

A DECOMPOSITION THEOREM FOR FINITE MONOID ACTIONS

Centrum Wiskunde & Informatica

Amsterdam, 2014

Enric Cosme

Departament d'Àlgebra Universitat de València

Basic no	otions	Types of actions	Building blocks	Decomposition Theo	rem
MON	NOID				
	Definition				
	A Monoid is binary opera	tuple $(M,\cdot,1)$ wtion and 1 is an e	where M is a set, \cdot is element in M with th	an associative e property:	
		1m =	= m1 = m		
	for all $m \in M$	I. We will usuall	ly write M for the sak	e of simplicity.	

Basic n	otions	Types of actions	Building blocks	Decomposition Theo	rem
MOI	MONOID				
	Definition				
	A Monoid is ⁻ binary opera	tuple $(M,\cdot,1)$ wh tion and 1 is an el	here M is a set, \cdot is ement in M with th	an associative e property:	
		1m =	m m 1 = m		
	for all $m \in M$	I. We will usually	write M for the sak	e of simplicity.	
	Basic exam	ples of monoids	5		

For a set X, $\mathcal{T}_X = \{f \colon f \text{ is a function from } X \text{ to } X\}$

Basic no	otions	Types of actions	Building blocks	Decomposition Th	neorem
MONOID					
	Definition				
	A Monoid is binary opera	tuple $(M,\cdot,1)$ wh tion and 1 is an ele	ere M is a set, \cdot is ement in M with th	an associative ne property:	
		1m =	m1 = m		
	for all $m \in M$	1. We will usually	write M for the sal	ke of simplicity.	
	Basic exam	ples of monoids			

For a set X, $\mathcal{T}_X = \{f : f \text{ is a function from } X \text{ to } X\}$ For a set A, the free monoid A^* over A.

Basic notions	Types of actions	Building blocks	Decomposition Theorem
GROUP			

Let a, b be two elements of the monoid M. We say that b is the **inverse** of a if

$$ab = ba = 1$$

Basic notions	Types of actions	Building blocks	Decomposition Theorem
GROUP			

Let a, b be two elements of the monoid M. We say that b is the inverse of a if

$$ab = ba = 1$$

We say that a monoid M is a group if every element $a \in M$ has an inverse. We usually denote groups by G.

Basic notions	Types of actions	Building blocks	Decomposition Theorem
GROUP			

Let a, b be two elements of the monoid M. We say that b is the inverse of a if

$$ab = ba = 1$$

We say that a monoid M is a group if every element $a \in M$ has an inverse. We usually denote groups by G.

Basic examples of groups

For a set X, $\Sigma_X = \{f : f \text{ is a bijective function from } X \text{ to } X\}$

Let a, b be two elements of the monoid M. We say that b is the inverse of a if

$$ab = ba = 1$$

We say that a monoid M is a group if every element $a \in M$ has an inverse. We usually denote groups by G.

Basic examples of groups

For a set X, $\Sigma_X = \{f : f \text{ is a bijective function from } X \text{ to } X\}$ The integers with the sum $(\mathbb{Z}, +, 0)$.

Basic notions	Types of actions	Building blocks	Decomposition Theorem
ACTION			

Let M be a monoid and let X be any set. We say that M acts on the left of X if there exists a mapping:

$$\begin{array}{ccccc} M \times X & \longrightarrow & X \\ (m, x) & \longmapsto & mx \end{array}$$

for which the following properties hold:

al. For all $m_1, m_2 \in M$ and $x \in X$, $m_2(m_1x) = (m_2m_1)x$. a2. For all $x \in X$, 1x = x.

We will say that X is a left M-set.

ACTION

The natural action

Let M be any monoid. It can act on itself using the internal multiplication law on $M\colon$

Basic notions	
---------------	--

ACTIONS

The natural action of \mathcal{T}_2

M-MORPHISM

Definition

If X and Y are two M-sets, we define a M-morphism from X to Y to be a function $f:X\to Y$ such that

$$f(m \cdot x) = m \cdot f(x)$$

for all m in M and all $x \in X$.

If f is bijective, we will say that the actions are equivalent.

CONGRUENCES

Definition

Let X be an M-set. A relation $\Theta\subseteq X\times X$ is called left stable if for each $x,y\in X$ and $m\in M,$ the condition

 $x\Theta y$ implies $mx\Theta my$

A left congruence is any equivalence relation that is left stable.

CONGRUENCES

Definition

Let X be an M-set. A relation $\Theta\subseteq X\times X$ is called left stable if for each $x,y\in X$ and $m\in M,$ the condition

 $x\Theta y$ implies $mx\Theta my$

A left congruence is any equivalence relation that is left stable.

One can define a natural left action on the quotient X/Θ in terms of the action defined on X in such a way that the canonical surjection $\pi_{\Theta}: X \to X/\Theta$ is an M-epimorphism. Moreover, this allow us to obtain a 1st Isomorphism Theorem on M-sets.

