

FAITHFUL AND TRANSITIVE MONOID ACTIONS AMS - EMS - SPM International Meeting

Porto, 2015

Enric Cosme-Llópez

Departament d'Àlgebra Universitat de València

An action of a monoid M on a nonempty set Ω is a monoid homomorphism

$$: M \longrightarrow \mathsf{T}_{\Omega} = \{ f \mid f \colon \Omega \to \Omega \}$$

An action of a monoid M on a nonempty set Ω is a monoid homomorphism

$$: M \longrightarrow \mathsf{T}_{\Omega} = \{ f \mid f \colon \Omega \to \Omega \}$$

- Generalisation of group actions
- Automata Theory

Introduction	Related Work	Our Work	Bibliography
ACTIONS			

- The action is faithful if the corresponding monoid homomorphism is injective. We refer to the pair (M,Ω) as transformation monoid.
- The action is transitive if for each $\alpha, \beta \in \Omega$, the cyclic sets coincide $\alpha M = \beta M$.

The action is faithful if the corresponding monoid homomorphism is injective. We refer to the pair (M,Ω) as transformation monoid.

The action is transitive if for each $\alpha, \beta \in \Omega$, the cyclic sets coincide $\alpha M = \beta M$.

Objective

Give a description of transitive transformation monoids

Introduction	Related Work	Our Work	Bibliography
STEINBERG			

Related Work

[Ste10] B. Steinberg. A Theory of Transformation Monoids: Combinatorics and Representation Theory. Electron. J. Combin., 17(1): Research Paper 164, 56 pp., 2010. Related Work

[Ste10] B. Steinberg. A Theory of Transformation Monoids: Combinatorics and Representation Theory. Electron. J. Combin., 17(1): Research Paper 164, 56 pp., 2010.

It is based on

Module theory - Green Semigroup representation - Clifford, Munn, Ponizovsky

PRELIMINARIES

Proposition

Any transitive and faithful action of a monoid M on a set Ω is equivalent to the action of M on eM/\equiv where e is an idempotent in I(M) and \equiv is a right-congruence on eM.

PRELIMINARIES

Proposition

Any transitive and faithful action of a monoid M on a set Ω is equivalent to the action of M on eM/\equiv where e is an idempotent in I(M) and \equiv is a right-congruence on eM.

$$eM = \biguplus_{e_j \in \mathsf{E}(eM)} G_{e_j} = \biguplus_{x_i \in T} \biguplus_{e_j \in \mathsf{E}(eM)} Hx_i e_j$$

Introduction	Related Work	Our Work	Bibliography
PRELIMINARIES			

M embeds in $G_e \wr_{\sqcap} \overline{M}$ via the map $m \mapsto (\rho_m, \overline{m})$, where

 $(j)\rho_m = g$ such that $e_j m = g e_{j'}$

M embeds in $G_e \wr_{\mathsf{n}} \overline{M}$ via the map $m \mapsto (\rho_m, \overline{m})$, where

 $(j)
ho_m = g$ such that $e_j m = g e_{j'}$

For each element x_i in a right-transversal T, we define an equivalence relation \simeq^i in the set $n = \{1, \dots, n\}$ as follows

$$j \simeq^{i} j' \quad \Leftrightarrow \quad Hx_{i}(j)\rho_{m} = Hx_{i}(j')\rho_{m}, \quad \text{for all } m \in M$$

ON TRANSITIVE TRANSFORMATION MONOIDS

Theorem

If (M, Ω) is a transitive transformation monoid, there exists a core-free subgroup H of G_e such that every member of the partition $\{Hx_ie_j \mid x_i \in T, e_j \in E(eM)\}$ is contained in a \equiv -class. Furthermore,

- i) If $Hx_i e_j \equiv Hx_{i'} e_{j'}$ then i = i' and $j \simeq^i j'$;
- ii) If $Hx_ie_j \equiv Hx_ie_{j'}$ then $(Hx_ie_j)m \equiv (Hx_ie_{j'})m$ for all $m \in M$;
- iii) For different idempotents e_j , $e_{j'}$ there exists some $x_i \in T$ with Hx_ie_j and $Hx_ie_{j'}$ not \equiv -related.

The converse of this Theorem also holds.

ON TRANSITIVE TRANSFORMATION MONOIDS

Consequences

- We can construct all transitive and faithful actions of a monoid that restrict to a given transitive and faithful group action.
- There exist non-equivalent transitive and faithful monoid actions that restrict to the same group action.
- These theorems extend the classical theorems on the description of transitive permutation groups.

Bibliography

ON PRIMITIVE TRANSFORMATION MONOIDS

An action of a monoid M on a set Ω is said to be primitive if it admits no non-trivial proper congruences.

Bibliography

ON PRIMITIVE TRANSFORMATION MONOIDS

An action of a monoid M on a set Ω is said to be primitive if it admits no non-trivial proper congruences.

A Theory of Transformations Monoids [Ste10]

"We hope that the theory of primitive permutation groups can be used to understand primitive transformation monoids in the case the maximal subgroups of I(M) are non-trivial"

ON PRIMITIVE TRANSFORMATION MONOIDS

Theorem

Let M be a transitive transformation monoid such that G_e is non-trivial. Then M is primitive if and only if there exists a maximal core-free subgroup H of G_e such that the relations \simeq defined by H in E(eM) satisfy the following conditions

i) For different idempotents e_j , $e_{j'}$ there exist finite sequences $(x_{i_t})_{t=1}^s$ and $(e_{j_t})_{t=1}^{s+1}$ of elements of T and E(eM), respectively, such that

$$j = j_1 \simeq^{i_1} j_2 \simeq^{i_2} \cdots \simeq^{i_{s-1}} j_s \simeq^{i_s} j_{s+1} = j'$$

ii) For different idempotents $e_j, e_{j'}$ there exists some $x_i \in T$ with $j \not\simeq^i j'$.

ON PRIMITIVE TRANSFORMATION MONOIDS

Let (M, Ω) be a transitive transformation monoid.

Consequences

- If G_e has a primitive action, there exists a unique primitive action of M that restricts to the primitive action of G_e .
- If G_e is a non-trivial nilpotent group. Then M has a primitive action if and only if M is a cyclic group of prime order.

• If $|\Omega e| = 2$, then the action of M on Ω cannot be primitive.

Introduction	Related Work	Our Work	Bibliography
BIBLIOGRAPHY			

- A. Ballester-Bolinches, E. Cosme-Llópez, P. Jiménez-Seral, Some Contributions to the Theory of Transformation Monoids, Preprint, 2015.
- J. Rhodes and B. Steinberg,
 The *q*-theory of finite semigroups,
 Springer Monographs in Mathematics. Springer, 2009.

B. Steinberg,

A theory of transformation monoids: Combinatorics and representation theory,

The Electronic Journal of Combinatorics, 17:1–56, 2010.

HSRM Beamer Theme, by Benjamin Weiss.