base := List α

mul := List.append

one := []

assoc := by

intro a b c

induction a with

| nil => simp [List.append]
| cons x xs ih => simp [List.append, ih]

idl := by

intro a

induction a with
```

14.2.3 The universal property of the free monoid

The following Lean code defines the canonical insertion of generators function η from a type α into List α .

```
-- Insertion of generators

def η { α : Type u } : α → (@FreeMonoid α).base := by

intro a

exact List.cons a []
```

The function η takes an element $a:\alpha$ and returns the singleton list [a], implemented here as List.cons a []. This reflects the standard way of embedding generators into a free monoid: each element of α is mapped to a list containing just that element.

The universal property of the FreeMonoid α states that for any monoid M and any function $f:\alpha\to M.base$, there exists a unique monoid homomorphism Lift $f:FreeMonoid \alpha\to M$ such that Lift $f\circ \eta=f$. This means that Lift f extends f in a way that respects the monoid structure, making FreeMonoid α the most general monoid generated freely by the elements of α .

The definition of Lift f is defined recursively on lists, as follows:

```
def Lift { α : Type u } {M : Monoid} (f : α → M.base) : (@FreeMonoid α).base → M.base := by
intro xs
cases xs with
| nil => exact M.one
| cons x xs => exact M.mul (f x) (Lift f xs)
```

The base case corresponds to the empty list: Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the list and then combines it with the image of the head element using the monoid multiplication M.mul. Specifically, for a list x::xs', we have Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the identity element of the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the monoid is preserved. For non-empty lists, Lift f[] = M.one, ensuring the monoid is preserved. For non-empty lists, Lift f[] = M

This construction guarantees that Lift f is a monoid homomorphism, mapping the empty list to the identity element and preserving the monoid operation, as we can prove below.

```
The function Lift f is a monoid homomorphism from the free monoid to the monoid M
  def LiftMonoidHom { \alpha : Type u } {M : Monoid} (f : \alpha \rightarrow M.base) : MonoidHom (@FreeMonoid \alpha) M where
    map := Lift f
    map_mul := by
      intro a b
       induction a with
         | nil => calc
          Lift f (FreeMonoid.mul [] b) = Lift f b
                                                                          := rfl
                                         = M.mul (M.one) (Lift f b)
                                                                          := M.idl.symm
                                         = M.mul (Lift f []) (Lift f b) := congrArg (fun x => M.mul x (Lift
       f b)) rfl
         cons x xs ih => calc
          Lift f (FreeMonoid.mul (x::xs) b) = Lift f (x :: (FreeMonoid.mul xs b))
                                                                                               := rfl
12
                                              = M.mul (f x) (Lift f (FreeMonoid.mul xs b))
                                                                                              := rfl
                                              = M.mul (f x) (M.mul (Lift f xs) (Lift f b)) := congrArg (fun
14
        y \Rightarrow M.mul(f x) y) ih
                                              = M.mul (M.mul (f x) (Lift f xs)) (Lift f b) := M.assoc
                                              = M.mul (Lift f (x::xs)) (Lift f b)
                                                                                               := congrArg (fun
        y => M.mul y (Lift f b)) rfl
```

Furthermore, Lift f extends f in the sense that for each element $a:\alpha$, it satisfies Lift f $(\eta \ a)=f$ a, where η is the insertion map that sends a to the singleton list [a]. This is proven in the theorem below.

```
theorem LiftEta { α : Type u } {M : Monoid} (f : α → M.base) : Lift f ∘ η = f := by

funext a

calc
```

Finally, we can prove that the function Lift f is the unique monoid homomorphism from the free monoid FreeMonoid α to any monoid M that satisfies the property Lift f $\circ \eta = f$. This is proven in the theorem below.

```
theorem LiftUnique { \alpha : Type u } {M : Monoid} (f : \alpha \to M.base) (g : MonoidHom (@FreeMonoid \alpha) M) : g.
       map \circ \eta = f \rightarrow g = LiftMonoidHom f := by
     intro h
    apply MonoidHom.ext
     funext a
     induction a with
       | nil => calc
         g.map [] = M.one := g.map_one
                    = (LiftMonoidHom f).map [] := (LiftMonoidHom f).map_one
       cons x xs ih => calc
         g.map (x::xs) = g.map (FreeMonoid.mul ( \eta x ) xs ) := rfl
         _{-} = M.mul (g.map ( \eta x )) (g.map xs) := g.map_mul
         _ = M.mul (f x) (g.map xs) := congrArg (fun y => M.mul y (g.map xs)) (congrFun h x)
         _ = M.mul ((LiftMonoidHom f).map ( η x )) (g.map xs) := congrArg (fun y => M.mul y (g.map xs)) (
13
       congrFun (LiftEta f).symm x)
           = M.mul ((LiftMonoidHom f).map ( \eta x) ) ((LiftMonoidHom f).map xs) := congrArg (fun y => M.mul
        ((LiftMonoidHom f).map ( \eta x )) y) ih
         \_ = (LiftMonoidHom f).map (FreeMonoid.mul ( \eta x ) xs) := (LiftMonoidHom f).map_mul.symm
             (LiftMonoidHom f).map (x::xs) := rfl
```

14.2.4 The length of a list

As an application of the universal property of the free monoid, we define a function Length that computes the length of a list. First, we define Len : $\alpha \to N$, a function that maps each element of type α to the natural number 1, representing the fact that each element in a list contributes exactly one to the length.

