

VARIETIES AND COVARIETIES OF LANGUAGES

Australian National University

Canberra, 2013

Enric Cosme-Llópez

Departament d'Àlgebra Universitat de València

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
CONTEN	TS			

- 1. Preliminaries
- 2. Setting the scene
- 3. Equations and coequations
- 4. Varieties and covarieties

PRELIMINARIES

ALGEBRA-COALGEBRA

Preliminaries

Given a category \mathbf{X} and an endofunctor $F : \mathbf{X} \to \mathbf{X}$.

Definition

A *F*-algebra consists of a pair (X, α) , where X is an object of **X** and $\alpha : FX \to X$ an arrow in **X**.

ALGEBRA-COALGEBRA

Preliminaries

Given a category \mathbf{X} and an endofunctor $F : \mathbf{X} \to \mathbf{X}$.

Definition

A *F*-algebra consists of a pair (X, α) , where X is an object of **X** and $\alpha : FX \to X$ an arrow in **X**.

Definition

A *F*-coalgebra consists of a pair (X, α) , where X is an object of **X** and $\alpha : X \to FX$ an arrow in **X**.

ALGEBRA-COALGEBRA

Preliminaries

Given a category \mathbf{X} and an endofunctor $F : \mathbf{X} \to \mathbf{X}$.

Definition

A *F*-algebra consists of a pair (X, α) , where X is an object of **X** and $\alpha : FX \to X$ an arrow in **X**.

Definition

A *F*-coalgebra consists of a pair (X, α) , where X is an object of **X** and $\alpha : X \to FX$ an arrow in **X**.

We call X the base and α the structure map of the (co)algebra.

Varieties and covarieties	Equations and coequations	Setting the scene	Preliminaries	Contents
			OMATA	AUTOM
			Definition	De
	<mark>Itomaton</mark> is a pair con es and a transition fur			
	$\rightarrow X^A$	$\alpha: X$		
-	es and a transition fur	te) set X of stat	Let A be a finite	Let

Contents
 Preliminaries
 Setting the scene
 Equations and coequations
 Varieties and covarieties

 AUTOMATA
 Definition
 Let A be a finite alphabet. An automaton is a pair consisting of a (possibly infinite) set X of states and a transition function

$$\alpha: X \to X^A$$

In pictures, we use the following notation:

$$x \xrightarrow{a} y \quad \Leftrightarrow \quad \alpha(x)(a) = y$$

Contents
 Preliminaries
 Setting the scene
 Equations and coequations
 Varieties and covarieties

 AUTOMATA
 Definition
 Let A be a finite alphabet. An automaton is a pair consisting of a (possibly infinite) set X of states and a transition function

$$\alpha: X \to X^A$$

In pictures, we use the following notation:

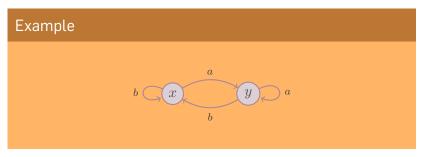
$$x \xrightarrow{a} y \quad \Leftrightarrow \quad \alpha(x)(a) = y$$

We will also write $x_a = \alpha(x)(a)$ and, more generally,

$$x_{\varepsilon} = x$$
 $x_{wa} = \alpha(x_w)(a)$

On the examples we will use $A = \{a, b\}$.

On the examples we will use $A = \{a, b\}$.



Because of the isomorphism

$$(X \times A) \to X \cong X \to X^A$$

the transition structure of an automaton X with inputs from an alphabet A can be viewed both as an G-algebra and as a F-coalgebra for the endofunctors on the category **Set** given by:

$$\begin{array}{rcl} G(X) &=& X \times A \\ F(X) &=& X^A \end{array}$$

An automaton can also have an initial state $x \in X$, represented by a function

$$x: 1 \to X$$

We call the triple (X, α, x) a pointed automaton

An automaton can also have an initial state $x \in X$, represented by a function

 $x:1\to X$

We call the triple (X,α,x) a pointed automaton

We will depict initial states with an entering arrow:

An automaton can also have an initial state $x \in X$, represented by a function

 $x:1\to X$

We call the triple (X,α,x) a pointed automaton

We will depict initial states with an entering arrow:

$\rightarrow x$

Note that pointed automata are (1 + G)-algebras.

