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ALGEBRA-COALGEBRA

Given a categoryX and an endofunctor F : X → X.

Definition

A F -algebra consists of a pair (X,α), whereX is an object ofX
and α : FX → X an arrow inX.

Definition

A F -coalgebra consists of a pair (X,α), whereX is an object of
X and α : X → FX an arrow inX.

We callX the base and α the structure map of the (co)algebra.
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AUTOMATA

Definition

LetA be a finite alphabet. An automaton is a pair consisting of a
(possibly infinite) setX of states and a transition function

α : X → XA

In pictures, we use the following notation:

x ya

⇔ α(x)(a) = y

We will also write xa = α(x)(a) and, more generally,

xε = x xwa = α(xw)(a)
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AUTOMATA

On the examples we will use A = {a, b}.

Example

x y

a

b

b a
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AUTOMATA

Because of the isomorphism

(X ×A) → X ∼= X → XA

the transition structure of an automatonX with inputs from an
alphabet A can be viewed both as anG-algebra and as a
F -coalgebra for the endofunctors on the category Set given by:

G(X) = X ×A
F (X) = XA
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POINTED AUTOMATA

Definition

An automaton can also have an initial state x ∈ X , represented
by a function

x : 1 → X

We call the triple (X,α, x) a pointed automaton

We will depict initial states with an entering arrow:

x

Note that pointed automata are (1 +G)-algebras.
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COLOURED AUTOMATA

Definition

An automaton can be decorated bymeans of a colouring function

c : X → 2

We call a state x accepting if c(x) = 1 otherwise it is called
non-accepting. We call the triple (X,α, c) a coloured automaton

We will depict accepting states with a double mark:

xx

Note that pointed automata are (2× F )-coalgebras.
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THE SCENE

We call a 4-tuple (X,α, x, c) a pointed and coloured automaton.

It can be depicted by the diagram:

X

XA

1 2x c

α
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AUTOMATA HOMOMORPHISMS

Definition

A function h : X → Y is a homomorphism between automata
(X,α) and (Y, β) if it makes the following diagram commute

XA Y A

X Y
h

hA

α β

Ahomomorphism of pointed automata and of coloured automata
must preserve initial values and colours, respectively.

If X ⊆ Y and h : X ↪→ Y is the inclusion function, we will say
thatX is a subautomaton of Y . It will be denoted byX ≤ Y .

13
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BISIMULATION

Definition

We call a relation R ⊆ X × Y a bisimulation of automata if for
all (x, y) ∈ X × Y ,

(x, y) ∈ R ⇒ ∀a ∈ A, (xa, ya) ∈ R

For pointed automata (X,α, x) and (Y, β, y), R is a pointed bisi-
mulation if, moreover, (x, y) ∈ R.

For coloured automata (X,α, c) and (Y, β, d), R is a coloured bi-
simulation if, moreover,

(x, y) ∈ R ⇒ c(x) = d(y)

14
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BISIMULATION EQUIVALENCE

Definition

A bisimulationE ⊆ X ×X which is also an equivalence relation
is called a bisimulation equivalence.

The quotient map of a bisimulation equivalence onX is a
homomorphism automata:

XA

X

(X/E)A

X/E

πA

[α]α

π

15
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INITIAL ALGEBRA

The set A� forms a pointed automaton (A�, σ, ε)with initial state
ε and transition function defined by

σ : A� → (A�)A σ(w)(a) = wa

Proposition

(A�, σ, ε) is an initial (1 +G)-algebra.

For any given automaton (X,α) and every choice of initial state
x : 1 → X , it induces a unique function rx : A� → X , given by

rx(w) = xw

17
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INITIAL ALGEBRA

This is equivalent to say that the following diagram commutes:

X

XA

1

A�

(A�)A
α

x

σ

ε

rx

rAx

The function rx maps a word w to the state xw reached from the
initial state x on input w and is therefore called the reachability
map for (X,α, x).

18
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FINAL COALGEBRA

The set 2A
�
of languages forms a coloured automaton (2A

�
, τ, ε?)

with colour function ε? defined by

ε? : 2A
� → 2 ε?(L) =

{
1 if ε ∈ L
0 otherwise

and transition function defined by

τ : 2A
� → (2A

�
)A τ(L)(a) = La = {v ∈ A� | av ∈ L}

Proposition

(2A
�
, τ, ε?) is a final (2× F )-coalgebra.

For any automaton (X,α) and every choice of colouring function
c : X → 2, it induces a unique function oc : X → 2A

�
, given by

oc(x) = {w ∈ A� | c(xw) = 1}

19
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FINAL COALGEBRA

This is equivalent to say that the following diagram commutes:

X

XA

2

2A
�

(2A
�
)A

α

c

τ

ε?

oc

(oc)A

The function oc maps a state x to the language oc(x) accepted by
x and is therefore called the observability map for (X,α, c).