```
def Len : α → N := by
intro _
exact one
```

Using the universal property of the free monoid, we extend Len to a monoid homomorphism Length: (List $\alpha,++,[]$) \rightarrow (N,+,0) by applying the Lift function.

```
def Length { α : Type u } : (@FreeMonoid α).base → instMonoidNAdd.base := Lift Len
```

This guarantees that Length satisfies the required monoid homomorphism properties: it maps the empty list to 0 (the identity in (N,+,0)), and for any two lists, the length of their concatenation is the sum of their individual lengths. Thus, Length is a monoid homomorphism that respects the structure of the free monoid and computes the number of elements in a list. This example highlights how the universal property of the free monoid enables the definition of homomorphisms that extend functions from the generators to any target monoid.

14.3 Exercises

```
-- The definition of Monoid Isomorphism

@[ext] structure MonoidIso (M N : Monoid) extends (MonoidHom M N) where

iso : isomorphism map

-- Prove that the monoids (N,+,0) and (List Unit,++,[]) are isomorphic

def NFreeMonoidIso : MonoidIso (@FreeMonoid Unit) instMonoidNAdd where

sorry
```

Bibliography

- [1] Lean 4 documentation. https://lean-lang.org/lean4/doc/, 2025. Accessed: 2025-08-27; comprehensive manual covering installation, language manual, reference manual, FAQs, development guide, and more.
- [2] The lean language reference. https://lean-lang.org/doc/reference/latest/, 2025. Accessed: 2025-08-27; covers Lean version 4.23.0-rc2.
- [3] Lean prover community zulip chat. https://leanprover.zulipchat.com/, 2025. Accessed: 2025-08-27; primary community discussion hub for Lean users, browsable without registering.
- [4] Learning lean 4. https://leanprover-community.github.io/learn.html, 2025. Accessed: 2025-08-27; introduction to learning resources, tutorials, books, metaprogramming guides, and more.
- [5] Mathematics in lean. https://leanprover-community.github.io/mathematics_in_lean/index.html, 2025. Accessed: 2025-08-27.
- [6] J. Avigad, L. de Moura, S. Kong, and S. Ullrich. Theorem proving in lean 4. https://lean-lang.org/theorem_proving_in_lean4/, 2025. Accessed: 2025-08-27; based on version v4.21.0.
- [7] D. T. Christiansen. Functional programming in lean. https://lean-lang.org/functional_programming_in_lean/, 2025. Accessed: 2025-08-27; code samples tested with Lean 4.21.0; Copyright Microsoft Corporation 2023 and Lean FRO, LLC 20232025.
- [8] D. Clemente Laboreo. Introduction to natural deduction. https://www.danielclemente.com/logica/dn.en.pdf, 2004. August 2004; reviewed May 2005; accessed 2025-08-27.
- [9] J. Climent Vidal. Teoría de conjuntos. https://www.uv.es/jkliment/Documentos/SetTheory. pc.pdf, 2010. Date: 25 de junio de 2010; accessed: 2025-08-27; comprehensive lecture notes on Zermelo-Fraenkel set theory.
- [10] L. de Moura and S. Ullrich. The Lean 4 theorem prover and programming language. In A. Platzer and G. Sutcliffe, editors, *Automated Deduction CADE 28*, volume 12699 of *Lecture Notes in Artificial Intelligence*, pages 625–635. Springer, 2021.
- [11] H. Macbeth. The mechanics of proof. https://hrmacbeth.github.io/math2001/, 2025. Accessed: 2025-08-27; course Math 2001, Fordham University; Lean code available at GitHub.
- [12] P. Smith. Introducing category theory. https://www.logicmatters.net/resources/pdfs/SmithCat.pdf, 2025. Version 2.9, I 2025; second edition; PDF available for educational use; print-on-demand from June 2025; accessed 2025-08-27.
- [13] R. Zach. Boxes and diamonds: An open introduction to modal logic. https://bd.openlogicproject.org/, 2025. Accessed: 2025-08-27; based on the Open Logic Project; licensed under CC BY 4.0.