COLOURED AUTOMATA

Preliminaries

Definition

An automaton can be decorated by means of a colouring function

$$c:X\to 2$$

We call a state x accepting if c(x) = 1 otherwise it is called non-accepting. We call the triple (X, α, c) a coloured automaton

COLOURED AUTOMATA

Preliminaries

Definition

An automaton can be decorated by means of a colouring function

$$c:X\to 2$$

We call a state x accepting if c(x) = 1 otherwise it is called non-accepting. We call the triple (X, α, c) a coloured automaton

We will depict accepting states with a double mark:

COLOURED AUTOMATA

Preliminaries

Definition

An automaton can be decorated by means of a colouring function

$$c:X\to 2$$

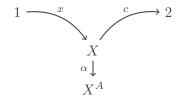
We call a state x accepting if c(x) = 1 otherwise it is called non-accepting. We call the triple (X, α, c) a coloured automaton

We will depict accepting states with a double mark:

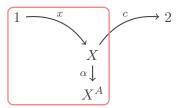
Note that pointed automata are $(2 \times F)$ -coalgebras.

We call a 4-tuple (X, α, x, c) a pointed and coloured automaton.

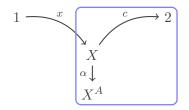
We call a 4-tuple (X, α, x, c) a pointed and coloured automaton. It can be depicted by the diagram:



We call a 4-tuple (X, α, x, c) a pointed and coloured automaton. It can be depicted by the diagram:



We call a 4-tuple (X, α, x, c) a pointed and coloured automaton. It can be depicted by the diagram:



AUTOMATA HOMOMORPHISMS

Definition

A function $h: X \to Y$ is a homomorphism between automata (X, α) and (Y, β) if it makes the following diagram commute

AUTOMATA HOMOMORPHISMS

Definition

A function $h: X \to Y$ is a homomorphism between automata (X, α) and (Y, β) if it makes the following diagram commute

A homomorphism of pointed automata and of coloured automata must preserve initial values and colours, respectively.

AUTOMATA HOMOMORPHISMS

Definition

A function $h: X \to Y$ is a homomorphism between automata (X, α) and (Y, β) if it makes the following diagram commute

A homomorphism of pointed automata and of coloured automata must preserve initial values and colours, respectively.

If $X \subseteq Y$ and $h: X \hookrightarrow Y$ is the inclusion function, we will say that X is a subautomaton of Y. It will be denoted by $X \leq Y$.

We call a relation $R \subseteq X \times Y$ a bisimulation of automata if for all $(x,y) \in X \times Y$,

 $(x,y) \in R \Rightarrow \forall a \in A, (x_a, y_a) \in R$

We call a relation $R \subseteq X \times Y$ a bisimulation of automata if for all $(x,y) \in X \times Y$,

$$(x,y) \in R \Rightarrow \forall a \in A, (x_a, y_a) \in R$$

For pointed automata (X, α, x) and (Y, β, y) , R is a pointed bisimulation if, moreover, $(x, y) \in R$.

BISIMULATION

Definition

We call a relation $R\subseteq X\times Y$ a bisimulation of automata if for all $(x,y)\in X\times Y$,

$$(x,y) \in R \Rightarrow \forall a \in A, (x_a, y_a) \in R$$

For pointed automata (X, α, x) and (Y, β, y) , R is a pointed bisimulation if, moreover, $(x, y) \in R$.

For coloured automata (X,α,c) and $(Y,\beta,d),$ R is a coloured bisimulation if, moreover,

$$(x,y)\in R \ \Rightarrow \ c(x)=d(y)$$

BISIMULATION EQUIVALENCE

Definition

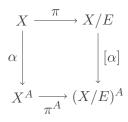
A bisimulation $E \subseteq X \times X$ which is also an equivalence relation is called a bisimulation equivalence.