20
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THE SCENE

Summarizing:

X

XA

1

A�

(A�)A

2

2A
�

(2A
�
)A

α

x

σ

ε

rx

rAx

c

τ

ε?

oc

(oc)A

If the reachability map rx is surjective then we call (X,α, x)
reachable. Note that (A�, σ, ε) is reachable.

If the observability map oc is injective then we call (X,α, c)
observable. Note that (2A

�
, τ, ε?) is observable.

21
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EQUATIONS

Definition

A set of equations is a bisimulation equivalenceE ⊆ A� ×A� on
the initial automaton (A�, σ).

Definition

We say that the pointed automaton (X,α, x) satisfies E

(X,α, x) |= E ⇔ ∀(v, w) ∈ E, xv = xw

We define:

(X,α) |= E ⇔ ∀x : 1 → X, (X,α, x) |= E

23
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EQUATIONS

Let v, w ∈ A�, we consider the shorthand v = w to denote the
smallest bisimulation equivalence on A� containing (v, w).

Example

x y

a

b

b a

(X,α, x) |= {b = ε, ab = ε, aa = a}

(X,α, y) |= {a = ε, ba = ε, bb = b}

24
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EQUATIONS

Proposition

(X,α, x) |= E ⇔ E ⊆ ker(rx)

We have, equivalently, that (X,α, x) |= E iff the reachability map
rx factors through A�/E.

Definition

We define Eq(X,α) to be the largest set of equations satisfied
by the automaton (X,α).

25
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COEQUATIONS

Definition

A set of coequations is a subautomaton D ≤ 2A
�
of the final

automaton (2A
�
, τ).

Definition

We say that the coloured automaton (X,α, c) satisfiesD

(X,α, c) |= D ⇔ ∀x ∈ X, oc(x) ∈ D

We define:

(X,α) |= D ⇔ ∀c : X → 2, (X,α, c) |= D
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COEQUATIONS

Example

xx y

a

b

b a

Under the observability map we obtain:

oc(x) = (a�b)� oc(y) = (a�b)+

therefore,

(X,α, c) |= {(a�b)�, (a�b)+}
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COEQUATIONS

Proposition

(X,α, c) |= D ⇔ im(oc) ≤ D

We have, equivalently, that (X,α, c) |= D iff the observability
map oc factors throughD.

Definition

We define coEq(X,α) to be the smallest set of coequations sa-
tisfied by the automaton (X,α).
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ALL TOGETHER NOW

Example

x y

a

b

b a

Eq(X,α) = {aa = a, bb = b, ab = b, ba = a}
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ALL TOGETHER NOW

Example

[ε]

[b] [a]

a

b

b a

b a

A�/Eq(X,α)
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ALL TOGETHER NOW

Example

(a�b)�(a�b)�
(a�b)+

a

b

b a

(b�a)+ (b�a)�(b�a)�

a

b

b a

; a,b

A�A�a,b

coEq(X,α)
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VARIETIES

Definition

For every set E of equations we define the variety VE by

VE = {(X,α) | (X,α) |= E}

Proposition

Every variety VE is closed under the formation of subautomata,
homomorphic images and products.
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COVARIETIES

Definition

For every setD of coequations we define the covariety CD by

CD = {(X,α) | (X,α) |= D}

Proposition

Every covarietyCD is closed under the formation of subautoma-
ta, homomorphic images and coproducts.
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LANGUAGES

Definition

Let VE be a variety. We define the variety of languages L(VE) by

L(VE) = {L ∈ 2A
� | < L >∈ VE}

Definition

LetCD be a covariety.Wedefine the covariety of languagesL(CD)
by

L(CD) = {L ∈ 2A
� | < L >∈ CD}
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ON EQUATIONS AND VARIETIES

Theorem

Let E be a set of equations.

The following statements are equivalent:

i. E is a congruence.

ii. E = Eq(X,α) for some automaton (X,α).

iii. (A�/E, [σ]) |= E.

iv. Eq(A�/E, [σ]) = E.
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ON EQUATIONS AND VARIETIES

Under any of the statements above, we have:

Corollary

L(VE) = {L ∈ 2A
� | ∀(v, w) ∈ E, Lv = Lw}

Note that if E is a bisimulation on A�, A�/E has structure of
automaton.

When E is a congruence on A�, A�/E can be both seen as an
automaton and as a monoid.

37
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ON EQUATIONS AND VARIETIES

Example

[ε]

[b] [a]

a

b

b a

b a

Multiplication law is given by: [w][v] = [w]v = [wv]
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ON EQUATIONS AND VARIETIES

Corollary

For every automaton (X,α), A�/Eq(X,α) is a monoid.

Theorem

A�/Eq(X,α) ∼= trans(X,α)
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ON COEQUATIONS AND COVARIETIES

Theorem

LetD be a set of coequations.

The following statements are equivalent:

i. D = coEq(X,α) for some automaton (X,α).

ii. (D, τ) |= D.

iii. coEq(D, τ) = D.

iv. L(CD) = D.
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