TYPES OF ACTIONS

Definition

Let X be an M-set. The action is said to be:

Transitive; If for each $x, y \in X$, there is an element $m \in M$ with mx = y.

Definition

Let X be an M-set. The action is said to be:

Transitive; If for each $x, y \in X$, there is an element $m \in M$ with mx = y.

Cyclic; If there exists an element $x \in X$ such that Mx = X.

Definition

Let X be an M-set. The action is said to be:

Transitive; If for each $x, y \in X$, there is an element $m \in M$ with mx = y.

Cyclic; If there exists an element $x \in X$ such that Mx = X. Quasi-transitive; If X is not the coproduct of two proper invariant subsets.

Definition

Let X be an M-set. The action is said to be:

Transitive; If for each $x, y \in X$, there is an element $m \in M$ with mx = y.

Cyclic; If there exists an element $x \in X$ such that Mx = X. Quasi-transitive; If X is not the coproduct of two proper invariant subsets.

The following implications hold:

Transitive \Rightarrow Cyclic \Rightarrow Quasi-transitive

Definition

Let X be an M-set. The action is said to be:

Transitive; If for each $x, y \in X$, there is an element $m \in M$ with mx = y.

Cyclic; If there exists an element $x \in X$ such that Mx = X. Quasi-transitive; If X is not the coproduct of two proper invariant subsets.

The following implications hold:

Transitive \Rightarrow Cyclic \Rightarrow Quasi-transitive

They all coincide when we work with group actions.

Decomposition Theorem

TYPES OF ACTIONS

A transitive action

Basic n	otions	Types of actions	Building blocks	Decomposition Theorem		
TYPES OF ACTIONS						
	A cyclic ac	tion				
				13		

Decomposition Theorem

TYPES OF ACTIONS

A quasi-transitive action

BUILDING BLOCKS

Theorem

Let X and Y be two $M\mbox{-sets}.$ Then the following statements are equivalent:

- i. $X \cong Y$
- ii. There exists a bijection $h : \pi_0(X) \to \pi_0(Y)$ from the set of quasi-transitive subsets of X to the set of quasi-transitive subsets of Y that relates equivalent actions, that is to say, for each $X' \in \pi_0(X)$, the action of M on X' is equivalent to the action of M on h(X').

BUILDING BLOCKS

So far we have seen that the usual definitions of transitivity on group actions are useless to monoid actions.

Quasi-transitive actions are the building blocks for monoid actions, but they are still difficult to handle. Instead, cyclic actions are the easiest actions to work with.

Decomposition Theorem

DECOMPOSITION THEOREM

Definition

Let X and Y be two M-sets. Assume that they both have nonempty invariant subsets which are equivalent to an M-set W. Then we can consider the amalgamated sum of X and Y relative to W. It is again an M-set which will be denoted by:

$X \amalg_W Y$

Decomposition Theorem

DECOMPOSITION THEOREM

Amalgamated Sum

Decomposition Theorem

DECOMPOSITION THEOREM

Amalgamated Sum

DECOMPOSITION THEOREM

Theorem

Let X be a finite M-set. Assume that the action of M on X is quasi-transitive. Then there are invariant subsets W, Y, Z of X such that:

- i. W is a common non-empty invariant subset of both Y and Z.
- ii. Y is a cyclic M-set.
- iii. Z is a quasi-transitive M-set.

iv. $X \cong Y \amalg_W Z$

DECOMPOSITION THEOREM

Theorem

Let X be a finite M-set. Assume that the action of M on X is quasi-transitive. Then there are invariant subsets W, Y, Z of X such that:

- i. W is a common non-empty invariant subset of both Y and Z.
- ii. Y is a cyclic M-set.
- iii. Z is a quasi-transitive M-set.

iv. $X \cong Y \amalg_W Z$

Corollary

Every finite quasi-transitive $M\mbox{-set}$ can be written as an amalgamated sum of cyclic $M\mbox{-sets}.$

Decomposition Theorem

DECOMPOSITION THEOREM

An arbitrary action of \mathcal{T}_2 on a set of 12 elements

Decomposition Theorem

DECOMPOSITION THEOREM

\boldsymbol{W} invariant subsets

Decomposition Theorem

DECOMPOSITION THEOREM

Corollary

Let X be a finite quasi-transitive M-set that is not cyclic. Then the W subset that appears in the decomposition theorem is isomorphic to a quotient of the greatest proper left-ideal contained in M.

BIBLIOGRAPHY

- J. Climent Vidal, Teoría de Conjuntos, Lecture Notes, Universitat de València, 2010.
- 🔋 R. Jansana,
 - Orders, Lattices and Boolean Algebras, Lecture Notes, Universitat de Barcelona, 2010-11.
- M. Kilp, U. Knauer, A.V. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000.
 - B. Steinberg, A Theory of Transformation Monoids: Combinatorics and Representation Theory, eprint arXiv:1004.2982, 2010.