BISIMULATION EQUIVALENCE

Definition

A bisimulation $E \subseteq X \times X$ which is also an equivalence relation is called a bisimulation equivalence.

The quotient map of a bisimulation equivalence on X is a homomorphism automata:



SETTING THE SCENE

The set A forms a pointed automaton (A,σ,ε) with initial state ε and transition function defined by

$$\sigma: A \to (A)^A \quad \sigma(w)(a) = wa$$

 Contents
 Preliminaries
 Setting the scene
 Equations and coequations
 Varieties and covarieties

 INITIAL ALGEBRA
 Varieties
 Varieties</

The set A forms a pointed automaton $(A_{-},\sigma,\varepsilon)$ with initial state ε and transition function defined by

$$\sigma: A \to (A)^A \quad \sigma(w)(a) = wa$$

Proposition

 $(A_{-},\sigma,\varepsilon)$ is an initial (1+G)-algebra.

 Contents
 Preliminaries
 Setting the scene
 Equations and coequations
 Varieties and covarieties

 INITIAL ALGEBRA
 Varieties
 Varieties</

The set A~ forms a pointed automaton $(A~,\sigma,\varepsilon)$ with initial state ε and transition function defined by

$$\sigma: A \to (A)^A \quad \sigma(w)(a) = wa$$

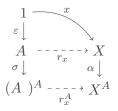
Proposition

 (A, σ, ε) is an initial (1 + G)-algebra.

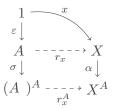
For any given automaton (X, α) and every choice of initial state $x : 1 \to X$, it induces a unique function $r_x : A \to X$, given by

$$r_x(w) = x_w$$

This is equivalent to say that the following diagram commutes:



This is equivalent to say that the following diagram commutes:



The function r_x maps a word w to the state x_w reached from the initial state x on input w and is therefore called the reachability map for (X, α, x) .

Contents Preliminaries Setting the scene Equations and coequations Varieties and covarieties
FINAL COALGEBRA

The set 2^A of languages forms a coloured automaton $(2^A, \tau, \varepsilon?)$ with colour function ε ? defined by

$$\varepsilon$$
?: 2^A \rightarrow 2 ε ?(L) = $\begin{cases} 1 & \text{if } \varepsilon \in L \\ 0 & \text{otherwise} \end{cases}$

Contents Preliminaries Setting the scene Equations and coequations Varieties and covarieties
FINAL COALGEBRA

The set 2^A of languages forms a coloured automaton $(2^A, \tau, \varepsilon?)$ with colour function ε ? defined by

$$\varepsilon$$
?: $2^A \to 2 \quad \varepsilon$? $(L) = \begin{cases} 1 & \text{if } \varepsilon \in L \\ 0 & \text{otherwise} \end{cases}$

and transition function defined by

$$\tau: 2^A \to (2^A)^A \quad \tau(L)(a) = L_a = \{ v \in A \mid av \in L \}$$

Setting the scene Equations and coequations Varieties and covarieties

FINAL COALGEBRA

The set 2^A of languages forms a coloured automaton $(2^A, \tau, \varepsilon^2)$ with colour function ε ? defined by

$$\varepsilon$$
?: $2^A \to 2 \quad \varepsilon$? $(L) = \begin{cases} 1 & \text{if } \varepsilon \in L \\ 0 & \text{otherwise} \end{cases}$

and transition function defined by

$$\tau: 2^A \to (2^A)^A \quad \tau(L)(a) = L_a = \{ v \in A \mid av \in L \}$$

Proposition

 $(2^A, \tau, \varepsilon?)$ is a final $(2 \times F)$ -coalgebra.

Setting the scene Equations and coequations

FINAL COALGEBRA

The set 2^A of languages forms a coloured automaton $(2^A, \tau, \varepsilon^2)$ with colour function ε ? defined by

$$\varepsilon$$
?: $2^A \to 2 \quad \varepsilon$? $(L) = \begin{cases} 1 & \text{if } \varepsilon \in L \\ 0 & \text{otherwise} \end{cases}$

and transition function defined by

$$\tau: 2^A \to (2^A)^A \quad \tau(L)(a) = L_a = \{ v \in A \mid av \in L \}$$

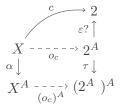
Proposition

 $(2^A, \tau, \varepsilon?)$ is a final $(2 \times F)$ -coalgebra.

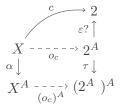
For any automaton (X, α) and every choice of colouring function $c: X \to 2$, it induces a unique function $o_c: X \to 2^A$, given by

$$o_c(x) = \{ w \in A \mid c(x_w) = 1 \}$$

This is equivalent to say that the following diagram commutes:

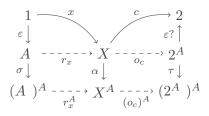


This is equivalent to say that the following diagram commutes:

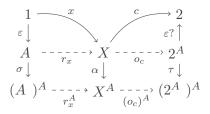


The function o_c maps a state x to the language $o_c(x)$ accepted by x and is therefore called the observability map for (X, α, c) .

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
THE SCE	ENE			

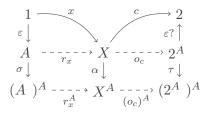


Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
THE SCE	ENE			



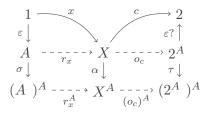
If the reachability map r_x is surjective then we call (X, α, x) reachable.

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
THE SCE	ENE			



If the reachability map r_x is surjective then we call (X, α, x) reachable. Note that (A, σ, ε) is reachable.

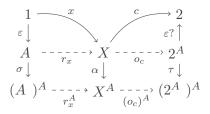
Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
THE SCE	ENE			



If the reachability map r_x is surjective then we call (X, α, x) reachable. Note that (A, σ, ε) is reachable.

If the observability map o_c is injective then we call (X, α, c) observable.

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
THE SCE	ENE			



If the reachability map r_x is surjective then we call (X, α, x) reachable. Note that (A, σ, ε) is reachable.

If the observability map o_c is injective then we call (X, α, c) observable. Note that $(2^A, \tau, \varepsilon?)$ is observable.

EQUATIONS AND COEQUATIONS

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
EQUAT	IONS			
De	finition			
As	et of equatio	ns is a bisimulati	on equivalence $E \subseteq I$	$A \times A$ on

the initial automaton (A, σ) .

Definition

A set of equations is a bisimulation equivalence $E \subseteq A \times A$ on the initial automaton (A, σ) .

Definition

We say that the pointed automaton (X, α, x) satisfies E

$$(X, \alpha, x) \models E \iff \forall (v, w) \in E, \ x_v = x_w$$

Definition

A set of equations is a bisimulation equivalence $E \subseteq A \times A$ on the initial automaton (A, σ) .

Definition

We say that the pointed automaton (X, α, x) satisfies E

$$(X, \alpha, x) \models E \iff \forall (v, w) \in E, \ x_v = x_w$$

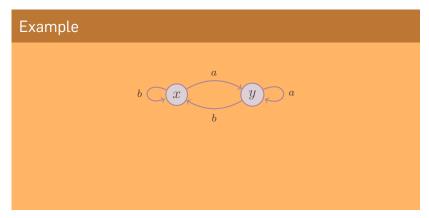
We define:

$$(X, \alpha) \models E \quad \Leftrightarrow \quad \forall x : 1 \to X, \ (X, \alpha, x) \models E$$

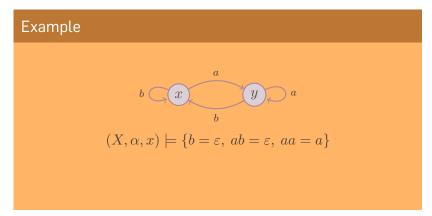
Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
EQUAT	IONS			

Let $v, w \in A$, we consider the shorthand v = w to denote the smallest bisimulation equivalence on A containing (v, w).

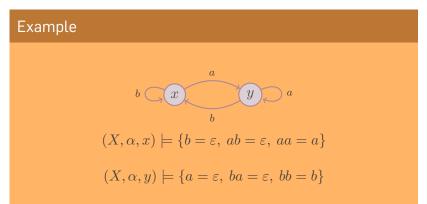
Let $v,w\in A$, we consider the shorthand v=w to denote the smallest bisimulation equivalence on A -containing (v,w).



Let $v,w\in A$, we consider the shorthand v=w to denote the smallest bisimulation equivalence on A -containing (v,w).



Let $v, w \in A$, we consider the shorthand v = w to denote the smallest bisimulation equivalence on A containing (v, w).



Proposition

$$(X, \alpha, x) \models E \quad \Leftrightarrow \quad E \subseteq \ker(r_x)$$

We have, equivalently, that $(X, \alpha, x) \models E$ iff the reachability map r_x factors through A / E.

Proposition

$$(X, \alpha, x) \models E \quad \Leftrightarrow \quad E \subseteq \ker(r_x)$$

We have, equivalently, that $(X, \alpha, x) \models E$ iff the reachability map r_x factors through A / E.

Definition

We define $\text{Eq}(X, \alpha)$ to be the largest set of equations satisfied by the automaton (X, α) .

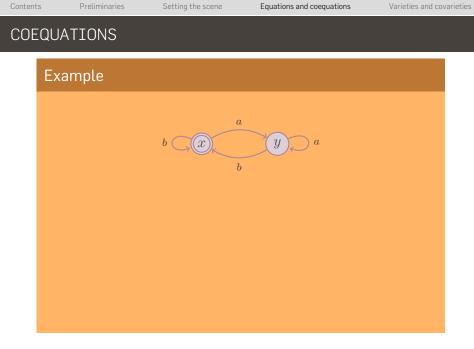
Conten	ts Pre	liminaries	Setting the scene	Equations and coequations	Varieties and cov	arieties
COE	EQUATIO	ONS				
	Definiti	ion				
		f coequation ton $(2^A, \tau)$		maton $D \leq 2^A$	of the final	

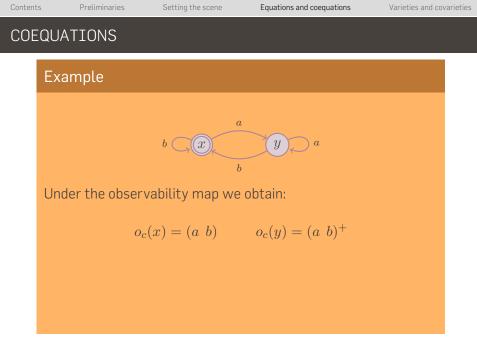
Content	s Preliminaries	Setting the scene	Equations and coequations	Varieties and covarietie		
COE	QUATIONS					
	Definition					
	A set of coequations is a subautomaton $D \leq 2^A $ of the final automaton $(2^A , \tau).$					
	Definition					
	We say that the	coloured auton	haton (X, α, c) satisfi	es D		
	(X, α)	$(\alpha, c) \models D \Leftrightarrow$	$\forall x \in X, \ o_c(x) \in D$			

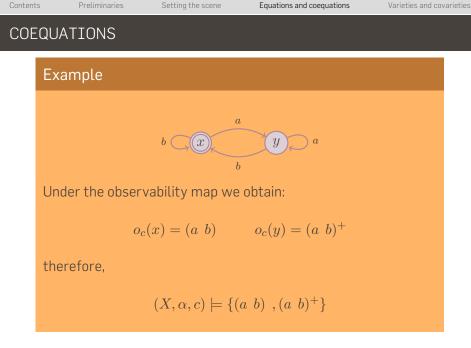
Content	ts Preliminaries	Setting the scene	Equations and coequations	Varieties and covarietie		
COE	QUATIONS					
	Definition					
	A set of coequations is a subautomaton $D \leq 2^A $ of the final automaton $(2^A , \tau).$					
	Definition					
	Definition					
	We say that the	coloured autom	haton (X, α, c) satisfi	es D		
	(X, α)	$(\alpha, c) \models D \Leftrightarrow$	$\forall x \in X, \ o_c(x) \in D$			

We define:

$$(X, \alpha) \models D \iff \forall c : X \to 2, \ (X, \alpha, c) \models D$$







Proposition

 $(X, \alpha, c) \models D \iff \operatorname{im}(o_c) \le D$

We have, equivalently, that $(X, \alpha, c) \models D$ iff the observability map o_c factors through D.

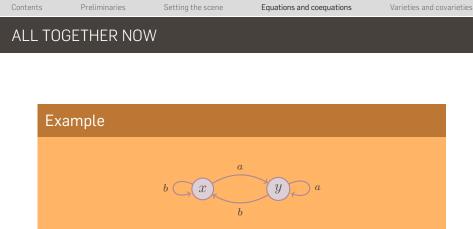
Proposition

 $(X, \alpha, c) \models D \iff \operatorname{im}(o_c) \le D$

We have, equivalently, that $(X, \alpha, c) \models D$ iff the observability map o_c factors through D.

Definition

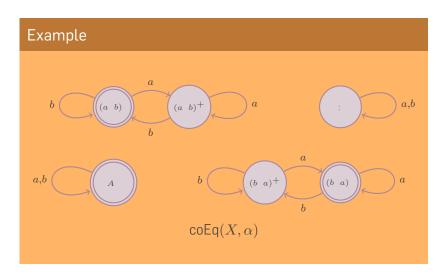
We define $coEq(X, \alpha)$ to be the smallest set of coequations satisfied by the automaton (X, α) .



Setting the scene Equations and coequations Varieties and covarieties ALL TOGETHER NOW Example abxyab $\mathsf{Eq}(X,\alpha) = \{aa = a, bb = b, ab = b, ba = a\}$

Equations and coequations Setting the scene Varieties and covarieties ALL TOGETHER NOW Example aa[b]b[a]ab $A / \mathsf{Eq}(X, \alpha)$

ALL TOGETHER NOW



VARIETIES AND COVARIETIES

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
VARIET	IES			

Definition

For every set E of equations we define the variety V_E by

$$V_E = \{ (X, \alpha) \mid (X, \alpha) \models E \}$$

Contents	Preliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
VARIET	TFS			

Definition

For every set E of equations we define the variety V_E by

$$V_E = \{ (X, \alpha) \mid (X, \alpha) \models E \}$$

Proposition

Every variety V_E is closed under the formation of subautomata, homomorphic images and products.

For every set D of coequations we define the covariety C_D by

$$C_D = \{ (X, \alpha) \mid (X, \alpha) \models D \}$$

For every set D of coequations we define the covariety C_D by

$$C_D = \{ (X, \alpha) \mid (X, \alpha) \models D \}$$

Proposition

Every covariety C_D is closed under the formation of subautomata, homomorphic images and coproducts.

Conte	nts Pre	eliminaries	Setting the scene	Equations and coequations	Varieties and covarieties
LA	NGUAGE	S			

Let V_E be a variety. We define the variety of languages $L(V_E)$ by

$$L(V_E) = \{ L \in 2^A \mid < L > \in V_E \}$$

Let V_E be a variety. We define the variety of languages $L(V_E)$ by

$$L(V_E) = \{ L \in 2^A \mid < L > \in V_E \}$$

Definition

Let C_D be a covariety. We define the covariety of languages $L(C_D)$ by

$$L(C_D) = \{ L \in 2^A \mid < L > \in C_D \}$$

ON EQUATIONS AND VARIETIES

Theorem

Let E be a set of equations.

The following statements are equivalent:

ON EQUATIONS AND VARIETIES

Theorem

Let E be a set of equations.

The following statements are equivalent:

i. E is a congruence.

ON EQUATIONS AND VARIETIES

Theorem

Let E be a set of equations.

The following statements are equivalent:

- i. E is a congruence.
- ii. $E = Eq(X, \alpha)$ for some automaton (X, α) .

ON EQUATIONS AND VARIETIES

Theorem

Let E be a set of equations.

The following statements are equivalent:

i. E is a congruence.

ii. $E = Eq(X, \alpha)$ for some automaton (X, α) .

iii. $(A \ /E, [\sigma]) \models E.$

ON EQUATIONS AND VARIETIES

Theorem

Let E be a set of equations.

The following statements are equivalent:

i. E is a congruence.

ii. $E = Eq(X, \alpha)$ for some automaton (X, α) .

- iii. $(A \ /E, [\sigma]) \models E.$
- iv. Eq $(A / E, [\sigma]) = E$.

ON EQUATIONS AND VARIETIES

Under any of the statements above, we have:

Corollary

$$L(V_E) = \{ L \in 2^A \mid \forall (v, w) \in E, \ L_v = L_w \}$$

ON EQUATIONS AND VARIETIES

Under any of the statements above, we have:

Corollary

$$L(V_E) = \{ L \in 2^A \mid \forall (v, w) \in E, \ L_v = L_w \}$$

Note that if E is a bisimulation on $A\;$, $A\;\;/E$ has structure of automaton.

ON EQUATIONS AND VARIETIES

Under any of the statements above, we have:

Corollary

$$L(V_E) = \{ L \in 2^A \mid \forall (v, w) \in E, \ L_v = L_w \}$$

Note that if E is a bisimulation on $A\;$, $A\;\;/E$ has structure of automaton.

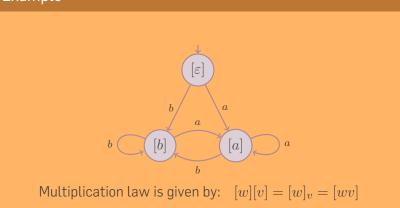
When E is a congruence on $A\,$, $A\,\,/E$ can be both seen as an automaton and as a monoid.

Contents

Varieties and covarieties

ON EQUATIONS AND VARIETIES

Example



Contents

Equations and coequations

Varieties and covarieties

ON EQUATIONS AND VARIETIES

Corollary

For every automaton (X, α) , $A / Eq(X, \alpha)$ is a monoid.

Contents

Equations and coequations

Varieties and covarieties

ON EQUATIONS AND VARIETIES

Corollary

For every automaton (X, α) , $A / Eq(X, \alpha)$ is a monoid.

Theorem

$$A \ / \mathsf{Eq}(X, \alpha) \cong \mathsf{trans}(X, \alpha)$$

ON COEQUATIONS AND COVARIETIES

Theorem

Let D be a set of coequations.

The following statements are equivalent:

ON COEQUATIONS AND COVARIETIES

Theorem

Let D be a set of coequations.

The following statements are equivalent:

i. $D = coEq(X, \alpha)$ for some automaton (X, α) .

ON COEQUATIONS AND COVARIETIES

Theorem

Let D be a set of coequations.

The following statements are equivalent:

i. $D = \operatorname{coEq}(X, \alpha)$ for some automaton (X, α) . ii. $(D, \tau) \models D$.

ON COEQUATIONS AND COVARIETIES

Theorem

Let D be a set of coequations.

The following statements are equivalent:

i.
$$D = \operatorname{coEq}(X, \alpha)$$
 for some automaton (X, α) .

ii.
$$(D,\tau) \models D$$
.

iii. $coEq(D, \tau) = D.$

ON COEQUATIONS AND COVARIETIES

Theorem

Let \boldsymbol{D} be a set of coequations.

The following statements are equivalent:

i.
$$D = \operatorname{coEq}(X, \alpha)$$
 for some automaton (X, α)
ii. $(D, \tau) \models D$.
iii. $\operatorname{coEq}(D, \tau) = D$.
iv. $L(C_D) = D$.

📎 S. Eilenberg,

Automata, languages and machines (Vol. A and B), Pure and applied mathematics. Academic Press, 1974.

J. Rutten.

Universal coalgebra: a theory of systems, Elsevier, Theoretical Computer Science, Amsterdam, 2000.

- J. Rutten, A. Ballester-Bolinches, E. Cosme-Llópez Varieties and covarieties of languages (preliminary version), MFPS XXIX Proceedings, 2013.
- 📎 D. Sangiorgi, J. Rutten, Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science, 2012.